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Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods
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We propose a cellular automata model for vehicular traffic in cities by combiftang appropriately
modifying) ideas borrowed from the Biham-Middleton-LevidBML) model of city traffic and the Nagel-
SchreckenbergNS) model of highway traffic. We demonstrate a phase transition from the “free-flowing”
dynamical phase to the completely “jammed” phase at a vehicle density which depends on the time periods of
the synchronized signals and the separation between them. The intrinsic stochasticity of the dynamics, which
triggers the onset of jamming, is similar to that in the NS model, while the phenomenon of complete jamming
through self-organization as well as the final jammed configurations are similar to those in the BML model.
Using our model, we have made an investigation of the time dependence of the average speeds of the cars in
the “free-flowing” phase as well as the dependence of flux and jamming on the time period of the signals.
[S1063-651%99)51602-4

PACS numbd(s): 05.40—a, 05.60-k, 89.40+k

Over the last half century various concepts and techniqueslong the same lane of a street. We also modify some of the
of fluid dynamics and statistical mechanics have been sugrescriptions of the BML model appropriately to take into
cessfully applied to understand several fundamental aspecéscount the signal-vehicle interactions and the interactions
of vehicular traffic flow[1,2]. The “particle-hopping” mod- between vehicles approaching a crossing along different
els[3-5] of vehicular traffic are usually formulated using the streets.
language of cellular automaf&€A) [6]. These models are Our main aim is to demonstrate that a phase transition
closely related to some of the microscopic models of driverfrom the “free-flowing” dynamical phase to the completely
systems of interacting particles, which are of current interestiammed” phase takes place in our generalized model; the
in nonequilibrium statistical mechani¢s]. intrinsic stochasticity of the dynamics, which triggers the

A one-dimensional CA model of highway traffic and a gnset of jamming, is similar to that in the NS model, while
two-dimensional CA model of city traffic were developed the phenomenon of complete jamming through self-
independently by Nagel and Schreckenb@@) [3] and Bi-  ,rganization as well as the final jammed configurations are
ham, M|ddleton, and LevinéBML ) [8], respectively. High- similar to those in the BML model.
way traffic becomes grr_sldually more anq more c'on.gested N In the BML model a square lattice represents the network
the NS model with the increase of density. Traffic jams ap- N
pear in the NS model because of ih&insic stochasticityof of the _streets. AI! the streets parallel to tKedirection of a
the dynamicg4] but no jam persists forever. On the other Cartesian coordinate system are assumed to allovy only
hand, a first order phase transition takes place in the BMIsingle-lane east-bound traffic while all those parallel tothe
model at a finite nonvanishing density, where the averagdirection allow only single-lane north-bound traffic. Each of
velocity of the vehicles vanishes discontinuously, signalingthe lattice sites represents the crossing of a east-west street
complete jamming. In the BML model, the randomness,and a north-south street. In the initial state of the systésn,
which is crucial for the jamming, arises only from then-  (N,) vehicles are distributed among the east-bo(matth-
dom initial conditions as the dynamical rule for the move- bound streets. The states of east-bound vehicles are updated
ment of the vehicles is fully deterministj8]. in parallel at every odd discrete time step, whereas those of

If each unit of discrete time interval in the BML model is the north-bound vehicles are updated in parallel at every
interpreted as the time for which the traffic lights remaineven discrete time step following a rule which is a simple
green(or red before switching redor green simultaneously  extension of the fully asymmetric simple exclusion process
in a synchronized manner, then, over that time scale eadY]: a vehicle moves forward by one lattice spacing if and
vehicle, which faces a green signal, gets an opportunity tenly if the site in front is empty, otherwise the vehicle does
move from one crossing to the next. The generalization ofiot move at that time step. Jamming arises from the mutual
the BML model that we propose here is an attempt to deblocking of the flows of east-bound and north-bound traffic
scribe explicitly the forward movement of the vehicles overat various different crossings. The BML model has been
smaller distances during shorter time intervals. We achievenodified and extended0—-17.
this generalization by following the prescriptions of the NS We model the network of the streets adiN& N square
model not only for describing the positions, speeds, accelerdattice. The streets parallel % andY axes allow only east-
tions, and decelerations of the vehic]8%but also for taking bound and north-bound traffic, respectively, as in the original
into account the interactions among the vehicles movingormulation of the BML model. A signal is installed at every

site of thisNX N square lattice, where each of the sites rep-
resents a crossing of two mutually perpendicular streets. The
*On leave from Physics Dept., IIT, Kanpur, India. separation between any two successive crossings on every
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street is assumed to consistDfcells so that the total num- 5[ ' ' ' ]

ber of cells on every street s=NXD. The linear size of 84 _

each cell may be interpreted as the typical length of a car; 3 3 J i

each of these cells can be either empty or occupied by at 3 5 i

most one single vehicle at a time. Because of these cells, the Z 1 i

network of the streets can be viewed as a decorated lattice. 0 deet i |
However, unlike the BML mode[8] and the model of 0 50 100 150 200
Horiguchi and Sakakibargl4] which correspond td =1 Time

andD =2, respectivelyD (<L) in our model is to be treated
as a parameter. Note thBt introduces a new length scale ;
symbols ¢, +, O, and X correspond, respectively, ¥/,) for c

into the problem. - _ " N
The signals are synchronized in such a way that all the_ 01 (Vy) for =0.1, (V) for ¢=0.5, and(V,) for c=0.5. The

signals remain green for the east-bound vehithes simul- ~ COT™MON parameters aké,,,=5, p=0.1, D=100, andT=100.
ta%eously, red for the north-bound vehiglésr a time inter- The continuous line has been obtained from Egsand (4).
val T and then, simultaneously, all the signals turn red for the
east-bound vehiclegand, green for the north-bound ve- ~ These rules are not merely a combination of the rules
hicles. Thus, the parameteF introduces a new time scale Proposed by BML[8] and those introduced by Ni8], but
into the problem. also involve some modifications. For example, unlike all the
As in the original BML model, no turning of the vehicles earlier BML-type models, a vehicle approaching a crossing
is allowed. Therefore, the total number of vehicles on eact¢an keep moving, even when the signal is red, until it reaches
street is determined by the initial condition, and does no@ site immediately in front of which there is either a halting
change with time because of the periodic boundary condivehicle or a crossing. Moreover, =0 every east-bound
tions. (north-bound vehicle can adjust speed in the deceleration
Following the prescription of the NS model, we allow the Stage so as not to block the north-bouiedst-boungtraffic
speedV of each vehicle to take one of the, .+ 1 integer vv_hen the signal is red for the east-bouimbrth-bound ve-
valuesV=0,1,. .. Vpyax. SUPpOs&/, is the speed of thath  hicles. _ _ o o
vehicle at timet while moving either towards east or towards I our computer simulations, we begin with an initial con-
north. At eacidiscrete timestept—t+ 1, the arrangement of figuration whereN, andN, vehicles are put at random posi-

N vehicles is updateth parallel according to the following tions on the east-bound and north-bound streets, respectively.
“rules™ The states of the vehicles are updated in parallel following

the rules mentioned above. After the initial transients die
Step 1: Accelerationlf V,<V.x the speed of thath  down, at every time step, we compute the average speeds
vehicle is increased by one, i.&/,—V,+ 1. (Vyx) and(Vy), which are merely the averages of the instan-
Step 2: Deceleration (due to other vehicles or signal).taneous speeds of the east-bound and north-bound vehicles,
Supposed,, is the gap in between theth vehicle and the respectively. The densitg=(N,+ Ny)/(2LN—N2) of the
vehicle in front of it, ands, is the distance between the samevehicles is the ratio of the total number of cars and the total

FIG. 1. Time dependence of average speeds of vehicles. The

nth vehicle and the closest signal in front of it. number of cells in the system. Here we present the data for
Case I: The signal isred for the car under consideration:  only the symmetric casé&l,=N,, for only a few sets of

If min(d,,s)<V,, thenV,—min(d,,s,)—1. values of the parameteB;, T,c,p,L,V a5, mMore details will
Case IlI: The signal isgreenfor the vehicle under consider- be published elsewhefé8].

ation: In the “free-flowing” phase of the BML model, both
There are two possibilities in this cas¢) Whend,<s,,  (V,) and(V,) oscillate between zero and a nonzero value

thenV,—d,—1 if d,=<V,, The motivation for this choice periodically at odd and even time steps. In sharp contrast, the
comes from the fact that, wheh,<s,, the hindrance effect time dependences ¢V,) and(V,) are much more realistic
comes from the leading vehicle(ii) Whend,=s,,, then in our model, as is evident from Fig. 1. Moreover, as ex-
V,—min(V,,d,—1) if min(V,,d,—1)X7>s,, wherer is the  pected,Vy, the maximum allowed values ¢¥,) and(V,)
number of the remaining time steps before the signal turnin the corresponding green phase, is smaller when the den-
red. The motivation for this choice comes from the fact thatsity c is higher. In this parameter regime, following the
whend,=s,, the speed of thath vehicle at the next time switching of the redgreen signal to greerired), (V,) rises
step depends on whether or not the vehicle can cross thalls) to reachVy(0); the corresponding relaxation time is
crossing in front before the signal for it turns red. denoted byty (t,). For a givenc, we now derive approxi-
Step 3: Randomizatiorif V,>0, the speed of th@th  mate analytical expressions figy andt, in terms ofVy4(c),
vehicle is decreased randomly by unifye., V,—V,—1) the steady speed of the vehicles, for the vehicle dewmsity
with probability p (O<p=<1); p, the random deceleration the NS model with periodic boundary conditions. Then, us-
probability, is identical for all the vehicles and does noting the numerical estimates ®g(c) from computer simu-
change during the updating. lations of the NS model we compu{®/,) and(V,) for our
Step 4: Vehicle movemeiftach vehicle is moved forward model and compare with the numerical data obtained from
so that for the east-bound vehicle§,— X,+V,,, whereX, direct computer simulation.
denotes the position of theth vehicle at time while for the We assume that during the red phase comfaet with-
north-bound vehiclesy,—Y,+V,, whereY, denotes the out “holes”) queues of lengtiN,=cD are formed in front
position of thenth vehicle at timet. of each signal. We now estimate the titgeuntil the station-
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ary speedVy=Vyg(c) is reached. There are two different
additive contributions tay . First, the last vehicle in a com-
pact queue ofN, vehicles starts moving aftet; =N, /(1
—p) time steps, since the leading vehicle in the remainder of
the queue moves with probability-1p. Second, a halting
vehicle reaches the spe&fyg(c) after a timet,=Vyg(C)/ .
(1—p) since it accelerates in each time step with probability 80 120 160 200
1-p. Thus, Time

Av. speeds

cD+Vy4c) FIG. 2. Time dependence of average speeds of vehicles. The
T’ 1) symbols ¢, +, [0, and X correspond, respectively, {o/,) for T
=20, (V,) for T=20, (V,) for T=100, and(V,) for T=100. The
where we have assumed that the green phase startsGat cOmmon parameters aM,,=5, p=0.1, D=100, andc=0.5.
Moreover, under the assumption that the relaxation is per!ne data forT=20 are shown only up to 40 time steps to avoid
fectly linear we obtain the following average speeds during ePvercrowdlng of data points. The lines are to serve as guides to the
eye.

green phase:

tg=t;+tp=

Vyg(O)tit, for t<t time to relax to zero during the red phase of the correspond-
V()= N 9 9 2) ing signal providedr is sufficiently small, e.g.T=20 (see
Vys(c) for t=t, Fig. 2.

The most dramatic result of our investigation is that at a

In the stationary state of the green phase, there are, on t@%fﬁciently large densitg, (D,T), which depends ob and
average, /—1 empty cells in front of each vehicle. So if "5 hhase transition from the “free-flowing” dynamical

the leading vehicle of a pair happens to be the last memb‘?fhase to a completely jammed phase can take place in our
of a queue alre.ady. formed in front, then the foIIowirjg Ve- .« nified” model. In the jammed phase, the flow of east-
hicle of that pair will move forto=(1/c—1)/Vyg(c) with 1504 vehicles is blocked by the north-bound vehicles and
velocity Vyg(c) and then stop suddenly since it reaches thgice versa; this gridlock phenomenon, as well as the typical
tail of a queue. Therefore, on the average, it takes a time configurations in the jammed phatee Fig. 3 of our “uni-
(1—c)D fied” model are similar to those in the BML model. In spite
At 3) of these apparent similarities, as we shall explain now, the
Vns(€) mechanism that triggers jamming in our “unified” model is
] ) different from that in the BML model. It is obvious from the
to form a queue of lengtN,=cD after the first vehicle has updating rules that ip=0, i.e., if no random braking takes
s_topped at the red s?gnal. In general, the ve_hicle nearest topﬁace, complete jamming is impossible in this model at any
signal will not stop immediately after the signal tums red, yensityc<1. Therefore, a vehicle that is located at the cross-
but will keep moving for some time, sajy, . The distance of  jng of two mutually perpendicular streets and whose instan-

this vehicle from the signal is expected to be a fractioaf  5ne0us speed =1 at the end of the deceleration stage
the average distancectf 1 to the next vehicle ahead of it.

Taking «=1/2, for example, one obtainst,=1 EERFERERI T T
—c/2cVygc). Hence, the average speed during a red phase
starting att=0 is given by
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For the validity of these estimatdg>1) should be suf-
ficiently large to guarantee complete queueing of the ve-
hicles during the red phase, should be small enough to O
ensure compactness of the queueshould be sufficiently
small so that the vehicles emerging from a queue should not
be hindered by the halting vehicles of another queue in front.
Moreover, the smaller i¥/,,,, the stronger is the deviation FEFFFFRFEFEFEFRM T IT M T T T [[TTT11]
from the linear relaxation assumed above. Furthermore, we
have assumed that all queues have the same length.

In Fig. 1, T=100 is sufficiently long so thatV,) and
(Vy) relax toVyg(c) during the green phase of the corre-
sponding signals and to zero during the red phase of the FIG. 3. Typical jammed configuration of the vehicles. The east-
signals. In contrast, for the same values of the param&ters bound and north-bound vehicles are represented by the symbols
andc, the average speed¥,) and(V,) do not get sufficient and7, respectively.
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(i.e., having at least one empty site in front of would
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vacate the crossing unless its speed is reduced=t0 be- .
cause of random braking. However, if such a halt at a cross- = 04T AN
ing due to random braking takes place at the last time step 2 ool 71 \\
before the signal for it turns red, it would not only continue g ,,/ ”‘ e
to block the perpendicular flow of traffic through the same S 02 b4 b5
crossing during the next time steps, but would also give z y ! '\, v
rise to a queue of jammed vehicles in the perpendicular street 0.1 Lo
passing through the same crossing. Therefore, whei® /o ka0
and the density is sufficiently high, the dynamical phase of 0 0 02 04 06 08 1
“freely-flowing” traffic becomes unstable against the spon- Density

taneous formation of jams and the entire traffic system self- ]

organizes so as to reach the completely jammed state. FIG. 4. Fundamental diagram. The symbdis +, [, X, andA
Moreover, for giverD, the shorter is the time interval ~ correspond, respectively, ©=100, 50, 20, 10, and 4. The com-

the smaller is the, (see Fig. 4 Besides, the density corre- MO" Parameters aéyq,=5, p=0.5, L =100, andD =20.

sponding to the maximum flux also shifts to smaller densitieg¢ the vehicles in a more realistic manner than any of the

with the decrease of. Furthermore, the maximum through- earlier CA models of the BML type. The results of our on-

put is a nonmonotonic function df in the “free-flowing”  g4ing investigations of the effects ¢ turning of vehicles

phase; this _re;qlt may be of practical use in traffic engineerfrom east-boundnorth-bound streets to north-bountkast-
ing for maximizing the throughput.

! ! OHS .. bound streets andb) green-wave signaling on the flow and
_ In this Rapid Commpmcatlon we have developed a uni-iamming will be reported elsewhefas].

fied” model where the jams are created by the same stochas-

tic process as in the NS model, but the transition to complete We thank Ludger Santen for useful discussions as well as
jamming and the jammed configurations are very similar tdfor help in producing Fig. 3, and Dietrich Stauffer for valu-
those in the BML model. We have also established that ouable comments on the manuscript. This work is supported in
model describes the time dependence of the average spequst by the SFB341 Aachendith-Koln.
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