
RAPID COMMUNICATIONS

PHYSICAL REVIEW E FEBRUARY 1999VOLUME 59, NUMBER 2
Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods

Debashish Chowdhury* and Andreas Schadschneider
Institute for Theoretical Physics, University of Cologne, Zu¨lpicher Strasse 77, D-50937 Ko¨ln, Germany

~Received 9 October 1998!

We propose a cellular automata model for vehicular traffic in cities by combining~and appropriately
modifying! ideas borrowed from the Biham-Middleton-Levine~BML ! model of city traffic and the Nagel-
Schreckenberg~NS! model of highway traffic. We demonstrate a phase transition from the ‘‘free-flowing’’
dynamical phase to the completely ‘‘jammed’’ phase at a vehicle density which depends on the time periods of
the synchronized signals and the separation between them. The intrinsic stochasticity of the dynamics, which
triggers the onset of jamming, is similar to that in the NS model, while the phenomenon of complete jamming
through self-organization as well as the final jammed configurations are similar to those in the BML model.
Using our model, we have made an investigation of the time dependence of the average speeds of the cars in
the ‘‘free-flowing’’ phase as well as the dependence of flux and jamming on the time period of the signals.
@S1063-651X~99!51602-4#

PACS number~s!: 05.40.2a, 05.60.2k, 89.40.1k
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Over the last half century various concepts and techniq
of fluid dynamics and statistical mechanics have been s
cessfully applied to understand several fundamental asp
of vehicular traffic flow@1,2#. The ‘‘particle-hopping’’ mod-
els@3–5# of vehicular traffic are usually formulated using th
language of cellular automata~CA! @6#. These models are
closely related to some of the microscopic models of driv
systems of interacting particles, which are of current inter
in nonequilibrium statistical mechanics@7#.

A one-dimensional CA model of highway traffic and
two-dimensional CA model of city traffic were develope
independently by Nagel and Schreckenberg~NS! @3# and Bi-
ham, Middleton, and Levine~BML ! @8#, respectively. High-
way traffic becomes gradually more and more congeste
the NS model with the increase of density. Traffic jams a
pear in the NS model because of theintrinsic stochasticityof
the dynamics@4# but no jam persists forever. On the oth
hand, a first order phase transition takes place in the B
model at a finite nonvanishing density, where the aver
velocity of the vehicles vanishes discontinuously, signal
complete jamming. In the BML model, the randomne
which is crucial for the jamming, arises only from theran-
dom initial conditions, as the dynamical rule for the move
ment of the vehicles is fully deterministic@8#.

If each unit of discrete time interval in the BML model
interpreted as the time for which the traffic lights rema
green~or red! before switching red~or green! simultaneously
in a synchronized manner, then, over that time scale e
vehicle, which faces a green signal, gets an opportunity
move from one crossing to the next. The generalization
the BML model that we propose here is an attempt to
scribe explicitly the forward movement of the vehicles ov
smaller distances during shorter time intervals. We achi
this generalization by following the prescriptions of the N
model not only for describing the positions, speeds, accel
tions, and decelerations of the vehicles@9# but also for taking
into account the interactions among the vehicles mov
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along the same lane of a street. We also modify some of
prescriptions of the BML model appropriately to take in
account the signal-vehicle interactions and the interacti
between vehicles approaching a crossing along differ
streets.

Our main aim is to demonstrate that a phase transi
from the ‘‘free-flowing’’ dynamical phase to the complete
‘‘jammed’’ phase takes place in our generalized model;
intrinsic stochasticity of the dynamics, which triggers t
onset of jamming, is similar to that in the NS model, wh
the phenomenon of complete jamming through se
organization as well as the final jammed configurations
similar to those in the BML model.

In the BML model a square lattice represents the netw

of the streets. All the streets parallel to theX̂ direction of a
Cartesian coordinate system are assumed to allow o

single-lane east-bound traffic while all those parallel to theŶ
direction allow only single-lane north-bound traffic. Each
the lattice sites represents the crossing of a east-west s
and a north-south street. In the initial state of the system,Nx
(Ny) vehicles are distributed among the east-bound~north-
bound! streets. The states of east-bound vehicles are upd
in parallel at every odd discrete time step, whereas thos
the north-bound vehicles are updated in parallel at ev
even discrete time step following a rule which is a simp
extension of the fully asymmetric simple exclusion proce
@7#: a vehicle moves forward by one lattice spacing if a
only if the site in front is empty, otherwise the vehicle do
not move at that time step. Jamming arises from the mu
blocking of the flows of east-bound and north-bound traf
at various different crossings. The BML model has be
modified and extended@10–17#.

We model the network of the streets as aN3N square
lattice. The streets parallel toX andY axes allow only east-
bound and north-bound traffic, respectively, as in the origi
formulation of the BML model. A signal is installed at ever
site of thisN3N square lattice, where each of the sites re
resents a crossing of two mutually perpendicular streets.
separation between any two successive crossings on e
R1311 ©1999 The American Physical Society
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street is assumed to consist ofD cells so that the total num
ber of cells on every street isL5N3D. The linear size of
each cell may be interpreted as the typical length of a
each of these cells can be either empty or occupied b
most one single vehicle at a time. Because of these cells
network of the streets can be viewed as a decorated lat
However, unlike the BML model@8# and the model of
Horiguchi and Sakakibara@14# which correspond toD51
andD52, respectively,D(,L) in our model is to be treated
as a parameter. Note thatD introduces a new length sca
into the problem.

The signals are synchronized in such a way that all
signals remain green for the east-bound vehicles~and simul-
taneously, red for the north-bound vehicles! for a time inter-
val T and then, simultaneously, all the signals turn red for
east-bound vehicles~and, green for the north-bound ve
hicles!. Thus, the parameterT introduces a new time scal
into the problem.

As in the original BML model, no turning of the vehicle
is allowed. Therefore, the total number of vehicles on e
street is determined by the initial condition, and does
change with time because of the periodic boundary con
tions.

Following the prescription of the NS model, we allow th
speedV of each vehicle to take one of theVmax11 integer
valuesV50,1,. . . ,Vmax. SupposeVn is the speed of thenth
vehicle at timet while moving either towards east or toward
north. At eachdiscrete timestept→t11, the arrangement o
N vehicles is updatedin parallel according to the following
‘‘rules’’:

Step 1: Acceleration.If Vn,Vmax, the speed of thenth
vehicle is increased by one, i.e.,Vn→Vn11.

Step 2: Deceleration (due to other vehicles or signa
Supposedn is the gap in between thenth vehicle and the
vehicle in front of it, andsn is the distance between the sam
nth vehicle and the closest signal in front of it.
Case I:The signal isred for the car under consideration:
If min(dn ,sn)<Vn , thenVn→min(dn ,sn)21.
Case II: The signal isgreen for the vehicle under consider
ation:
There are two possibilities in this case:~i! When dn,sn ,
then Vn→dn21 if dn<Vn , The motivation for this choice
comes from the fact that, whendn,sn , the hindrance effec
comes from the leading vehicle.~ii ! When dn>sn , then
Vn→min(Vn ,dn21) if min(Vn ,dn21)3t.sn , wheret is the
number of the remaining time steps before the signal tu
red. The motivation for this choice comes from the fact th
whendn>sn , the speed of thenth vehicle at the next time
step depends on whether or not the vehicle can cross
crossing in front before the signal for it turns red.

Step 3: Randomization.If Vn.0, the speed of thenth
vehicle is decreased randomly by unity~i.e., Vn→Vn21!
with probability p (0<p<1); p, the random deceleratio
probability, is identical for all the vehicles and does n
change during the updating.

Step 4: Vehicle movement.Each vehicle is moved forward
so that for the east-bound vehicles,Xn→Xn1Vn , whereXn
denotes the position of thenth vehicle at timet while for the
north-bound vehicles,Yn→Yn1Vn , whereYn denotes the
position of thenth vehicle at timet.
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These rules are not merely a combination of the ru
proposed by BML@8# and those introduced by NS@3#, but
also involve some modifications. For example, unlike all t
earlier BML-type models, a vehicle approaching a cross
can keep moving, even when the signal is red, until it reac
a site immediately in front of which there is either a haltin
vehicle or a crossing. Moreover, ifp50 every east-bound
~north-bound! vehicle can adjust speed in the decelerat
stage so as not to block the north-bound~east-bound! traffic
when the signal is red for the east-bound~north-bound! ve-
hicles.

In our computer simulations, we begin with an initial co
figuration whereNx andNy vehicles are put at random pos
tions on the east-bound and north-bound streets, respecti
The states of the vehicles are updated in parallel follow
the rules mentioned above. After the initial transients
down, at every time step, we compute the average spe
^Vx& and^Vy&, which are merely the averages of the insta
taneous speeds of the east-bound and north-bound veh
respectively. The densityc5(Nx1Ny)/(2LN2N2) of the
vehicles is the ratio of the total number of cars and the to
number of cells in the system. Here we present the data
only the symmetric caseNx5Ny , for only a few sets of
values of the parametersD,T,c,p,L,Vmax; more details will
be published elsewhere@18#.

In the ‘‘free-flowing’’ phase of the BML model, both
^Vx& and ^Vy& oscillate between zero and a nonzero va
periodically at odd and even time steps. In sharp contrast,
time dependences of^Vx& and ^Vy& are much more realistic
in our model, as is evident from Fig. 1. Moreover, as e
pected,Vg , the maximum allowed values of^Vx& and ^Vy&
in the corresponding green phase, is smaller when the d
sity c is higher. In this parameter regime, following th
switching of the red~green! signal to green~red!, ^Vx& rises
~falls! to reachVg(0); the corresponding relaxation time i
denoted bytg (t r). For a givenc, we now derive approxi-
mate analytical expressions fortg andt r in terms ofVNS(c),
the steady speed of the vehicles, for the vehicle densityc, in
the NS model with periodic boundary conditions. Then, u
ing the numerical estimates ofVNS(c) from computer simu-
lations of the NS model we compute^Vx& and ^Vy& for our
model and compare with the numerical data obtained fr
direct computer simulation.

We assume that during the red phase compact~i.e., with-
out ‘‘holes’’! queues of lengthNq5cD are formed in front
of each signal. We now estimate the timetg until the station-

FIG. 1. Time dependence of average speeds of vehicles.
symbolsL, 1, h, and3 correspond, respectively, tôVx& for c
50.1, ^Vy& for c50.1, ^Vx& for c50.5, and^Vy& for c50.5. The
common parameters areVmax55, p50.1, D5100, andT5100.
The continuous line has been obtained from Eqs.~2! and ~4!.
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ary speedVg5VNS(c) is reached. There are two differen
additive contributions totg . First, the last vehicle in a com
pact queue ofNq vehicles starts moving aftert15Nq /(1
2p) time steps, since the leading vehicle in the remainde
the queue moves with probability 12p. Second, a halting
vehicle reaches the speedVNS(c) after a timet25VNS(c)/
(12p) since it accelerates in each time step with probabi
12p. Thus,

tg5t11t25
cD1VNS~c!

12p
, ~1!

where we have assumed that the green phase starts att50.
Moreover, under the assumption that the relaxation is p
fectly linear we obtain the following average speeds durin
green phase:

Vg~ t !5H VNS~c!t/tg for t,tg ,

VNS~c! for t>tg
. ~2!

In the stationary state of the green phase, there are, on
average, 1/c21 empty cells in front of each vehicle. So
the leading vehicle of a pair happens to be the last mem
of a queue already formed in front, then the following v
hicle of that pair will move fort05(1/c21)/VNS(c) with
velocity VNS(c) and then stop suddenly since it reaches
tail of a queue. Therefore, on the average, it takes a tim

t r5cDt05
~12c!D

VNS~c!
~3!

to form a queue of lengthNq5cD after the first vehicle has
stopped at the red signal. In general, the vehicle nearest
signal will not stop immediately after the signal turns re
but will keep moving for some time, say,tp . The distance of
this vehicle from the signal is expected to be a fractiona of
the average distance 1/c21 to the next vehicle ahead of i
Taking a51/2, for example, one obtainstp51
2c/2cVNS(c). Hence, the average speed during a red ph
starting att50 is given by

Vr~ t !5H VNS~c! for 0,t,tp ,

VNS~c!F12
t2tp

tr
G for tp,t,tp1t r ,

0 for t>tp1t r .

~4!

For the validity of these estimatesT(@1) should be suf-
ficiently large to guarantee complete queueing of the
hicles during the red phase,p should be small enough t
ensure compactness of the queues,c should be sufficiently
small so that the vehicles emerging from a queue should
be hindered by the halting vehicles of another queue in fro
Moreover, the smaller isVmax, the stronger is the deviatio
from the linear relaxation assumed above. Furthermore,
have assumed that all queues have the same length.

In Fig. 1, T5100 is sufficiently long so that̂Vx& and
^Vy& relax to VNS(c) during the green phase of the corr
sponding signals and to zero during the red phase of
signals. In contrast, for the same values of the parameteD
andc, the average speeds^Vx& and^Vy& do not get sufficient
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time to relax to zero during the red phase of the correspo
ing signal providedT is sufficiently small, e.g.,T520 ~see
Fig. 2!.

The most dramatic result of our investigation is that a
sufficiently large densityc* (D,T), which depends onD and
T, a phase transition from the ‘‘free-flowing’’ dynamica
phase to a completely jammed phase can take place in
‘‘unified’’ model. In the jammed phase, the flow of eas
bound vehicles is blocked by the north-bound vehicles a
vice versa; this gridlock phenomenon, as well as the typ
configurations in the jammed phase~see Fig. 3! of our ‘‘uni-
fied’’ model are similar to those in the BML model. In spit
of these apparent similarities, as we shall explain now,
mechanism that triggers jamming in our ‘‘unified’’ model
different from that in the BML model. It is obvious from th
updating rules that ifp50, i.e., if no random braking take
place, complete jamming is impossible in this model at a
densityc,1. Therefore, a vehicle that is located at the cro
ing of two mutually perpendicular streets and whose inst
taneous speed isV51 at the end of the deceleration sta

FIG. 3. Typical jammed configuration of the vehicles. The ea
bound and north-bound vehicles are represented by the symbo→
and↑, respectively.

FIG. 2. Time dependence of average speeds of vehicles.
symbolsL, 1, h, and3 correspond, respectively, tôVx& for T
520, ^Vy& for T520, ^Vx& for T5100, and̂ Vy& for T5100. The
common parameters areVmax55, p50.1, D5100, andc50.5.
The data forT520 are shown only up to 40 time steps to avo
overcrowding of data points. The lines are to serve as guides to
eye.
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~i.e., having at least one empty site in front of it! would
vacate the crossing unless its speed is reduced toV50 be-
cause of random braking. However, if such a halt at a cro
ing due to random braking takes place at the last time s
before the signal for it turns red, it would not only continu
to block the perpendicular flow of traffic through the sam
crossing during the nextT time steps, but would also giv
rise to a queue of jammed vehicles in the perpendicular st
passing through the same crossing. Therefore, whenpÞ0
and the density is sufficiently high, the dynamical phase
‘‘freely-flowing’’ traffic becomes unstable against the spo
taneous formation of jams and the entire traffic system s
organizes so as to reach the completely jammed state.

Moreover, for givenD, the shorter is the time intervalT
the smaller is thec* ~see Fig. 4!. Besides, the density corre
sponding to the maximum flux also shifts to smaller densi
with the decrease ofT. Furthermore, the maximum through
put is a nonmonotonic function ofT in the ‘‘free-flowing’’
phase; this result may be of practical use in traffic engine
ing for maximizing the throughput.

In this Rapid Communication we have developed a ‘‘u
fied’’ model where the jams are created by the same stoc
tic process as in the NS model, but the transition to comp
jamming and the jammed configurations are very similar
those in the BML model. We have also established that
model describes the time dependence of the average sp
a
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of the vehicles in a more realistic manner than any of
earlier CA models of the BML type. The results of our o
going investigations of the effects of~a! turning of vehicles
from east-bound~north-bound! streets to north-bound~east-
bound! streets and~b! green-wave signaling on the flow an
jamming will be reported elsewhere@18#.

We thank Ludger Santen for useful discussions as wel
for help in producing Fig. 3, and Dietrich Stauffer for valu
able comments on the manuscript. This work is supporte
part by the SFB341 Aachen-Ju¨lich-Köln.

FIG. 4. Fundamental diagram. The symbolsL, 1, h, 3, andn

correspond, respectively, toT5100, 50, 20, 10, and 4. The com
mon parameters areVmax55, p50.5, L5100, andD520.
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