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The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals.
We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the
partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the
system. We find that the configurational entropic part of the free energy enhances the effective repulsive
interactions between the chains. This configurational contribution goes as the fourth root of the direct interac-
tions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the
nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure
the equation of state for DNA liquid crystals in 811to 1M NacCl solutions. These measurements cover five
orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by
exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equa-
tion of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation
of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the
direct electrostatic double layer repulsion. This is an alternative way of measuring effective charge densities
along semiflexible polyelectrolytepS1063-651%99)11401-9

PACS numbd(s): 87.15.Nn, 61.30-v, 64.30+t

I. INTRODUCTION say, little is understood about their design, structure, and
how they work. There is also the increasingly appreciated
In biology, there exists a class of bulk materials that pro-potential of biopolymers for basic material and condensed
vides the cell's structural stability and ensures its integrity inmatter researchl]. In most synthetic polymer systems it is
multicell environments. These materials are often made fronextremely difficult to control properties of individual poly-
biopolymers with varying intrinsic stiffness and helicity such mers, like their degree of polymerization, crosslinks, and
as actin, fibrin, collagen, polysaccharides, elastin, tubulin. Irchemical uniformity. By using modern molecular biological
most cases biology controls elastic properties by controlledind biochemical techniques it is possible to tailor biopoly-
polymerization and depolymerization of the monomers andners almost at will, using nature’s own efficient polymeriza-
by enzymatically controlled crosslinking of polymer strands.tion machinery. So it is, for example, possible to prepare
Often biopolymers, because of their intrinsic stiffness, formmonodisperse DNA fragment solutions with lengths varying
liquid crystals atin vivo concentrations. Because these poly-from a few nm to severakm using recombinant DNA meth-
mers are mechanically uniform, their phase behavior is preedology. This is not yet possible with any other polymer.
dominantly determined by the volume fraction of the poly- DNA liquid crystals are also of immediate interest, be-
mer in its solvent, rather than by temperature. Such materialsause they model packing of DNA in confined spaces, as in
are called lyotropic systems. In contrast, polymeric liquidcell nuclei and viral phage headsee, e.g.[2—4]). More-
crystalline materials used in industrial applicatiofiike  over, it is believed that packing of DNA in chromatin plays
main-chain and side-chain polymer liquid crysjedse most an important role in gene regulatigb]. By understanding
often thermotropic, because of their flexible backboneshow much energy is needed to compact DNA we will gain
Thermotropic means that temperature determines their phagesight into these processes as well.
behavior. One of the questions in condensed matter physics is how
Biopolymer materials are interesting for several reasonsio relate microscopic interactions to condensed state bulk
First of all, there are many biomaterials made from or withproperties, like elastic and dielectric constants, heat capacity,
biopolymers exhibiting mechanical properties unreached bynd packing symmetries. In an experiment we can go the
most conventional synthetic materials, whether the focus isther way. The question is then, can we infer microscopic
strength, flexibility, or a combination of both. Needless tointeractions from macroscopic behavior?
In this paper we explore the equation of state for DNA
liquid crystals[6] using the osmotic stress methpd]. It
*Permanent address: Department of Polymer Science and Engillows us to control all intensive variables of the system,
neering, University of Massachusetts—Amherst, Amherst, MAnamely, the chemical potentials of both water and salt. Ac-
01003. cording to the Gibbs-phase rule, this leaves us, after equili-
On leave from Department of Physics, Faculty of Mathematicsbration against solutions of known activities, with a single
and Physics, University of Ljubljana and Department of Theoreticalphase. The absence of phase coexistence is crucial for deter-
Physics, “J. Stefan” Institute, Ljubljana, Slovenia. mining the structure of the different phases using x-ray scat-
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tering. At the same time the osmotic stress method provides
us with information about the free energy of the system, \\\\l I ’H/
which can be obtained by integrating the equation of state \\\ I II/
(osmotic pressurél versus DNA density \ \ ’ /
The ability to measure an equation of state and to map the \ I /
phase diagram for free energies made us realize that there \\ H
was no polymer liquid crystalline theory for free energies. b ¢
This is not surprising considering that typical liquid crystal- g1 1. jjjustration of how splay couples to the density of dif-
line theories are continuum elastic theories expanding defofzrent nematic liquid crystalsa) stiff, long rods; (b) stiff, short
mations around the symmetries of the system. Because theggis: (c) semiflexible, long polymers. Long, stiff rod®) show
approaches are only good for long-wavelength physics, it iStrong density changes when splayed. In the case of short and stiff
very hard to use them to predict free energies. rods (b) the voids created by splaying the material are filled by
Despite these difficulties, we will show in the first part of other short rods. For long, semiflexible polymees the voids are

this paper that in our particular case with exponential interfilled by polymers folding back on themselves.
actions between the polymer chains, the free energy can be

derived starting from a macroscopic theory. The microscopic 10, ) )
interactions were incorporated into the continuum elastic ]:N_if d%r driKy(V-m+Kan-(VXn)]
moduli: the three Frank constaris , K,, K5 and the bulk

compressibility perpendicular to the chaiisBy evaluating +Ka[nX(Vxn)]3. 1)

the partition function, considering only harmonic fluctua- o ] ]
tions, we derive an expression for the free energy of the For small deviations of the director field(r) around
system. To make the free energy finite we had to introduce S average orientation along thez axis n(r)
short-wavelength cutoff. We argue that the form of the free~ (9nx(r),ony(r),1), the free energy assumes the form
energy is robust, meaning that the free energy behavior with 1
::i%ﬁ)sgtotfocﬁgf?ty does not strongly depend on the particular JTN:EJ d?r, dZK,(V, - 6n)2+K,(V, X 5n)2

We find that the fluctuation part of the free energy, going
as the fourth root of the direct interactions, enhances the
repulsive interactions between the chains. Enhancement

originates from coupling between bending fluctuations anddirg;:)rpgg;nne(';)ng?datfes (\j/\é?wsr:tci);\{s Z?V%Itomceigsif?r:;g?t the
the compressibility of the nematic array normal to the aver- poly '
lane p=py+ 8p are coupled8,9]. If the polymers were

age director. The results should be applicable to lyotropic . . . AT .
polymer liquid crystals with fluidlike positional order like !nflmtely .Ion.g and stiff the coupling is given by the continu-
gy equation:

nematics or hexatics. We think that it even can be applied t
chiral phases, like cholesterics and blue phases. In typical S _

. ' : . + -on=0.
chiral phases the twist extends over several hundred intermo- 920p+ poV. 0 )

lecular spacings, so that in these phases local parallel pack- /o assumé10] that this constraint applies along a certain

ing can still be used. . _ typical length of the polymelr, which should be on the order
We compare theoretical predictions with measurements of; the persistence lengthi,. On length scales much larger

.quationsd.c.)f state forIDNA fl_iquid é:rystais U“d‘?r giffgrent thanl the polymer can either fill the voids with its own ends
lonic con Itions over a most' Ive orders of magnitude N 0S-4r fold back on itself11], both effects leading to violation of
motic pressuré¢6]. By extracting the form of the fluctuatlon_ he constraint Eq(3). On these length scales the polymer
part of the measured free energy and assuming exponentialiy, atic can splay without density change as illustrated in
decay|_ng repulsive interactionscreened electrostatic and Fig. 1. Following[12,13 this can be expressed by introduc-
hydration) between DNA molc_ecules, we haV(_e been able toing G, a measure of how effectively the constraint is en-
extract the strength of the direct electrostatic double layef, 4. Density changes are expanded to second order in

repulsion. This extraction creates an alternative way of di'density deviationsSp(r, ,2)=p(r, ,2)— po. B is the bulk
y 1 .

_rectly measuring effective charge densities along Semlﬂexr'nodulus for compressions and dilations normal to the chains.
ible polyelectrolytes.

The total mesoscopic Hamiltonidf{) can be written

+Kg(,6n)°]. 2

1
II. POLYMER NEMATIC THEORY H=Fo(po)+ EJ dzl’i dz

Let us first consider the elastic free energy of a nematic: a
three-dimensional liquid with long-range orientational order %
and an average directoralong thez axis. Such phases are
typically formed by solutions of rodlike or disklike objects. .
There are three kinds of deformations in quadratic order of WhereG is given by
with symmetryC.,: splay, twist, and bending. The corre- T
sponding elastic constants for these deformations are the -8
Frank constant&, (splay, K, (twist), andK3 (bend. 2po

8p\?
2
+G(9,6p+poV, - N |+ Fy, (4

B
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The form of the coupling constaf® can be obtained from This integral depends essentially on the upper cutoffgfor

the observation that,dp+poV | - on equals the local differ- =q, 1.« and we obtain
ence between the number of chain heads and[@jlsFrom
here one derives th& is the concentration susceptibility for IF V. BKj . max
an ideal mixture of heads and tails, thus —==KeT—— AR (13
B 4w K2\BK, \2{BK3/K?
kgT
G= L, (6)  where the functior-(x) has been defined as
(putpT)

. 3/2d 1
wherep,, andpt are the average concentrations of heads and E(x)= fxu u = T XVIx(2x— 3) + 3sinh 1V
tails, with pyy,pr=pchain- The chain density, on the other ) 0yl+u 4[\/_ ( ) V]

hand, equalspcnai=po/l, Wherefrom G=kgTI1/2p,. The

corresponding structure factor can be writter{ 53 2 o
EX , x<<1
S(a, a2 =(|dp(a, ,a,)|?) =\ 1 (14)
—x2, x>1
7 Pl KsTK(a)/G - 2
"B 2 2 42 ’
Bay +keT(B/Gpg +0;)K(q) From here we obtain the two limiting forms of the free en-
where we defined ergy as
p
K1q7 + K0} keTV 4B o o« |BKs
K(q)= kB—T (8) 5x 232 Ks Almaxt -+ Aimax<2 Ki
For stiff polymer chains like DNA the limitG—» is 7= (15
appropriate, leading to the structure factor proposed by Sel-
inger and Bruinsmé&14], ksTV /qu N 4> BKg
167 Ky hmax’ e 1 maxd Ki-
2.2
podl
S0, ,9,)=kgT : €) (16)
’ K1? a2 +Kaas+Ba?

In order to calculate the contribution to the free energyObviously the long-wavelength dependent physics is very
due to fluctuations in nematic order we first have to sum oveeomplicated and depends crucially on the values of typical
all the density modes. From here on we will consider onlypolymer length and the ratios of elastic constants. However,
fluctuations that are coupled to density changes. Because viiedepends also on thg cutoff. We have either to eliminate
are interested in how the free energy changes with densitthe cutoff by including higher order terms in the original
only those fluctuations will contribute. Twist deformations Hamiltonian or to choose a meaningful cutoff. Higher order
do not couple to density variations and can therefore be ngerms will capture the short-wavelength physics and remove

glected. The trace over nematic director and density modeie divergence.
gives the free energy in the form In the following paragraph we want to show how this can

be done for the low density limit E§15). We are aware that
1 d2q, da, ) y , in a more thorough treatment one has to include all possible
F= EkBTf f ——— In(Kyq7a;+Ksa; + Bg7). higher order terms, but for right now we only include terms
(2m) that will make integral Eg.(12) convergent. Lettings
10 =B(4;,0.),Ks=K3(a,,0,),K1=Ky(0,q,), and taking
into account the symmetry of the elastic nematic free energy,
one can easily show that in order to make the integral in Eq.
(12) converge in the low density limit Eq15), it is only
necessary to expan as

To evaluate the integral, we take the partial derivative with
respect to the compressibilitg,

IF 1 q, dg, dg, qf
2B okeTV 2 22 1, p2 = 292+ n*q}
d (2m)?  K,9%q3+Ksqs+Bg? B(a,,9.)=Bo(1+ i+ 7°q)). 17
11
All the other expansion terms either simply lead to a renor-
Theq, integral can be done straightforwardly and we remainmalization ofK, (presumed to be small anyhpwr they do

with not add up to the convergence of the free energy.
This form immediately leads to a density-density correla-
OF 1 V o qquL tion function in the &,y) plane which oscillates and decays
—=—kgT —f . exponentially [15]. Specifically the correlation function
B 2 " (2m)? 2 VBg? \/Kqu+2 BK39? S(p,z) averaged over the length of the polymers assumes the

(12 form
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1 (L o\ Ko(Uppl &) — Ko(Uspl §) Interestingly we just derived the same scaling laws as
Ej S(p,z)= 2(—) * Re{ L TR , those from corresponding mean-field models by Helfrich and
0 4mBol\ 7 ui—uj Harbich[17] and de Gennekl8].
(18)
whereu?, are the two complex zeros of1u?+ (7/¢)*u* Ill. MEAN-FIELD MODELS

=0, andK(x) is the modified Bessel function. The form,  The mean-field theory that corresponds to our problem
Eq. (18), of the transverse correlation function is a reasonescribes a single polymer in a liquid crystalline matrix. In

able ansatz for a liquid structure factor. Evaluating the intethjs view the polymer fluctuates in the field of its neighbors.

gral [Eqg. (11)] leads to the expression These mean-field model®ne could also say “Einstein”
TV /B . u¥2du cage modeld19]) are strictly valid only for a hexagonal
F=Fo+ B_{‘/_ngS/ZJ ) liquid crystal phase where the average position of a single
1627 Y Kz 0 [1+u?+(n/d)*u*¥ polymer chain is well defined. In nematiclike phases the

(19 mean-square displacements are infinite and one has to
We essentially derived the same result as in @&). The choose a different languadé&q. (1)]. Although mean-field
only difference is that, ., has been replaced by L. ¢ models are not the proper description for our problem, they
represents the correlation length in a liquid, which for atypi-St'” illustrate the underlying physics. We therefore review

cal liquid goes as the distance between next neighbors. Equi€ir results.

tion (19) suggests that instead of considering higher order L€t US imagine a flexibléelastio polymer in a hard tube

terms we can simply choose a cutoff proportional to theOf diameterD, oriented on average along the axis of the

Brillouin-zone radiusq, .~m/d, whered is the effective tube, described with a Hamiltonian of a persistent chaij
separation between the polymers in the nematic phase. This

2
is a physically meaningful and appropriate cutoff because the = Ek Tr j ds( dZF(S)) 22)
underlying macroscopic elastic model has, by definition, to 2B %P ds2 |’
break down at wavelengths comparable to the distance be-
tween molecules. whereL, is the persistence length of the polymer, associated

Let us now see how our free energy scales for hard-corgiith its bending elastic constakt=kgTL,. For small de-
repulsion between chains. First we take the limit of low den-jiations away from the average polymer position alongzhe
sity qmax<2\/BK3/K21. For an elastic polymeK; has two  direction the two-dimension&RD) displacement vectar(s)
additive terms, an intrinsic one and an interaction contribucan be written as(s)=(r,(s),ry(s)). We assume that the
tion. The first one stems from the elastic nature of the poly-diameter of the tube is small enougémaller than the per-
mers themselves and has the fokg=kgTL,po, While the  sistence lengtif,) so that between two consecutive hits with
second term is the generic form valid for any steric interacthe walls of the tube, the polymer propagates ballistically,
tion with a hard cores, i.e., K;=kgT/a [16]. We now use
the Helfrich self-consistent argument to evaluate the free en- ([r(s)— r(s’)]z):ﬁp(s— s')2. (23
ergy due to elastic fluctuations in a hard-core potential. It
amounts to takind3=\V3d2F/dV?, whereV is the volume of The longitudinal correlation lengtlij can be obtained from
the system which can be taken %s=Lxd?, L being the evaluating the angle of the hit with the wallthrough sta-
length of the sample. The crucial step is now to choose th#stics of a persistent chain, i.e.,
cutoff which we set ag|, h,.,=7/d. Inserting this into Eq.

(15) and taking into account that the dominant behavior of ) D? L /3213
Ks will be K3=kgTL,po, we remain with f°= g_ﬁwﬁ_p wherefromZ~L "D (24)
o) d* PARd) . _
F(d)~Ld? P (d—z)zd 52, (200  The free energy corresponding to the bumping between the
B! d

polymer and the wall on a length scale defined fycan

The solution of this differential equation leads to the scalingtus Pe obtained as

form for the fluctuation free energy, i.eF(d)~d~ 2",
In the opposite limit we need to estimaite , which is, F kB_TND—z/s_ (25)
following de Gennes and Prodtl6], obtained asK; L
~kgT/a, wherea is the hard-core diameter of the polymers.
Thus in this case we obtain This result has been obtained previously by Odg&] and
Helfrich and Harbich[17] and represents a proper dimen-
,  [d%a% #PF(d) sional generalization of the Helfrich fluctuational force to 1D
Fd)~Ld kB_T a(dz)zd ' (21) confined elastic objects.

On much larger length scales where the polymer chain
the solution of which leads to the scaling fof{d)~d 2.  effectively behaves as a free flight chain in two dimensions,
By analyzing whetherq, ,.x iS smaller or larger than the effect of local nematic order can be modeled through a
2\BK3/K? it is easy to ascertain that the first limiting law Simple nematic coupling term in the elastic energy of the
should be valid for larger and the latter for smaller relativetype [Nn(s)]* whereN is the average nematic director and
densities of the polymers. n(s) is the local polymer director, i.en(s)=r(s). If N is
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directed again along the axis, the dominant part of the L n\ 14
chain Hamiltonian then assumes the form ]—‘(D)~kTF~kBTL<k—> , (33
C
1 dr(s)\?
H= EQJ ds ds | ° (26 which apparently depends on the fourth root of the confining

potential stiffnessv”. This result is completely consistent

where g gives the strength of the nematic coupling. ThisWith the one derived from a macroscopic theory, EAd$),
Hamiltonian gives rise to a diffusive propagation of the poly-(16), in the limit qmax<2\/BK3/Kzl, if we allow for the

mer chain described with proper correspondence between the confining potential stiff-
V2 1 , nessV” and the isothermal compressibility modulBs
([r(s)=r(s"])=g"(s=s"), (27) If, on the other hand, the polymer is presumed to be com-

if compared to the ballistic propagation of a persistent chainP!€tely flexible with an orientational part of the potential
Eq. (23). For too large deviations the effective tube again€nerdy described with a nematic coupling of the form Eag.
: é26), the Hamiltonian of a single confined chain will contain

a softer elastic part proportional fdr(s)/ds]?. In this case

hit with the wall of the tube is obtained as
we have

, b* 1 )
0 wherefrom£ ~gD~, (28 1 (L [dr(2)
” F=-g| dz
2% )o

~_~ 2 1 L
2 L] T\ 2
Lj gL a7 +2V fo dzr<(z), (39

where we have now used the statistics of a free flight chain. o ) ) _ )
The corresponding free energy is now obtained as where the confining potential stiffness has been defined in

the same manner as before. Just as before we can again in-

troduce the appropriate Odijk length by minimizing the

energy with respect to the longitudinal sizef typical fluc-

tuations yielding 22]

Both results have already been derived for confined poly-

mers[18]. The point we wanted to make is that they are L{gr? 9
( i +V”r2I)—>I*2~( )

kgT
F~——~D"2 (29)
Ly

consistent with our macroscopic theory if the cutoff is cho- F~—| — (35

m| "

sen appropriately, meaning, m.=d ! while also equating
the tube diameteDb with the mean separation between the
polymersd.

A similar approach can be used also in the case wher
confinement is not described by a short-range hard-core in- o\ 12
teraction but is mediated via a soft confinement potential of f(D)~kTL~k TL(—) (36)
the formV(r(z)). In this case, assuming that the fluctuations x P '
of the polymer position from its average are small, the
Hamiltonian describing polymer elastic fluctuations can betherefore as the square root of the confining potential stiff-

From here on by the same argument as before the confining
gnergy scales as

written in the form ness. This result is now equivalent to the one derived from
) ) the macroscopic theory, Eg€l5),(16), but this time in the
1 L [dor(z L. imi
]-‘=—ka a7 T2 +f dz(r(2)) imit 0, ma>2yBKa/Ky. . .
2 %o dz 0 To summarize, the mean-field theories surprisingly repro-

) duce the same scaling laws under similar conditidmgh
1 L [d%(2) 1 L and low density regimesas our more detailed calculation
kCJ dz + EV"J dzr?(z), (30
0

=5 42 from Sec. Il. This indicates that the fluctuation part of the
free energy is predominantly determined by the entropy loss

with of confining the polymer chains. Still, in order to model the
free energy in more detail it is more appropriate to use our
macroscopic model, because it predicts the correct cross-

) overs between the different regimes.

r=nD The mean-field approach with nematic coupling constant
(31 g as a free parameter, inferred from experiments, was used in

where we have expanded the potential to second order iL‘?z] to argue that the effect of elastic f!uctuations was to
deviations from a straight line. One can define a lerndth renormalize the decay length of underlying exponential re-

analogous to the Odijk length by minimizing the energy with ggltshignc;r:/g:tghe”:)?\ rlijgﬂfAczgirceeeggr’et:sozzlgluyla\l;/?tﬂ T;\Zggg%j;ers
respect to the longitudinal sideof typical fluctuationg19] derived below and in Ref23]. Odijk [24] also proposed

what amounts to a variation on the mean-field theme. It is
_ (32 based on a variational estimate for the Gaussian width of a

single chain density distribution function. This theory in gen-

eral does not lead to a straightforward renormalization of the
Thus we obtain for the confining energy decay length of the underlying soft exponential interactions

0

V'=V3V(r(z)=

1 dV(r(z2)) dzv(r(z))>
- +
r dr dr?

_)|*4~

L{ k.r?
f~_(c v
(AN

C
V/I
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between chains. Also the phase boundaries calculated from The hydration repulsion between solvated molecules in
this theory coupled to Lindemann’s criterip®5] fall off the ~ water can be described by the same formalism as for

mark [26]. screened electrostatic repulsigsee[32]). The interaction
energy therefore goes &s,(d/\y) with \y~3 A [23].
IV. MICROSCOPIC INTERACTIONS Knowing about the intermolecular interaction we can now
BETWEEN DNA MOLECULES revisit our main result, Eq915),(16). From Eq.(37) it is

clear thatK,, K,, and the bulk compressibility modulus
In order to use our main resylEgs. (15),(16)] for the  perpendicular to the chaigessentially decay exponentially
equation of state of nematic polymer liquid crystals we firstwith d whereasK; after an initial exponential decay will at
have to guess how the macroscopic elastic constanidw densities be dominated by the intrinsic bending stiffness
K1,K3,K3 and lateral compressibility depend on the den- k. of the polymers. This fact has instructive consequences.
sity (pg=1/A= \J3/d? for hexagonally packed chainsOur  For lower densities, where we would expect fluctuations to
first guess is the “one constant approximatioi;=K,  be more prominent, only the limiting form valid fay, ;.
=Kz~U(d)/d [16], whereU(d) is the interaction energy <2,/BK;/KZ remains. In this limit, using exponentially de-
andd is the average distance between the molecules. In OWaying interactions foiB3, the fluctuation part of the free

case this approximation has to be modified, because the irmergy goes essentially as the fourth root of the direct inter-
trinsic bending stiffnes&, of the DNA molecules contrib-  action, sinceKs= pgk, .

utes additionally to the bending Frank constknt Summarizing, the bare interaction can be described in the
following way (for simplicity we use the free energy per
Ki=K,=~U(d)/d, lengthG=FIL):
K~ poke+U(d)/d, 3 me Y me 4o
3~ pokot U(d) 37 go(d)za\ﬁ—er\ﬁ—, (4D
2 \JdIny 2 \Jd/np
PFV) B[ PRFy 1 aF,

~V V2 VTR 29 dad)| where a and b are the amplitudes of the hydration and

screened electrostatic repulsion. The total free engrgys-

We now ask about the intermolecular interactions be-mg the low density limit E(15) USINGq, max=/d, IS then

tween two DNA molecules. There are two major contribu- ()52 2G 146
tions to the repulsion between DNA molecules in monova-  G(d)=Gy(d) +kgT k44 TO_ 5 a_do'
dad

lent salt solutiond23]: (1) screened electrostatic repulsion \/§ ¢

from negative charges along the DNA backbof®;hydra- (42
tion repulsion coming from partially ordered water close to

the DNA surfacg27]. At the ionic strengths and polyelec- V. MATERIALS AND METHODS

trolyte densities considered in this work there appears to be
no important contribution to the attractive part of the total

DNA-DNA interaction: van der Waals forces are negligible 'ations between DNA molecules by either x-ray or direct
[27] and counterion-correlation forcé8,29 are screened density measurements was described in detail previg6sly
[30]. At very low osmotic pressureld/100 atm) the elasticity

The mean-field electrostatic interaction is best describe@' the dialysis bags could contribute to osmotic pressure that

by the Poisson-Boltzmann theory resulting in an interactior?ctS On the sample. For this reason we performed experi-

potential between two parallel charged rd@4] of the form  Ments in which we dialysed low concentratih1-1 wt %
Dextran solutions against each other, to make sure that there

& were no residual osmotic pressures resulting from partially
Ko(d/Np), (38) inflated dialysis tubes. After equilibration the Dextran con-
2meeg centrations inside and outside the dialysis bags agreed within

) ) o 1% of the bathing concentration down to 0.1 wt % Dextran.
where\p, is the Debye screening length. For ionic strengths 1 compare our experimental results with our theory we

| from monovalent saltsyp=3.08 A/JI[M]. Equation(38)  expressed all data in terms of the interaxial spacing between

refers to two infinitely thin line charges with a charge densitytyo DNA molecules. Assuming hexagonal packing in all

per lengthé. This line-charge density is related to the actualdensity regimes the relation between density and the inter-

surface charge density on a cylinder with radius as fol-  axjal spacingd is p=(6106[ A])2mg/ml].

lows: The relation between the osmotic pressilifeand G is
then[27]

Sample preparation and determination of interaxial sepa-

u(d)/L=

§=27TO')\D/K1(a/)\D) (39

G
For larged/\ the Bessel functiof, can be approximated od V3rd. (43)

by
The nonlinear fits were done using the Levenberg-
e 9o Marquardt method, implemented in the data analysis soft-
Ko(d/\p)=~ \ﬁ— (400  ware Igor 3.03(WaveMetrics, OR The fit function used
2 \d/\p was[using G, from Eq. (41)]
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FIG. 2. Equation of state for DNA liquid crystals at ionic strength of M over five orders of magnitude in osmotic pressure.
strength from 156 M to 2M NaCl. We plotted logylI versus in-  The solid curve represents a fit of the data points in the anisotropic
teraxial spacingl. The interaxial spacind was measured by x-ray regime to a nematic liquid crystalline theofgee text assuming
scattering. exponential repulsiorthydration and screened electrostatiche

broken line represents the bare interaction without fluctuation en-
JG  9G 9 G 196G hanced repulsion. Interaxial spacings above theline are mea-
o0 ek Tk, V4~ 70 7Y (44)  sured by x-ray scattering; below this line the spacidgse derived
od od B dd NV 529 d ad’ from measured DNA densities where molecules are expected to be
hexagonally packed.
wherea andb are the bare amplitudes of the hydration and
the screened electrostatic repulsion. Since the prefactor @fration repulsiora, the hydration decay length, and the
the fluctuation part of the free energy depends on the cutofprefactorc of the fluctuation part of the free energy. The
wave vector we chose to fit it by the dimensionless constarfit is shown as a solid line and describes the data very well.
c. The actual fit was performed using kgtyG/dd) versus  The resulting hydration decay length wag=(2.9+0.2) A.
interaxial spacingl. We did that to achieve an equal weight The amplitudes and the prefacter are summarized in

of all data points over the whole osmotic pressure regime. Table I.
Figures 4 and 5 show measurettj/od for 0.5M

and 0.M NaCl. The solid line shown is the fit to E¢44)
using a, b, and c as fit parameters. The hydration decay
Figure 2 shows the equation of statH{d) for long length was set ta,,=2.88 A and the Debye screening length
DNA molecules at different NaCl concentrations was set toap=3.08 A/\I[[M]. The results are shown in
(10mM-2M). The figure presents a compendium of dataTable I.
(from [27,23,33 and heretofore unpublished datbtained Figure 4 indicates the phase boundaries between the vari-
up to date on the upper portion of the DNA phase diagramous liquid crystalline phases of DNA in detail. For all other
At high osmotic pressuredX) all ionic strengths merge into salt concentrations we only indicated the isotropic to aniso-
the same curve: an exponential decay with a decay length afopic transition. At very high osmotic pressur@®t shown
about 3 A. We attribute this behavior to structural forces inin Fig. 4) there exists a crystalline phase of DNgee[34]).
water (hydration forces commonly observed between hy- It melts into a line hexatic phasfgegime (a)]: a three-
drated surfaces in watgB2]. At lower osmotic pressures the dimensional liquid with long-range bond-orientational order
curves start to deviate from each other, reflecting the influperpendicular to the axis of the molecul@§]. As far as we
ence of screened electrostatic repulsion. Interestingly focan see, there is no indication for a hexagonal liquid crystal-
ionic strengths=1M the curves are independent of ionic line phase in between the crystalline and the line hexatic
strength over the whole osmotic pressure regime. This indiphase. Between the line hexatic and the chiral phases of
cates that fol >1M the electrostatic contributions are suf- DNA the x-ray structure factor shows two peakggime
ficiently screened so that the equation of state is dominate(b)]: a sharper peakcontinuing regimga)] at smaller inter-
by hydration repulsion alone. axial spacings and a more diffuse one at wider spadiogs-
Figure 3 shows the measuret;/dd=+3I1d at 1M tinued by regime(c)]. Since by using the osmotic stress
NaCl. Since from M on the electrostatic contribution is method we hold all intensive variablep,T,u) fixed, the
negligible we can use the data to determine the decay lengtimeasured(q) should originate from a single pha&gibb’s
of the hydration repulsion. We fitted the data according tophase rulg At this point it is not clear whether the structure
Eqg. (44) using only one exponentially decaying direct inter- in regime(b) corresponds to a new phase in between a line
action. As fit parameters we used the amplitude of the hyhexatic phasénonchira) and a cholesteric phase.

VI. EXPERIMENTAL RESULTS
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TABLE I. Summary of all fitted parameters foM, 0.5M, and 0.M NacCl, as well as the corresponding
line-charge density;, surface-charge density, and the fraction of unscreened phosphorus chatges

I (M) a (Jim) Au (A) b (J/m) Mo (A) c £(C/m)  o(CIm?) E
1 (1.70.9)10°7 (2.9+0.2) 3.08 (1.20.1)
05 (1.4-05)107 2.88 (3t2.6)10° 4.36 (1.3:0.2) 2.1x10°° 0.07 0.49

0.1 (1.1+0.3)10° 2.88 (4.1-0.3)10%° 974 (0.8+0.06 7.8x10°° 007 048

The chiral phases start with a cholesteric phase as olihe analysis of electrophoretic measureméafg by Schell-
served by electron microscopy and polarization microscopynan and Stigtef42] that resulted in about 60% effective
[36,37]. At even lower concentrations there is some indica-charge density for Na DNA. A recent study using steady-
tion for additional chiral phasefprecholesteric phas88]  state electrophoresis reported 10% for Na DN#S]. This
and blue phas€s39]). Finally the anisotropic liquid crystal- discrepancy exists not because of experimental uncertainty,
line phase melts into an isotropic phd26] [regime(d)]. but because of different theoretical treatments of the mea-

sured mobilitiegfor a recent discussion s¢#4]). Part of the
difference might come from the complicated details of fric-
VII. DISCUSSION tional forces acting on a rough, charged polyelectrolyte.
One has to bear in mind that for the M5data the uncer-

DNA is highly charged(two negative charges per base- tainty of the fitted amplitude is almost 100%. This uncer-
pair or 3.4 A of its length In an electrolyte solution the tainty is not very surprising considering the close proximity
DNA’s net negative charge creates an accumulation of courpf the two decay lengtha=2.9A and\p,=4.36 A. As
terions close to its surface that screen part of the bare charggon as the decay lengths separate from each other, as in the
and lead to an effective charge density that is felt at longcase for 0.M, the statistical uncertainty drops to 10%.
distances between chains. Theoretically this effect can be we also fitted the prefactar. If in the theory[Eq. (42)]
captured by nonlinear Poisson-Boltzmann the@g)]. one chooses the cutoff wave vector to be at the Brillouin-

Even though our nematic polymer liquid crystalline zone radiusy, yq,=#/d, the prefactorc is w3%20,/3=0.16.
theory was based on a rather simplistic model it describes alfhe fitted prefactors [Eq. (44)] range from 1.3 to 0.8. This
the data fa|r|y We” with reasonable ValueS fOI’ the f|tted pa'is about 5-8 times |arger than the theory predicted_ On the
line-charge densities and surface-charge densities that we{gue is not too far off. Choosing a cutoff at twice the
calculated according to E¢38) and Eq.(39). At 0.5Mand  Byillouin-zone radius, for example, would give a value right
0.1M the fits give the same surface-charge density on the fitted one. In our view, the prefactor depends on the
=0.07 C/rﬁ This value Corl’esponds to about 50% of thefine details of the in_p|ane structure factﬁ('qi) [See Eq
bare charge of DNA (0.15 C/Aj. (19)]. In the case of exponential direct interactions between

Our result of 50% effective charge agrees very well withthe chains any algebraic dependence of the cutoff with re-

spect to the density will be dominated by the fourth root of

: ' ' ' ' the direct interactiorfEq. (42)]. The fact that for different
B ) 1, Ap=4.36 A
i 0-5 MNaCl, Ap = 4.36 a) line hexatic
s T T T T T T T
2B o ____i____ —
b) two peaks
1= 2 0.1 M NaCl, Ap = 9.68A 7
> ¢) chiral
Z s 7 ~
s £
~  fxraydi Q... O sharp x-ray peak <
) O diffuse x-ray peak Z ey N -
:23’ i X a d.enSIty measurement 2 O measured equation of state
& 4 ! B) — fit to theory [see Eq.(39)] > — fit to theory
i —-—- bare interactions < b R N
! ~ — - - bare inferactions
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4 = s —
t
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T 29) isotropicd
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FIG. 4. MeasureddG/od for DNA liquid crystals at ionic effective interaxial spacing d [A]

strength of 0.M over five orders of magnitude in osmotic pressure.
Four structural regime&)—(d) could be distinguished. See Fig. 3 FIG. 5. MeasureddG/od for DNA liquid crystals at ionic
for annotations. strength of 0.M. See Fig. 3 for annotations.
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ionic strength the prefactors have similar valgal around for quite awhile[51] and is at present reasonably well under-
1) strengthens our argument. stood.

The fits even seem to prove explicitly the presence of Setting aside the attractive part in the bare interaction po-
hydration repulsion. If one tries to calculate the charge dentential and the different dimensionality of the fundamental
sities for MM, using a screening length af;=3.08 A and  interacting object$2D in the case of lipid multilayers vs 1D
ignoring any contribution of hydration repulsion, the surface-in the case of polyelectrolytgsmultilamellar lipid and co-

charge density results in=0.19 C/n?, 25% more charge lumnar polyelectrolyte arrays share exactly the same Hamil-

than the total phosphorus charges on DNA. Since it is gent_onian. This leads to the same type of fluctuational renormal-

erally believed that more than half of the bare charge o zation of interaction force that can be expressed by the

DNA is screened, a picture with pure electrostatic doubl ollowing two forms of free energy:
layer repulsion is hard to envision. Recently Lyubartsev and
Nordenskidd [45] published a Monte Carlo simulation ad-

dressing the DNA case, comparing their results with osmotic
kgTV B
stress measurements from our laboratory. They showed that = ¢ — iﬁ]a{"‘”
electrostatic repulsion strongly increased beyond simple lin- 5x 2% V Kz
earized Poisson-Boltzmann theory, when two charged cylin-
ders approach each other closely. However, this simulation
used a solid cylinder model of DNA and hard-sphete . kgTV E 2
; i X vs F= 07 maxt (45
=4 A ions. The measurements are in a regime where most of 16mr VK3

the aqueous volume is inside the DNA grooves rather than

outside any DNA cylinder. Better models have to include the

possibility of ions entering the groove space. Although theirThe first one pertains to the fluctuations in polyelectrolyte
results seem to fit the data for B5quite well, there is not as  arrays, cf. Eq(16), and the second one to the fluctuations in
good success at other salt concentrations. We take the for¢aultilamellar systems, e.g.52]. Both these results are writ-
data in high salt concentration to be strong evidence for hyten in the limit of small density of fluctuating objects. The
dration repulsion. Even noncharged polymers, like theBPpparentformal differences between the two expressions are
polysaccharide schizophyllan, show an exponentially decaydgesole!yto th_e dimensional difference between the fluctu-
ing repulsion with a decay length of abou=3.4A [46].  &ting objects, i.e., 1D as opposed to 2D.

Hydration repulsion is a general feature of water soluble The main difference between multilamellar and columnar

molecules at separationsl nm[32] that cannot be simply arrays interacting through exponential repylsiye forces
denied[47] would thus be the twofold vs fourfold renormalization of the
Osmotic stress measurements can be used to determiﬂgfﬁy Iengr]]th. " 53] f . d
more directly effective charge densities of semiflexible poly- bere tave rece?l Mjee[ l o& an.tover]:/lew, an |
electrolytes. We can therefore test and compare theories thgtaybe not so recen k54], appeared quite a tew specula-
predict effective charge densities, like nonlinear PoissontO"s ON the_possmle attractive component to t_h_e polyel_ect_ro-
Boltzmann or Manning theorj48]. Our results indicate that lyte interaction fprce;. Al polyelectrolyte Qen3|t|e§ and lonic
for Na the effective charge is twice as large as predicted b trengths described in this work, there is certainly no evi-
both theories. Previous studies in our laboratf2@] ob- ence to presume there are any. We cannot, however, ex-

served significant differences in charge densities using dif9Iude the possﬂ_m_hty that low lonic strengths and low poly-
ferent counterions, such as Li. Na, K, Cs, and Tri-methyl-eleCtmete densities, thus promoting pronounced unscreened

ammonium. These results merit further analysis. cou?tr-_ztr;lon iltuctL:.at|ofn§55,Sg, tconspllgeNtX br|r|19 fcl)rth ré?]n- Id
The form of the fluctuation part of the free energyg. ~ €9'191DI€ atlractive Torces between molecules. shou

(42)] suggests that fluctuation enhanced repulsion may bgwls turn out to be the case, columnar polyelectrolyte arrays

important for many lyotropic polymer liquid crystalline sys- WOUIdD?\?XomZ evlelrn mor;: similar to multllamellar_ lipid lar-
tems. The prefactoc of the fluctuation part only depends rays. and cett memboranes are among the principal or-

weakly on the bending constant of the ponmekgl’“. ganizational structures in biology. That they share such a

The only condition for enhanced repulsion is that the poly_pronounced amount of common physics certainly adds up to

mers are longer than their persistence length, and that the%/ rather pleasing intellectual development.

remain in a nematiclike phase.
Another appealing conclusion from our work is the
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