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We study the synchronization of totalistic one-dimensional cellular autof@#a The CA with a nonzero
synchronization threshold exhibit complex nonperiodic space time patterns and vice versa. This synchroniza-
tion transition is related to directed percolation. We also study the maximum Lyapunov exponent for CA,
defined analogous to continuous dynamical systems as the exponential rate of expansion of the linear map
induced by the evolution rule of CA, constructed with the aid of the Boolean derivatives. The synchronization
threshold is strongly correlated to the maximum Lyapunov exponent and we propose approximate relations
between these quantities. The value of this threshold can be used to parametrize the space time complexity of
CA. [S1063-651%X99)51502-X

PACS numbds): 64.60.Ht, 05.70.Jk, 05.45a

Cellular automata(CA) are discrete dynamical systems one-dimensional, totalistic Boolean cellular automata with
that may exhibit complex space time pattefds?]. It has four, five, and six inputs, since their number is reasonably
been observed that CA may be synchronized by a stochastinanageable and their evolution can be efficiently imple-
coupling[3-5]. We study all totalistic CA with four, five, mented[9].
and six neighbors. For the CA considered, we find that a A Boolean CAF of ranger is defined as a map on the set
synchronization threshold is reached critically and that allof configurations{x} with x=(Xg, ... Xy_1), X;=0,1, and
CA with complex nonperiodic space time patterns have a=0,... N—1, such that
positive threshold and vice versa. We also find a strong re-

lationship between the synchronization threshold and the x"=F(x),
maximum Lyapunov exponedMLE) of CA [6,7].
Let us start considering the following asymmetric cou-wherex=x(t), x' =x(t+1), andt=0,1,. ... The mapF is
pling for a continuous one-dimensional m&fx) [8]: defined locally on every site by
,:f 1 ’
S X! = F({xi}),

y'=(1=pty)*pix), where{x;};=(X;, ... Xj1r—1) is the neighborhood of range
with x=x(t), x’=x(t+1) (idem fory), and O<p<1. The r of sitei at timet, assuming periodic boundary conditions.
function f(x) depends in general by oiter more parameter For totalistic CA, the local functiori is symmetric and de-
a; let us assume that, for the chosen valueaoff(x) is  pends only ors defined by
chaotic with Lyapunov exponert, and thatx(0)#y(0).
Then,x(t) is always different fromy(t) for p=0 while, for
p=1, x andy synchronize in one time step. There exists a s({Xi}r)= 2 Xitj -
critical synchronization thresholg, for which both trajecto- 1=0
riesx(t) andy(t) become indistinguishable in the long time
limit and

r-1

That is,x{ = f(s({x;};)). It is useful to introduce the follow-
ing operations between Boolean quantities: the sum modulo
pc=1—exp—\). ) two (xoR), denoted by the symba, and theaND operation,
which is analogous to the usual multiplication and shares the
In what follows we shall try to develop similar relations same symbol. These operations can be performed between
for CA. We begin with a brief review of the definition of the two configurations component by component. We introduce
maximum Lyapunov exponent for CA based on a linear ex+the difference, or damage=x®y, whose evolution is given
pansion of the evolution rule. We then present a synchroniby z’' =F(x)®F(y) and we define the norm aof as |z
zation mechanism and show that the distance between twe (1/N)3;x;®y; .
realizations goes to zero in a critical mannerpat The A function f(X;, ... Xj,... X4) is sensitive to itsjth
numerical experiments show a relation betwggnand the argument for a given neighborhoodx(},) if the Boolean
maximum Lyapunov exponent, which may be understood byjerivative
considering several probabilistic CA. We restrict our study to

of

— =f(X,... Xi,...00f(X,...X;®l,...)
[?Xj {Xi}r ! ] | ]
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is 1. The Jacobian matrig of F is an NXN matrix with 2 - - . - -
components 18 |
30 of 16 -
P X = — .
i _ |
IX; i) 1.4
L . 12 +
The matrixJ is circular with zeroes everywhere except pos- A
1 L

sibly on the main diagonal and the following-1 upper
diagonals. 08
It is possible to “Taylor expand” a Boolean function

around a given point using Boolean derivatiy&§]. To first 06T
order in|z| we have 04 |
F(y)=F(x)®J(x)Oz 2 02T
0
where® denotes the Boolean multiplication of a matrix by a 0 1 2 3 4 5 6
vector. Compared to algebraic multiplication of a matrix by a ru

vector, the sum and multiplication of scalars are replaced by - L
the xoRr and theanp operations, respectively. Using E@) FIG. 1. MLE of totalistic CA withr=4,5,6 versus u. The

we may approximate the evolution of the damage configuracontinuous line represents the mean field approximation
tion z by =In(rw). The dashed line marks the threshod, .

7 =J(x)Oz We show in Fig. 1 the pointsrfu,\) of all of the totalistic
CA with r=4,5, and 6 that show complex nonperiodic space
However,|z| grows most linearly with since damage cannot time patterns.
spread to more thanneighbors in one time step; a fixed site The process defined by E() may be viewed as a deter-
i attimet+1 can be damaged if at least one ofriteeigh-  ministic directed bond percolation problem where a bi
bors at timet is damaged, but if more than one of the neigh-deptht is wet if &(t)>0. The bonds exist where the com-

bors is damaged, the damage may cancel. Since ponents ofJ are 1. A first approximation is obtained by
replacingJ with a random matrix whose elements are zero
;e except on the diagonal and the-1 following upper diago-
7= @ Ji.i(%)zj, nals, where they are equal to one with probabiljty
J=

[6,11,13. There is a critical valugu(r) below which the
bond percolation process falls into the absorbing state so that
Hje maximum eigenvalue of the product of random matrices
Is zero. We can further introduce a mean field approximation
to the directed bond percolation process, which exhibits dis-
repancies only very near {@.. In this case one can show

z/=1if J; j(x)z;=1 on an odd number of sites. In order to
account for all possible damage spreading we choose to co
sider each damage independently. If, at timen damaged
sites are present, we consideireplicas, where each one has
a different damaged site. On each replica, the damag
evolves for one time step, without interference effects and s
on.

This procedure is equivalent to choosing a ved(®) A=In(r) @)
=2(0), which evolves in time according to is an upper bound to the MLE of the product of random
£=I(x¢& ) matrices. The behavior of is plotted in Fig. 1, and we note

that it is a good approximation to the generic behavior of
where the matrix multiplication is now algebraic. The com-CA. We also report the valueu(r) for which the maxi-
ponents¢; are positive integers that count the number ofmum eigenvalue of the product of random matrices is zero,
ways in which the initial damage can spread to st time corresponding to the percolation threshold for the directed

t on the ensemble of replicas. bond percolation problem. We found thag(r)=1.3 re-
We define the maximum Lyapunov exponentof the  gardless of, a fact that can be understood from the follow-
cellular automatork by ing argument. The percolation cluster has, on average,
bonds per site withx(r)=ru.(r); for this percolation
N |£'] model, one connection to a wet neighbor at the previous time
M(X ):TI'_TC ,\II"_":O? log @ ’ step is sufficient, and further connections do not alter wet-
ting.

where|g may be taken as the Euclidean norm or as the sum_We now discuss a synchronization mechanism for CA.
of its components. The geometrical averagef components Starting with two initial configurations chosen at random

equal to 1 in the Jacobian matrixis defined by x(0) andy(0) we propose that
T-1 1 uT x'=F(x),
w(x%)=lim lim ( II-> Ji,j(xt)> — t
Tooe Nsoo| 120 T 1] y'=S(p)F(y)®S(p)F(x),
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whereS!(p) is a Boolean random diagonal matrix with ele- 0.6 - - - . - — -
mentss{(p) that, at each time step, take the value one with
probability p and zero with probability +p; S(p)=I
—S(p) and| is the identity matrix. On averagg; will be 0.5 -
set to the value of{ = f({x;}) on a fractionp of sites. In this
way we introduced a stochastic synchronization mechanisn
over a deterministic process. This stochastic mechanism ca 04
be considered a “random field” approximation of an inter- * ¢
mittent coupling generated by a deterministic chaotic pro- 035 |
cess. The evolution equation for the differermsex®y is

055

045

03|
Z’=S(p)[F(x)@F(y)]. 5 025 |
The control and order parameters ame and h(p) 0.20 = 0'2

=lim,_. limy_.|z(t)|, respectively. We say thax, the
driver, andy, the driven system, synchronize whéigp)
=0. Forp=0 both systems evolve independently, while for G, 2. Relationship betweep, and\ for all CA with range
p=1 they synchronize in just one step; we then expect t@ =456 (markers and complex space time patterns. The curves
find a synchronization threshofa,. This behavior is shared correspond to the various approximations as specified in the legend.
by all of the CA with complex nonperiodic space time pat-
terns. All others synchronize fop=0. This can be con- z’=%J(x)z. 6)
versely expressed by saying that all CA that synchronize
with a nontrivialp. exhibit complex nonperiodic space time Equation(6) may be written as
patterns.

For totalistic linear rules, whose evolution is given by z! :%[Ji’i(x)zi@...@Ji’i+r_l(x)zi+r_l]' 7)

1 During the time evolution of a particular CA, a fixed value of
f{zi}e) = @xi“’ M is attained so that, on averagey derivatives inside the
= parentheses on the right-hand side of Ef. are different
— o . I from zero. A first approximation, modé, is obtained by
e Snchroniston SIS = EErL e e SN repiacing th dervatves it radom variaie)
problem is equivalent to the line=0 of Ref.[13], whose are one Wlth probability . and zero with - probability
transition belongs to the universality class of directed percogl_’“)' That is,
lation (DP) [14]. For a similar synchronization mechanism, it
has been recently claimed that the elementary CA rule 18
does nof4] and doeg5] belong to the DP universality class. o
The presence of a singllt_a gbsorbing state a_nd the absence average and if their sum is odd, then with probabitity
other conserved quantltle(sg., qumber o'f.kmk}s strongly z' =1. We then look for the synchronization threshpld )
suggests that the synchronization transition belongs to th ] ] ~ o
DP universality clas$§3,5]. The goal of this work was not and plot it as a function ok =In(rw) [Eq. (4)]. This is the
that of computing critical exponents. However, since thecurve labeledA in Fig. 2. The predicted values gf; are
critical point was located by means of the scaling law for thegenerally higher than those found for CA for the same value
density of defectsin order to minimize finite size and time ©Of A, possibly due to correlations among the derivatives.
effecty, we had the opportunity of computing the magnetic = Since the typical “complex” CA pattern exhibits tran-
exponents for all of the CA studied. Due to the large num- Sient correlations(“triangles”), one can model them by
ber of CA examined, this computation was performed semichoosing a fixed numbex=r of derivatives equal to one.
automatically, and the precision of the resulting exponent id he simplest way is to takk=ru with ru as an integer,
quite low, nonetheless we have not found any example offodelB. Then,
non-DP behavior. We performed bulk simulations fidr -
=2000 andT=4000 and checked that the results do not zi=si(p)[z® - ®Zy-1],
change for doubling of halving these figures. o . . . . )
In Fig. 2 we plot the pointsf.,\) for all totalistic CA which is a dilution of thexor with k !nputs.. This process is
with r=4,5,6 and a nontrivial value gf.. All of the nu- expectegl to belong to the same unlversallty_class of directed
merical experiments were performed using a parallel algoPercolation[16]. The curve labeledB of Fig. 2 passes

rithm that takes care of all the values pfsimultaneously ~ through all of the calculated values fer=2, ... 6. Wenote
[15]. that this second model is a better fit of CA behavior.

Let us study the relationship betwepp and\ by some We can extend this last model allowing noninteger values

random approximations. Near the synchronization threshol@f F« by

p., we may expandg aroundx with the help of Eq.(2) so -—
that Z(t+1)=si(p)Mi(p)[z;® - ©Z1x-1],

Zi,:m[mi(/i)zi@'"@miJrrfl(M)ziJrrfl]'

every site and every time stepy variables are chosen
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which we call modelC, . In this way the average number of  For the totalistic one-dimensional CA with=4,5,6 we
nonzero derivatives i&u with O<u<1. Now k is a free  can safely say that all CA with a positiye exhibit complex
parameter, and this model can be useful to delimit the exnonperiodic space time patterns and vice versa. These CA

pected spread of\(p.) points. also have a positive MLE. We also showed that the synchro-
Sinces|(p) andmi(x) are independent random variables, nization of CA is a critical phenomenon similar to directed
we may write percolation.
-— We proposed several approximations based on a combi-
z(t+1)=s(q[z® D7 +k-1], nation of “linearization” of CA rules using Boolean Taylor

expansions and stochasticity and showed the relation be-
tween the synchronization threshold and the MLE. In par-
ticular, modelC implies a relation similar to that found for
continuous maps with the addition of a percolation threshold

where (1-q)=(1—p)u«. In this guise, this is modeéd with

k inputs. The synchronization threshold is given by
pc(k,p)=1—[1—qc(k) ]/, whereqg.(k) is the percolation
threshold of the dilution of th&or with k inputs. Using the

approximation\ = In(k) one has constant. _ _
An analogous mechanism can be applied to coupled map
P(k,N)=1—K[1—q(K)]exp —\), (8) lattices; in this case is the probability that a may;(t)

takes the valug;(t). One observes a synchronization tran-

which bears some likeness to E@). The curves labele@,  gion, but the critical valug, is not correlated to the usual
and Cq of Fig. 2 correspond to this last expression for \ g [17].

=2 andk= 6, respectively. We note that the poinis ;) of
almost all of the CA considered fall between these two We acknowledge partial financial support from DGAPA-
curves. UNAM Project No. IN103595.
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