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Linear and nonlinear refraction and Bragg scattering of water waves

Y. Agnon
Department of Civil Engineering, Technion, Haifa 32000, Israel

~Received 15 October 1998!

The mild slope equation~MSE! is widely used in water wave refraction-diffraction studies. An augmented
extension of MSE is derived using operational calculus. It accounts for all the terms that are linear in the
derivatives~to any order! of the depth. Consequently, partial previous extensions of MSE are rigorously
derived. They are accurate, but only at exact Bragg resonance. This explains their success in scattering
problems. Then, a nonlinear augmented MSE is derived. It extends the accuracy and the range of validity of
existing models for nonlinear shoaling and scattering.@S1063-651X~99!51702-9#

PACS number~s!: 47.35.1i, 41.20.Jb, 91.50.Cw, 92.10.Sx
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I. BACKGROUND

The study of refraction and diffraction of irrotational wa
ter waves by an uneven bottom topography has received
siderable attention. When the bottom slope is mild, the v
tical coordinate, z, can be eliminated, reducing th
dimension of the original three-dimensional~3D! elliptic for-
mulation, thus yielding a more tractable problem. The d
persive nature of water waves complicates the solution
requires consideration of high order derivatives of the dep
We start with the linear time periodic case. The mild slo
equation~MSE! @1# is derived by assuming propagating~not
evanescent! waves and by approximating the velocity pote
tial in the form

f̃5Re@w~x,y!Z~h,z!exp~ ivt !#, 2h,z,0, ~1.1!

Z~h,z![sech~kh!cosh@k~z1h!#, ~1.2!

whereh is the variable water depth andk is the ‘‘local wave
number’’ satisfying the linear dispersion relation:

v25gk tanh~kh!, ~1.3!

whereg is the gravity’s acceleration, the angular frequen
v is constant, andt is the time;i 5A21; w is the complex
amplitude of the velocity potential atz50. i“hi!1, where
“[(]x ,]y) is the horizontal gradient.

The mild slope equation@1# has the form

~¹21k2!w5 f 1~k,h!“h•“w, ~1.4!

f 1“h52“~ccg!/~ccg!, ~1.5!

whereccg is the product of the wave celerityc5v/k and its
group velocitycg5vk . Terms that areO„(“h)2,¹2h… are
neglected in this equation. Nonlinear terms@O(e2)# are ne-
glected in all the linear mild slope equations@e is the char-
acteristic wave steepness,v“w/g5O(e)#. The assumed
vertical structure~1.2! of the velocity potential involves an
O(“h) error inf̃. Averaging over the depth, this error give
rise toO„(“h)2,¹2h… errors in MSE. MSE has been derive
in several different ways, using a Galerkin method, a Ham
tonian formulation, and a variational principle@2–4#. The
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feature of doubling the order of the error in the final equat
compared to the error in the trial function is a benefit of t
variational formulation.

Mei @5# gave a perturbation solution for the problem
nearly resonant Bragg scattering due to small oscillat
depth variation,d[h2h0 , around a mildly sloped referenc
depth,h0 . He expanded the velocity potential, usingd/h as a
small perturbation parameter. Addressing the same prob
Kirby @6# has obtained the extended mild slope equat
~EMSE!, which includes, in addition tof 1“h0•“w, a term
in “d. For simplicity, we consider the case of a horizon
mean bottom~constanth0), so“d becomes“h. EMSE is
then

~¹21k2!w5 f 0~k,h!“h•“w, ~1.6!

f 0~k,h!52sech2~kh!g/~ccg!. ~1.7!

A term in d that is usually written on the right-hand side
accounted for on the left-hand side. Terms ofO(d2/h2) are
neglected. We see that the coefficient of“h in EMSE, f 0 , is
different from the corresponding coefficient in MSE@and
modified mild slope equation~MMSE!#, f 1 . Dingemans@3#
had used a Hamiltonian formulation to derive another eq
tion ~including a term in¹2h), which differs from EMSE in
its coefficients. All of this calls for an explanation.

Chamberlain and Porter@2# have includedO„(“h)2,¹2h…
terms in their MMSE@terms in (“h)2 give rise to class II
Bragg resonance and are not considered here#:

~¹21k2!w5 f 1“h•“w1g2¹2hw, ~1.8!

g2~k,h!52
g

~ccg!
E

2h

0

ZZhdz. ~1.9!

The vertical structureZ of Eq. ~1.2! is assumed in the deri
vation of both EMSE and MMSE. With this assumption th
find that the two model equations agree. MMSE is presen
as a general model for wave propagation over variable
pography. EMSE was also used to study Bragg scatte
away from resonance.

Miles and Chamberlain@4# have noted that MMSE doe
not keep consistentlyO„(“h)2,¹2h… terms, arising from the
neglect ofO(¹h) terms that are missing in the vertical stru
R1319 ©1999 The American Physical Society
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ture of Eq.~1.2!. Using a variational approach and expandi
the vertical structure one order further, they derived a fou
order consistent equation. However, they use MMSE inste
since it gives very good results for scattering.

We saw that the coefficient of“h in MMSE ~and in
MSE! differed from the corresponding coefficient in EMS
Thus, there appears to be a contradiction in accepting the
~and the equation in@3#! as general models. The picture w
become clear by deriving the augmented mild slope equa
~AMSE!, which includes all the terms that are linear in t
derivatives ofh to any order:

~¹21k2!w5~ f 1“h1 f 3“
3h1¯ !–“w

1~ f 2¹2h1 f 4¹4h1¯ !w, ~1.10!

where f n(k,h) will be determined.
Indeed, even thegeometry of a periodic bathymetry

cannot be approximately described by a finite number
derivatives, if its slope is not mild, unless we assume tha
is purely harmonic. With this assumption and, moreover,
suming Bragg resonance, the vertical structure is that of
~1.2!, and EMSE and MMSE hold. MMSE cannot be used
describe wave shoaling, just as the term in“h in EMSE is
only appropriate to describe the scattering of waves by Br
resonance, and not their shoaling. Even on periodic bathy
tries, both EMSE and MMSE deviate from the correct so
tion, away from Bragg resonance. We shall provide a rig
ous derivation and justification for the use of MMSE~as well
as EMSE! when this use is appropriate.

The linear augmented mild slope equation~AMSE! will
be derived in Sec. II. It is illuminating to introduce two di
tinct expansions of AMSE. For the regime of shoaling on
gentle slope~‘‘adiabatic’’!, the small parameter is related
the wave number of the bathymetry. Scattering, on the o
hand, is dominated by Bragg resonance. Hence the ex
sion is in terms of the detuning from resonance. Only
exact Bragg resonance AMSE reduces to EMSE or
MMSE. The new coefficient of¹2h in AMSE is up to three
times bigger than the corresponding coefficient in MMSE

Liu and Yue@7# expanded the free surface boundary co
dition to third order to get a regular perturbation analysis
class III ~nonlinear! Bragg resonance, and applied the hi
order spectral method to the problem~they also study the
linear problem!. They state that their perturbation analysis
limited to idealized geometries. In@8#, nonlinear Bragg reso
nance was studied using the Korteweg–de Vries~KdV!
model and the nonlinear MSE@9,10#.

In Sec. III we derive a set of coupled nonlinear AMSE f
frequency sets that participate in triad interaction. A n
form of the quadratic wave-wave interaction can be obtain
It accurately describes both free waves and bound wa
~which contribute to cubic wave-wave interaction!. It may
also yield a nonlinear EMSE valid for class III Bragg res
nance in the case of steep bottom oscillations. It proved
ficient to expand the free surface boundary condition jus
second order.

II. DERIVATION OF THE LINEAR AUGMENTED
MILD SLOPE EQUATION

The velocity potential of an irrotational flow is governe
by the Laplace equation:
h
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f̃zz52¹2f̃, 2h,z,0. ~2.1!

In order to account~in Sec. III! for nonlinear, triad interac-
tion, we now write the velocity potential as

f̃5Re@f exp~ ivt !1f1 exp~ iv1t !1f2 exp~ iv2t !#

where

v5v11v2

The subscripts 1 and 2 will denote quantities that relate tof1
andf2 , respectively. The general case is obtained simply
integration of the quadratic term over all such triads.

The combined kinematic and dynamic free surface bou
ary condition, after eliminating the free surface elevati
~and to second order in the wave steepness,e!, gives the
vertical velocity,w[fz (z50) by

gw2v2w52 i „v~2“w1•“w2!2@v/g2~v1
2v2

22v2v1v2!

1k1
2v21k2

2v1#w1w2…[F ~2!. ~2.2!

F (2) is the leading order nonlinear free surface term~e.g.
@10#!. It gives rise to the quadratic coupling among fr
quency triads. Neglecting terms that areO(e3), f1z andf2z

were approximated byv1
2w1 and v2

2w2 , respectively. The
bottom kinematic boundary condition@to O(ed/h0)# is

fz52“–~d“f![B~2!, z52h0 . ~2.3!

B(2) is the leading order bottom forcing term~cf. @5#!. Higher
order terms are found through a standard Taylor expan
of the free surface and bottom boundary conditions, but
not required in our work. Similar conditions are written fo
f1 and forf2 .

Following @11# we use the compact notation:

cos~z¹![ (
n50

`
~21!n

~2n!!
z2n¹2n, ~2.4!

sin~z“ ![ (
n50

`
~21!n

~2n11!!
z2n11

“

2n11, ~2.5!

and similar expressions for other trigonometric functions,
cluding sinc(z¹)[sin(z¹)/(z¹). These are representations
integral operators in the form of pseudodifferential operato
They allow an accurate description of the waves without
striction to weak dispersion~such restrictions apply to the
cubic Schro¨dinger equation and Boussinesq-type models!.

The potentialf, which solves the Laplace Eq.~2.1!, is
given by a Taylor series in terms of the still water lev
valuesw andw ~the vertical velocityfz) as follows:

f5cos~z¹!w1z sinc~z¹!w ~2.6!

~cf. @4#!. Substituting this expression into Eq.~2.3!, we ob-
tain

sin~h0¹!¹w1cos~h0¹!w52“–~d„cos~h0¹!“w

2sin~h0“ !w…!. ~2.7!
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The manipulation of operator functions is essentially
same as that of real functions and can be checked by ap
ing the addition and multiplication properties of“ to the
Taylor series, term by term~cf. @12,13# for a simple account
of operational calculus!.

Let us operate on both sides of Eq.~2.7! with sec(h0¹).
We get, at the leading order,

¹ tan~h0¹!w1w5O~ed/h0!. ~2.8!

We now consider the linearized problem. From Eq.~2.2!, we
can replacew on the left-hand side of Eq.~2.7! by (v2/g)w,
with an O(e2) error. Since the right-hand side hasd as a
factor, we may approximatew there, this time by
¹ tan(h0¹)w @from Eq. ~2.8!#, maintaining anO(d2/h0

2) er-
ror. Thus, the operation of sec(h0¹) on Eq.~2.7! finally gives

S ¹ tan~h0¹!1
v2

g Dw52sec~h0¹!“–„d~sec~h0¹!“w!…

~2.9!

~since cosa1sina tana[seca!.
It is important to note that due to the choice of a const

reference depth,h0 and“ commute~making the analysis a
great deal easier!. However,d and“ do not commute, since
d varies in space. On the left-hand side we now have
operator

@¹ tanh0¹/~k0 tanhk0h0!11#v2/g, ~2.10!

wherek0 is the real root of the dispersion relation~1.3! at
h5h0 . In addition, Eq.~2.10! has a series of imaginary roo
related toikn , which stand for the evanescent modes:

2kn tanknh05v2/g, n51,2, . . . . ~2.11!

As with an algebraic polynomial, the ‘‘dispersion operato
~2.10! can be factored into an infinite product:

~¹2/k0
211!)

n51

`

~12¹2/kn
2!

v2

g
[~¹21k0

2!/G~h0¹!.

In considering propagating waves~i.e., nonevanescent!, only
the first factor, (¹2/k0

211), is small@it is O(¹h) and van-
ishes on a flat bottom#. The other factors were collected i
1/G. G(h0¹) is an operator that is even inh0¹ and in k
[h0k0 :

G~p![h0
21~p21k2!/@p tan~p!1k tanh~k!#. ~2.12!

In order to get an MSE-type equation, we operate on
~2.9! by the nonsingular component,G(h0¹). This yields a
left-hand side in the form of the Helmholtz equation~and of
MSE!, appropriate for the restriction to propagating mod
but without further approximations of the vertical structu
~as those of MSE, EMSE, and MMSE!:

~¹21k0
2!w52G~h0¹!sec~h0¹!“–~d„sec~h0¹!“w…!.

Let us introduce operator notation. At the leading order
d/h0 , the operation ofh0

2¹2 on w is seen from the above
equation to be equivalent to multiplication ofw by 2k2.
Thus, to O(d/h0), we may approximate the operation
e
ly-

t

e

.

,

n

h0¹ on w on the right-hand side of the above equation by
symbol ik. Even powers, (ik)2n, correspond to multiplica-
tion by (2k2)n; these contribute to the termsf 2 , f 4 , . . . in
Eq. ~1.10!. Odd powers, (ik)2n11, correspond to
(2k2)nh0“, and contribute to the termsf 1 , f 3 , . . . . The
error isO(d2/h0

2). The operation ofh0“ on d is denoted by

iKW , and the operation ofh0“ on df has the symboli (KW
1kW ), since

“~dw!5~“d!w1d~“w!. ~2.13!

Maintaining anO(d2/h0
2) error, we have a compact explic

form of the augmented mild slope equation~AMSE! ~1.10!:

~¹21k0
2!w52G~ iKW 1 ikW !sech~KW 1kW !sech~k!“•~d “w!.

~2.14!

AMSE retains all the terms that are linear ind and its de-
rivatives, to any order. Ifd is sinusoidal,G is given in closed
form. For ageneral bathymetrywe may choose between tw
distinct approximations:

~1! The mild slope equation is known to hold under t
assumption,i“hi!k, i.e., the depth variation is small ove
a wavelength. Expanding AMSE in powers ofKW , we get
MSE by neglecting terms of orderK2 and higher. Keeping
all O(K2) terms, which represent the second derivatives
the depth, we get the new explicit equation

~¹21k2!w5 f 1“h•“w1 f 2¹2hw1O~K3!,

2h f2[]2@G~ iKW 1 ikW !sech~KW 1kW !kW~KW 1kW !#/]K2

52k@329k218k4112k2 cosh~2k!23 cosh~4k!

23k2 cosh~4k!26k sinh~2k!116k3 sinh~2k!

19k sinh~4k!#/$3@2k1sinh~2k!#3%,

which is equivalent@to O(d2/h0
2)# to the fourth order equa

tion derived by Miles and Chamberlain@4#. The differences
are ~i! the present equation is second order.~ii ! The expres-
sions are obtained simply.~iii ! Here we have only included
terms in¹2h and not in (“h)2. The extension is easy, bu
outside the present scope. MMSE is successful in predic
scattering. Is it possible that the difference between MM
and AMSE is small?f 2 , the full coefficient of ¹2h in
AMSE, was compared with the correspondingg2 of MMSE.
We found thatf 2 /g2 tends to 3 for smallk, which is the
domain of interest. Keeping all orders ofKW produces AMSE
@Eq. ~1.10!#. After the expansion, we have seth05h. The
term ind itself is thus canceled, balancing the replacemen
k0 by k. In f 2 , k5kh.

Truncating the expansion in AMSE@Eq. ~1.10!# is appro-
priate for variations that are large scale compared with
wavelength. This is the case of gentle shoaling. It does
account for strong reflection, which is dominated by Bra
resonance, when high order terms inKW ~i.e., high order de-
rivatives ofh! are also important.

~2! A different set of approximations is required for th
study of scattering. It is obtained by expanding in a n
parameter: the detuning from Bragg resonance,
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m5~KW 1kW !22k2. ~2.15!

We may expand AMSE in powers ofm and discard all terms
of orderm and higher to obtain EMSE~this is done by set-
ting m50; all orders ofKW are effectively maintained!. This
is the case of exact resonance. Note that at resonance

G~ ik!5 lim
k8→k

G~ ik8!5g]~k2!/]~v2!5g/~ccg!.

~2.16!

MMSE and Dingemans’s@3# extended mild slope equatio
also agrees with AMSE at exact resonance. MMSE can
obtained by expanding AMSE around MSE and then d
carding terms of orderm and higher. It has the advantage th
it uniformly treats changes in the mean depth and depth
turbations~so the bathymetry need not be decomposed in
mean component and an oscillatory one!. It also provides a
way to treat slope discontinuities@2,4#.

Prior to the derivation of AMSE, a naive analysis mig
have attributed the good performance of MMSE in scatter
problems to an assumed smallness of the neglected term
¹2h. Comparing the coefficients of¹2h between MMSE
(g2) and AMSE (f 2), f 2 is found to be up to three time
larger thang2 . However, EMSE and MMSE also negle
terms in higher derivatives ofh. Now we can identify the
reason for the good performance of MMSE and EMSE n
Bragg resonance: it is the further elimination of higher ord
derivatives ofh that exactly evens out the~large! neglected
terms in¹2h. These neglected terms arise from theO(“h)
correction ~see @4#! to the vertical structure. Scattering
dominated by the components of the bathymetry that are
Bragg resonance. Hence, correctly modeling the scatte
near resonance leads to faithful results.
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III. NONLINEAR AUGMENTED MILD SLOPE
EQUATIONS

In order to include nonlinear interaction, we repeat t
procedure that was used in the derivation of the lin
AMSE. This time we keepF (2), which was given in Eq.
~2.2!. We get nonlinear~NL! AMSE:

~¹21k0
2!w52G~h0¹!@sec~h0¹!B~2!2F ~2!#. ~3.1!

B(2) is given in Eq.~2.3! andG in Eq. ~2.12!. By keeping
F (2) we get an additional term on the right-hand side
AMSE, yielding a quadratic AMSE.

As with the linear AMSE there are several alternati
limiting forms of NL AMSE that may be derived, dependin
on the dominant interactions that are considered. We
derive a NL MSE which includes all orders ofm12[kW2kW1

7kW2 in the nonlinear term~but no slope effect!, andO(¹h)
in the linear term. The nonlinear term may be written
terms ofw1 , w2 , and their gradients alone. The result of@9#
is an approximation to this equation. The equation in@9# is
less accurate than the present result. It corresponds to ta
the limit of G in NL MSE as (kW 11kW 2)2 tends tok2 @see Eq.
~2.16!#. As noted in@9#, their error in the bound waves is a
large as the bound waves themselves@O(e2)#. In contrast,
the present equation represents the bound waves~subhar-
monic and superharmonic! in an exact way even for a wide
spectrum.

In order to treat short scale depth variations, we requ
the terms that are linear in the bound waves and in all
derivatives ofh. This leads to nonlinear EMSE and MMS
which describes class III Bragg resonance@7# for steep bot-
tom oscillations, more accurately than was done in@8#. The
detailed equations will be presented separately.
pl.
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