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Linear and nonlinear refraction and Bragg scattering of water waves
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The mild slope equatiofMSE) is widely used in water wave refraction-diffraction studies. An augmented
extension of MSE is derived using operational calculus. It accounts for all the terms that are linear in the
derivatives(to any order of the depth. Consequently, partial previous extensions of MSE are rigorously
derived. They are accurate, but only at exact Bragg resonance. This explains their success in scattering
problems. Then, a nonlinear augmented MSE is derived. It extends the accuracy and the range of validity of
existing models for nonlinear shoaling and scatteri$1.063-651X99)51702-9

PACS numbes): 47.35:+i, 41.20.Jb, 91.50.Cw, 92.10.Sx

I. BACKGROUND feature of doubling the order of the error in the final equation
compared to the error in the trial function is a benefit of the
The study of refraction and diffraction of irrotational wa- variational formulation.

ter waves by an uneven bottom topography has received con- Mei [5] gave a perturbation solution for the problem of
siderable attention. When the bottom slope is mild, the vernearly resonant Bragg scattering due to small oscillatory
tical coordinate, z, can be eliminated, reducing the depth variationg=h—hg, around a mildly sloped reference
dimension of the original three-dimensiort@D) elliptic for-  depth,hy. He expanded the velocity potential, usiéith as a
mulation, thus yielding a more tractable problem. The dis-small perturbation parameter. Addressing the same problem,
persive nature of water waves complicates the solution anHirby [6] has obtained the extended mild slope equation
requires consideration of high order derivatives of the depth(EMSE), which includes, in addition té,Vhy- V¢, a term
We start with the linear time periodic case. The mild slopein V§. For simplicity, we consider the case of a horizontal
equation(MSE) [1] is derived by assuming propagatifpt  mean bottom(constanthy), so VS becomesvh. EMSE is
evanescentwaves and by approximating the velocity poten-then
tial in the form

(V2+k?) @=fo(k,h)Vh-Vo, (1.9
$=Rd o(x,y)Z(h,z)expliwt)], —h<z<0, (1.1
fo(k,h)=—sectf(kh)g/(ccy). 1.7
Z(h,z)=seclikh)costik(z+h)], (1.2 . i ) . L

A term in § that is usually written on the right-hand side is
whereh is the variable water depth ards the “local wave ~ accounted for on the left-hand side. TermsGifs°/h?) are
number” satisfying the linear dispersion relation: neglected. We see that the coefficienMii in EMSE, f,, is
different from the corresponding coefficient in MSBEnd
w?=gktanhkh), (1.3  modified mild slope equatioMMSE)], f;. Dingemand3]

had used a Hamiltonian formulation to derive another equa-
whereg is the gravity’s acceleration, the angular frequencytion (including a term inv2h), which differs from EMSE in
o is constant, and is the time;i=+/—1; ¢ is the complex its coefficients. All of this calls for an explanation.

amplitude of the velocity potential at=0. |Vh| <1, where Chamberlain and Port¢2] have included((Vh)2,V2h)
V=(dy,dy) is the horizontal gradient. terms in their MMSE[terms in (Vh)? give rise to class II
The mild slope equatiofil] has the form Bragg resonance and are not considered Jhere
(V2+k?) p=1,(k,h)Vh -V, (1.9 (V2+k?)e=1,Vh-Vo+g,V?he, 1.8
f,Vh=-V / , 1. 0
1 (cey)/(CCy) (1.9 gz(k,h)z—if 77.dz. (1.9
(ch) —h

whereccy is the product of the wave celerity= w/k and its

group velocitycy=w,. Terms that ar@d((Vh)?,V?h) are  The vertical structur& of Eq. (1.2) is assumed in the deri-
neglected in this equation. Nonlinear teri@(€)] are ne-  vation of both EMSE and MMSE. With this assumption they
glected in all the linear mild slope equatiopsis the char-  find that the two model equations agree. MMSE is presented
acteristic wave steepnes&V¢/g=0(€)]. The assumed as a general model for wave propagation over variable to-
vertical structure(1.2) of the velocity potential involves an pography. EMSE was also used to study Bragg scattering
O(Vh) error in'$. Averaging over the depth, this error gives away from resonance.

rise toO((Vh)?,V2h) errors in MSE. MSE has been derived  Miles and Chamberlaifi4] have noted that MMSE does

in several different ways, using a Galerkin method, a Hamil-not keep consistentl®((Vh)?,V2h) terms, arising from the
tonian formulation, and a variational princip[@—4]. The neglect ofO(Vh) terms that are missing in the vertical struc-
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ture of Eq.(1.2). Using a variational approach and expanding $,,=—-V2h, —h<z<O. 2.1
the vertical structure one order further, they derived a fourth ZZ '
order consistent equation. However, they use MMSE insteadp order to accountin Sec. Il)) for nonlinear, triad interac-
since it gives very good results for scattering. tion, we now write the velocity potential as

We saw that the coefficient o¥h in MMSE (and in
MSE) differed from the corresponding coefficient in EMSE. =R ¢ expliwt) + ¢, expliwit) + ¢ expliw,t)]
Thus, there appears to be a contradiction in accepting the two
(and the equation ifi3]) as general models. The picture will where
become clear by deriving the augmented mild slope equation
(AMSE), which includes all the terms that are linear in the w=w;tw;

derivatives ofh to any order: ) ) N
The subscripts 1 and 2 will denote quantities that relat¢;to

(V2+Kk?) o= (f Vh+f3V%h+-).Vo and¢,, respectively. The general case is obtained simply by
2 Gy integration of the quadratic term over all such triads.

(VI + 1,V ), (1.10 The combined kinematic and dynamic free surface bound-
wheref,(k,h) will be determined. ary condition, after eliminating the free surface elevation
Indeed, even thegeometry of a periodic bathymetry (and to second order in the wave steepnepsgives the

cannot be approximately described by a finite number ofertical velocity,w= ¢, (z=0) by

derivatives, if its slope is not mild, unless we assume that it 5 ] s 2 2

is purely harmonic. With this assumption and, moreover, as-9W— ©“¢=—(@(2V ¢;-V ;) —[w/g* (w10~ o
suming Bragg resonance, the vertical structure is that of Eq. 2 2 _r®

(1.2, and EMSE and MMSE hold. MMSE cannot be used to ThiwatKoo1]e1e2)=F. 22

describe wave shoaling, just as the termVih in EMSE is F@ is the leading order nonlinear free surface tefeng.

only appropriate to describe the scattering of waves by Brag 0)). It gives rise to the quadratic coupling among fre-
resonance, and not their shoaling. Even on periodic bathym juency triads. Neglecting terms that @€€°), ¢, and é,,
tries, both EMSE and MMSE deviate from the correct solu—Were approximated by,,iq,l and wg(pz, respectively. The

tion, away from Bragg resonance. We shall provide a rigor . . - .
ous derivation and justification for the use of MM&ES well bottom kinematic boundary conditigo O(e4/ho)] is
as EMSE when this use is appropriate. = —V.(8Vd)=B?@ z=—h 23

The linear augmented mild slope equati®MSE) will ¢z (5V¢) ' o 23
be derived in Sec. II. It is illuminating to introduce two dis- B(2) s the leading order bottom forcing teref. [5]). Higher
tinct expansions of AMSE. For the regime of shoaling on aprder terms are found through a standard Taylor expansion
gentle slopg“adiabatic”), the small parameter is related to of the free surface and bottom boundary conditions, but are

the wave number of the bathymetry. Scattering, on the otheéfiot required in our work. Similar conditions are written for
hand, is dominated by Bragg resonance. Hence the expags, and for ¢,.

exact Bragg resonance AMSE reduces to EMSE or to

2
w107)

MMSE. The new coefficient o¥?h in AMSE is up to three Z(—1)"

times bigger than the corresponding coefficient in MMSE. cogzV)= E oTSY z2ny2n, (2.9
Liu and Yue[7] expanded the free surface boundary con- Ao (2n)!

dition to third order to get a regular perturbation analysis for -

class Il (nonlineaj Bragg resonance, and applied the high in(ZV )= E (—n" an+1y2an+l 2

order spectral method to the problehey also study the sin(z )_n=o (2n+1)! z ' 25

linear problem. They state that their perturbation analysis is
limited to idealized geometries. (18], nonlinear Bragg reso- and similar expressions for other trigonometric functions, in-
nance was studied using the Korteweg—de VrislV)  cluding sincgV)=sin@zV)/(zV). These are representations of
model and the nonlinear MS9,10]. integral operators in the form of pseudodifferential operators.

In Sec. lll we derive a set of coupled nonlinear AMSE for They allow an accurate description of the waves without re-
frequency sets that participate in triad interaction. A newstriction to weak dispersioKsuch restrictions apply to the
form of the quadratic wave-wave interaction can be obtainedcubic Schrdinger equation and Boussinesg-type models
It accurately describes both free waves and bound waves The potential¢, which solves the Laplace E@2.1), is
(which contribute to cubic wave-wave interactioft may  given by a Taylor series in terms of the still water level
also yield a nonlinear EMSE valid for class Il Bragg reso-valuese andw (the vertical velocitys,) as follows:
nance in the case of steep bottom oscillations. It proved suf-
ficient to expand the free surface boundary condition just to ¢=cogzV)ep+zsindzV)w (2.6
second order.

(cf. [4]). Substituting this expression into E(.3), we ob-
II. DERIVATION OF THE LINEAR AUGMENTED tain
MILD SLOPE EQUATION

sin(hgV)Ve+coghyV)w=—V-(8(coghyV)V
The velocity potential of an irrotational flow is governed MhoV) Ve hoV) (6(costhoV)V ¢

by the Laplace equation: —sin(hgV)w)). (2.7
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The manipulation of operator functions is essentially thehyV on ¢ on the right-hand side of the above equation by the
same as that of real functions and can be checked by applgymboli. Even powers, i()?", correspond to multiplica-

ing the addition and multiplication properties & to the tion by (—«?)"; these contribute to the ternis,f,, ... in
Taylor series, term by terref. [12,13 for a simple account Eq. (1.10. Odd powers, ix)>""!, correspond to
of operational calculys (- «%)"nyV, and contribute to the terms;,fs,.... The

Let us operate on both sides of EQ.7) with sectipV).  error isO(8%h). The operation oh,V on &is denoted by
We get, at the leading order, iK, and the operation ofi,V on 8¢ has the symbol (K

VtanhyV)e+w=0(edlhp). (2.9 + k), since

We now consider the linearized problem. From Efj2), we V(p)=(VS)e+d(Ve). (2.13
can replacev on the left-hand side of Eq2.7) by (w?/g) ¢, o 012 o
with an O(e€?) error. Since the right-hand side hdsas a Maintaining anO(é</hg) error, we have a compact explicit
factor, we may approximatew there, this time by form of the augmented mild slope equatihMSE) (1.10:

V tan(yV)¢ [from Eq. (2.8)], maintaining anO(s%/h3) er- ) . .

ror. Thus, the operation of ségl) on Eq.(2.7) finally gives (V2 +kg)¢=—G(iK +ix)sechK + <)sectt K)V'(5Y2€0i-4)

p=—se¢hyV)V-(5(sechyV)V o)) AMSE retains all the terms that are linear dnand its de-
(2.9 rivatives, to any order. I&is sinusoidalG is given in closed
form. For ageneral bathymetryve may choose between two
(since cosr+sinatana=seca). distinct approximations:

It is important to note that due to the choice of a constant (1) The mild slope equation is known to hold under the
reference depthh, and V commute(making the analysis a assumption||Vh|<«, i.e., the depth variation is small over
great deal easigrHowever,5 andV do not commute, since a wavelength. Expanding AMSE in powers Kf we get
o varies in space. On the left-hand side we now have th@|SE by neglecting terms of ordé¢? and higher. Keeping
operator all O(K?) terms, which represent the second derivatives of

[V tanh,V/ (ko tanhkgh) + 1]w?/g, 2.10 the depth, we get the new explicit equation

(1)2
\% tar(h0V) + E

2 2 _ 2 3
wherek, is the real root of the dispersion relati¢h.3) at (V4K e=1,Vh-Vo+ 1,V he+O(K"),

h=hg. In addition, Eq(2.10 has a series of imaginary roots s . )
related toik,, which stand for the evanescent modes: 2hf,=0 [ G(iK+ik)sechK+ k)k(K+ k)]/9K

—k, tankho=w?/g, Nn=1,2,... . (2.11) =2k[3—9k%+8«k*+ 12«? cosi(2k) — 3 coshi4 k)

_ 2 _ H 3o
As with an algebraic polynomial, the “dispersion operator” 3x” cosH{4«)—6x sinh(2«x) + 16«” sinh(2«)

(2.10 can be factored into an infinite product: + 9k sinh(4x)1/{3[ 2k +sinh(2k) 1%},
- 2 i ; 2112
VK241 1-vYK3) 2= (V2412 hoV). which is equivalenfto O(§/hg)] to the fourth order equa-
(Vko )nﬂl ( ko) g v 0)/G(ho¥) tion derived by Miles and Chamberlaja]. The differences

are (i) the present equation is second ord@p. The expres-
In considering propagating wavéise., nonevanescenionly  sions are obtained simplyiii) Here we have only included
the first factor, ¥%/k3+1), is small[it is O(Vh) and van- terms inV2h and not in h)2. The extension is easy, but
ishes on a flat bottoiln The other factors were collected in outside the present scope. MMSE is successful in predicting
1/G. G(hyV) is an operator that is even im,V and in « scattering. Is it possible that the difference between MMSE
=hgko: and AMSE is small?f,, the full coefficient of V2h in
1o AMSE, was compared with the correspondimpgof MMSE.
G(p)=hy “(p°+«“)/[ptan(p) + «xtank(x)]. (2.12  we found thatf,/g, tends to 3 for smalk, which is the

In order to get an MSE-type equation, we operate on Eq([jlgg‘?iln 1%;;nf&i?&fi%ﬁﬂi:loardigs ﬁ;g;ogggiiAq_A:eE

(2.9 by the nonsingular componer®(hyV). This yields a N i .
left-hand side in the form of the Helmholtz equati@md of Le"gy"llél':]s?lf IS thllj(sr,]canceled, balancing the replacement of
0 . 2, K= .

MSE), appropriate for the restriction to propagating modes, . L .
but without further approximations of the vertical structure Truncating the expansion in AMSEEQ. (1.10] is appro-

h f MSE. EMSE MMSE priate for variat'ior?s that are large scale compared with the
(as those of MSE, SE, and 3 wavelength. This is the case of gentle shoaling. It does not
(V2+K2) o= — G(hoV)se¢h,V)V -( 8(se¢hyV)V ¢)). account for strong reflection, which is dominated by Bragg

resonance, when high order termsKn(i.e., high order de-
Let us introduce operator notation. At the leading order inrivatives ofh) are also important.
6lhy, the operation oh2V2 on ¢ is seen from the above (2) A different set of approximations is required for the
equation to be equivalent to multiplication of by — 2. study of scattering. It is obtained by expanding in a new
Thus, to O(8/hy), we may approximate the operation of parameter: the detuning from Bragg resonance,
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2 - I1l. NONLINEAR AUGMENTED MILD SLOPE
=(K+Rg)%2— K2 2.1
K ( <) K ( 5) EQUATIONS

V\fle rgay exp%nﬁ.Arl:/ISE ingowelrEsMﬁwgar;]q d_iscdard altl)terms In order to include nonlinear interaction, we repeat the
of order . and higher to obtain Bhis is done by set- procedure that was used in the derivation of the linear

is the case of exact resonance. Note that at resonance  (2.2). we get nonlineatNL) AMSE:

G(ik)= lim G(iK’)=gz9(k2)/8(w2)=g/(CCg). (V2+|((2))(p=—G(hOV)[SthoV)B(z)—F(z)]- (3.1

(2.16 B is given in Eq.(2.3 andG in Eq. (2.12. By keeping

MMSE and Dingemans’$3] extended mild slope equation F) we get an addltlona_l term on the right-hand side of
also agrees with AMSE at exact resonance. MMSE can bEMSE, yleldlng a quadratic AMSE. )
obtained by expanding AMSE around MSE and then dis- As with the linear AMSE there are several alternative
carding terms of ordex and higher. It has the advantage thatImiting forms of NL AMSE that may be derived, depending
it uniformly treats changes in the mean depth and depth pep n the dominant interactions that are considered. We can
turbations(so the bathymetry need not be decomposed into g€rive a NL MSE which includes all orders pf=K— K,
mean component and an oscillatory pri¢ also provides a ¥k, in the nonlinear ternbut no slope effegt andO(Vh)
way to treat slope discontinuiti¢g,4]. in the linear term. The nonlinear term may be written in
Prior to the derivation of AMSE, a naive analysis might terms of¢;, ¢,, and their gradients alone. The result f
have attributed the good performance of MMSE in scatterings an approximation to this equation. The equatioi9his
problems to an assumed smallness of the neglected terms ligss accurate than the present result. It corresponds to taking
V2h. Comparing the coefficients d¥2h between MMSE the limit of G in NL MSE as (<, + )2 tends tox? [see Eq.
(92) and AMSE (f,), f, is found to be up to three times (2.16)]. As noted in[9], their error in the bound waves is as
larger thang,. However, EMSE and MMSE also neglect large as the bound waves themsely€q€?)]. In contrast,
terms in higher derivatives di. Now we can identify the the present equation represents the bound wésekhar-
reason for the good performance of MMSE and EMSE neamonic and superharmoniin an exact way even for a wide
Bragg resonance: it is the further elimination of higher orderspectrum.
derivatives ofh that exactly evens out th@garge neglected In order to treat short scale depth variations, we require
terms inV2h. These neglected terms arise from BV h) the terms that are linear in the bound waves and in all the
correction (see[4]) to the vertical structure. Scattering is derivatives ofh. This leads to nonlinear EMSE and MMSE
dominated by the components of the bathymetry that are neavhich describes class Il Bragg resonamn@g for steep bot-
Bragg resonance. Hence, correctly modeling the scatteringgm oscillations, more accurately than was don¢8h The
near resonance leads to faithful results. detailed equations will be presented separately.
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