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The problem of the diverging thermal conductivity in one-dimensidd@) lattices is considered. By
numerical simulations, it is confirmed that the thermal conductivity of the diatomic Toda lattice diverges,
which is the opposite of the current popular belief. Also, the diverging exponent is found to be almost the same
as the FPU chain. It is reconfirmed that the diverging thermal conductivity is universal in 1D systems, where
the total momentum preservg§1063-651X99)50501-]

PACS numbg(s): 05.70.Ln, 44.10¢ti, 05.60—k

Heat conduction in a one-dimensional lattice is a ratherl00. This convergence makes apparent the contrast with the
old problem. Many authors have investigated the property ofermi-Pasta-UlaniFPU) chain, where the conductivity still
thermal conductivity in order to understand what ingredientgrows even atN=5000 [2,7]. As the common feature of
are essential to the standing of a macroscopic law; that is, thiaese systems that have finite conductivity, the external field
Fourier law is introduced to confine the movement of each particle. The

Hamiltonian of the systems is represented as

()= «VT, (1) ,

pi
H=2 | 55 UG x)+ VO |, @

where « is a thermal conductivity. It is well known that in
integrable systems such as harmonic chains or ideal gas, the
Fourier law is not valid since no temperature gradient iswhereV(x) is the external trapping potential. At this point,
formed[1], while various numerical simulations of noninte- one might think that the external field plays the key role for
grable systems show temperature gradients. However, it igbtaining the finite conductivit{6]. However, the finite con-
also found that thermal conductivity of nonintegrable sys-ductivity is also obtained for the diatomic Toda latt@TL )
tems such as the FPU chain divergeNgs[2,3], whereN is ~ [8], whose Hamiltonian is written as
the degree of freedom. In other words, thermal conductivity
becomes infinite in the thermodynamic limit. H=>
On the other hand, finite conductivities are seen in some i
one-dimensional1D) nonintegrable systems. Casai al.
invented the so-called ding-a-ling model, consisting of alterwhere m; denotes the mass of alternate two different par-
nate harmonic oscillators and free particles, and found thaicles. The DTL has no external potential that is different
the model has finite conductivity4]. A similar kind of the  from Eq.(2). It is still unknown what is responsible for finite
model that has finite conductivity is also investigated byconductivity.
Prosen and Robnik5]. Most recently, Hu, Li, and Zhao Recently, Lepri, Livi, and Politi found that the autocorre-
found that the Frenkel-Kontrova model has the finite conduciation function of the total heat current vanishes k& in
tivity [6]. In these models, the conductivity converges at thehe FPU chaif9]. This implies the divergence of the thermal
certain value with relatively small which does not exceed conductivity as a result of the Green-Kubo formula
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whereJ(t) = [j(x,t)dx, andV is the volume of the system. 700 |

Indeed, due to the conservation laws, long-time tails of
the correlation functions are quite general results in fluids
[10]. The rough explanation is as follows. Hydrodynami-
cally, the local heat currenfx,t) is expressed as 400 |

jx ) =h(x,t)v(x,t)— «VT(x,t), (5)

whereh(x,t) anduv(x,t) denote local enthalpy density and
local velocity of the fluid, respectively11]. Sinceuv(x,t) 0% 02 04 06 08 10
appears in the first term of E¢5), an autocorrelation func- N

tion of the total heat curreftl(0)J(t)) includes the effect of . . . _ .
the velocity autocorrelation functiofVACF) [12]. In the FIG. 1. Temperature profile formed in the diatomic Toda lattice.

system where the total momentum is preserved thé[he temperatures of the reservoirs are 100 and 10. Systeri size
asymptotic behavior of the VACF is proportional téd/z’ 1000. The shape of the profile will not change with the increase of

where d is the dimensionality of the system. Then N

(3(0)J(t)) also decays likea %2, which implies the diver-
gence of the integral of Eq¢4) for d<2. In the system where
the total momentum is not preserved, the VACF vanishes

much faster than that. For example, in the Lorentz gas N

the VACF decays like—t~%271 [13]. In those systems the =2 ji(ta, ®)
VACF does not cause the divergence of E&). We remark =1

that the contribution of the second term of E) to ] . )
(J(0)J(t)) is t~92-1 This term is not responsible for the Wherea is the average distance between two particles. The

The total heat current appearing in the Green-Kubo formula

diverging conductivity. average current is then defined as

Those explanations account for the diverging conductivity 101 1
in the FPU chain, and also the finite ones of the models <j>:_f dt— J(t). 9)
where the total momentum does not preserve due to the ex- TJo aN

ternal field, such as the ding-a-ling model. However, the ex-

planation does not apply to the diatomic Toda lattice, where Hereafter we fix the mass ratio of the particles to be 0.5;

the total momentum is preserved. The fact that the DTL haghat is,m,, ;=2m,,. The temperatures of the thermal res-

a finite thermal conductivity has been invoking confusion. Inervoirs are set to be 100 and 10. Note that all these condi-

this Rapid Communication, we recheck the result of R&f.  tions are the same as in R¢B] except for the reservoir

to find out what is really going on in the DTL. model. Numerical integration is done by the symplectic in-
The Hamiltonian of the DTL is given by Eq3). We tegrater of the fourth ord¢d5] in order to preserve the sym-

perform numerical simulations of the DTL in contact with plectic structure of the phase space. Note that the distance

two thermal reservoirs whose temperatures are denot&g as between two thermal walls BN so that the average density

andT,. Note that the choice of models for thermal reservoirsis fixed regardless of the number of particles. We setl

is critical, since there might exist the temperature gaps at thandm,,=1 for nondimensionization.

extrema of the lattice connecting with the reservoirs. It First we check the temperature profile. We define the tem-

makes the definition of temperature gradient ambiguous, beperature of thelth site as the long-time average ofiv?

cause the system will not obey the assigned boundary coased on the virial theorem. The result is shown in Fig. 1.

ditions; i.e., temperatures of the thermal reservoirs. Sinc&ince no gap is seen at the extrema, temperature gradient

thermal conductivity is defined g$)/VT, it is important to  becomesT;—T,)/N. We can safely define the thermal con-

determineV T exclusively by control parameters. The model ductivity as

we adopt here is the thermal wall typd,14]. When the

particle collides with the wall, it reflects the particle back _ (N

with a new momentunp at random. The probability distri- K= T,—-T,’

bution function ofp is given by

(10

5 where(j) is defined by Eq(9). The system size dependence
()= |p| exd — p ©6) of the thermal conductivity is shown in Fig. 2. It is clearly
¢(p)= mkgT 2mkgT)” seen that the conductivity diverges liR23% The exponent
0.35 is very close to the one for the FPU chén38. It is
The local heat fluxy,(t) is defined as the energy transfer per reasonable to consider that the origin of the divergence is the

unit time from thelth particle to the (+1)th particle, same as the case of the FPU chain, i.e., the long-time tail of
JU (x— the Green-Kubo integrand. We check an autocorrelation
jl(t):(x'—x'“)vl_ (7)  function of the total heat currentd(0)J(t)), by taking a

24 periodic boundary condition instead of thermal walls. The
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In order to confirm the divergence in the diatomic Toda
lattice, we also test other versions of the D[T16],

2

P;
H= —— +hardcore, 11
zi 2m (1D

2

p.
H=2 | S Hexpxi—xi ) +xia-x|. (12
1

m

For thermal reservoirs, we use the thermal wall model as
before in the diatomic hard spheres of Efjl). Note that the
thermal reservoir employed in the simulation of Ef2) is

the Langevin type,

M1+ {vg+ € (D) =1—expX;—Xp), (13

myont+ ot Ea(t) = —1+expXy-1—Xn),  (14)

FIG. 2. System size dependence of the thermal conductivity.

Circles correspond to the diatomic Toda lattice with=100 and
T,=10. Squares denote diatomic hard spheres of (Ed). Tri-
angles represent another version of the DTL written as (EP).

The solid line is proportional téN®-35,

initial condition is chosen within the microcanonical en-
semble whose temperature i§,(T,)/2=55. Figure 3
clearly shows the long-time tail, which is approximately pro-
portional tot ~%5just like the FPU chain. This long-time tail
is the strong evidence for the diverging thermal conductivity

conduction in 1D lattices.

However, one may think that the temperature differenc
adopted here is so large that the linear response theory do@h
not apply. To answer this, we check thermal conductivity at

t—Oﬁg

<JON(1)>

1 10
t

the periodic boundary condition. Dashed line is proportional to

t~ 065 System sizeN is 2000.

100

where ¢;(t) denotes the Gaussian white noigég;(t))=0

and (£ (0)&(t))=2¢kgT;8(t).] We setT,=5 andT,=4

for both of the models. System size dependences of the ther-
mal conductivity of these models are shown in Fig. 2. They
also show the divergence >33~ N%37.

The result obtained in this Rapid Communication is quite
the opposite of the results of Jackson and Mistrifis The
keypoint is the formation of the temperature gradient. In Ref.
(,L ], the temperature profile has large gaps at the extrema of

the lattice so that the real temperature gradient gets smaller
ghanN/(T,—T5). Hence, it is improper to define the thermal

not precise.

gnductivity as(j)N/(T,—T,) as they did. Moreover, since
e size of the gap may depend bh system size depen-

the smaller temperature gradient that is closer to equilibriumd®nce of the thermal conductivity measured in that way is

i.e.,, T;=5 andT,=4. The system at this temperature also

shows the divergence di®35 and the long-time tail of The existence of the gaps is due to the model of the heat

bath. In Ref[8], the new momenta are randomly given to the
end particles of the lattice. Although the distribution function
is the same as ours, i.e., B), the new momenta are given
at finite time steps which is determined randomly from the
uniform distribution. When the average time interval is
shorter than the relaxation time of the lattice, the gap is
formed. This issue has been partially reported in R&S).

In our models, for instance, the Langevin model represented
by Egs.(13) and (14) yields temperature gaps whenbe-

comes large.

In this Rapid Communication, we have confirmed that the
thermal conductivity of the diatomic Toda lattice diverges as
N°35 just like the FPU chain. This divergence is generic in
the 1D momentum preserving systems, due to the long-time
tails in the Green-Kubo integrands. Only the systems where
the total momentum does not preserve and the 3D fluids are
expected to have the finite thermal conductivities in the ther-

FIG. 3. Autocorrelation function of the total heat current with modynamic limit.

However, the quantitative conditions are still unclear for

the existence of temperature gradients, aside from the choice
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of the heat bath model. Nonintegrability itself is the neces- The author is grateful to S. Sasa for critical comments and
sary condition. Quantitative study of the transport processesncouragement. The author also thanks T. Shibata, S. Take-
from the viewpoint of dynamical systems must be the mainsue, K. Kaneko, M. Machida, and K. Saito for stimulating
focus of the future problem. discussions.
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