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Synchronization and maximum Lyapunov exponents of cellular automata
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We study the synchronization of totalistic one-dimensional cellular automata~CA!. The CA with a nonzero
synchronization threshold exhibit complex nonperiodic space time patterns and vice versa. This synchroniza-
tion transition is related to directed percolation. We also study the maximum Lyapunov exponent for CA,
defined analogous to continuous dynamical systems as the exponential rate of expansion of the linear map
induced by the evolution rule of CA, constructed with the aid of the Boolean derivatives. The synchronization
threshold is strongly correlated to the maximum Lyapunov exponent and we propose approximate relations
between these quantities. The value of this threshold can be used to parametrize the space time complexity of
CA. @S1063-651X~99!51502-X#

PACS number~s!: 64.60.Ht, 05.70.Jk, 05.45.2a
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Cellular automata~CA! are discrete dynamical system
that may exhibit complex space time patterns@1,2#. It has
been observed that CA may be synchronized by a stoch
coupling @3–5#. We study all totalistic CA with four, five,
and six neighbors. For the CA considered, we find tha
synchronization threshold is reached critically and that
CA with complex nonperiodic space time patterns have
positive threshold and vice versa. We also find a strong
lationship between the synchronization threshold and
maximum Lyapunov exponent~MLE! of CA @6,7#.

Let us start considering the following asymmetric co
pling for a continuous one-dimensional mapf (x) @8#:

x85 f ~x!,

y85~12p! f ~y!1p f~x!,

with x5x(t), x85x(t11) ~idem for y!, and 0<p<1. The
function f (x) depends in general by one~or more! parameter
a; let us assume that, for the chosen value ofa, f (x) is
chaotic with Lyapunov exponentl, and thatx(0)Þy(0).
Then,x(t) is always different fromy(t) for p50 while, for
p51, x and y synchronize in one time step. There exists
critical synchronization thresholdpc for which both trajecto-
ries x(t) andy(t) become indistinguishable in the long tim
limit and

pc512exp~2l!. ~1!

In what follows we shall try to develop similar relation
for CA. We begin with a brief review of the definition of th
maximum Lyapunov exponent for CA based on a linear
pansion of the evolution rule. We then present a synchro
zation mechanism and show that the distance between
realizations goes to zero in a critical manner atpc . The
numerical experiments show a relation betweenpc and the
maximum Lyapunov exponent, which may be understood
considering several probabilistic CA. We restrict our study
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one-dimensional, totalistic Boolean cellular automata w
four, five, and six inputs, since their number is reasona
manageable and their evolution can be efficiently imp
mented@9#.

A Boolean CAF of ranger is defined as a map on the s
of configurations$x% with x5(x0 , . . . ,xN21), xi50,1, and
i 50, . . . ,N21, such that

x85F~x!,

wherex5x(t), x85x(t11), andt50,1,. . . . The mapF is
defined locally on every sitei by

xi85 f ~$xi%r !,

where$xi%r5(xi , . . . ,xi 1r 21) is the neighborhood of rang
r of site i at time t, assuming periodic boundary condition
For totalistic CA, the local functionf is symmetric and de-
pends only ons defined by

s~$xi%r !5(
j 50

r 21

xi 1 j .

That is,xi85 f „s($xi%r)…. It is useful to introduce the follow-
ing operations between Boolean quantities: the sum mod
two ~XOR!, denoted by the symbol%, and theAND operation,
which is analogous to the usual multiplication and shares
same symbol. These operations can be performed betw
two configurations component by component. We introdu
the difference, or damage,z5x% y, whose evolution is given
by z85F(x) % F(y) and we define the norm ofz as uzu
5(1/N)( ixi % yi .

A function f (xi , . . . ,xj , . . . ,xi 1r) is sensitive to itsj th
argument for a given neighborhood ($xi%r) if the Boolean
derivative

] f

]xj
U
$xi %r

5 f ~xi , . . . ,xj , . . . ! % f ~xi , . . . ,xj % 1, . . .!
R1307 ©1999 The American Physical Society
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is 1. The Jacobian matrixJ of F is an N3N matrix with
components

Ji , j~x!5
] f

]xj
U
$xi %r

.

The matrixJ is circular with zeroes everywhere except po
sibly on the main diagonal and the followingr 21 upper
diagonals.

It is possible to ‘‘Taylor expand’’ a Boolean functio
around a given point using Boolean derivatives@10#. To first
order in uzu we have

F~y!5F~x! % J~x!(z, ~2!

where( denotes the Boolean multiplication of a matrix by
vector. Compared to algebraic multiplication of a matrix by
vector, the sum and multiplication of scalars are replaced
the XOR and theAND operations, respectively. Using Eq.~2!
we may approximate the evolution of the damage configu
tion z by

z85J~x!(z.

However,uzu grows most linearly witht since damage canno
spread to more thanr neighbors in one time step; a fixed si
i at time t11 can be damaged if at least one of itsr neigh-
bors at timet is damaged, but if more than one of the neig
bors is damaged, the damage may cancel. Since

zi851 if Ji , j (x)zj51 on an odd number of sites. In order
account for all possible damage spreading we choose to
sider each damage independently. If, at timet, m damaged
sites are present, we considerm replicas, where each one ha
a different damaged site. On each replica, the dam
evolves for one time step, without interference effects and
on.

This procedure is equivalent to choosing a vectorj(0)
5z(0), which evolves in time according to

j85J~x!j, ~3!

where the matrix multiplication is now algebraic. The com
ponentsj i are positive integers that count the number
ways in which the initial damage can spread to sitei at time
t on the ensemble of replicas.

We define the maximum Lyapunov exponentl of the
cellular automatonF by

l~x0!5 lim
T→`

lim
N→`

1

T
logS ujTu

uj0u D ,

whereuju may be taken as the Euclidean norm or as the s
of its components. The geometrical averagem of components
equal to 1 in the Jacobian matrixJ is defined by

m~x0!5 lim
T→`

lim
N→`

S )
t50

T21
1

r (
i , j

Ji , j~xt!D 1/T
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We show in Fig. 1 the points (rm,l) of all of the totalistic
CA with r 54,5, and 6 that show complex nonperiodic spa
time patterns.

The process defined by Eq.~3! may be viewed as a deter
ministic directed bond percolation problem where a sitei at
depth t is wet if j i(t).0. The bonds exist where the com
ponents ofJ are 1. A first approximation is obtained b
replacingJ with a random matrix whose elements are ze
except on the diagonal and ther 21 following upper diago-
nals, where they are equal to one with probabilitym
@6,11,12#. There is a critical valuemc(r ) below which the
bond percolation process falls into the absorbing state so
the maximum eigenvalue of the product of random matri
is zero. We can further introduce a mean field approximat
to the directed bond percolation process, which exhibits d
crepancies only very near tomc . In this case one can show
that

l̃5 ln~rm! ~4!

is an upper bound to the MLE of the product of rando
matrices. The behavior ofl̃ is plotted in Fig. 1, and we note
that it is a good approximation to the generic behavior
CA. We also report the valuermc(r ) for which the maxi-
mum eigenvalue of the product of random matrices is ze
corresponding to the percolation threshold for the direc
bond percolation problem. We found thatrmc(r ).1.3 re-
gardless ofr , a fact that can be understood from the follow
ing argument. The percolation cluster has, on averagek
bonds per site withk(r )5rmc(r ); for this percolation
model, one connection to a wet neighbor at the previous t
step is sufficient, and further connections do not alter w
ting.

We now discuss a synchronization mechanism for C
Starting with two initial configurations chosen at rando
x~0! andy~0! we propose that

x85F~x!,

y85St~p!F~y! % St~p!F~x!,

FIG. 1. MLE of totalistic CA with r 54,5,6 versusrm. The

continuous line represents the mean field approximationl̃
5 ln(rm). The dashed line marks the thresholdrmc .
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whereSt(p) is a Boolean random diagonal matrix with el
mentssi

t(p) that, at each time step, take the value one w
probability p and zero with probability 12p; S(p)5I
2S(p) and I is the identity matrix. On average,yi8 will be
set to the value ofxi85 f ($xi%) on a fractionp of sites. In this
way we introduced a stochastic synchronization mechan
over a deterministic process. This stochastic mechanism
be considered a ‘‘random field’’ approximation of an inte
mittent coupling generated by a deterministic chaotic p
cess. The evolution equation for the differencez5x% y is

z85S~p!@F~x! % F~y!#. ~5!

The control and order parameters arep and h(p)
5 limt→` limN→`uz(t)u, respectively. We say thatx, the
driver, andy, the driven system, synchronize whenh(p)
50. For p50 both systems evolve independently, while f
p51 they synchronize in just one step; we then expec
find a synchronization thresholdpc . This behavior is shared
by all of the CA with complex nonperiodic space time pa
terns. All others synchronize forp.0. This can be con-
versely expressed by saying that all CA that synchron
with a nontrivialpc exhibit complex nonperiodic space tim
patterns.

For totalistic linear rules, whose evolution is given by

the synchronization equation~5! is equivalent to the dilution
~with probability 12p! of the rule. Forr 52 the dilution
problem is equivalent to the linez50 of Ref. @13#, whose
transition belongs to the universality class of directed per
lation ~DP! @14#. For a similar synchronization mechanism,
has been recently claimed that the elementary CA rule
does not@4# and does@5# belong to the DP universality class
The presence of a single absorbing state and the absen
other conserved quantities~i.e., number of kinks! strongly
suggests that the synchronization transition belongs to
DP universality class@3,5#. The goal of this work was no
that of computing critical exponents. However, since
critical point was located by means of the scaling law for
density of defects~in order to minimize finite size and tim
effects!, we had the opportunity of computing the magne
exponentb for all of the CA studied. Due to the large num
ber of CA examined, this computation was performed se
automatically, and the precision of the resulting exponen
quite low, nonetheless we have not found any example
non-DP behavior. We performed bulk simulations forN
52000 andT54000 and checked that the results do n
change for doubling of halving these figures.

In Fig. 2 we plot the points (pc ,l) for all totalistic CA
with r 54,5,6 and a nontrivial value ofpc . All of the nu-
merical experiments were performed using a parallel al
rithm that takes care of all the values ofp simultaneously
@15#.

Let us study the relationship betweenpc and l by some
random approximations. Near the synchronization thresh
pc , we may expandy aroundx with the help of Eq.~2! so
that
h
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z85S~p!J~x!z. ~6!

Equation~6! may be written as

zi85si~p!@Ji ,i~x!zi %¯% Ji ,i 1r 21~x!zi 1r 21#. ~7!

During the time evolution of a particular CA, a fixed value
m is attained so that, on average,rm derivatives inside the
parentheses on the right-hand side of Eq.~7! are different
from zero. A first approximation, modelA, is obtained by
replacing the derivatives with random variablesmi(m) that
are one with probabilitym and zero with probability
(12m). That is,

zi85si~p!@mi~m!zi %¯% mi 1r 21~m!zi 1r 21#.

On every site and every time step,rm variables are chosen
on average and if their sum is odd, then with probabilityp,
zi851. We then look for the synchronization thresholdpc(m)

and plot it as a function ofl̃5 ln(rm) @Eq. ~4!#. This is the
curve labeledA in Fig. 2. The predicted values ofpc are
generally higher than those found for CA for the same va
of l, possibly due to correlations among the derivatives.

Since the typical ‘‘complex’’ CA pattern exhibits tran
sient correlations~‘‘triangles’’ !, one can model them by
choosing a fixed numberk<r of derivatives equal to one
The simplest way is to takek5rm with rm as an integer,
modelB. Then,

zi85si~p!@zi %¯% zi 1k21#,

which is a dilution of theXOR with k inputs. This process is
expected to belong to the same universality class of direc
percolation @16#. The curve labeledB of Fig. 2 passes
through all of the calculated values fork52, . . . 6. Wenote
that this second model is a better fit of CA behavior.

We can extend this last model allowing noninteger valu
of rm by

zi~ t11!5si
t~p!mi

t~m!@zi %¯% zi 1k21#,

FIG. 2. Relationship betweenpc and l for all CA with range
r 54,5,6 ~markers! and complex space time patterns. The curv
correspond to the various approximations as specified in the leg
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which we call modelCk . In this way the average number o
nonzero derivatives iskm with 0<m<1. Now k is a free
parameter, and this model can be useful to delimit the
pected spread of (l,pc) points.

Sincesi
t(p) andmi

t(m) are independent random variable
we may write

zi~ t11!5si
t~q!@zi %¯% zi 1k21#,

where (12q)5(12p)m. In this guise, this is modelB with
k inputs. The synchronization threshold is given
pc(k,m)512@12qc(k)#/m, whereqc(k) is the percolation
threshold of the dilution of theXOR with k inputs. Using the
approximationl5 ln(km) one has

pc~k,l!512k@12qc~k!#exp~2l!, ~8!

which bears some likeness to Eq.~1!. The curves labeledC2
and C6 of Fig. 2 correspond to this last expression fork
52 andk56, respectively. We note that the points (l,pc) of
almost all of the CA considered fall between these t
curves.
no
-
,

x-

,

For the totalistic one-dimensional CA withr 54,5,6 we
can safely say that all CA with a positivepc exhibit complex
nonperiodic space time patterns and vice versa. These
also have a positive MLE. We also showed that the synch
nization of CA is a critical phenomenon similar to directe
percolation.

We proposed several approximations based on a com
nation of ‘‘linearization’’ of CA rules using Boolean Taylo
expansions and stochasticity and showed the relation
tween the synchronization threshold and the MLE. In p
ticular, modelC implies a relation similar to that found fo
continuous maps with the addition of a percolation thresh
constant.

An analogous mechanism can be applied to coupled m
lattices; in this casep is the probability that a mapyi(t)
takes the valuexi(t). One observes a synchronization tra
sition, but the critical valuepc is not correlated to the usua
MLE @17#.
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