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Microscopic foundation of nonextensive statistics
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A combination of the Lie-Poisson equation with theaveraged energy ,=(H), leads to a microscopic
framework for nonextensivel thermodynamics. The resulting von Neumann equation is nonlirigar:
=[H,p"]. In spite of its nonlinearity the dynamics is consistent with linear quantum mechanics of pure states.
The free energfFr,=U,— TS, is a stability function for the dynamics. This implies tlpequilibrium states
are dynamically stable. Thinicroscopig evolution ofp is reversible for any, but forq# 1 the correspond-
ing macroscopic dynamics is irreversib[&1063-651X99)50103-7

PACS numbds): 05.20~y, 05.30—d, 05.70.Ln

Standard thermodynamics is based on the Gibbs-purely classical averaging over the classical configurations of
Shannon—-von Neumann entroBy= —kg Tr(p In p) and the  the source. This results in a nonpure density matrix
internal energyJ,=Tr pH. The equilibrium density matrix
po Minimizes the free energy;=U;—TS;. A microscopic B
foundation for thermodynamics is based on the von Neu- p—f dew(e)e,
mann equatiorfVNE)

()

where one integrates over quantum-mechanical pure states
ip=[H,p]. (1)  whose distribution is given bw(g@). p can be used to cal-
culate experimental averages since the latter are linear in
Equilibrium states are stable fixed points of this dynamics.
It is perhaps not so widely known that the VNE can be
regarded as a classical Hamiltonian system with Hamiltonian TrpA= f dow(g)TroA. 4)
function U; . In this contextF; is a stability function for the
underlying Hamiltonian Lie-Poisson dynamics. We shallThe distinction between thstate ¢ and the distribution
elaborate on these points later but first we want to pose th&(g) (a function defined on the space of statakimately
following problem. It is known that there exist physical sys- leads to a sharp distinction between the Liouville equation
tems that are naturally described by a nonextensive therma@tE) and the VNE. In order to explain this point let us first
dynamicg[1]. The structure of this theory is analogous to thenote that the VNE1) can be written as a classical Hamil-
ordinary one, with one exception: Instead Bf, S;, and  tonian systeni3—-7:
F,, one takes theig#1 generalizationsJ,, Sy, andF,
(see below. The question is whether there exists an under- ipa={pa.(H)1}, (5)
lying dynamics for nonextensive thermodynamics. Is it given
by the standard VNHas worked out in[2]) or perhaps, Wherep,=(a|p|a’) are the components gftaken in some

should the dynamics also lipmodified? basis,(H),=Tr pH is the average energy, and the bracket
The analysis given below is based on one sirajleatz

theqg-averaged energy is also the Hamiltonian function of (A.B)= a ﬁ E ®)

the quantum system. As we shall see, this implies Fhaits ’ Pa*ibes, o

again a stability function for the microscopic dynamics. In
particular, the equilibrium states @f thermodynamics are is a Lie-Poisson bracket on the manifold of stdi@s Here

dynamically stable. _ 2 are structure constants of a Lie algeljgd(n,C) for
The VNE is an immediate consequence of the Schrofinite dimensional Hilbert spacksnd the summation con-
dinger equation'SE) vention means summation or integration with respect to an
) appropriate measuf®,10]. Using the standard argument one
i|g)=H]|y) (2)  derives the LE
if p represents a pure state, i.e5 0 =| )| (we usep to iw={w,(H)}. (7)

denote pure-state density matrices or their reductions to sub-

systemg However, in real experimental situations one doedt is obvious that the linearity iw of the LE (7) is com-
not deal with pure states sin¢a there exists a classical lack pletely unrelated to the linearity of the VNE, and follows
of knowledge about quantum sources afil entangled directly from the fact that the dynamid¢$) is Hamiltonian.
states lead to nonpure density matrices when reduced to Also, the physical meaning of the linearity of HJ) is clear:
subsystem. Indeed, if thelassical state of the device that It reflects thelinearity of averaging and the fact that an ex-
prepares the quantum ensemble is not exactly known, angerimentalist can control the form a¥ by improving the
the experiment is repeated several times, one has to applynaeasurement device.

1063-651X/99/568)/249714)/$15.00 PRE 59 R2497 ©1999 The American Physical Society



RAPID COMMUNICATIONS

R2498 MAREK CZACHOR AND JAN NAUDTS PRE 59

The second class of density matrices that are nonpure, iim general, one-homogeneity 0 ); implies that
the sense thap?# ¢, occurs as an entirely quantum phe-
nomenon and is a result of entanglement between correlated .
quantum systems. Such states are fundamentally and irreduc- (H)i=TreH(e). (13
ibly mixed. They can be written in different ways as convex
combinations of pure states and all such combinations hav . .
to be regarded ag physically equivaléht,12. Eorf(x):xq, depotlng the correspondirigi) by (H)q, we

On the other hand, the decompositi@® is uniquely de- find (H)q=TreH(e)=Tre, i.e. the average effective
termined by the experimental setup. The difference in thé€nergy equals thg average oH, an internal energy typical
physical status of the “pure-state” decompositionspcdnd of Tsallis generalized thermodynamics. Such averages were
o implies that there exists a physical difference between th€hown to be naturally linked with nonextensigeentropies
linearity of the LE(7) and the VNE(1). The linearity of the ~ [13—19. The probabilistic interpretation dH)¢ is derived
latter is apostulatethat is independent of both the linearity from its equality to the “normal” average of the effective
of Eq. (7) and the pure-state SB). Linear SE is compatible Hamiltonian. In particular, foH=1, the generator of the

with any equation of the form dynamics isH(p)=f'(p)+[Trf(p)—Trpf’(p)]1 which is
) not necessarily equal té. Hence there is no problem to
ie=[H,f(e)], (8)  understand why(1),# 1. The normalization of] averages,

] ] as proposed recently 40], is not desirable in the present
provided thatf(¢)= ¢ for o= e, which holds for all func-  context since the averaging we apply is essentially linear.
tions satisfyingf(0)=0 andf(1)=1. The choice off(X)  The fact that the effective energy is “nonextensive” does
=X Is convenient but does not seem to be dictated by anyot yet imply that all observables are nonextensive. On this
fundamental principle. On the contrary, we will argue thatpasis one may wonder whether it is indeed physically justi-
other choices of may be physically relevant and, in particu- fied to take theq averaging as a universal rule fqrstatis-
lar, we will show that there exists a link 6fx) =x9 with the  tjcs.
nonextensivey statistics introduced by Tsall[4] [note that Note that the VNE12) is nonlinear. Nonlinear VNE'’s are
q>0 is needed to ensurig0)=0]. used regularly in statistical physics. The nonlinearity is usu-

We shall first show that the modified dynamics given byally due to friction forces and should be compensated by
Eq. (8) has the same Lie-Poisson structureBs Assumef  adding a noise term to the VNE in order to keep the average
has a Taylor expansiofi(x)=3y_,f,x* with a radius of energy constartcf., the recent discussion [21]). However,
convergence of at least 1. Consider the Lie-Poisson dynanfer a nonlinearity of the forn(8) the energy is a conserved
ics quantity. Hence there is no need for the balancing noise

i term. VNE'’s of the form(12) were independently found in
iea={€a.(H)i} (99 the context of a Lie-Nambu dynamics and studieddr22).
It was shown, in particular, that their Hermitian trace-class

with the one-homogeneous Hamiltonian function solutions possess time-independent spectra, an important fact

0 that allows us to treat the solutioggt) as density matrices.
<H>f=Tr( (Tr Q)f(_l__> H] (10 This also implies that for an; andt, there exists a unitary
re transformation satisfying (t,) =U(t,,t;)e(t;)U(t,,t;) L.

Although U(t,,t;) # U(t,—14,0) [equality would imply lin-

A variation of (H); with respect top gives the effective . .
(H)s P ¢9 earity of evolutior the local generator ofJ(t+ €,t), for e

Hamiltonian —0, exists and is our effective time-dependent Hamiltonian
. S(H); 1,kk_l 1 H(e(t)). Denote C,=Tr(e"), neN. One finds{C, ,F}
H(e)= o0 D f(Tre)t X okt mHem =0 for anyF, which shows thaC, are Casimir invariants
k=1 m=0 for the dynamics. The set of invariants also containsnall
0 averages of since{(H),,(H)}=0 for any naturah and
+Tr f(ﬁ) H] 1 m. The dynamics we consider is therefore so regular and so

close to the linear one that one may wonder whether such
T[ o ( o )H]l equations do possess nontrivial solutions. Fortunately, the
—Tr ,

=t Tro answer is positive. An analytic Darboux-type technique of

Tr
e solving Eq. (12) for q=2 has been recently developed
wheref’=df/dx. Equation(9), when written in an operator [23,24] and various explicit solutions were found. In a clas-

notation, is sical context theg=2 case was discussed in great detail in
relation to Lie-algebraic generalizations of classical Euler
i'Q:[ﬂ(g),g]z(-rrQ)[H,f(g/'rrg)]_ (11) equations(cf., Ref.[8] and references therein, in particular

[25,26). It is also well known that similag=2 Lie-Poisson
Tro is an integral of motion so we can consider solutionsequations describe plasma dynamicsthe context of a gen-
normalized by To=1. This shows that Eq8) is indeed a eralized statistics, a paper of particular relevandei§).
particular case of E(9). Takingf(x) =x9 and normalizecd Since the description we propose is meant to provide a
we get fundamental quantum background for a generalized statistics
) R it must be also capable of dealing with collections of nonex-
io=[H(e),e]=[H,e"]. (120  tensive systems. This means we have to provide a recipe for
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extending the von Neumann dynamics from subsystems twhere h(g) is a Hamiltonian function of the Hamiltonian
composite systems. The extension should be self-consistedynamical system an® is a function of the Casimir invari-

in the sense that a dynamics of a subsystem should be indants C, typical of this system. The latter function is deter-
pendent of whether the system is considered alone or as partined by the requirement thXi(¢) has a strict minimum or

of a collection of many noninteracting systems. This ismaximum atg,, in particular

achieved by taking the two-system Hamiltonian function

<H|>{11+<H,|>:1'2. The g, averages occurring in the Hamil- oX

— =0. 1
tonian function of the composite system are o0 (€o) 17
<|-||>'q =Tn[(e)%H,], In our casen(g) is Us=(H); (or U, if we restrict the analy-
! sis to f(x)=x9), and the Casimirs are all functior®(p)
(H”>'q'2=Tr,|[(Q“)qZH“], ;[heat can be written as a trace of a convergent power series,

and the density matriceg, and ¢, are thereduceddensity
matrices of the respective subsystems. The two-system equa-C(g)=Tr
tion one obtains is

Ek: Cka

=; ¢ Cu(0)=:®(C1,Cy, .. .).

(14) It is clear that the stability functioK for the energy-Casimir
method is nothing else but the free enefgyorresponding
to a generalized entropg=—®/T, with T as the tempera-

ié|+||:[H|(9|)®1u+1|®|:|||(Q||),Q|+||],

whereH,(¢,),H, (o, are the effective Hamiltonians of the

subsystems. The choice of this particular type of extensiofre- In this way the thermodynamic relatiér=U;—TS is

follows from the general results proved for a Lie-Poisson'ecovered. The equilibrium stage, is an extremum of . If

nonlinear quantum mechanics of density matrices inth's is a strict minimum(or maximun) then the orbits of

; _ density matrices in a neighborhood @f, are dynamically
[6,9,10,28. The expression€,(0,+1)=Tr 4+ (0,+1)" are . " X
: ; . ; stable. Thermodynamic stability of the Tsallis thermodynam-
time independentas Casimir invarianjsfor any naturaln. ics has been raised if82] and settled in33]. Therefore

Lgquilibrium states extremizing will generically be dynami-
cally stable fixed points of the nonlinear VNE.

Once dynamic stability o, is established it becomes
meaningful to study linear response thedB4]. This has
been done in the context of nonextensive statistics by Raja-
S S gopal [17,35. However, the theory has to be modified be-
ler=[Hi.(e)™], ien=[Hu.(en)®] cause of the nonlinearity of the VNE. A discussion of these

as required by the self-consistency of the extension. All ofnodifications is out of the scope of the present paper and

these results have an immediate extension to more geneﬁé(i” be presented elsewhere. _ _
Hamiltonian functiongH); . Let us illustrate the above results with the simple example

Having established all of these general results we are nowf @ single spin in an external field. The Hamiltonian is giyen
in a position to discuss, in more detail, the links to the genPY H=—wu0, (assumq.>0, thes,, a=x,y,z are the Pauli
eralized statistics proposed by Tsalll§. It is based on the Matrices. A general Hermitian X2 matrix with eigenval-
internal energyJ ,=Tr ¢9H and the corresponding entropy ueshy, Ay Is

basis of the standard arguméd@a®] and, thereforeg, ., (t)
is a density matrix if it is one at=0. On the other hand,
taking partial traces of Eq14), one verifies that

Tre—Tr(e9 _1 Loz
Sq(g):kBq——l' (15) 2=5 A1+ X1+ 5 (M= A;)c08 @) o,
U, is naturally associated wit§, since the various relations — %()\1_ \p)sin(¢)[cog ) oy +sin(¥)o,]. (18)

typical of q=1 thermodynamics turn out to be
g-independent. However, standard thermodynamicgtatc
and the relations betweds\, andS; are evaluated in thermal oL
equilibrium. From the dynamical point of view an equilib- case Eq(8) implies =0,

rium stateg, is a fixed point of the dynamics, i.4.H,0.]

=0 [29]. There exists an infinite number of such states but ¥=—w, with wzzluf()‘l)_f()‘Z) (19)
not all of them have to be stable if a nonlinear Lie-Poisson ' A=Ay
dynamics is involved. The stability tests that are typically ] ]
used in such a situatiofe.g., in hydrodynamics and plasma and the Larmor precession frequensylepends, in general,
physic$ are the energy-momentum, energy-Casif8®] or ~ ON the_ eigenvalues ob. qu th|§ example this is the only
energy-invariant [31] methods. In the energy-Casimir effect.mdu.ced py the nonlinearity of the VNE..Note that
method (used when one knows the Casimirs but does not=2x is still valid for pure states—the underlying quantum

control the symmetrigsone looks for minima or maxima of Mechanics remains unchanqu. _
the “stability function” Now assume (x) =x%. The internal energy is

If sin(¢)=0 or \;=X\, theng is time invariant. In the other

X(@)=h(@)+®(C;,Cy, . ..), (16) Ug=Tre%H=—pucog ¢)(\{-73J). (20
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The q entropy equalsS;=kg[1—A{—AJ]/(q—1) In both
formulas one should takk;=\=0 and\,=1—A=0. Of
physical interest are minima d¢¥ for which A>1—\ and
U4<0. Hence one can take c@gE1. FromgF/dn =0, with

B=1/kgT and assuming €|q—1|Bu <1, one finds that the

eigenvaluex of g is the solution of

( A )q1_1+<q—1>/m

T-x) “1-(a-Dpu’ @)

The value ofd?F/9\? at equilibrium is strictly positive. In
fact, F has an absolute minimum at=g,. This thermody-

namic stability implies dynamic stability op, as a fixed
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_ 1 o (1
p(t)— §1+ ﬁjo d)\(Z)\— 1)
x{cog w(Mt]oy+siMw(N)t]oy},

with w(\) given by Eq.(19). Due to the dependence afon
N\ a dephasing occurs and the classical density matrix con-
verges to3l ast—x. The lack of knowledge about initial
conditions leads to a true irreversible decay.
An analysis of more complicated examples including lin-
ear response theory will be presented in a forthcoming paper.
We conclude by answering the question posed in the in-
troduction. Nonextensive thermodynamics can be based on

point of the nonlinear VNE. One concludes that Tsallis ther-inear dynamics, as worked out [2]. However, a founda-
modynamics is useful to analyze the dynamic stability oftion based on nonlinear dynamics is more general and more

fixed points of the nonlinear VNE.

natural. In particular, it gives a probabilistic interpretation of

‘A special feature of the nonlinear VNE is that classicalq averages. Conversely, nonextensive thermodynamics is
mixtures of initial conditions evolve irreversibly with time yseful to analyze the stability of nonlinear quantum systems.

(this property has been discussed extensivel2it). Take,
e.g.,

1 T 2
PZJ d)\J sin(¢)d¢g | dyw(N, ¢, o (N, &, ¢),
0 0 0

with w(\, ¢, ) =(1/8)sin@/2) and with o(\,®,4) given
by Eq.(18). A short calculation then shows that

Finally, we have shown that nonlinearity of the dynamics
can explain irreversibility of quantum systems.
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