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Optimal asymptotic learning rate: Macroscopic versus microscopic dynamics
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We investigate the asymptotic dynamics of on-line learning for neural networks, and provide an exact
solution to the network dynamics at late times under various annealing schedules. The dynamics is solved
using two different frameworks: the master equation and order parameter dynamics, which concentrate on
microscopic and macroscopic parameters, respectively. The two approaches provide complementary descrip-
tions of the dynamics. Optimal annealing rates and the corresponding prefactors are derived for soft committee
machine networks with hidden layers of arbitrary siZ&1063-651X%99)10401-X]

PACS numbdrs): 87.10+€, 05.20-y, 02.50—r

[. INTRODUCTION eters at the various stagg$2], the use of regularizers in
multilayer system$13] and the optimization of learning pa-
The asymptotic dynamics of stochastic, or on-line, learnfameters and rulgsl4—-14.
ing, and its dependence on the annealing schedule adopted In this paper we examine the relation between the two
for the learning coefficients, have been studied for some tim@pproaches, and contrast the results obtained for different
in the stochastic approximation literaturg2], and more re- learning rate annealing schedules in the asymptotic regime.
cently in the neural network literatuf8—5]. In the latter ~Using the master equation, we develop a perturbation ap-
references, the analysis is based on a master equation tH¥©ach that provides results about the asymptotic misadjust-
describes the dynamics of the We|ght Space probab"'ty derment fOI’ annealed |eal’ning rate. A|th0ugh these reSU|tS are
sities. known from the classic stochastic approximation literature,
In most cases of interest, the transition probability appearthis particular approach has not, to our knowledge, been
ing in the master equation cannot be written in closed forn@ired in the literature. We employ the order parameter ap-
(however, an integrable class of systems is discussed in Ré?roach to examine the dependence of the dynamics on the
[6]), so some approximate form of the dynamics is develnumber of hidden nodes in a multilayer system. In addition,
oped. Typically, as here, a small noise expansion provides We report some lesser-known results on nonstandard anneal-
description of the dynamics in terms of suitably scaled flucing schedules.
tuations about a deterministic flow. This approach has been
applied primarily to learning with a fixed, arbitrarily small,
learning rate. In this realm, it provides information on the
asymptotic distributions, convergence of learning with mo-  Most on-line learning algorithms assume the form
mentum, basin hopping, and learning with correlated
samplege.g., Refs[7,8], and references withjn
As discussed here, the approach can also be applied to
annealed learning, where the learning rate is reduced with
time to allow convergencde.g., in mean squareof the  wherew, is the weight at timd, x, is the training example,
weights. For either a fixed or annealed learning rate one camandH (w,x) is the weight update. The description of stochas-
for the equations of motion of the ensemble density, contic learning dynamics in terms of weight space probability
struct (ordinary differential equations of motion for its mo- densities starts from the master equation
ments, and hence evaluate the asymptotic generalization er-
ror and its convergence rate.
Recently, several authof8,10] developed an alternative , , 70
theoretical approach based on the dynamics of order paraml—D(W ’t+1):f dW< 5(W W t_pH(W'X)) > P(w,1),
eters for the system. While the master equation approach X )
focuses on the stochastic dynamicawatroscopicquantities
(the weightg, the order parameter approach describes the
deterministic dynamics ahacroscopiaqjuantities. The equa- where(- - -), indicates averaging with respect to the measure
tions of motion for the order parameters can be solved nuen x, P(w,t) is the probability density on weights at tinhe
merically, enabling one to monitor the evolution of the orderand §(- - -) is the Dirac function. A Kramers-Moyal expan-
parameters and the system performance at all times. Thigon of Eq.(2), and passage to continuous time, produces a
approach provided insight into the dynamics at early stagepartial differential equation for the weight probability density
of the learning procesgll], the scaling of training param- (here in one dimension for simplicity of notatipf8,4]

II. MASTER EQUATION

Wt+l:Wt+7]0/tpH(Wt!Xt)! (1)
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P t—iﬂ@ia‘ H' P(w,t aH—ﬂa(gH)Jrgmﬂ
t (Wy )_i=1 || tp W[< (W7X)>X (W1 )] S - f rf m:2i:li!(m_i)!
(3) 7 i(1-2y)+my o )
| | . X afM e f(5)™ A (™).
Following Ref.[3], we make a small noise expansion for Eq. s'P
(3) by decomposing the weight trajectory into the sum of @
deterministic and stochastic pieces
Commonly, the learning algorithm is a stochastic gradient
W= ¢(t)+ nf(t) € descent, for which the weight update functibi{w,x) is

minus the gradient of the instantaneous céktw,x)=
-V, E(w,x). Then Eq.(6) describes the evolution ap as
descent on the average cost. The fluctuation equdfon
requires further manipulations whose form depends on the
context.

>(W_ é(1)), (4) We need to specifyy and f(s) to make further
progress. We assume a stochastic gradient descent in a

. o _ quadratic bowl, i.e. an algorithm with a cost function

Whereqs_(t) is the deterministic trajectory, and tifes are the  hose Hessian G is positive-definite Then a{Y

fluctuations. Apart from the factop] f(t) that scales the :—V@<E(W,X)>x|w=¢(s)5—G(¢>(5))- To insure that for

fluctuations, this is identical to the formulation for constanteach value ofn in Eq. (7) the terms in the sum oveérare

learning in Ref[3]. We will obtain the proper value for the homogeneous in powers af,, we take

unspecified exponeng, and the form of the functiori(t)

from homogeneity requirements. ‘ y=3.

Next the dependence of the jump mome(tis(w,x) ), on - . .

70 IS explicated by a Taylor series expansion about the des'm'l"’lrly’.tO insure that for eaph \_/alue ofthe terms in the

terministic path¢. The coefficients in this series expansion sum overi are homogeneous in time, we take

are denoted

or

g:( 7o)

1
o f(S) = ST/Z
g PH W),
@ = ow ' For aconstantlearning rate f=0), we rescale the time
w=¢ ass— s to allow Eq.(7) to be written in a form convenient
for a perturbation expansion of the solution in powers;gf
for convenience, we define a new time variable Typically, the small learning rate limityj,— 0 is invoked,
and only the lowest order terms in, retained(e.g., Ref.
s=t, [3]). The remaining differential equation contains a simple

diffusion operator, which results in a Gaussian approxima-
tion for equilibrium densities. Higher order terms have been
Gsuccessfully used to calculate corrections to the equilibrium
moments in powers of, [17].
Of primary interest here is the caseainealed learning
1 d¢(s) (f’) £ as required for convergence of the parameter estimates.
e \F) 8%

and transform the differential operators and densities in E
(3) as dictated by Eq4):

d=ds— Again assuming a quadratic bowl with=3 and f(s)

4 ds
76 f(5) =1/sP”2, the first few terms of the-dimensional form of Eq.
(7) are
1
A= g, (5 7 p
w na’f(s) ¢ &snzvg (S—EG(Q[)(S))—ﬁ &Il

312

P(w,t)=(ng f(s) MI(&,s). ®

1 7 7o
+§§V§(a(20)V§H)+O -
Finally, we rewrite Eq.(3) in terms of¢ and ¢ and the
expansion of the ]ump moments using transformati(ﬁ)s where the curvaturés and diffusion Coefficient&‘oz(zo) are
and suitably resumming the series. These transformation®atrices now. As=t—c, the right hand side of Ed8) is
leave equations of motion for the deterministic trajectorydominated by terms explicitly writtesince 0<p<1). Pre-

#(s) and the densitfI(&,s) on the fluctuations cisely which terms dominate depends jpn
Classical annealing
d_qs:(@) a<10>(¢):(@ (H(¢,%))y, (6) We first review the classical cage=1 (1t annealing.
ds | sP sP The first three leading terms on the right hand side of(Bp.
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are all of order 14. Fors— o, these terms dominate, and we where\ is the eigenvalue of the curvatu@* (at the local

discard the remaining terms. The deterministic trajectéiy

is a standard gradient flogin transformed times=1In's), and
thus lim_, .. ¢(s) =w*, wherew* is a local minimum of the

average costE(w,x)),. The fluctuation dynamics carried

by the first three terms of E(J8) are a sensible diffusion
process only if theeffectivelinearized drift

De=10G— %
is a positive definite matrix. This clearly requires
70> 75" =12 N i), )

where\ ., is the smallest eigenvalue &* =G(w*).
If the criticality condition in Eq.(9) is met, then the equi-

optimumw*), and C,, and %), are the diagonal compo-
nents of the weight error correlation and the diffusion matrix
(respectively, both in coordinates for whicG* is diagonal

From Eq.(15), it is clear that wheny,> 7", one has a
1/s decay of the misadjustment, while fgg< 75" the decay
progresses as (97" min, i.e.,slowerthan 15. The above
confirm the classical resulf&] on asymptotic normality and
convergence rate for tLAnnealing.

Alternative annealing schedules

In the case of &p<1 the right-hand side of E(qB) is
dominated at late times by the terms of ordes?1/Now,
since G* is, by assumption, positive definite, there is no
criticality or switching behavior in the convergence. We

librium density is a zero-mean Gaussian with a covariancdave a Gaussian equilibrium density frwith a covariance

3. that satisfies
Deﬁ2§+2§ Deff: 1o C((ZO). (10)

With our choice ofy and f(s), the weight error v=w
—w* is related to the fluctuatiog by v=/7y/s . Conse-

that satisfies
G* 3,+3,G*=ay

in analogy to Eq.(10). The weight error is related to the
fluctuations byv = \/770/sP & (so thaty/sP v is asymptotically

quently, y/sv is asymptotically normal and the expected norma) and consequently the expected squared weight error

squared weight error drops off asymptotically as

Ello 1= Tr( L0 ™) > 5 (y

which is the well-known optimal asymptotic convergence

rate.

drops off asymptotically as
(16)

) 1
Ellv|*]>—.
P

Notice that(i) the convergence islowerthan 15, and (ii)

If the criticality condition is not met, the Gaussian equi- there isno critical value of the learning rate to obtain a
librium is not reached. The asymptotic convergence ofsensible equilibrium distribution. Related results are in Ref.
E[|v|?]) can still be calculated by developing the dynamics[18].

of the second momemR,= E[££7]. One obtains the differ-
ential equations of motion by multiplying E@8) by & §;
and integrating oved"¢ to obtain

d 1 70
geRe= — 5 (DerRet RgDeﬁ)+?a(2°>, (12
which has the solutions
Rg(s)=U(s,sp) Rg(so)UT(S,So)
S 7o 0)y T
+ [ dr—U(s,m)ay’U'(s,7), (13
SO T
U(s,sg) =exp(—In(s/sy)Des)- (14

Transforming the result back tav coordinates, we obtain

This approach to obtain the asymptotic dynamics of the
fluctuations, and hence the misadjustmgpv|?], is quite
general. The derivations assume that the minimum studied
has a positive definite Hessian, and positive definite diffusion
matrix o). The latter is true for any nonrealizable task, or
for a realizable task with noisy cost targets. The results hold
for arbitrarily large systems, though the critical learning rate
for 1t annealing depends on the eigenvalue spectrum of the
curvature. The latter depends on the specifics of the cost
function and input-target distribution.

Connection to neural networks

In the context of neural networks, the cost function
E(w,x) measures the deviation between the trained networks
output(here termed “students”and the output of the under-
lying process represented here by a teacher network, speci
fied by some weight vector. The performance measure of

e_quation .for the time-evolution of the weight error correla-interest is then not the misadjustment but the generalization
tion matrix C=E[v v'], and hence for the misadjustment error, defined for a givetstudentweight distributionp(w)

(derived by an alternative approach in Ri])
So 27Nk
3

Ellv]?]= k§=:1 Ckk(So)(

2 (0
ﬂoa(z &k

+ [
(270N~ 1)

1 1(so>2’mkk
s %S , (19

as

eg:<<E(WaX)>x>w- (17)

In the asymptotic regime the excess generalization error
€5~ €min [Whereey,, is the least generalization error achiev-
able in the area of th@ossibly local minimum considerefd
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follows the same decay rate as the misadjustment. Using thiecture are similar to that of a general two-layer network.
Taylor expansion of Eg(17), to lowest order in the weight Several researchef8,10] have already employed the order

error, one has parameter approach for calculating the training dynamics of
a SCM, and the formalism can be easily extended to accom-
€g— €min = 3E[v'G*v]=3Tr(G* C). modate adaptive hidden-to-output weigf24].

The training examplesx(y) are independently drawn in-
Thus the excess generalization error is bounded akipee put vectors with zero mean, and unit variance and the corre-
low) by the maximum(minimum) eigenvalue ofG* times  Sponding targety are generated by the response of a deter-
the misadjustmerﬁ[|v|2]_ These eigenvalues and eigenvec-ministic teacher network corrupted by additive Gaussian
tors depend on the actual architecture of the neural networkutput noise of zero mean and varianeé. The teacher
considered. In Sec. Il we will use a different approach, re-network is also a SCM, characterized by input-to-hidden
lying on the order parameter ansatz, to derive the learningveights w* . The order parameters sufficient to close the
behavior for a neural network of a concrete architecturedynamics, and to describe the network generalization error,
namely, the soft committee machine. are overlaps between various input-to-hidden vectors

Wi - Wi =Qp, Wi-W'=R,, wW!-w'=T.,, (18
Ill. ORDER PARAMETERS vk ke T Ny T me Tam

Employing the learning rule given in E€l) and using gra-

In the master equation approach, one focuses attention Ylent descent on a squared error measure as the weight up-
the weight space distributioR(w,t), and calculates quanti- date, focusing on a fannealing, we obtain

ties of interest by averaging over this density. An alternative
approach is to choose a smaller set@croscopicsariables, no_ 1 . 5
called order parameters, that are sufficient for describing Wi =W — = Vs [p(W* )+ L= p(w,x) ]= - (19)
principal properties of the system such as the generalization
error (in contrast to the evolution of the weightswhich are  as the update rule, whetgis the disruption of the teacher
microscopig. output by the additive Gaussian noise of variamcg By
Formally, one can replace the parameter dynamics pregalculating the corresponding dot products and averaging
sented in Eq(2) by the corresponding equation for macro- over the random training pattern distribution and the output
scopic observables, which can be easily derived from theoise, one easily obtains update equations for the order pa-
corresponding expressions farand the formal definition of  rameter which, in the thermodynamic limi(- ), became
macroscopic observablg¢49]. By choosing an appropriate a deterministic set of coupled differential equations. These
set of macroscopic variables and invoking the thermodyequations are given in a closed form in R@f0], where only
namic limit (i.e., looking at systems where the number ofthe constant learning rateis examined, while in the current
parameters is infinije one obtains a closed set of equationspaper we concentrate on the annealed learningygte The
of point distributions for the order parameters, rendering thgjeneral solution of the coupled differential equations can be
dynamics deterministic. Note that in contrast to the mastepbtained only through numerical integration. However, the
equation approach, which provides an approximation of the,symptotic behavior in the case of annealed learisrne-
weight space distribution, the order parameter approach prgrable to analysis, and this is one of the primary results of the
vides an exact closed set of deterministic equations whiclyaper.
fully describe their dynamics, and can be employed for cal-  Finally, the network performance is measured in terms of
culating other observables which are of interest. The disadthe generalization error
vantages of this approach is that we are restricted to calcu-
lating observables which can be formulated in terms of the €g=(12 p(W,x) Y1)y , (20
order parameters, and the approach is exact only in the ther-

o ML : . which can be expressed in closed form in terms of the order
modynamic limit (although finite-size analysis shows quite g
9003/ agreement( betwegn theory and sirr):ulations foﬂsmaﬁarameterﬁlo] [this is also the reason for the absence of the
systemg 20]) W average in comparison to E@.7)]. The goal of this study

Practically, the formal replacement of the microscopic pa_IS to solve the dynamics at late times, and find a learning rate

rameters by the order parameters in E2}.is usually unnec- schedule which gives the optimal decay of the generalization
essary, and it is possible to set up the equations for the ordéi r\%é assume an isotronic teacher— 5. and use task
parameters straight away once the appropriate order param- P fm= nm, u

eters have been identified. We use this approach now to ins_ymmetry to reduce the system to a vector of four order

T
vestigate the asymptotic behavior of the training dynamic arametersu’ =(r,q,s,c) related to the overlaps bR,
¢ ymp 9 Y Sin(141) + (1= 8in)s and Qu= i (1+0) +(1— ).

with annealed learning rate of a soft committee machin(ix/ith learning rate annealing and im.u—0, we describe
SCM), which is a generic two-layer neural netwdf, ex- L9 ket s
( ) 9 y a9 We dynamics in this vicinity by a linearization of the equa-

tending the results obtained in the master equation approac}). > L
The SCM maps inputse RN to a scalar, realized through a tons of motion in Ref[10], giving

model p(w,x)=EiK=lg(wi-x). The activation function of d , 2

the hidden units igy(u)=erf(u/y2), andw is the set of gtu=7Mu+77ab, (21)
input-to-hidden adaptive weights for the-1, ... K hidden

nodes. The hidden-to-output weights are set to 1. The IearnNhereai is the noise variancdy’ = (2/7)(0,14/3,0,1/2), 7
ing dynamics and generalization error evolution in this archi-= 7, /t?, and
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The asymptotic equation of motiof21) was derived by t
dropping terms of orde®(7||u||?) and higherandterms of y(tto) =ex Mft d7 n(7)
orderO( %2 u). While the latter are linear in the order param- 0
o ; ) (24)
eters, they are negligible in comparison to thas and .
nza,z;b terms in Eq.(21) ast— o, ﬁ(tato)ZJ dry(t,7) 73(7).
The truncations used to arrive at the asymptotic dynamics to

shed light on an approach to equilibrium that is not implicit
in the master equation approach. In the latter, the dominarBoth matricesy and 8 can be calculated in closed form,

terms for the asymptotic behavior of E@®) were identified whereby each matrix element is a linear combination of the

by the coefficient's time scale; there is no indication, inmodes¢; for 8 and 6; for y (i=1, ... ,4) with

terms of system observables, for the onset of the asymptotic

regime. In contrast, in the present approach, the conditions

for the validity of the asymptotic approximations are cast in b =(

terms of system observables directly by compariffg ver-

susyu and 02, 2
The solution to Eq(21) is 9 =— _ o

: 1+aing

t\ @m0
o

E _taiﬂotf(a’i no+1)
t 0

— 2
u(t) = ¥(t,to) o+ o, A(L,to)b, 23 whereq; is the eigenvalue of the matrM [Fig. 1(a)]. Com-

paring this to Eq(15), one sees that th¢;’s and 6;’s have
whereug=u(ty), the same general structure as the terms in (). Using
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these solutions, one obtains an explicit expression for théhe globally optimal learning rate at all tim¢&4,15, but

linearized generalization errdfirst order inu)

(26)
w

_K 1 K-1
€ =— E(q—Zr)JrT(c—Zs) .

It turns out that only two modes survive, and we obtain

€= 05[C101(1)+Cab,(t) ]+ 101+ Az, 27
with the eigenvalues
B 1/ 4 5 B 1/ 4 K—1
al——; ﬁ_ , az——; ﬁ+ (K=1)|.
(28

The constants; andc, depend only orK, while a; anda,

which requires a numerical solution of a set of coupled dif-
ferential equations.

IV. DISCUSSION AND SUMMARY

We employed the master equation and order parameter
approaches to study the convergence of on-line learning un-
der different annealing schedules. For the #&hnealing
schedule, the small noise expansion provides a critical value
for 775 (Eq. 9 in terms of the curvature, above whigfiv is
asymptotically normal, and the misadjustméitjv|?] de-
cays as 1/ Though not developed here, the approach also
tells us that to achieve the most rapid decay of the misad-
justment, one should sef,=G* ~*. Further development of
the dynamics suggests algorithms that automatically attain
this optimal decay rate using only ordé&(N) computation

also depend on the initial conditions. Obviously, the fastesnd storag¢5s,22].

decay one can obtain istiwhen choosingp,> 75", which
is (for K=2)
) 1 1 T
SIRE SR Y S
o @ ap 4/\/§—2 @9

In this case the modeg; in Eq. (27) decay faster then L/

and can be ignored, while the mod&sare dominated by the
1/t component; we thus have a Hecay independent of the

initial conditions, which is of the form

__ 2 2
6|— O'V'r]O

e |1, 1
1+aimg 1l+ayng t v (70, )t'
(30)

For optimal decay of the asymptotic error we also have t

minimize the prefactof (79,K) in Eq. (30). The values of
7oP(K) for various valueK are shown in Fig. (b), where

the special case df =1 (see belowis also included: There

is a significant difference between the valuesker 1 and 2,
and a rather weak dependencekofor K=2 which may be

The approach naturally extends totPlaAnnealing with
0<p<1, where we find that the misadjustment decays as
14P. This behavior is independent af,; that is, there is no
critical value of 5, to obtain the asymptotically normal dis-
tribution on \tPu. Upon nave inspection, this is a very cu-
rious result, as it suggests that one can piclarbitrarily
close to unity, and obtain a decay of the misadjustment arbi-
trarily close to the optimal t/rate. The caveat is that, in
deriving these results, we have truncated By retaining
only the terms pertinent to the asymptotic distribution. The
approachto the asymptotic distribution is not discussed at
all. Clearly there is an interesting dynamics in this pre-
equilibrium regime, none of which is developed in this
framework as it stands. The analysis has been carried beyond
the lowest-order description of the fluctuation density for a
constantiearning ratd17,23, by a perturbation expansion of

Yhe fluctuation densitdI. Presumably a similar approach

could be developed for annealed learning in order to discuss
theapproachto the equilibrium density. However, a numeri-
cal solution to the full nonlinear order parameter equations
would provide this information with less computational ap-
paratus.

explained by the need to unlearn correlations between Vec- The analysis of learning dynamics through the master
tors associated with different hidden nodes which is absem'@quation is completely general, placing mopriori con-

the case of single node systems. The sensitivity of the gensyaints on the architecture or data distribution, but it requires

eralization error decay factor on the choicergfis shown in
Fig. 1(c).

a knowledge of the jump moments in the asymptotic regime
for calculating the relevant properties. These jump moments

The influence of the noise strength on the generalization e of course architecture and data dependent. Since the

2

for the critical nor for the optimaly, is influenced by it.
The calculation above holds for the case=1 (wherec
ands and the moded; are absent In this case

2 _\/§7T
2

7 (K=1)=2n5"(K=1)=~ - (3D

Finally, for the general annealing schedule of the fosm
= 1 /tP with 0<p<1, the equations of motio(23) can be
investigated, and one again finds @°ldecay.

error can be seen directly from E@O): the n_oise variance analysis proceeds from the Kramers-Moyal expansi@n
o7, is just a prefactor scaling thetldecay. Neither the value \ynich is an infinite order partial differential equation, it is

necessarilyperturbative in its approach.

In contrast, the order parameter approach begins by
choosing appropriate order parameters, which are architec-
ture dependent, making specific assumptions regarding the
data distribution, and then writing down equations of motion
in closed form. The latter are coupled, nonlinear, ordinary
differential equations that can be solved numerically, or ex-
plored asymptotically using suitable linearization, as carried
out here. The fact that the equations are ordinary differential
equations, with a finite number of terms, rather than infinite

One other point that is worthwhile mentioning is that the order partial differential equations, holds obvious advantages
exact asymptotic results obtained here are consistent witfor numerical investigation.
those obtained using a variational method aimed at finding Using the order parameter approach we considered the
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task of a soft committee machir@architectural constraihnt We see the two approaches as complementary: the pertur-
learning from a teacher of the same architecture charactebative expansion of the master equation provides analytic
ized by a set of isotropic teacher vectors with added noiseesults on the asymptotic behavior without reference to spe-
(assumptions on data distributionWe obtain the dynamics cific architecture or data distributions. In this respect, it is
in the asymptotic regime for any number of hidden nodesentirely general. However, the technique is most facile when
and provide explicit expressions for the decaying generalizalimited to the lowest order in perturbation, as used here, and
tion error and for the criticdlEq. (29)] and optimal learning this focuses attention on the asymptotic regime. In practice,
rate prefactors for any number of hidden nodkesSimilar  much algorithmic effort is expendenlitsidethe asymptotic
results have been obtained for critical learning rate prefactoreegime. The order parameter approach provides finite order
using both methods, and both methods have been used #muations of motion for specific systems, with restricted data
study general 1f annealing 24]. distributions. However these equations of motion are conve-
The order parameter approach provides a potentially helpaient for numerical solution, and express the learning dy-
ful insight on passage into the asymptotic regime. Unlike thenamics throughout the training.
truncation of the small noise expansion, the truncation of the
order parameter equations to obtain the asymptotic dynamics
is couched in terms of system observaljlefs the discussion
following Eqg. (22)]. That is, one knows exactly which ob- D.S. and B.S. would like to thank the Leverhulme Trust
servables must be dominant for the system to be in théor their supportGrant No. F/250/K T.L. thanks the Inter-
asymptotic regime. Equivalently, starting from the full equa-national Human Frontier Science Program for travel support
tions, the order parameter approach can tell us when theGrant No. SF 473-96 and the NSF for support under Grant
system is close to the equilibrium distribution. No. ECS-9704094.
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motion for the fluctuation density. In particular, we were able
to solve the asymptotic, linearized, order parameter equations
(in terms of exponential integralenly for p=b/(1+b), with

b an integer, placing some restriction on the valuep abn-
sidered. However, this technical difficulty might yield under
further effort.



