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Microscopic foundation of nonextensive statistics
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A combination of the Lie-Poisson equation with theq-averaged energyUq5^H&q leads to a microscopic
framework for nonextensiveq thermodynamics. The resulting von Neumann equation is nonlinear:i ṙ
5@H,rq#. In spite of its nonlinearity the dynamics is consistent with linear quantum mechanics of pure states.
The free energyFq5Uq2TSq is a stability function for the dynamics. This implies thatq-equilibrium states
are dynamically stable. The~microscopic! evolution ofr is reversible for anyq, but for qÞ1 the correspond-
ing macroscopic dynamics is irreversible.@S1063-651X~99!50103-7#

PACS number~s!: 05.20.2y, 05.30.2d, 05.70.Ln
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Standard thermodynamics is based on the Gibb
Shannon–von Neumann entropyS152kB Tr(r ln r) and the
internal energyU15Tr rH. The equilibrium density matrix
r0 minimizes the free energyF15U12TS1 . A microscopic
foundation for thermodynamics is based on the von N
mann equation~VNE!

i ṙ5@H,r#. ~1!

Equilibrium states are stable fixed points of this dynamic
It is perhaps not so widely known that the VNE can

regarded as a classical Hamiltonian system with Hamilton
function U1 . In this contextF1 is a stability function for the
underlying Hamiltonian Lie-Poisson dynamics. We sh
elaborate on these points later but first we want to pose
following problem. It is known that there exist physical sy
tems that are naturally described by a nonextensive ther
dynamics@1#. The structure of this theory is analogous to t
ordinary one, with one exception: Instead ofU1 , S1 , and
F1 , one takes theirqÞ1 generalizationsUq , Sq , and Fq
~see below!. The question is whether there exists an und
lying dynamics for nonextensive thermodynamics. Is it giv
by the standard VNE~as worked out in@2#! or perhaps,
should the dynamics also beq-modified?

The analysis given below is based on one singleansatz:
theq-averaged energyUq is also the Hamiltonian function o
the quantum system. As we shall see, this implies thatFq is
again a stability function for the microscopic dynamics.
particular, the equilibrium states ofq thermodynamics are
dynamically stable.

The VNE is an immediate consequence of the Sch¨-
dinger equation~SE!

i uċ&5Huc& ~2!

if r represents a pure state, i.e.,r5%5uc&^cu ~we use% to
denote pure-state density matrices or their reductions to
systems!. However, in real experimental situations one do
not deal with pure states since~a! there exists a classical lac
of knowledge about quantum sources and~b! entangled
states lead to nonpure density matrices when reduced
subsystem. Indeed, if theclassical state of the device tha
prepares the quantum ensemble is not exactly known,
the experiment is repeated several times, one has to ap
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purely classical averaging over the classical configuration
the source. This results in a nonpure density matrix

r5E d%w~% !%, ~3!

where one integrates over quantum-mechanical pure s
whose distribution is given byw(%). r can be used to cal
culate experimental averages since the latter are linear i%:

Tr rA5E d%w~% !Tr %A. ~4!

The distinction between thestate % and the distribution
w(%) ~a function defined on the space of states! ultimately
leads to a sharp distinction between the Liouville equat
~LE! and the VNE. In order to explain this point let us fir
note that the VNE~1! can be written as a classical Hami
tonian system@3–7#:

i ṙa5$ra ,^H&1%, ~5!

wherera5^aurua8& are the components ofr taken in some
basis,^H&15Tr rH is the average energy, and the bracke

$A,B%5raVbc
a dA

drb

dB

drc
~6!

is a Lie-Poisson bracket on the manifold of states@8#. Here
Vbc

a are structure constants of a Lie algebra@gl(n,C) for
finite dimensional Hilbert spaces# and the summation con
vention means summation or integration with respect to
appropriate measure@9,10#. Using the standard argument on
derives the LE

iẇ5$w,^H&1%. ~7!

It is obvious that the linearity inw of the LE ~7! is com-
pletely unrelated to the linearity of the VNE, and follow
directly from the fact that the dynamics~5! is Hamiltonian.
Also, the physical meaning of the linearity of Eq.~7! is clear:
It reflects thelinearity of averaging and the fact that an e
perimentalist can control the form ofw by improving the
measurement device.
R2497 ©1999 The American Physical Society



,
e-
at
d
ex
a

th

th

ty

an
a
-

by

am

r

n

l
ere

e

o

t
ar.

es
this
sti-

su-
by

age

d
ise

ss
t fact
.

ian

l

so
uch
the
of
d
s-
in
ler
r

e a
tics
x-
for

RAPID COMMUNICATIONS

R2498 PRE 59MAREK CZACHOR AND JAN NAUDTS
The second class of density matrices that are nonpure
the sense that%2Þ%, occurs as an entirely quantum ph
nomenon and is a result of entanglement between correl
quantum systems. Such states are fundamentally and irre
ibly mixed. They can be written in different ways as conv
combinations of pure states and all such combinations h
to be regarded as physically equivalent@11,12#.

On the other hand, the decomposition~3! is uniquely de-
termined by the experimental setup. The difference in
physical status of the ‘‘pure-state’’ decompositions ofr and
% implies that there exists a physical difference between
linearity of the LE~7! and the VNE~1!. The linearity of the
latter is apostulatethat is independent of both the lineari
of Eq. ~7! and the pure-state SE~2!. Linear SE is compatible
with any equation of the form

i %̇5@H, f ~% !#, ~8!

provided thatf (%)5% for %25%, which holds for all func-
tions satisfyingf (0)50 and f (1)51. The choice off (x)
5x is convenient but does not seem to be dictated by
fundamental principle. On the contrary, we will argue th
other choices off may be physically relevant and, in particu
lar, we will show that there exists a link off (x)5xq with the
nonextensiveq statistics introduced by Tsallis@1# @note that
q.0 is needed to ensuref (0)50#.

We shall first show that the modified dynamics given
Eq. ~8! has the same Lie-Poisson structure as~1!. Assumef
has a Taylor expansionf (x)5(k51

` f kx
k with a radius of

convergence of at least 1. Consider the Lie-Poisson dyn
ics

i %̇a5$%a ,^H& f%, ~9!

with the one-homogeneous Hamiltonian function

^H& f5TrH ~Tr % ! f S %

Tr % DHJ . ~10!

A variation of ^H& f with respect to% gives the effective
Hamiltonian

Ĥ~% !5
d^H& f

d%
5 (

k51

`

f k~Tr % !12k (
m50

k21

%k212mH%m

1TrH f S %

Tr % DHJ 1

2TrH %

Tr %
f 8S %

Tr % DHJ 1,

wheref 85d f /dx. Equation~9!, when written in an operato
notation, is

i %̇5@Ĥ~% !,%#5~Tr % !@H, f ~%/Tr % !#. ~11!

Tr % is an integral of motion so we can consider solutio
normalized by Tr%51. This shows that Eq.~8! is indeed a
particular case of Eq.~9!. Taking f (x)5xq and normalized%
we get

i %̇5@Ĥ~% !,%#5@H,%q#. ~12!
in

ed
uc-

ve

e

e

y
t

-

s

In general, one-homogeneity of^H& f implies that

^H& f5Tr %Ĥ~% !. ~13!

For f (x)5xq, denoting the corresponding^H& f by ^H&q , we
find ^H&q5Tr %Ĥ(%)5Tr %qH, i.e., the average effective
energy equals theq average ofH, an internal energy typica
of Tsallis generalized thermodynamics. Such averages w
shown to be naturally linked with nonextensiveq entropies
@13–19#. The probabilistic interpretation of̂H& f is derived
from its equality to the ‘‘normal’’ average of the effectiv
Hamiltonian. In particular, forH51, the generator of the
dynamics isĤ(r)5 f 8(r)1@Tr f (r)2Tr r f 8(r)#1 which is
not necessarily equal to1. Hence there is no problem t
understand whŷ 1&qÞ1. The normalization ofq averages,
as proposed recently by@20#, is not desirable in the presen
context since the averaging we apply is essentially line
The fact that the effective energy is ‘‘nonextensive’’ do
not yet imply that all observables are nonextensive. On
basis one may wonder whether it is indeed physically ju
fied to take theq averaging as a universal rule forq statis-
tics.

Note that the VNE~12! is nonlinear. Nonlinear VNE’s are
used regularly in statistical physics. The nonlinearity is u
ally due to friction forces and should be compensated
adding a noise term to the VNE in order to keep the aver
energy constant~cf., the recent discussion in@21#!. However,
for a nonlinearity of the form~8! the energy is a conserve
quantity. Hence there is no need for the balancing no
term. VNE’s of the form~12! were independently found in
the context of a Lie-Nambu dynamics and studied in@9,22#.
It was shown, in particular, that their Hermitian trace-cla
solutions possess time-independent spectra, an importan
that allows us to treat the solutions%(t) as density matrices
This also implies that for anyt1 andt2 there exists a unitary
transformation satisfying%(t2)5U(t2 ,t1)%(t1)U(t2 ,t1)21.
Although U(t2 ,t1)ÞU(t22t1,0) @equality would imply lin-
earity of evolution# the local generator ofU(t1e,t), for e
→0, exists and is our effective time-dependent Hamilton
Ĥ„%(t)…. Denote Cn5Tr(%n), nPN. One finds $Cn ,F%
50 for anyF, which shows thatCn are Casimir invariants
for the dynamics. The set of invariants also contains aln
averages ofH since$^H&n ,^H&m%50 for any naturaln and
m. The dynamics we consider is therefore so regular and
close to the linear one that one may wonder whether s
equations do possess nontrivial solutions. Fortunately,
answer is positive. An analytic Darboux-type technique
solving Eq. ~12! for q52 has been recently develope
@23,24# and various explicit solutions were found. In a cla
sical context theq52 case was discussed in great detail
relation to Lie-algebraic generalizations of classical Eu
equations~cf., Ref. @8# and references therein, in particula
@25,26#!. It is also well known that similarq52 Lie-Poisson
equations describe plasma dynamics~in the context of a gen-
eralized statistics, a paper of particular relevance is@27#!.

Since the description we propose is meant to provid
fundamental quantum background for a generalized statis
it must be also capable of dealing with collections of none
tensive systems. This means we have to provide a recipe
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extending the von Neumann dynamics from subsystem
composite systems. The extension should be self-consis
in the sense that a dynamics of a subsystem should be i
pendent of whether the system is considered alone or as
of a collection of many noninteracting systems. This
achieved by taking the two-system Hamiltonian functi
^HI&q1

I 1^HII &q2

II . The qk averages occurring in the Hami

tonian function of the composite system are

^HI&q1

I 5TrI@~% I !
q1HI #,

^HII &q2

II 5TrII @~% II !
q2HII #,

and the density matrices% I and% II are thereduceddensity
matrices of the respective subsystems. The two-system e
tion one obtains is

i %̇ I 1II 5@ĤI~% I ! ^ 1II 11I ^ ĤII ~% II !,% I 1II #, ~14!

whereĤI(% I),ĤII (% II ) are the effective Hamiltonians of th
subsystems. The choice of this particular type of extens
follows from the general results proved for a Lie-Poiss
nonlinear quantum mechanics of density matrices
@6,9,10,28#. The expressionsCn(% I 1II )5TrI 1II (% I 1II )

n are
time independent~as Casimir invariants! for any naturaln.
Therefore, if% I 1II (t) is a Hermitian trace-class solution o
Eq. ~14!, then its eigenvalues are time independent on
basis of the standard argument@22# and, therefore,% I 1II (t)
is a density matrix if it is one att50. On the other hand
taking partial traces of Eq.~14!, one verifies that

i %̇ I5@HI ,~% I !
q1#, i %̇ II 5@HII ,~% II !

q2#,

as required by the self-consistency of the extension. All
these results have an immediate extension to more gen
Hamiltonian functionŝ H& f .

Having established all of these general results we are
in a position to discuss, in more detail, the links to the g
eralized statistics proposed by Tsallis@1#. It is based on the
internal energyUq5Tr %qH and the corresponding entrop

Sq~% !5kB

Tr %2Tr~%q!

q21
. ~15!

Uq is naturally associated withSq since the various relation
typical of q51 thermodynamics turn out to b
q-independent. However, standard thermodynamics isstatic
and the relations betweenUq andSq are evaluated in therma
equilibrium. From the dynamical point of view an equilib
rium state%0 is a fixed point of the dynamics, i.e.,@H,%0#
50 @29#. There exists an infinite number of such states
not all of them have to be stable if a nonlinear Lie-Poiss
dynamics is involved. The stability tests that are typica
used in such a situation~e.g., in hydrodynamics and plasm
physics! are the energy-momentum, energy-Casimir@30# or
energy-invariant @31# methods. In the energy-Casim
method ~used when one knows the Casimirs but does
control the symmetries! one looks for minima or maxima o
the ‘‘stability function’’

X~% !5h~% !1F~C1 ,C2 , . . . !, ~16!
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where h(%) is a Hamiltonian function of the Hamiltonian
dynamical system andF is a function of the Casimir invari-
antsCk typical of this system. The latter function is dete
mined by the requirement thatX(%) has a strict minimum or
maximum at%0 , in particular

dX

d%
~%0!50. ~17!

In our caseh(%) is U f5^H& f ~or Uq if we restrict the analy-
sis to f (x)5xq), and the Casimirs are all functionsC(%)
that can be written as a trace of a convergent power se
i.e.,

C~% !5TrS (
k

ck%
kD 5(

k
ckCk~% !5:F~C1 ,C2 , . . . !.

It is clear that the stability functionX for the energy-Casimir
method is nothing else but the free energyF corresponding
to a generalized entropyS52F/T, with T as the tempera-
ture. In this way the thermodynamic relationF5U f2TS is
recovered. The equilibrium state%0 is an extremum ofF. If
this is a strict minimum~or maximum! then the orbits of
density matrices in a neighborhood of%0 are dynamically
stable. Thermodynamic stability of the Tsallis thermodyna
ics has been raised in@32# and settled in@33#. Therefore
equilibrium states extremizingF will generically be dynami-
cally stable fixed points of the nonlinear VNE.

Once dynamic stability of%0 is established it become
meaningful to study linear response theory@34#. This has
been done in the context of nonextensive statistics by R
gopal @17,35#. However, the theory has to be modified b
cause of the nonlinearity of the VNE. A discussion of the
modifications is out of the scope of the present paper
will be presented elsewhere.

Let us illustrate the above results with the simple exam
of a single spin in an external field. The Hamiltonian is giv
by H52msz ~assumem.0, thesa , a5x,y,z are the Pauli
matrices!. A general Hermitian 232 matrix with eigenval-
uesl1 ,l2 is

%5
1

2
~l11l2!11

1

2
~l12l2!cos~f!sz

2
1

2
~l12l2!sin~f!@cos~c!sx1sin~c!sy#. ~18!

If sin(f)50 or l15l2 then% is time invariant. In the other
case Eq.~8! implies ḟ50,

ċ52v, with v52m
f ~l1!2 f ~l2!

l12l2
, ~19!

and the Larmor precession frequencyv depends, in general
on the eigenvalues of%. For this example this is the only
effect induced by the nonlinearity of the VNE. Note thatv
52m is still valid for pure states—the underlying quantu
mechanics remains unchanged.

Now assumef (x)5xq. The internal energy is

Uq5Tr %qH52m cos~f!~l1
q2l2

q!. ~20!
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The q entropy equalsSq5kB@12l1
q2l2

q#/(q21) In both
formulas one should takel15l>0 andl2512l>0. Of
physical interest are minima ofF for which l.12l and
Uq,0. Hence one can take cos(f)51. From]F/]l50, with
b51/kBT and assuming 0,uq21ubm,1, one finds that the
eigenvaluel of %0 is the solution of

S l

12l D q21

5
11~q21!bm

12~q21!bm
. ~21!

The value of]2F/]l2 at equilibrium is strictly positive. In
fact, F has an absolute minimum at%5%0 . This thermody-
namic stability implies dynamic stability of%0 as a fixed
point of the nonlinear VNE. One concludes that Tsallis th
modynamics is useful to analyze the dynamic stability
fixed points of the nonlinear VNE.

A special feature of the nonlinear VNE is that classic
mixtures of initial conditions evolve irreversibly with tim
~this property has been discussed extensively in@21#!. Take,
e.g.,

r5E
0

1

dlE
0

p

sin~f!dfE
0

2p

dcw~l,f,c!%~l,f,c!,

with w(l,f,c)5(1/8)sin(c/2) and with %(l,f,c) given
by Eq. ~18!. A short calculation then shows that
e
d

-
f

l

r~ t !5
1

2
11

p

24E0

1

dl~2l21!

3$cos@v~l!t#sx1sin@v~l!t#sy%,

with v~l! given by Eq.~19!. Due to the dependence ofv on
l a dephasing occurs and the classical density matrix c
verges to1

21 as t→`. The lack of knowledge about initia
conditions leads to a true irreversible decay.

An analysis of more complicated examples including l
ear response theory will be presented in a forthcoming pa

We conclude by answering the question posed in the
troduction. Nonextensive thermodynamics can be based
linear dynamics, as worked out in@2#. However, a founda-
tion based on nonlinear dynamics is more general and m
natural. In particular, it gives a probabilistic interpretation
q averages. Conversely, nonextensive thermodynamic
useful to analyze the stability of nonlinear quantum syste
Finally, we have shown that nonlinearity of the dynami
can explain irreversibility of quantum systems.
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