
RAPID COMMUNICATIONS

PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Hexagons and interfaces in a vibrated granular layer
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The order parameter model based on the parametric Ginzburg-Landau equation is used to describe high accel-
eration patterns in the vibrated layer of granular material. At large amplitude of driving both hexagons and
interfaces emerge. Transverse instability, leading to the formation of ‘‘decorated’’ interfaces and labyrinthine
patterns, is found. Additional subharmonic forcing leads to controlled interface motion.
@S1063-651X~99!50102-5#

PACS number~s!: 47.54.1r, 45.05.1x, 47.35.1i, 83.70.Fn
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Driven granular systems manifest collective fluidlike b
havior: convection, surface waves, and pattern forma
~see, e.g.,@1#!. One of the most fascinating examples of th
collective dynamics is the appearance of long-range cohe
patterns and localized excitations in vertically vibrated th
granular layers@2–4#. The particular pattern is determined b
the interplay between driving frequencyf and acceleration o
the containerG54p2Af 2/g ~A is the amplitude of oscilla-
tions, andg is the gravity acceleration! @2,3#. Patterns appea
at G'2.4 almost independently of the driving frequencyf .
At small frequenciesf , f * @5# the transition is subcritica
~hysteretic!, leading to the formation of squares. In the hy
teretic region, localized excitations such as individualoscil-
lons and various bound states of oscillons appear asG is
decreased. For higher frequenciesf . f * the onset pattern is
stripes, and at the frequency slightly higher thanf * the tran-
sition becomes supercritical. Both squares and stripes
well as oscillons, oscillate at half of the driving frequen
f /2. At higher acceleration (G.4), stripes and squares be
come unstable, and hexagons appear instead. Furthe
crease of acceleration atG'4.5 converts hexagons into
domainlike structure of flat layers oscillating with frequen
f /2 with opposite phases. Depending on parameters, in
faces separating flat domains, are either smooth or ‘‘de
rated’’ by periodic undulations. ForG.5.7 various quarter-
harmonic patters emerge.

The pattern formation in thin layers of granular mater
was studied theoretically by several groups. Direct molecu
dynamics simulations@6# ~see also@7#! reproduced a major
ity of patterns observed in experiments and many feature
the bifurcation diagram, although until now have not yield
oscillons and interfaces. Hydrodynamic and phenomenol
cal models @8# reproduced certain experimental feature
however, neither of them offered a systematic description
the whole rich variety of the observed phenomena. In R
@9# we introduced the order parameter characterizing
complex amplitude of subharmonic oscillations. The eq
tions of motion following from the symmetry arguments a
mass conservation reproduced essential phenomenolog
patterns near the threshold of primary bifurcation: strip
squares, and oscillons.

In this Rapid Communication we describe high accele
tion patterns on the basis of the order parameter model.
show that at large amplitude of driving both hexagons a
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interfaces emerge. We find morphological instability leadi
to the formation of ‘‘decorated’’ interfaces. Additional sub
harmonic forcing leads to the motion of the interface w
the direction controlled by relative phases of harmonic a
subharmonic components of forcing.

The essence of the model@9,10# is the order paramete
equation for the complex amplitudec of parametric layer
oscillations h5c exp(ipft)1c.c. at the frequency f /2
coupled with the the average thickness of the layerr. How-
ever, at high frequencies (f . f * ) the coupling betweenr and
c becomes less relevant~r becomes enslaved byc!, and the
model can be reduced to a single order-parameter equa

] tc5gc* 2~12 iv!c1~11 ib !¹2c2ucu2c. ~1!

Equation~1! describes the evolution of the order parame
for the parametric instability in spatially extended syste
~see@11,12#!. Linear terms in this equation are obtained fro
the complex growth rate for infinitesimal periodic layer pe
turbationsh;exp@L(k)t1ikx#. ExpandingL(k) for small k,
and keeping only two leading terms in the expansionL(k)
52L02L1k2 we obtain the linear terms in Eq.~1!, where
b5Im L1 /ReL1 and v5(V02p f )/ReL0, where V0
52Im L0. The termgc* characterizes the effect of drivin
at the resonance frequency. The term2ucu2c accounts for
nonlinear saturation of waves at finite amplitude.

It is convenient to shift the phase of the complex ord
parameter viac̃5c exp(if) with sin 2f5v/g. The equations
for real and imaginary partc̃5A1 iB are

] tA5~s21!A22vB2~A21B2!A1¹2~A2bB!, ~2!

] tB52~s11!B2~A21B2!B1¹2~B1bA!, ~3!

wheres25g22v2. At s,1, Eqs.~2! and~3! have only one
trivial uniform stateA50, B50. At s.1, two new uniform
states appear:A56A0 ,B50,A05As21. The onset of
these states corresponds to the period doubling of the l
flights sequence, observed in experiments@2# and predicted
by the simple inelastic ball model@2,13#. Signs6 reflect two
relative phases of layer flights with respect to container
brations.

First we analyze the stability of the stateA56A0 ,B50
with respect to perturbations with wave numberk, (A,B)
R1327 ©1999 The American Physical Society
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5(A0,0)1(Uk ,Vk)exp@l(k)t1ikx#. The uniform state loses
its stability with respect to periodic modulations with th
wave numberkc at s,sc ~correspondingly,g,gc), where

sc5
A~11v2!~11b2!2v1b

2b
, ~4!

kc
252

2s212vb

11b2 . ~5!

Small perturbations with all directions of the wave vec
grow with the same rate. The resultant selected patter
determined by the nonlinear competition between the mo
In the presence of the reflection symmetryc→2c, qua-
dratic nonlinearity is absent, and cubic nonlinearity favo
stripes corresponding to a single mode. Near the fixed po
A5A0 ,B50 the reflection symmetry for perturbationsU
→2U,V→2V is broken, and hexagons emerge at t
threshold of instability. To clarify this point we perform
weakly nonlinear analysis of Eqs.~2! and ~3! for s5sc2e,
and e!1. At e→0, the variablesU andV are related as in
linear system,

~U,V!5~1,h!C, h5@2~sc21!1kc
2#/~bkc

222v!,
~6!

C5( Aj exp@ ik•r #1c.c., uku5kc .

The corresponding adjoint eigenvector is

~U1,V1!5~1,h1!, h152@2~sc21!1kc
2#/bkc

2. ~7!

Substituting Eq.~6! into Eqs.~2! and~3! and performing the
orthogonalization, we obtain equations for the slowly va
ing complex amplitudesAj , j 51,2,3 ~we assume only three
waves with triangular symmetry, favored by quadratic no
linearity!,

] tAj52eAj1a2Aj 11* Aj 21*

2a3@ uAj u212~ uAj 21u21uAj 11u2!#Aj , ~8!

where the coefficientsa2 ,a3 are

a252A0S 21
11h2

11hh1D , a353~11hh1!. ~9!

Equations~8! are well-studied~see @14#!. There are three
critical values ofe: eA52a2

2/40a3 , eR5a2
2/2a3 , and eB

52a2
2/a3 . The hexagons are stable foreA,e,eB , and the

stripes are stable fore.eR . Thus, nears5sc the model
exhibits stable hexagons@15#. Since we have two symmetri
fixed points, both up- and down-hexagons coexist.
smallers stripes are stable, and for largers, flat layers are
stable, in agreement with observations@3,19#. The above
analysis requires the values ofeA,B,R to be small. For param
etersv,b5O(1), this requirement is satisfied foreA , but
not for eB,R . The estimates can be improved by substitut
A0 at s5sc1e instead ofA0(sc) in Eq. ~9!. The resulting
range of stable hexagons is plotted in the phase diag
~v,g! ~see Fig. 1!.
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At s.1, Eqs.~2! and ~3! have an interface solution con
necting two uniform statesA56A0 , B50. For b50 this
solution is of the formĀ56A0 tanh(A0x/2), B50. For b
Þ0 the solution is available only numerically. In order
investigate the stability of the interface, we consider the p
turbed solution (A,B)5(Ā,B̄)1@Ã(x),B̃(x)#exp@l(k)t
1iky#. For Ã,B̃ we obtain linear equations

L̂S Ã

B̃
D 5@l~k!1k2#S Ã

B̃
D 1bk2S B̃

2Ã
D ,

~10!

L̂5S s2123Ā22B̄21]x
2 , 22v22ĀB̄2b]x

2

22ĀB̄1b]x
2 , 2s212Ā223B̄21]x

2 D .

In order to determine the spectrum of eigenvaluesl(k)
one has to solve Eq.~10! along with stationary Eqs.~2! and
~3!. Using the numerical matching-shooting technique,
have obtained positive eigenvalues corresponding to in
face instability. This instability is confirmed by direct nu
merical simulations of Eq.~1!. An example of the evolution
of slightly perturbed interface is shown in Fig. 2. Small pe
turbations grow to form a ‘‘decorated’’ interface similar t
@20#, with time these decorations evolve slowly and even
ally form a labyrinthine pattern.

The neutral curve for this instability can be determined
follows. Numerical analysis shows that at the threshold
most unstable wave number isk50 and we can expect tha
for k→0 l;k2. Expanding Eqs.~10! in power series ofk2:
(Ã,B̃)5(A(0),B(0))1k2(A(1),B(1))1¯ in the zeroth order
in k we obtainL̂(A(0),B(0)50. The corresponding solution
is the translation modeA(0)5]xĀ(x), B(0)5]xB̄(x). In the
first order in k2 we arrive at the linear inhomogeneou
problem

FIG. 1. Phase diagram for Eq.~1! at b54. Line 1, g25(v
1b)2/(11b2); line 2, s2[g22v251; line 3, s5sc ; line 4, s
5sc2eR ; line 5, s5sc2eB ; line 6, s5sc2eA ; line 7, b521.
Beneath line 1 there are no patterns, between lines 1 and 4 st
are stable, between lines 5 and 6 hexagons are stable, above
nontrivial flat states exist, and above line 3 they are stable. In
faces are unstable below line 7.
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L̂S A~1!

B~1!D5@l~k!1k2#S A~0!

B~0!D1bk2S B~0!

2A~0!D . ~11!

A bounded solution to Eq.~11! exists if the rhs is orthogona
to the localized mode of the adjoint operatorA1,B1. The
orthogonality condition fixes the relation betweenl andk,

l52~11b!k2, b5
b*2`

` ~A~0!B12B~0!A1!dx

*2`
` ~A~0!A11B~0!B1!dx

.

~12!

The instability, corresponding to the negative surface tens
of the interface, onsets atb521. The neutral curve is
shown in Fig. 1. This instability leads to the so called de
rated interfaces see@Fig. 2~a!#. At the nonlinear stage the
undulations grow and form labyrinthine patterns@Fig. 2~b!–
~d!#.

Near the lines51 ~see Fig. 1!, Eq. ~1! can be simplified.
In the vicinity of this line A;(s21)1/2 and B;(s21)3/2

!A. In the leading order we can obtain from Eq.~3! B
5b¹2A/2, and Eq.~2! yields @21#

] tA5~s21!A2A31~12vb!¹2A2
b2

2
¹4A. ~13!

Rescaling the variables t→(s21)t,A→(s21)21/2A,x
→@2(s21)/b2#1/4, we can reduce Eq.~1! to the Swift-
Hohenberg equation~SHE!

] tA5A2A32d¹2A2¹4A, ~14!

whered5(vb21)A2/@(s21)b2#. This equation is simpler
than Eq.~1!; however, it captures many essential features
the original system dynamics, including the existence a
stability of stripes and hexagons in different parameter
gions ~see@16#!, existence of the interface solutions, inte
face instability, and the emergence of labyrinthine patte

FIG. 2. ~a!–~c! Represent interface instability and labyrinth fo
mation, Eq.~1!, v52, b54, andg52.9, domain size 1003100
units, the snapshots are taken at timest51000, 1600, 4640;~d!
represents the stationary decorated interface,v56, b54, g57.4,
anda50.2; t510 000.
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Indeed, a simple analysis shows that the growth rate of
instability of the uniform stateA51 as a function of the
perturbation wave number is determined by the form
l(k)5221dk22k4, so it becomes unstable atd.dc
52& at critical wave numberkc5&. As in the original
model, near the threshold of this instability, subcritical he
agonal patterns are preferred. Interface stability can also
analyzed more simply as the linearized operator correspo
ing to the model~14! is self-adjoint. The threshold valu
d th51.011 is obtained from the following solvability cond
tion:

E
2`

`

~d thA0x
2 22A0xx

2 !dx50. ~15!

In experiments, the interface instability usually saturates
yields periodic undulations of the interface instead of lab
rinthine patterns.

Let us now discuss some possible mechanisms for sat
tion of ‘‘labyrinthine’’ instability of the interface, which is
not captured by Eq.~1! @17#. The reason for the proliferation
of the labyrinthine pattern is that the flat state is le
‘‘stable’’ than the large-amplitude stripe state, and the
stripes~produced by the interface instability! invade uniform
domains@18#. In real systems, this does not occur because
large amplitude of driving, the relative velocity of layer an
the plate at collision becomes small and cellular patterns
not form. Within our order parameter model, this effect c
be described by additional higher order nonlinear term
They can provide additional stabilization of the flat sta
against the stripe state even in the regime of interface in
bility. This effect can provide saturation of the interface i
stability. We examined this hypothesis numerically in t
framework of Eq.~1! @and, correspondingly, Eq.~14!# with
additional higher order nonlinear term2auDcu2c in the
right-hand side. This additional term does not affect fl
states but provides additional dissipation for the patter
state. We have indeed found stable decorated interfa
above some critical value ofa @see Fig. 2~d!#. Certainly, the
specific choice of the higher order term cannot be justified
the framework of phenomenological theory, however
consider this result rather general and useful for understa
ing of the saturation effect.

In the region of stability (b.21) for the original model
Eq. ~1! the interface is stationary due to symmetry. Howev
if the plate oscillates with two frequencies,f and f /2, the
symmetry between two states connected by the interfac
broken, and interface moves. The velocity of interface m
tion depends on the relative phase of the subharmonic f
ing with respect to the forcing atf . This effect can be de-
scribed by the additional termqeiF in Eq. ~1!, where q
characterizes the amplitude of the subharmonic pump
andF determines its relative phase. For smallq, we look for
moving interface solution in the formc5c0(x2vt)
1qc1(x2vt)1¯ and v5O(q). Solvability condition
yields the following expression for the interface velocity

v52q
cosF*A1dx1sinF*B1dx

*~A1]xA01B1]xB0!dx
. ~16!
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The explicit answer is possible to obtain forb50 when
A15]xA0 , andF50,p, which yields the interface velocity
v57 3

2 qA0
2257 3

2 q(s21)21. In general,A, B, A1, B1,
and hencev, can be found numerically. The interface velo
ity as function ofq,F is shown in Fig. 3.

FIG. 3. Interface velocityv for v51,b54,g52.5 vs q at F
50. Inset:v vs F at q50.01. ~d!, numerical results;~—!, analyti-
cal expression~16!.
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We have shown that large acceleration patterns are
tured by the generic parametric Ginzburg-Landau equa
~1!. The structure of the phase diagram Fig. 1 is qualitativ
similar to that of experiments Refs.@2,19,20# for high fre-
quencies of vibration. Increasing vibration amplitude leads
transition from a trivial state to stripes, hexagons, decora
interfaces, and finally, to stable interfaces. In experiments
yet higher G, quarter-harmonic patterns appear; howev
these patterns are not described by our model. The trans
from unstable to stable interfaces also occurs with decrea
v ~increasing vibration frequencyf !, in agreement with
Refs.@19,20#. In our original model, the interface instabilit
leads to labyrinthine patterns; however, in experiments
instability usually saturates to provide stationary ‘‘deco
tions.’’ We showed that this saturation may be caused
certain higher order nonlinear terms that suppress stripe
mation at largeG. For additional subharmonic driving th
model predicts steady moving interfaces with the direction
motion controlled by the phase of the subharmonic com
nent. Experimental study of the controlled interface moti
will be reported elsewhere@22#.
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