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Equation of state for polymer liquid crystals: Theory and experiment

H. H. Strey,* V. A. Parsegian, and R. Podgornik†

National Institutes of Health, National Institute of Child Health and Human Development, Laboratory of Physical and Structur
Biology, Building 12A/2041, Bethesda, Maryland 20892-5626
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The first part of this paper develops a theory for the free energy of lyotropic polymer nematic liquid crystals.
We use a continuum model with macroscopic elastic moduli for a polymer nematic phase. By evaluating the
partition function, considering only harmonic fluctuations, we derive an expression for the free energy of the
system. We find that the configurational entropic part of the free energy enhances the effective repulsive
interactions between the chains. This configurational contribution goes as the fourth root of the direct interac-
tions. Enhancement originates from the coupling between bending fluctuations and the compressibility of the
nematic array normal to the average director. In the second part of the paper we use osmotic stress to measure
the equation of state for DNA liquid crystals in 0.1M to 1M NaCl solutions. These measurements cover five
orders of magnitude in DNA osmotic pressure. At high osmotic pressures the equation of state, dominated by
exponentially decaying hydration repulsion, is independent of the ionic strength. At lower pressures the equa-
tion of state is dominated by fluctuation enhanced electrostatic double layer repulsion. The measured equation
of state for DNA fits well with our theory for all salt concentrations. We are able to extract the strength of the
direct electrostatic double layer repulsion. This is an alternative way of measuring effective charge densities
along semiflexible polyelectrolytes.@S1063-651X~99!11401-6#

PACS number~s!: 87.15.Nn, 61.30.2v, 64.30.1t
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I. INTRODUCTION

In biology, there exists a class of bulk materials that p
vides the cell’s structural stability and ensures its integrity
multicell environments. These materials are often made fr
biopolymers with varying intrinsic stiffness and helicity su
as actin, fibrin, collagen, polysaccharides, elastin, tubulin
most cases biology controls elastic properties by contro
polymerization and depolymerization of the monomers a
by enzymatically controlled crosslinking of polymer strand
Often biopolymers, because of their intrinsic stiffness, fo
liquid crystals atin vivo concentrations. Because these po
mers are mechanically uniform, their phase behavior is p
dominantly determined by the volume fraction of the po
mer in its solvent, rather than by temperature. Such mate
are called lyotropic systems. In contrast, polymeric liqu
crystalline materials used in industrial applications~like
main-chain and side-chain polymer liquid crystals! are most
often thermotropic, because of their flexible backbon
Thermotropic means that temperature determines their p
behavior.

Biopolymer materials are interesting for several reaso
First of all, there are many biomaterials made from or w
biopolymers exhibiting mechanical properties unreached
most conventional synthetic materials, whether the focu
strength, flexibility, or a combination of both. Needless

*Permanent address: Department of Polymer Science and E
neering, University of Massachusetts—Amherst, Amherst, M
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say, little is understood about their design, structure, a
how they work. There is also the increasingly apprecia
potential of biopolymers for basic material and condens
matter research@1#. In most synthetic polymer systems it
extremely difficult to control properties of individual poly
mers, like their degree of polymerization, crosslinks, a
chemical uniformity. By using modern molecular biologic
and biochemical techniques it is possible to tailor biopo
mers almost at will, using nature’s own efficient polymeriz
tion machinery. So it is, for example, possible to prepa
monodisperse DNA fragment solutions with lengths varyi
from a few nm to severalmm using recombinant DNA meth
odology. This is not yet possible with any other polymer.

DNA liquid crystals are also of immediate interest, b
cause they model packing of DNA in confined spaces, a
cell nuclei and viral phage heads~see, e.g.,@2–4#!. More-
over, it is believed that packing of DNA in chromatin play
an important role in gene regulation@5#. By understanding
how much energy is needed to compact DNA we will ga
insight into these processes as well.

One of the questions in condensed matter physics is h
to relate microscopic interactions to condensed state b
properties, like elastic and dielectric constants, heat capa
and packing symmetries. In an experiment we can go
other way. The question is then, can we infer microsco
interactions from macroscopic behavior?

In this paper we explore the equation of state for DN
liquid crystals @6# using the osmotic stress method@7#. It
allows us to control all intensive variables of the syste
namely, the chemical potentials of both water and salt. A
cording to the Gibbs-phase rule, this leaves us, after eq
bration against solutions of known activities, with a sing
phase. The absence of phase coexistence is crucial for d
mining the structure of the different phases using x-ray sc
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tering. At the same time the osmotic stress method prov
us with information about the free energy of the syste
which can be obtained by integrating the equation of s
~osmotic pressureP versus DNA density!.

The ability to measure an equation of state and to map
phase diagram for free energies made us realize that t
was no polymer liquid crystalline theory for free energie
This is not surprising considering that typical liquid crysta
line theories are continuum elastic theories expanding de
mations around the symmetries of the system. Because t
approaches are only good for long-wavelength physics,
very hard to use them to predict free energies.

Despite these difficulties, we will show in the first part
this paper that in our particular case with exponential int
actions between the polymer chains, the free energy ca
derived starting from a macroscopic theory. The microsco
interactions were incorporated into the continuum ela
moduli: the three Frank constantsK1 , K2 , K3 and the bulk
compressibility perpendicular to the chainsB. By evaluating
the partition function, considering only harmonic fluctu
tions, we derive an expression for the free energy of
system. To make the free energy finite we had to introduc
short-wavelength cutoff. We argue that the form of the fr
energy is robust, meaning that the free energy behavior w
respect to density does not strongly depend on the partic
choice of cutoff.

We find that the fluctuation part of the free energy, goi
as the fourth root of the direct interactions, enhances
repulsive interactions between the chains. Enhancem
originates from coupling between bending fluctuations a
the compressibility of the nematic array normal to the av
age director. The results should be applicable to lyotro
polymer liquid crystals with fluidlike positional order lik
nematics or hexatics. We think that it even can be applie
chiral phases, like cholesterics and blue phases. In typ
chiral phases the twist extends over several hundred inter
lecular spacings, so that in these phases local parallel p
ing can still be used.

We compare theoretical predictions with measurement
equations of state for DNA liquid crystals under differe
ionic conditions over almost five orders of magnitude in o
motic pressure@6#. By extracting the form of the fluctuation
part of the measured free energy and assuming exponen
decaying repulsive interactions~screened electrostatic an
hydration! between DNA molecules, we have been able
extract the strength of the direct electrostatic double la
repulsion. This extraction creates an alternative way of
rectly measuring effective charge densities along semifl
ible polyelectrolytes.

II. POLYMER NEMATIC THEORY

Let us first consider the elastic free energy of a nemati
three-dimensional liquid with long-range orientational ord
and an average directorn along thez axis. Such phases ar
typically formed by solutions of rodlike or disklike object
There are three kinds of deformations in quadratic order on
with symmetryC`h : splay, twist, and bending. The corre
sponding elastic constants for these deformations are
Frank constantsK1 ~splay!, K2 ~twist!, andK3 ~bend!.
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FN5
1

2E d2r' drz$K1~“•n!21K2@n•~“3n!#2

1K3@n3~“3n!#2%. ~1!

For small deviations of the director fieldn„r ) around
its average orientation along thez axis n„r )
'„dnx(r ),dny(r ),1…, the free energy assumes the form

FN5
1

2E d2r' dz@K1~“'•dn!21K2~“'3dn!2

1K3~]zdn!2#. ~2!

For polymer nematics we now have to consider that
director fieldn„r ) and the densities of polymers in the (x,y)
plane r5r01dr are coupled@8,9#. If the polymers were
infinitely long and stiff the coupling is given by the continu
ity equation:

]zdr1r0“'•dn50. ~3!

We assume@10# that this constraint applies along a certa
typical length of the polymerl , which should be on the orde
of the persistence lengthLp . On length scales much large
than l the polymer can either fill the voids with its own end
or fold back on itself@11#, both effects leading to violation o
the constraint Eq.~3!. On these length scales the polym
nematic can splay without density change as illustrated
Fig. 1. Following@12,13# this can be expressed by introdu
ing G, a measure of how effectively the constraint is e
forced. Density changes are expanded to second orde
density deviationsdr(r' ,z)5r(r' ,z)2r0 . B is the bulk
modulus for compressions and dilations normal to the cha
The total mesoscopic Hamiltonian~H! can be written

H5F0~r0!1
1

2E d2r' dz

3FBS dr

r0
D 2

1G~]zdr1r0“'•dn!2G1FN , ~4!

whereG is given by

G5
kBTl

2r0
. ~5!

FIG. 1. Illustration of how splay couples to the density of d
ferent nematic liquid crystals:~a! stiff, long rods; ~b! stiff, short
rods; ~c! semiflexible, long polymers. Long, stiff rods~a! show
strong density changes when splayed. In the case of short and
rods ~b! the voids created by splaying the material are filled
other short rods. For long, semiflexible polymers~c! the voids are
filled by polymers folding back on themselves.
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The form of the coupling constantG can be obtained from
the observation that]zdr1r0“'•dn equals the local differ-
ence between the number of chain heads and tails@9#. From
here one derives thatG is the concentration susceptibility fo
an ideal mixture of heads and tails, thus

G5
kBT

~rH1rT!
, ~6!

whererH andrT are the average concentrations of heads
tails, with rH ,rT5rchain. The chain density, on the othe
hand, equalsrchain5r0 / l , wherefrom G5kBTl/2r0 . The
corresponding structure factor can be written as@13#

S~q' ,qz!5^udr~q' ,qz!u2&

5kBT
r0

2q'
2 1kBTK~q!/G

Bq'
2 1kBT~B/Gr0

2 1qz
2!K~q!

, ~7!

where we defined

K~q!5
K1q'

2 1K3qz
2

kBT
. ~8!

For stiff polymer chains like DNA the limitG→` is
appropriate, leading to the structure factor proposed by
inger and Bruinsma@14#,

S~q' ,qz!5kBT
r0

2q'
2

K1q'
2 qz

21K3qz
41Bq'

2
. ~9!

In order to calculate the contribution to the free ener
due to fluctuations in nematic order we first have to sum o
all the density modes. From here on we will consider o
fluctuations that are coupled to density changes. Becaus
are interested in how the free energy changes with den
only those fluctuations will contribute. Twist deformation
do not couple to density variations and can therefore be
glected. The trace over nematic director and density mo
gives the free energy in the form

F5
1

2
kBTE E d2q' dqz

~2p!3
ln~K1q'

2 qz
21K3qz

41Bq'
2 !.

~10!

To evaluate the integral, we take the partial derivative w
respect to the compressibilityB,

]F
]B5

1

2
kBTVE E q' dq' dqz

~2p!2

q'
2

K1q'
2 qz

21K3qz
41Bq'

2
.

~11!

Theqz integral can be done straightforwardly and we rem
with

]F
]B

5
1

2
kBT

V

~2p!2

p

2
E q'

3 dq'

ABq'
2AK1q'

2 12ABK3q'
2

.

~12!
d
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This integral depends essentially on the upper cutoff forq'

5q'max and we obtain

]F
]B5kBT

V

4p

BK3

K1
2ABK1

FS q'max

2ABK3 /K1
2D , ~13!

where the functionF(x) has been defined as

F~x!5E
0

xu3/2du

A11u
5

1

4
@AxA11x~2x23!13sinh21Ax#

5H 2

5
x5/2, x!1

1

2
x2, x@1 .

~14!

From here we obtain the two limiting forms of the free e
ergy as

F. 5
kBTV

5323/2p
A4 B

K3
q'max

5/2 1 . . . , q'max!2ABK3

K1
2

kBTV

16p
A B

K1
q'max

2 1 . . . , q'max@2ABK3

K1
2

.

~15!

~16!

Obviously the long-wavelength dependent physics is v
complicated and depends crucially on the values of typ
polymer length and the ratios of elastic constants. Howe
it depends also on theq' cutoff. We have either to eliminate
the cutoff by including higher order terms in the origin
Hamiltonian or to choose a meaningful cutoff. Higher ord
terms will capture the short-wavelength physics and rem
the divergence.

In the following paragraph we want to show how this c
be done for the low density limit Eq.~15!. We are aware tha
in a more thorough treatment one has to include all poss
higher order terms, but for right now we only include term
that will make integral Eq.~12! convergent. LettingB
5B(qz ,q'),K35K3(qz ,q'),K15K1(qz ,q'), and taking
into account the symmetry of the elastic nematic free ene
one can easily show that in order to make the integral in
~12! converge in the low density limit Eq.~15!, it is only
necessary to expandB as

B~qz ,q'!5B0~11z2q'
2 1h4q'

4 !. ~17!

All the other expansion terms either simply lead to a ren
malization ofK1 ~presumed to be small anyhow! or they do
not add up to the convergence of the free energy.

This form immediately leads to a density-density corre
tion function in the (x,y) plane which oscillates and decay
exponentially @15#. Specifically the correlation function
S(r,z) averaged over the length of the polymers assumes
form
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1

LE0

L

S~r,z!5
1

4pB0z2S z

h D 4

* ReH K0~u1r/z!2K0~u2r/z!

u1
22u2

2 J ,

~18!

whereu1,2
2 are the two complex zeros of 11u21(h/z)4u4

50, andK0(x) is the modified Bessel function. The form
Eq. ~18!, of the transverse correlation function is a reaso
able ansatz for a liquid structure factor. Evaluating the in
gral @Eq. ~11!# leads to the expression

F5F01
kBTV

16A2p
A4 B0

K3
z25/2E

0

` u3/2du

@11u21~h/z!4u4#3/4
.

~19!

We essentially derived the same result as in Eq.~15!. The
only difference is thatq'max has been replaced byz21. z
represents the correlation length in a liquid, which for a ty
cal liquid goes as the distance between next neighbors. E
tion ~19! suggests that instead of considering higher or
terms we can simply choose a cutoff proportional to
Brillouin-zone radiusq'max.p/d, where d is the effective
separation between the polymers in the nematic phase.
is a physically meaningful and appropriate cutoff because
underlying macroscopic elastic model has, by definition,
break down at wavelengths comparable to the distance
tween molecules.

Let us now see how our free energy scales for hard-c
repulsion between chains. First we take the limit of low de
sity q'max!2ABK3 /K1

2. For an elastic polymerK3 has two
additive terms, an intrinsic one and an interaction contri
tion. The first one stems from the elastic nature of the po
mers themselves and has the formK3.kBTLpr0 , while the
second term is the generic form valid for any steric inter
tion with a hard corea, i.e., K3.kBT/a @16#. We now use
the Helfrich self-consistent argument to evaluate the free
ergy due to elastic fluctuations in a hard-core potential
amounts to takingB5V]2F/]V2, whereV is the volume of
the system which can be taken asV5L3d2, L being the
length of the sample. The crucial step is now to choose
cutoff which we set asq'max.p/d. Inserting this into Eq.
~15! and taking into account that the dominant behavior
K3 will be K3.kBTLpr0 , we remain with

F~d!;Ld2A4
d4

kBT

]2F~d!

]~d2!2
d25/2. ~20!

The solution of this differential equation leads to the scal
form for the fluctuation free energy, i.e.,F(d);d22/3.

In the opposite limit we need to estimateK1 , which is,
following de Gennes and Prost@16#, obtained asK1
;kBT/a, wherea is the hard-core diameter of the polymer
Thus in this case we obtain

F~d!;Ld2Ad2a2

kBT

]2F~d!

]~d2!2
d22, ~21!

the solution of which leads to the scaling formF(d);d22.
By analyzing whetherq'max is smaller or larger than
2ABK3 /K1

2 it is easy to ascertain that the first limiting la
should be valid for larger and the latter for smaller relat
densities of the polymers.
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Interestingly we just derived the same scaling laws
those from corresponding mean-field models by Helfrich a
Harbich @17# and de Gennes@18#.

III. MEAN-FIELD MODELS

The mean-field theory that corresponds to our probl
describes a single polymer in a liquid crystalline matrix.
this view the polymer fluctuates in the field of its neighbo
These mean-field models~one could also say ‘‘Einstein’’
cage models@19#! are strictly valid only for a hexagona
liquid crystal phase where the average position of a sin
polymer chain is well defined. In nematiclike phases t
mean-square displacements are infinite and one ha
choose a different language@Eq. ~1!#. Although mean-field
models are not the proper description for our problem, th
still illustrate the underlying physics. We therefore revie
their results.

Let us imagine a flexible~elastic! polymer in a hard tube
of diameterD, oriented on average along the axis of t
tube, described with a Hamiltonian of a persistent chain@20#

H5
1

2
kBTLpE dsS d2r ~s!

ds2 D 2

, ~22!

whereLp is the persistence length of the polymer, associa
with its bending elastic constantkc5kBTLp . For small de-
viations away from the average polymer position along thz
direction the two-dimensional~2D! displacement vectorr (s)
can be written asr (s)5„r x(s),r y(s)…. We assume that the
diameter of the tube is small enough~smaller than the per-
sistence lengthLp) so that between two consecutive hits wi
the walls of the tube, the polymer propagates ballistically

^@r ~s!2r ~s8!#2&.Lp~s2s8!2. ~23!

The longitudinal correlation lengthLi can be obtained from
evaluating the angle of the hit with the wallu through sta-
tistics of a persistent chain, i.e.,

u2.
D2

L i
2
;
Li

Lp
, wherefromLi;L p

1/3D2/3. ~24!

The free energy corresponding to the bumping between
polymer and the wall on a length scale defined byLi can
thus be obtained as

F;
kBT

L i
;D22/3. ~25!

This result has been obtained previously by Odijk@21# and
Helfrich and Harbich@17# and represents a proper dime
sional generalization of the Helfrich fluctuational force to 1
confined elastic objects.

On much larger length scales where the polymer ch
effectively behaves as a free flight chain in two dimensio
the effect of local nematic order can be modeled throug
simple nematic coupling term in the elastic energy of t
type @Nn(s)#2 whereN is the average nematic director an
n(s) is the local polymer director, i.e.,n(s)5 ṙ (s). If N is
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directed again along thez axis, the dominant part of the
chain Hamiltonian then assumes the form

H5
1

2
gE dsS dr ~s!

ds D 2

, ~26!

where g gives the strength of the nematic coupling. Th
Hamiltonian gives rise to a diffusive propagation of the po
mer chain described with

^@r ~s!2r ~s8!#2&.g21~s2s8!, ~27!

if compared to the ballistic propagation of a persistent cha
Eq. ~23!. For too large deviations the effective tube aga
simulates the effects of steric interactions. The angle of
hit with the wall of the tube is obtained as

u2.
D2

L i
2
;

1

gLi
, wherefromL i;gD2, ~28!

where we have now used the statistics of a free flight ch
The corresponding free energy is now obtained as

F;
kBT

L i
;D22. ~29!

Both results have already been derived for confined po
mers @18#. The point we wanted to make is that they a
consistent with our macroscopic theory if the cutoff is ch
sen appropriately, meaningq'max.d21 while also equating
the tube diameterD with the mean separation between t
polymersd.

A similar approach can be used also in the case wh
confinement is not described by a short-range hard-core
teraction but is mediated via a soft confinement potentia
the formV„r (z)…. In this case, assuming that the fluctuatio
of the polymer position from its average are small, t
Hamiltonian describing polymer elastic fluctuations can
written in the form

F5
1

2
kcE

0

L

dzS d2r ~z!

dz2 D 2

1E
0

L

dz Ṽ„r ~z!…

.
1

2
kcE

0

L

dzS d2r ~z!

dz2 D 2

1
1

2
V9E

0

L

dzr2~z!, ~30!

with

V95¹'
2 Ṽ„r ~z!…5S 1

r

dṼ„r ~z!…

dr
1

d2Ṽ„r ~z!…

dr2 D U
r 5D

,

~31!

where we have expanded the potential to second orde
deviations from a straight line. One can define a lengthl *
analogous to the Odijk length by minimizing the energy w
respect to the longitudinal sizel of typical fluctuations@19#

F;
L

l S kcr
2

l 3
1V9r 2l D→ l * 4;S kc

V9
D . ~32!

Thus we obtain for the confining energy
-

,

e

n.

-

-

re
n-
f

e

in

F~D !;kT
L

l *
;kBTLS V9

kc
D 1/4

, ~33!

which apparently depends on the fourth root of the confin
potential stiffnessV9. This result is completely consisten
with the one derived from a macroscopic theory, Eqs.~15!,
~16!, in the limit q'max!2ABK3 /K1

2, if we allow for the
proper correspondence between the confining potential s
nessV9 and the isothermal compressibility modulusB.

If, on the other hand, the polymer is presumed to be co
pletely flexible with an orientational part of the potenti
energy described with a nematic coupling of the form E
~26!, the Hamiltonian of a single confined chain will conta
a softer elastic part proportional to@dr (s)/ds#2. In this case
we have

F5
1

2
gE

0

L

dzS dr ~z!

dz D 2

1
1

2
V9E

0

L

dzr2~z!, ~34!

where the confining potential stiffness has been defined
the same manner as before. Just as before we can aga
troduce the appropriate Odijk lengthl * by minimizing the
energy with respect to the longitudinal sizel of typical fluc-
tuations yielding@22#

F;
L

l S gr2

l
1V9r 2l D→ l * 2;S g

V9
D . ~35!

From here on by the same argument as before the confi
energy scales as

F~D !;kT
L

l *
;kBTLS V9

g D 1/2

, ~36!

therefore as the square root of the confining potential s
ness. This result is now equivalent to the one derived fr
the macroscopic theory, Eqs.~15!,~16!, but this time in the
limit q'max@2ABK3 /K1

2.
To summarize, the mean-field theories surprisingly rep

duce the same scaling laws under similar conditions~high
and low density regimes! as our more detailed calculatio
from Sec. II. This indicates that the fluctuation part of t
free energy is predominantly determined by the entropy l
of confining the polymer chains. Still, in order to model th
free energy in more detail it is more appropriate to use
macroscopic model, because it predicts the correct cr
overs between the different regimes.

The mean-field approach with nematic coupling const
g as a free parameter, inferred from experiments, was use
@22# to argue that the effect of elastic fluctuations was
renormalize the decay length of underlying exponential
pulsion. With the right choice ofg, the calculated magnitude
of the charge on DNA agrees reasonably with the numb
derived below and in Ref.@23#. Odijk @24# also proposed
what amounts to a variation on the mean-field theme. I
based on a variational estimate for the Gaussian width o
single chain density distribution function. This theory in ge
eral does not lead to a straightforward renormalization of
decay length of the underlying soft exponential interactio



fro

rs
an
-

o

be
u

va
n

to
-
b

ta
le

be
io

th

ity
a

in
for

w

s
y
t
ss
es.
to

-

ter-

the
r

d

pa-
ct

that
eri-

here
ally
n-
ithin
n.

we
een
all
ter-

rg-
oft-

1004 PRE 59H. H. STREY, V. A. PARSEGIAN, AND R. PODGORNIK
between chains. Also the phase boundaries calculated
this theory coupled to Lindemann’s criterion@25# fall off the
mark @26#.

IV. MICROSCOPIC INTERACTIONS
BETWEEN DNA MOLECULES

In order to use our main result@Eqs. ~15!,~16!# for the
equation of state of nematic polymer liquid crystals we fi
have to guess how the macroscopic elastic const
K1 ,K2 ,K3 and lateral compressibilityB depend on the den
sity (r051/A5A3/d2 for hexagonally packed chains!. Our
first guess is the ‘‘one constant approximation’’K15K2
5K3'U(d)/d @16#, whereU(d) is the interaction energy
andd is the average distance between the molecules. In
case this approximation has to be modified, because the
trinsic bending stiffnesskc of the DNA molecules contrib-
utes additionally to the bending Frank constantK3 .

K15K2'U~d!/d,

K3'r0kc1U~d!/d , ~37!

B'V
]2F0~V!

]V2
5

A3

4LS ]2F 0

]2d
2

1

d

]F0

]d D .

We now ask about the intermolecular interactions
tween two DNA molecules. There are two major contrib
tions to the repulsion between DNA molecules in mono
lent salt solutions@23#: ~1! screened electrostatic repulsio
from negative charges along the DNA backbone;~2! hydra-
tion repulsion coming from partially ordered water close
the DNA surface@27#. At the ionic strengths and polyelec
trolyte densities considered in this work there appears to
no important contribution to the attractive part of the to
DNA-DNA interaction: van der Waals forces are negligib
@27# and counterion-correlation forces@28,29# are screened
@30#.

The mean-field electrostatic interaction is best descri
by the Poisson-Boltzmann theory resulting in an interact
potential between two parallel charged rods@31# of the form

U~d!/L5
j2

2pee0
K0~d/lD!, ~38!

wherelD is the Debye screening length. For ionic streng
I from monovalent salts,lD53.08 Å/AI @M #. Equation~38!
refers to two infinitely thin line charges with a charge dens
per lengthj. This line-charge density is related to the actu
surface charge densitys on a cylinder with radiusa as fol-
lows:

j52pslD /K1~a/lD!. ~39!

For larged/lD the Bessel functionK0 can be approximated
by

K0~d/lD!'Ap

2

e2d/lD

Ad/lD

. ~40!
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The hydration repulsion between solvated molecules
water can be described by the same formalism as
screened electrostatic repulsion~see @32#!. The interaction
energy therefore goes asK0(d/lH) with lH'3 Å @23#.

Knowing about the intermolecular interaction we can no
revisit our main result, Eqs.~15!,~16!. From Eq.~37! it is
clear thatK1 , K2 , and the bulk compressibility modulu
perpendicular to the chainsB essentially decay exponentiall
with d whereasK3 after an initial exponential decay will a
low densities be dominated by the intrinsic bending stiffne
kc of the polymers. This fact has instructive consequenc
For lower densities, where we would expect fluctuations
be more prominent, only the limiting form valid forq'max

!2ABK3 /K1
2 remains. In this limit, using exponentially de

caying interactions forB, the fluctuation part of the free
energy goes essentially as the fourth root of the direct in
action, sinceK35r0kc .

Summarizing, the bare interaction can be described in
following way ~for simplicity we use the free energy pe
lengthG5F/L):

G0~d!5aAp

2

e2d/lH

Ad/lH

1bAp

2

e2d/lD

Ad/lD

, ~41!

where a and b are the amplitudes of the hydration an
screened electrostatic repulsion. The total free energyG, us-
ing the low density limit Eq.~15! usingq'max5p/d, is then

G~d!5G0~d!1kBT
~p!5/2

20pA3
kc

21/4A4
]2G 0

]2d
2

1

d

]G0

]d
.

~42!

V. MATERIALS AND METHODS

Sample preparation and determination of interaxial se
rations between DNA molecules by either x-ray or dire
density measurements was described in detail previously@6#.

At very low osmotic pressures~1/100 atm! the elasticity
of the dialysis bags could contribute to osmotic pressure
acts on the sample. For this reason we performed exp
ments in which we dialysed low concentration~0.1–1 wt %!
Dextran solutions against each other, to make sure that t
were no residual osmotic pressures resulting from parti
inflated dialysis tubes. After equilibration the Dextran co
centrations inside and outside the dialysis bags agreed w
1% of the bathing concentration down to 0.1 wt % Dextra

To compare our experimental results with our theory
expressed all data in terms of the interaxial spacing betw
two DNA molecules. Assuming hexagonal packing in
density regimes the relation between density and the in
axial spacingd is r5(610/d@Å#)2@mg/ml#.

The relation between the osmotic pressureP and G is
then @27#

]G
]d

5A3Pd. ~43!

The nonlinear fits were done using the Levenbe
Marquardt method, implemented in the data analysis s
ware Igor 3.03~WaveMetrics, OR!. The fit function used
was @usingG0 from Eq. ~41!#
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]G
]d

5
]G0

]d
1ckBTkc

21/4 ]

]d
A4

]2G 0

]2d
2

1

d

]G0

]d
, ~44!

wherea andb are the bare amplitudes of the hydration a
the screened electrostatic repulsion. Since the prefacto
the fluctuation part of the free energy depends on the cu
wave vector we chose to fit it by the dimensionless cons
c. The actual fit was performed using log10(]G/]d) versus
interaxial spacingd. We did that to achieve an equal weig
of all data points over the whole osmotic pressure regim

VI. EXPERIMENTAL RESULTS

Figure 2 shows the equation of state (P2d) for long
DNA molecules at different NaCl concentration
(10mM– 2M ). The figure presents a compendium of da
~from @27,23,33# and heretofore unpublished data! obtained
up to date on the upper portion of the DNA phase diagra
At high osmotic pressures (P) all ionic strengths merge into
the same curve: an exponential decay with a decay lengt
about 3 Å. We attribute this behavior to structural forces
water ~hydration forces! commonly observed between hy
drated surfaces in water@32#. At lower osmotic pressures th
curves start to deviate from each other, reflecting the in
ence of screened electrostatic repulsion. Interestingly
ionic strengths>1M the curves are independent of ion
strength over the whole osmotic pressure regime. This in
cates that forI .1M the electrostatic contributions are su
ficiently screened so that the equation of state is domina
by hydration repulsion alone.

Figure 3 shows the measured]G/]d5A3Pd at 1M
NaCl. Since from 1M on the electrostatic contribution i
negligible we can use the data to determine the decay le
of the hydration repulsion. We fitted the data according
Eq. ~44! using only one exponentially decaying direct inte
action. As fit parameters we used the amplitude of the

FIG. 2. Equation of state for DNA liquid crystals at ion
strength from 150mM to 2M NaCl. We plotted log10P versus in-
teraxial spacingd. The interaxial spacingd was measured by x-ray
scattering.
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dration repulsiona, the hydration decay lengthlH , and the
prefactorc of the fluctuation part of the free energy. Th
fit is shown as a solid line and describes the data very w
The resulting hydration decay length waslH5~2.960.2! Å.
The amplitudes and the prefactorc are summarized in
Table I.

Figures 4 and 5 show measured]G/]d for 0.5M
and 0.1M NaCl. The solid line shown is the fit to Eq.~44!
using a, b, and c as fit parameters. The hydration dec
length was set tolH52.88 Å and the Debye screening leng
was set tolD53.08 Å/AI @M #. The results are shown in
Table I.

Figure 4 indicates the phase boundaries between the
ous liquid crystalline phases of DNA in detail. For all oth
salt concentrations we only indicated the isotropic to ani
tropic transition. At very high osmotic pressures~not shown
in Fig. 4! there exists a crystalline phase of DNA~see@34#!.
It melts into a line hexatic phase@regime ~a!#: a three-
dimensional liquid with long-range bond-orientational ord
perpendicular to the axis of the molecules@35#. As far as we
can see, there is no indication for a hexagonal liquid crys
line phase in between the crystalline and the line hex
phase. Between the line hexatic and the chiral phase
DNA the x-ray structure factor shows two peaks@regime
~b!#: a sharper peak@continuing regime~a!# at smaller inter-
axial spacings and a more diffuse one at wider spacings@con-
tinued by regime~c!#. Since by using the osmotic stres
method we hold all intensive variables (p,T,m) fixed, the
measuredS(q) should originate from a single phase~Gibb’s
phase rule!. At this point it is not clear whether the structur
in regime~b! corresponds to a new phase in between a l
hexatic phase~nonchiral! and a cholesteric phase.

FIG. 3. Measured]G/]d for DNA liquid crystals at ionic
strength of 1M over five orders of magnitude in osmotic pressu
The solid curve represents a fit of the data points in the anisotr
regime to a nematic liquid crystalline theory~see text! assuming
exponential repulsion~hydration and screened electrostatics!. The
broken line represents the bare interaction without fluctuation
hanced repulsion. Interaxial spacings above the -•- line are mea-
sured by x-ray scattering; below this line the spacingsd are derived
from measured DNA densities where molecules are expected t
hexagonally packed.
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TABLE I. Summary of all fitted parameters for 1M , 0.5M , and 0.1M NaCl, as well as the correspondin
line-charge densityj, surface-charge densitys, and the fraction of unscreened phosphorus chargesE.

I ~M! a ~J/m! lH (Å) b ~J/m! lD (Å) c j ~C/m! s (C/m2) E

1 (1.760.9)1027 (2.960.2) 3.08 (1.260.1)
0.5 (1.460.5)1027 2.88 (362.6)1029 4.36 (1.360.2) 2.131029 0.07 0.49
0.1 (1.160.3)1027 2.88 (4.160.3)10210 9.74 ~0.860.06! 7.8310210 0.07 0.48
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The chiral phases start with a cholesteric phase as
served by electron microscopy and polarization microsc
@36,37#. At even lower concentrations there is some indic
tion for additional chiral phases~precholesteric phase@38#
and blue phases@39#!. Finally the anisotropic liquid crystal
line phase melts into an isotropic phase@26# @regime~d!#.

VII. DISCUSSION

DNA is highly charged~two negative charges per bas
pair or 3.4 Å of its length!. In an electrolyte solution the
DNA’s net negative charge creates an accumulation of co
terions close to its surface that screen part of the bare ch
and lead to an effective charge density that is felt at lo
distances between chains. Theoretically this effect can
captured by nonlinear Poisson-Boltzmann theory@40#.

Even though our nematic polymer liquid crystallin
theory was based on a rather simplistic model it describe
the data fairly well with reasonable values for the fitted p
rameters. In Table I we have summarized the correspon
line-charge densities and surface-charge densities that
calculated according to Eq.~38! and Eq.~39!. At 0.5Mand
0.1M the fits give the same surface-charge densitys
50.07 C/m2. This value corresponds to about 50% of t
bare charge of DNA (0.15 C/m2).

Our result of 50% effective charge agrees very well w

FIG. 4. Measured]G/]d for DNA liquid crystals at ionic
strength of 0.5M over five orders of magnitude in osmotic pressu
Four structural regimes~a!–~d! could be distinguished. See Fig.
for annotations.
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the analysis of electrophoretic measurements@41# by Schell-
man and Stigter@42# that resulted in about 60% effectiv
charge density for Na DNA. A recent study using stead
state electrophoresis reported 10% for Na DNA@43#. This
discrepancy exists not because of experimental uncerta
but because of different theoretical treatments of the m
sured mobilities~for a recent discussion see@44#!. Part of the
difference might come from the complicated details of fr
tional forces acting on a rough, charged polyelectrolyte.

One has to bear in mind that for the 0.5M data the uncer-
tainty of the fitted amplitude is almost 100%. This unce
tainty is not very surprising considering the close proxim
of the two decay lengthslH52.9 Å and lD54.36 Å. As
soon as the decay lengths separate from each other, as i
case for 0.1M , the statistical uncertainty drops to 10%.

We also fitted the prefactorc. If in the theory@Eq. ~42!#
one chooses the cutoff wave vector to be at the Brillou
zone radiusq'max5p/d, the prefactorc is p3/2/20A350.16.
The fitted prefactorsc @Eq. ~44!# range from 1.3 to 0.8. This
is about 5–8 times larger than the theory predicted. On
other hand, considering the simple underlying model,
value is not too far off. Choosing a cutoff at twice th
Brillouin-zone radius, for example, would give a value rig
on the fitted one. In our view, the prefactor depends on
fine details of the in-plane structure factorS(q') @see Eq.
~19!#. In the case of exponential direct interactions betwe
the chains any algebraic dependence of the cutoff with
spect to the density will be dominated by the fourth root
the direct interaction@Eq. ~42!#. The fact that for different

.
FIG. 5. Measured]G/]d for DNA liquid crystals at ionic

strength of 0.1M . See Fig. 3 for annotations.
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ionic strength the prefactors have similar values~all around
1! strengthens our argument.

The fits even seem to prove explicitly the presence
hydration repulsion. If one tries to calculate the charge d
sities for 1M , using a screening length oflD53.08 Å and
ignoring any contribution of hydration repulsion, the surfac
charge density results ins50.19 C/m2, 25% more charge
than the total phosphorus charges on DNA. Since it is g
erally believed that more than half of the bare charge
DNA is screened, a picture with pure electrostatic dou
layer repulsion is hard to envision. Recently Lyubartsev a
Nordenskio¨ld @45# published a Monte Carlo simulation ad
dressing the DNA case, comparing their results with osm
stress measurements from our laboratory. They showed
electrostatic repulsion strongly increased beyond simple
earized Poisson-Boltzmann theory, when two charged cy
ders approach each other closely. However, this simula
used a solid cylinder model of DNA and hard-sphered
54 Å ions. The measurements are in a regime where mo
the aqueous volume is inside the DNA grooves rather t
outside any DNA cylinder. Better models have to include
possibility of ions entering the groove space. Although th
results seem to fit the data for 0.5M quite well, there is not as
good success at other salt concentrations. We take the f
data in high salt concentration to be strong evidence for
dration repulsion. Even noncharged polymers, like
polysaccharide schizophyllan, show an exponentially dec
ing repulsion with a decay length of aboutlH53.4 Å @46#.
Hydration repulsion is a general feature of water solu
molecules at separations<1 nm @32# that cannot be simply
denied@47#.

Osmotic stress measurements can be used to deter
more directly effective charge densities of semiflexible po
electrolytes. We can therefore test and compare theories
predict effective charge densities, like nonlinear Poiss
Boltzmann or Manning theory@48#. Our results indicate tha
for Na the effective charge is twice as large as predicted
both theories. Previous studies in our laboratory@23# ob-
served significant differences in charge densities using
ferent counterions, such as Li, Na, K, Cs, and Tri-meth
ammonium. These results merit further analysis.

The form of the fluctuation part of the free energy@Eq.
~42!# suggests that fluctuation enhanced repulsion may
important for many lyotropic polymer liquid crystalline sy
tems. The prefactorc of the fluctuation part only depend
weakly on the bending constant of the polymerc}kc

21/4.
The only condition for enhanced repulsion is that the po
mers are longer than their persistence length, and that
remain in a nematiclike phase.

Another appealing conclusion from our work is th
emerging connection between multilamellar lipid and colu
nar polyelectrolyte~DNA! arrays. Both are governed by th
same type of colloidal forces@49#, except that for polyelec-
trolyte arrays the attractive forces at relevant ionic streng
and polymer concentrations are usually negligible, and sh
the same conformational flexibility describable by an elas
term in the conformational Hamiltonian~Helfrich @50# in the
case of lipid multilayers and Kratky-Porod@20# in the case of
semiflexible chains!. The interplay between fluctuations an
effective interaction in multilamellar arrays has been a to
f
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for quite awhile@51# and is at present reasonably well unde
stood.

Setting aside the attractive part in the bare interaction
tential and the different dimensionality of the fundamen
interacting objects~2D in the case of lipid multilayers vs 1D
in the case of polyelectrolytes!, multilamellar lipid and co-
lumnar polyelectrolyte arrays share exactly the same Ha
tonian. This leads to the same type of fluctuational renorm
ization of interaction force that can be expressed by
following two forms of free energy:

F.
kBTV

5323/2p
A4
B
K3

q'max
5/2 1¯

vs F.
kBTV

16p
A B

K3
q'max

2 1¯. ~45!

The first one pertains to the fluctuations in polyelectroly
arrays, cf. Eq.~16!, and the second one to the fluctuations
multilamellar systems, e.g.,@52#. Both these results are writ
ten in the limit of small density of fluctuating objects. Th
apparent formal differences between the two expressions
duesolely to the dimensional difference between the fluc
ating objects, i.e., 1D as opposed to 2D.

The main difference between multilamellar and column
arrays interacting through exponential repulsive forc
would thus be the twofold vs fourfold renormalization of th
decay length.

There have recently~see @53# for an overview!, and
maybe not so recently@54#, appeared quite a few specula
tions on the possible attractive component to the polyelec
lyte interaction forces. At polyelectrolyte densities and ion
strengths described in this work, there is certainly no e
dence to presume there are any. We cannot, however,
clude the possibility that low ionic strengths and low pol
electrolyte densities, thus promoting pronounced unscree
counterion fluctuations@55,30#, conspire to bring forth non-
negligible attractive forces between DNA molecules. Sho
this turn out to be the case, columnar polyelectrolyte arr
would become even more similar to multilamellar lipid a
rays. DNA and cell membranes are among the principal
ganizational structures in biology. That they share suc
pronounced amount of common physics certainly adds u
a rather pleasing intellectual development.
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