RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Statistics of persistent events: An exactly soluble model
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It was recently realized that the persistence exponent appearing in the dynamics of nonequilibrium systems
is a special member of a continuously varying family of exponents, describing generalized persistence prop-
erties. We propose and solve a simple stochastic spin model, where time intervals between spin flips are
independent, and distributed according to ‘ay é&aw. Both the limit distribution of the mean magnetization
and the generalized persistence exponents are obtained exactly. We discuss the relevance of this model for
phase ordering, spin glasses, and random was063-651X%99)51301-9

PACS numbd(s): 02.50.Ey, 05.40-a, 05.50+q, 05.70.Ln

The question of persistence for coarsening systems is tiby, and #(1)= 6. The existence of families of new nontrivial
determine the fraction of spaé¥t), which remained in the persistence exponents requires an explanation and poses
same phase up to time[1,2]. Equivalently, in the Ising some fundamental questions. For instance, are these expo-
model at zero temperaturB(t) is defined as the fraction of nents independent of the usual persistence exponent? Do
spins that did not flip up to time[3]. In the scaling regime, they depend on temperature2]? Unfortunately, computing
R(t) decays a$~ Y, which defines the persistence exponentthe exact value ob turns out to be a hard problem, so one
6. The surprise caused by the discovery of new nontriviadoes not expect the computation 6fx), or even of the
exponents in the dynamics of simple nonequilibrium systemslistribution of the mean magnetization, to be easily reach-
motivated a long series of works, mainly devoted to theable. The origin of the difficulty is that spins at different sites
search of simple models or experimental situations, wherare strongly correlated.
the persistence exponents could be computed or measured The aim of this Rapid Communication is to present a
[4-9]. The existence of persistence exponents is now welsimple stochastic process that allows an exact analytical de-
established, and their nature is recognized as that of firdermination of both the limit distribution of the local mean
passage exponents, probing the past history of the systemmagnetizatiorM,, and of the probability of persistent large

More recently, two new aspects of persistence have beetteviationg hence of the family of exponent{x)], the latter
introduced[10]. Both involve the consideration of the local turning out surprisingly to be simply related to the former.
mean magnetizatioM =t~ 1f{dt’ o(t') of the spin at a One fundamental aspect of this work is therefore that it es-
given site for the Ising model, or of the sign of the field at atablishes the existence of the family of exponef¢z). As
given point in space for the simple diffusion equation, bothwe shall see, despite its simplicity, this process possesses a
evolved from a random initial conditiofsee alsg11]). This  number of the essential features of actual coarsening models,
quantity is simply related to the fraction of time that the spinin particular their nonstationary properties; hence, it can be
spent in the positive direction. Surprisingly, it turns out thatS€en as a very simplified model of coarsening. Finally, as
the distribution ofM, over the entire system does not peakWill be discussed below, it brings out new views on disor-
around zero fot—o, but tends to a nontrivial limit distri- dered systems and random walks. . _
bution on[ — 1,1], singular at both ends as £x)*" L. The Th|s mpdel describes the dyr)am!cs of a s_mgle spin, where
existence of a limit distribution is based on analytical argu-Ihe time intervals between spin flips are independent and
ments and numerical measurements for the one-dimensiondistributed according to a g law. Such a model is actually
(1D) Ising model at zero temperatuf0], or for the diffu- rather natural. Consider a coarsening system at zero tempera-
sion equatior{10,11], and can also be demonstrated in theture,.the !smg modeli for defu_futeness: Becquse of the ever
independent interval approximation for the lafié6]. It was ~ 9rowing size of domains, a spin at a given site can remain in
realized very recently that the same holds for the 2D |Sm9the same direction for a very long time before a domain wall

model at finite temperature, the limit distributiondf, being ~ CrOSS€s this particular point and flips the spin in the reversed

now singular at= my(T), the Onsager spontaneous magne_direction. By definition of the persistence exponehtthe

tization, providing therefore atationarydefinition of persis- iMme 7 before a spin is flipped is very broadly distributed,

tence at finite temperatufd2]. with a power-law tail decaying as '~ for large 7. The
The second new aspect is concerned with the probabilitg!MPIest approximation is therefore to neglect the correla-
of persistent large deviationabove the levek, where — 1 ions between the different time intervals between flips, all

<x=1, defined as the probability thad, remained greater assumed tf’l?g distributed with the same dengty), de-
thanx, for all timest’ <t [10]. For the Glauber-Ising chain €aYing asr~~"[13]. For simplicity, the distribution of time
at zero temperature, or for the diffusion equation, this quanintervals p(7) is chosen hereafter to be a positive stable
tity was observed to decay algebraically at large times, witd-€vy distribution of index G<6<1 denoted byt 4(7). (The

an exponentd(x) continuously varying withx [10]. When casef>1 will be discussed below.lts Laplace transform
x=1, this probability is thus the usual persistence probabil{eadsl:k;(s)=exp(—bs”), whereb is the scale factor of the
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distribution, i.e., the typical values afare of ordeb? [14].
As is well known, Lg(r) decays asymptotically as™ 1 ¢
[14].

We have investigated the statistics of the process, botfr

after n sign change®r at time t, with very similar results in
the asymptotic regime. Aften sign changes, the time
elapsed and the magnetization of the spin read

th=th-1+ 7, SnEtnMn:Snfl'l'(_)n_lTn- (1)
while, at timet, they are given by
t=ty,tN,  S=tM=Sy+(—)"\. 2)

In the first casen is given and,, is a random variable, while
in the second ong, is given andN; is the random variable
equal to the largest for whicht,<t. Finally \ is the length
of time measured backwards fromto the last event. The
corresponding distributions are defined as

P(n,x)=P(M,=S,/t,=X), ©)

P(t,X)=P(M;=S;/t=X). (4)

For distributions which are peaked around their means at
large times, these quantities are referred to as the probabil-i[
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FIG. 1. Plot ofR(t,x) (left) andR(n,x) (right) for 6=1/2 and
various values oX, in log-log coordinates. The power-law behavior
of both quantities for large times is clearly seen.

S * b* b~ T2
P(Tn/Tn>w)=J drd7Ll, (79)Ly (TZ)H<7_——w)
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his integral leads to Eq6) with r=b~/b™. In the limit

ties of large deviations and are exponentially decreasing witR—*, F — 1. This derivation also shows that wheneveis

n or t, respectively. In the present case, whegrér)
=L';(T) is a positive Ley distribution, we find the limit
distribution

P(x)= lim P(n,x)=lim P(t,x), (5)
n—oo t—ow
_ 1|7 r{rw_o-f-COSﬂ'ﬁ)
“wel2 TN T Sinag ) ©

wherew=(1—x)/(1+x) andr=1 (see below.
Let us sketch the proof of E46) for P(n,x), leaving the
calculation ofP(t,x) to a longer publicatiofl5]. We intro-

duceT, andT, , which are the lengths of time spent by the
spin, respectively in the positive or negative direction, suci}io

thatt,=T, +T, andS,=T, =T, , with T, =7, + 73+
+7-2k+l1 |f n:2k+1, andT::Tl"_Tg“l‘"""Tzk,l, |f n
=2k, and T, =7,+ 74+t .-+ 7, in both cases. Then
P(Sh/thi=X)=P(T, ITh<w) with w=(1—x)/(1+Xx).
SinceT, andT, are sums of stable My random variables
L2, they are themselves stabléwerandom variables 5,
where, using the addition rule of the scale parameters,
=kb, andb™=kb (if n=2k), or b*=(k+1)b (if n=2k
+1). The determination of(n,x) therefore amounts to
computing the distribution of the ratio of two g laws with
parameterd ™ andb*. Denoting byH the Heaviside func-

even,P(n,x)=P(x).
The limit densityf(x)=—P'(x) of the mean magnetiza-
tion reads

sinmé 24w+ !
27 2cosmh+witw ¥

f(x)= )

It is even, and diverges when—+1 as (1+x)?" 1. For 6
<6.,=0.59% ..., where 6. is the solution of 6.
=cos@@b/2),x=0 corresponds to a minimum of(x),
while for larger 6, it corresponds to a local maximum. This
can be interpreted as a precursory sign of the fact fttwat
tends tos(x) for > 1. [It also shows thaf(x) cannot be
approximated by g-distribution whené is too large. In this
respect, compare it to the discussiorid].]
We now consider the probability of persistent large devia-
ns, defined as the probability that the mean magnetization
M was, for all previous times, greater than some level
More precisely one defines the quantitigén,x)="P(M,:
=x,¥n’=<n) and similarlyR(t,x) =P(M; =x,Vt’'<t). Nu-
merical computations show that both quantities decay alge-
braically in the asymptotic regimeee Fig. 1, respectively
as

R(N,x)~n"¢™ (n>1), R(t,x)~t 0 (t>1),
where the two families of exponents are related d{x)
=60¢(x) (see Fig. 2 This relation is indeed expected since

tion, and using its Laplace representation along thdor a givenn, t, scales am*’. Note that by definition of the

Bromwich contour, one finds

model, 6(1)= 6.
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FIG. 2. Plot of the exponentsp(x) and 6(x)/@ for @ -1.0 -0.5 0.0 0.5 1.0
=0.3,0.5,0.7, showing that the relatidi{x) = 0¢(x) holds. The X
lines correspond to the exact resyifx) =1—P(X). FIG. 3. Comparison between the functigiix) for the Glauber-

Ising chain, - P(x), and (x)/[ 8(x)+ 8(—X)] (see text
We also observe with very good accurdsge Fig. 2the
relation [17,19 points of view. For example, althougl( 7) is fixed
. in time, the probability distribution of the length of time
d(X)=1—P(x)= f duf(u), (8) from some time origir(or waiting time t,, to the next fI|E|s
-1 nonstationary for<1, i.e., it depends both ot}, and A,
while it is asymptotically independent of, for 6>1. As a
consequence, the probability that a given spin did not flip
between timed,, andt,+t is a function oft/t,, if <1,
while it is independent of,, if #>1 [17]. Thus for§<1, this
model captures thaging[19] nature of the persistence phe-
R(N=2K,X) = P(£,= 0,6, + £,20,... &1+ &yt + £20), nomenon. This property iﬁ’ deeply rglated to the_fgct that the
(9) largestr; in the sumt,=ZX;_,7; contributes to a finite frac-
tion of t, for 6<1 even in the limith—oo, while this frac-
where &=(1—x)75_1—(1+Xx) 7. Since ther; are posi- tion is asymptotically zero fop=1 [18]. Correspondingly,
tive Levy variables of index, the & are also Ley variables  this also ensures that the distribution of the mean magneti-
of index 6, with an asymmetry paramet@=(w’—1)/(w?  zation does not peak aroumd=0, as was shown above.
+ 1), which measures the relative weight of the negative and Despite its simplicity, the model discussed here thus
positive tails[14]. The solution to Eq(9) for general stable shares many features of more complex coarsening processes.

which we now establish exactly. For this, we note that
R(n,x) is the joint probability thatS,, =xt,, for all 1<n’
<n. Since clearlyR(2k,x) =R(2k+ 1x), we assume that

is even, and write

Levy variables is knowrj20,16. As shown above, it leads to nontrivial predictions for the
It reads quantitiesP(x) and #(x). Also, the behavior oR(t,x) ob-
served in Fig. 1 strongly resembles that foundlif] for the

I'k+1- e . . : .

R(n=2k,x) = ( aq) (10) Glauber-Ising chain or the diffusion equation. These predic

tions can be seen as approximations for these more general
models. In Fig. 3, we compare, for the Glauber model at zero
where 1-q is the probability that; is positive. This prob- temperature, the functiog(x) = 6(x)/6(1), asdetermined
ability is precisely the quantit?(n=2x) introduced above, numerically in[10], with 1—P(x), the distribution of mag-
itself equal toP(x). Henceq=1—P(x). Finally, the largek  netization measured ifil0]. Although there is qualitative
behavior of the right-hand sidehs) of Eg. (10) is «k™9, agreement between these curves, Bj.is clearly only ap-

i.e., #(x)=q, which completes the proof of Eq8). We  proximate. A better approximation, following from consider-
checked that the plot of E¢10) was indistinguishable from ations on “exchangeable” variables, suggests thatP{x)

that obtained numerically fdR(n,x). Equationg6), (8), and is actually equal tod(x)/[ 6(x)+ 6(—x)] [15]. As can be

(10) are the main results of this work. seen in Fig. 3, this is well obeyed by the numerical results.

In the rest of this paper we discuss the relevance of thesdowever, the same approximation leads to much poorer re-
results to phase ordering, random walks and, unexpectedlgults for the persistence exponemiéx) of the diffusion
to some aspects of the statistical mechanics of spin glassesquation.

First, the stochastic process presented above, where time The model presented here is actually, in some respects,
intervals between spin flips are independent and distributedimilar to the random energy modd®EM) for spin-glasses
according to a Ley distribution, exhibits nontrivial temporal [18]. For example, the rhs of Eq10) is identical to the
properties, both from mathematicfl6,14), and physical expression for the participation rat¥ .. ; in the REM, with

Tk+DT(1—-q)°
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a reduced temperature equal ¢o[18,15. An interesting tion in high dimension$5,10,11.
question would be to generalize this model to include some When §=1/2,p(7)=L"(7) is precisely the distribution
correlations between the time intervais of the time intervals between two returns to the origin of the
We also studied the cas#>1, wherep(7) has a finite  pinomial random walk with equal stepsl, in the regime of
first moment. In this case, it is easy to check thagrows |ong times. The fraction of time spent by the walk on the
linearly with n, while S, grows asn'” for 1<6<2 and as  positive half axis isT; /t=y, the distribution of which is
Jn for 6>2 [14]. Hence, the quantity, tends to zero for el known, and given at large times by the arcsine density
large n, and f(x) collapses to & function. However, the ;. ly(1—y), which is precisely Eq(7), with §=1/2, and
persistence exponentg(x) remain well defined, and are x=S/t=2T;/t—1. In this respect, Eq(7) can be consid-
found to be equal 1(x>0)=6, 8(x=0)=1/2, andd(X  greq as a generalization of the arcsine law to the case of the
<0)=0. This shows that the relation betwedix) and 5k defined in this work. A striking consequence of the
P(x) actually still holds in this degenerate case, except fofyresent work is the existence for the simple random walk of

x=0 where the value oP(x) is ill defined. However, the {ne families of exponenté(x) and ¢(x). This result brings
nature of the persistence phenomenon in this model is quitg, answer to a question raised[t0].

different when 6>1, where it becomes stationarfsee
above. It would be interesting to see if this is also true of We wish to thank J. M. Luck, S. Redner, and C. Sire for
more general models whege>1, such as the diffusion equa- interesting discussions.
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