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Hexagons and interfaces in a vibrated granular layer
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The order parameter model based on the parametric Ginzburg-Landau equation is used to describe high accel-
eration patterns in the vibrated layer of granular material. At large amplitude of driving both hexagons and
interfaces emerge. Transverse instability, leading to the formation of “decorated” interfaces and labyrinthine
patterns, is found. Additional subharmonic forcing leads to controlled interface motion.
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Driven granular systems manifest collective fluidlike be-interfaces emerge. We find morphological instability leading
havior: convection, surface waves, and pattern formatiorio the formation of “decorated” interfaces. Additional sub-
(see, e.g.j1]). One of the most fascinating examples of this harmonic forcing leads to the motion of the interface with
collective dynamics is the appearance of long-range coheretite direction controlled by relative phases of harmonic and
patterns and localized excitations in vertically vibrated thinsubharmonic components of forcing.
granular layer$2—4]. The particular pattern is determined by = The essence of the modgd,10| is the order parameter
the interplay between driving frequenéyand acceleration of equation for the complex amplitudg of parametric layer
the containel”=4m2Af2/g (A is the amplitude of oscilla- oscillations h=exp{nft)+c.c. at the frequencyf/2
tions, andg is the gravity acceleratiori2,3]. Patterns appear coupled with the the average thickness of the lgyetfow-
atI'~2.4 almost independently of the driving frequerfcy ~ ever, at high frequencie$ % f*) the coupling betweep and
At small frequenciesd <f* [5] the transition is subcritical ¢ becomes less relevafi becomes enslaved by, and the
(hysteretig, leading to the formation of squares. In the hys-model can be reduced to a single order-parameter equation
teretic region, localized excitations such as individostil- ) )
lons and various bound states of oscillons appeaf ais dup=yy* —(1—iw) g+ (1+ib)V2y—[y?p. (1)
decreased. For higher frequenciesf* the onset pattern is
stripes, and at the frequency slightly higher tHfénthe tran-
sition becomes supercritical. Both squares and stripes,
well as oscillons, oscillate at half of the driving frequency
f/2. At higher accelerationI(>>4), stripes and squares be-
come unstable, and hexagons appear instead. Further i
crease of acceleration &t~4.5 converts hexagons into a . 4 )
domainlike structure of flat layers oscillating with frequency = —Ao—A;k® we obtain the linear terms in Eq1), where
f/2 with opposite phases. Depending on parameters, inteP=IMA1/ReA; and w=(Qo—7f)/ReA,, where (),

— * 1 n7i
faces separating flat domains, are either smooth or “deco= _ M Ao- The termyy* characterizes thze effect of driving
rated” by periodic undulations. Fdr>5.7 various quarter- at th_e resonance frequency. The_tgfnth y accounts for
harmonic patters emerge. nonlinear saturation of waves at finite amplitude.

The pattern formation in thin layers of granular material 't IS convenient to shift the phase of the complex order
was studied theoretically by several groups. Direct moleculaparameter vias= ¢ exp(¢) with sin 2¢=w/y. The equations
dynamics simulation6] (see alsd7]) reproduced a major- for real and imaginary pam/=A+iB are
ity of patterns observed in experiments and many features of
the bifurcation diagram, although until now have not yielded ~ dA=(s—1)A—2wB—(A?+B?)A+ V% A—bB), (2
oscillons and interfaces. Hydrodynamic and phenomenologi-
cal models[8] reproduced certain experimental features; 9B=—(s+1)B—(A2+B?B+ V% B+bA), (3)
however, neither of them offered a systematic description of
the whole rich variety of the observed phenomena. In Refwheres?= y?— w?. At s<1, Egs.(2) and(3) have only one
[9] we introduced the order parameter characterizing thdrivial uniform stateA=0, B=0. At s>1, two new uniform
complex amplitude of subharmonic oscillations. The equastates appear:A=*A,,B=0A=ys—1. The onset of
tions of motion following from the symmetry arguments andthese states corresponds to the period doubling of the layer
mass conservation reproduced essential phenomenology tiights sequence, observed in experimdi@sand predicted
patterns near the threshold of primary bifurcation: stripespy the simple inelastic ball modg2,13). Signs= reflect two
squares, and oscillons. relative phases of layer flights with respect to container vi-

In this Rapid Communication we describe high accelerabrations.
tion patterns on the basis of the order parameter model. We First we analyze the stability of the state= +A,,B=0
show that at large amplitude of driving both hexagons andvith respect to perturbations with wave number (A,B)

Equation(1) describes the evolution of the order parameter

%gr the parametric instability in spatially extended systems
seg[11,12). Linear terms in this equation are obtained from

the complex growth rate for infinitesimal periodic layer per-

HJ_rbationsh~exp:A(k)tJrikx]. ExpandingA (k) for smallk,

and keeping only two leading terms in the expansiaik)
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=(Ag,0)+ (U, Vi )exg\(Kit+ikx]. The uniform state loses 3
its stability with respect to periodic modulations with the
wave numbek, at s<s. (correspondingly;y<v.), where

V1+0?)(1+b%)—w+b

S.= 55 , 4
2s—1—wb )
T ®

Small perturbations with all directions of the wave vector
grow with the same rate. The resultant selected pattern is
determined by the nonlinear competition between the modes.
In the presence of the reflection symmeipy— — o, qua-
dratic nonlinearity is absent, and cubic nonlinearity favors ) .
stripes corresponding to a single mode. Near the fixed points 0 1 2
A=A,,B=0 the reflection symmetry for perturbations ®

——U,V——V is broken, and hexagons emerge at the
threshold of instability. To clarify this point we perform
weakly nonlinear analysis of Eq&) and (3) for s=s.— e,
and e<1. At e—0, the variabled) andV are related as in
linear system,

FIG. 1. Phase diagram for Eql) at b=4. Line 1, y*=(w
+b)?/(1+b?); line 2, ’=»°—w?=1; line 3,s=s,; line 4, s
=S.—€R; line 5, s=s.—¢€g; line 6, s=s.—¢€4; line 7, B=—1.
Beneath line 1 there are no patterns, between lines 1 and 4 stripes
are stable, between lines 5 and 6 hexagons are stable, above line 2
nontrivial flat states exist, and above line 3 they are stable. Inter-

(UV)=(1¥, 7=[2(s;=1)+kel/ (bki—2w), faces are unstable below line 7.

(6)
‘1’=E A exdik-r]+c.c., |kl=k.. At s>1, Egs.(2) and(3) have an interface solution con-
) ' ¢ necting two uniform state&=*A,, B=0. Forb=0 this
solution is of the formA= xAgjtanh@x/2), B=0. Forb
#0 the solution is available only numerically. In order to
(Ut VH=(17"), 77 =—[2(s —1)+k2]/bk§ 7) investigate the stability of the interface, we consider the per-
L ’ 1 C . —_—— ~ ~
¢ turbed  solution  A,B)=(A,B)+[AX),B(X)exd K}t
Substituting Eq(6) into Egs.(2) and(3) and performing the  +iky]. For A,B we obtain linear equations
orthogonalization, we obtain equations for the slowly vary-

The corresponding adjoint eigenvector is

ing complex amplituded\; , j=1,2,3 (we assume only three A , A ) B
waves with triangular symmetry, favored by quadratic non- L B =[A(k)+k7] B +bk _%)
li ity),
inearity) - B (10
DA = 2R+ A%, AY I:_(s—l—sAz—Berai, —2w—2AB—ba§)
- R 2 N2_aR2. 2"
—agl|A P+ 2(A P+ AL A,L © T2ABHDA,  —s—1-AT-3BTH I
where the coefficienta,,a; are In order to determine the spectrum of eigenvald¢k)
one has to solve Eq10) along with stationary Eqg2) and
+ 72 (3). Using the numerical matching-shooting technique, we
a;=2Ag| 2+ Trp° ) az=3(1+7nn"). (9)  have obtained positive eigenvalues corresponding to inter-

face instability. This instability is confirmed by direct nu-
merical simulations of Eq1). An example of the evolution

of slightly perturbed interface is shown in Fig. 2. Small per-
turbations grow to form a “decorated” interface similar to
[20], with time these decorations evolve slowly and eventu-
ally form a labyrinthine pattern.

The neutral curve for this instability can be determined as
lows. Numerical analysis shows that at the threshold the
most unstable wave numberks=0 and we can expect that

Equations(8) are well-studied(see[14]). There are three
critical values ofe. ex=—a3/40a;, eg=as/2az, and eg
=2a§/a3. The hexagons are stable fex<e<eg, and the
stripes are stable foe>eg. Thus, nears=s; the model
exhibits stable hexagor45]. Since we have two symmetric
fixed points, both up- and down-hexagons coexist. Fo'fol
smallers stripes are stable, and for larger flat layers are
stable,. in agreement with observatiof$19]. The above for k—0 A~ k2. Expanding Eqs(10) in power series ok2:
analysis requires the values &f g g to be small. For param-  ~ ~ 0) m(0) 2 A(1) r(1) X

etersw,b=0(1), this requirement is satisfied fary, but ~ (AB)=(AT.B™)+K(A™,BY)+--- in the zeroth order
not for ez r. The estimates can be improved by substitutingin k we obtainL (A(,B(®)=0. The corresponding solution
A, at s=s.+ € instead ofAy(s,) in Eq. (9). The resulting is the translation moda®=9,A(x), B(®=4,B(x). In the
range of stable hexagons is plotted in the phase diagrarfirst order in k> we arrive at the linear inhomogeneous
(w,y) (see Fig. L problem
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Indeed, a simple analysis shows that the growth rate of the
instability of the uniform stateA=1 as a function of the
perturbation wave number is determined by the formula
AMK)=—2+6k?—k* so it becomes unstable at>§,
=2v2 at critical wave numbek.=v2. As in the original
model, near the threshold of this instability, subcritical hex-
agonal patterns are preferred. Interface stability can also be
analyzed more simply as the linearized operator correspond-
ing to the model(14) is self-adjoint. The threshold value
6= 1.011 is obtained from the following solvability condi-
tion:

J ( 83— 2A3,,)dx=0. (15

In experiments, the interface instability usually saturates and
yields periodic undulations of the interface instead of laby-
FIG. 2. (a—(c) Represent interface instability and labyrinth for- rinthine patterns.
mation, Eq.(1), =2, b=4, andy=2.9, domain size 100100 Let us now discuss some possible mechanisms for satura-
units, the snapshots are taken at tines1000, 1600, 4640(d)  tjon of “labyrinthine” instability of the interface, which is
represents the stationary decorated interface 6, b=4, y=7.4, ot captured by Eq(1) [17]. The reason for the proliferation
and &=0.2; =10 000. of the labyrinthine pattern is that the flat state is less
“stable” than the large-amplitude stripe state, and these
) (11) stripes(produced by the interface instabilitinvade uniform
' domaing 18]. In real systems, this does not occur because at
large amplitude of driving, the relative velocity of layer and
A bounded solution to Eq11) exists if the rhs is orthogonal the plate at collision becomes small and cellular patterns do
to the localized mode of the adjoint opera®r,B™. The  not form. Within our order parameter model, this effect can
orthogonality condition fixes the relation betweerandk, be described by additional higher order nonlinear terms.
© A O)at_ m(0)at They can provide additional stabilization of the flat state
_ bfZ.(A7B" —B™WAT)dx against the stripe state even in the regime of interface insta-
A= 2 (A9AT+BOB )dx bility. This effect can provide saturation of the interface in-
(12 stability. We examined this hypothesis numerically in the
framework of Eq.(1) [and, correspondingly, Eq14)] with
The instability, corresponding to the negative surface tensioadditional higher order nonlinear term a|A |2y in the
of the interface, onsets g8=—1. The neutral curve is right-hand side. This additional term does not affect flat
shown in Fig. 1. This instability leads to the so called deco-states but provides additional dissipation for the patterned
rated interfaces sefFig. 2@)]. At the nonlinear stage the state. We have indeed found stable decorated interfaces
undulations grow and form labyrinthine patteififég. 2(b)-  above some critical value af [see Fig. 2d)]. Certainly, the
(d]. specific choice of the higher order term cannot be justified in
Near the lines=1 (see Fig. 1, Eq. (1) can be simplified. the framework of phenomenological theory, however we
In the vicinity of this line A~(s—1)"? and B~(s—1)*?  consider this result rather general and useful for understand-
<A. In the leading order we can obtain from E@) B  ing of the saturation effect.
=bV?A/2, and Eq.(2) yields[21] In the region of stability > —1) for the original model
Eq. (1) the interface is stationary due to symmetry. However,
if the plate oscillates with two frequenciek,and /2, the
symmetry between two states connected by the interface, is
broken, and interface moves. The velocity of interface mo-
Rescaling the variablest—(s—1)t,A—(s—1) A x tion depends on the relative phase of the subharmonic forc-
—[2(s—1)/b?]*, we can reduce Eq(l) to the Swift- ing with respect to the forcing &t This effect can be de-

. (0)

AL A B(®
L B(l) :[)\(k)+k2] B(® +bk?

— A0

A=—(1+pB)K?

b2
dA=(s—1)A— A3+ (1— wb)V?A— ?V“A. (13

Hohenberg equatiofSHE) scribed by the additional terme'® in Eq. (1), where q
. ) . characterizes the amplitude of the subharmonic pumping,
HA=A—A’=SVA-VA, (14 and® determines its relative phase. For snglwe look for

moving interface solution in the formy= ¢o(Xx—vt)
than Eq.(1); however, it captures many essential features 0é/ields the following expression for the interface velocity
the original system dynamics, including the existence an
stability of stripes and hexagons in different parameter re- ]
gions (see[16]), existence of the interface solutions, inter- _ cos® [A"dx+sin® [B"dx
face instability, and the emergence of labyrinthine patterns. v="4 J(AT9,Ap+B"9,Bg)dx

(16)
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0.03 : T We have shown that large acceleration patterns are cap-
tured by the generic parametric Ginzburg-Landau equation
(1). The structure of the phase diagram Fig. 1 is qualitatively
02| 1  similar to that of experiments Reff2,19,2q for high fre-
> 000 | . . L X B .
quencies of vibration. Increasing vibration amplitude leads to
transition from a trivial state to stripes, hexagons, decorated
. . ‘ interfaces, and finally, to stable interfaces. In experiments, at
=~ '0'030 > 4 6 yet higherT’, quarter-harmonic patterns appear; however,
° d these patterns are not described by our model. The transition
0.8 1 ® 1 from unstable to stable interfaces also occurs with decreasing
D) w (increasing vibration frequency), in agreement with
o4 Refs.[19,20. In our original model, the interface instability
hd leads to labyrinthine patterns; however, in experiments this
instability usually saturates to provide stationary “decora-
tions.” We showed that this saturation may be caused by
'1-20 0 0‘2 0‘4 0.6 certain higher order nonlinear terms that suppress stripe for-
' ' q' ' mation at largel’. For additional subharmonic driving the
model predicts steady moving interfaces with the direction of
FIG. 3. Interface velocitw for w=1p=4,y=2.5 vsq at ® motion controlled by the phase of the subharmonic compo-
=0. Inset:v vs ® atq:ool(.)7 numerical |"esu|tsc_)1 ana|yti- nent. EXperimental Study of the controlled interface motion

cal expressior{16). will be reported elsewherg2].
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