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Optimal asymptotic learning rate: Macroscopic versus microscopic dynamics
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We investigate the asymptotic dynamics of on-line learning for neural networks, and provide an exact
solution to the network dynamics at late times under various annealing schedules. The dynamics is solved
using two different frameworks: the master equation and order parameter dynamics, which concentrate on
microscopic and macroscopic parameters, respectively. The two approaches provide complementary descrip-
tions of the dynamics. Optimal annealing rates and the corresponding prefactors are derived for soft committee
machine networks with hidden layers of arbitrary size.@S1063-651X~99!10401-X#
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I. INTRODUCTION

The asymptotic dynamics of stochastic, or on-line, lea
ing, and its dependence on the annealing schedule ado
for the learning coefficients, have been studied for some t
in the stochastic approximation literature@1,2#, and more re-
cently in the neural network literature@3–5#. In the latter
references, the analysis is based on a master equation
describes the dynamics of the weight space probability d
sities.

In most cases of interest, the transition probability appe
ing in the master equation cannot be written in closed fo
~however, an integrable class of systems is discussed in
@6#!, so some approximate form of the dynamics is dev
oped. Typically, as here, a small noise expansion provid
description of the dynamics in terms of suitably scaled fl
tuations about a deterministic flow. This approach has b
applied primarily to learning with a fixed, arbitrarily sma
learning rate. In this realm, it provides information on t
asymptotic distributions, convergence of learning with m
mentum, basin hopping, and learning with correla
samples~e.g., Refs.@7,8#, and references within!.

As discussed here, the approach can also be applie
annealed learning, where the learning rate is reduced
time to allow convergence~e.g., in mean square! of the
weights. For either a fixed or annealed learning rate one
for the equations of motion of the ensemble density, c
struct ~ordinary differential! equations of motion for its mo
ments, and hence evaluate the asymptotic generalizatio
ror and its convergence rate.

Recently, several authors@9,10# developed an alternativ
theoretical approach based on the dynamics of order pa
eters for the system. While the master equation appro
focuses on the stochastic dynamics ofmicroscopicquantities
~the weights!, the order parameter approach describes
deterministic dynamics ofmacroscopicquantities. The equa
tions of motion for the order parameters can be solved
merically, enabling one to monitor the evolution of the ord
parameters and the system performance at all times.
approach provided insight into the dynamics at early sta
of the learning process@11#, the scaling of training param
PRE 591063-651X/99/59~1!/985~7!/$15.00
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eters at the various stages@12#, the use of regularizers in
multilayer systems@13# and the optimization of learning pa
rameters and rules@14–16#.

In this paper we examine the relation between the t
approaches, and contrast the results obtained for diffe
learning rate annealing schedules in the asymptotic regi
Using the master equation, we develop a perturbation
proach that provides results about the asymptotic misadj
ment for annealed learning rate. Although these results
known from the classic stochastic approximation literatu
this particular approach has not, to our knowledge, b
aired in the literature. We employ the order parameter
proach to examine the dependence of the dynamics on
number of hidden nodes in a multilayer system. In additi
we report some lesser-known results on nonstandard ann
ing schedules.

II. MASTER EQUATION

Most on-line learning algorithms assume the form

wt115wt1h0 /tpH~wt ,xt!, ~1!

wherewt is the weight at timet, xt is the training example,
andH(w,x) is the weight update. The description of stocha
tic learning dynamics in terms of weight space probabil
densities starts from the master equation

P~w8,t11!5E dwK dS w82w2
h0

tp
H~w,x!D L

x

P~w,t !,

~2!

where^•••&x indicates averaging with respect to the meas
on x, P(w,t) is the probability density on weights at timet,
andd(•••) is the Dirac function. A Kramers-Moyal expan
sion of Eq.~2!, and passage to continuous time, produce
partial differential equation for the weight probability densi
~here in one dimension for simplicity of notation! @3,4#
985 ©1999 The American Physical Society
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] t P~w,t !5(
i 51

`
~21! i

i ! S h0

tp D i

]w
i @ ^Hi~w,x!&xP~w,t ! #.

~3!

Following Ref.@3#, we make a small noise expansion for E
~3! by decomposing the weight trajectory into the sum
deterministic and stochastic pieces

w[f~ t !1h0
g f ~ t !j

or

j5S 1

h0
g f ~ t !

D „w2f~ t !…, ~4!

wheref(t) is the deterministic trajectory, and thej ’s are the
fluctuations. Apart from the factorh0

g f (t) that scales the
fluctuations, this is identical to the formulation for consta
learning in Ref.@3#. We will obtain the proper value for the
unspecified exponentg, and the form of the functionf (t)
from homogeneity requirements.

Next the dependence of the jump moments^Hi(w,x)&x on
h0 is explicated by a Taylor series expansion about the
terministic pathf. The coefficients in this series expansio
are denoted

a i
~ j ![

] j^Hi~w,x!&x

]wj U
w5f

;

for convenience, we define a new time variable

s5t,

and transform the differential operators and densities in
~3! as dictated by Eq.~4!:

] t5]s2
1

h0
g f ~s!

df~s!

ds
]j2S f 8

f D j ]j ,

]w5
1

h0
g f ~s!

]j , ~5!

P~w,t !5„h0
g f ~s!…21P~j,s!.

Finally, we rewrite Eq.~3! in terms off and j and the
expansion of the jump moments using transformations~5!,
and suitably resumming the series. These transformat
leave equations of motion for the deterministic trajecto
f(s) and the densityP(j,s) on the fluctuations

df

ds
5S h0

sp D a1
~0!~f!5S h0

sp D ^H~f,x!&x , ~6!
.
f

t

e-

q.

ns

]sP5S f 8

f D ]j~j P!1 (
m52

`

(
i 51

m
~21! i

i ! ~m2 i !!

3a i
~m2 i !

h0
i ~122 g!1mg

sip
f ~s!m22i]j

i ~j~m2 i !P!.

~7!

Commonly, the learning algorithm is a stochastic gradi
descent, for which the weight update functionH(w,x) is
minus the gradient of the instantaneous costH(w,x)5
2¹w E(w,x). Then Eq.~6! describes the evolution off as
descent on the average cost. The fluctuation equation~7!
requires further manipulations whose form depends on
context.

We need to specifyg and f (s) to make further
progress. We assume a stochastic gradient descent
quadratic bowl, i.e. an algorithm with a cost functio
whose Hessian G is positive-definite. Then a1

(1)

52¹w
2 ^E(w,x)&xuw5f(s)[2G„f(s)…. To insure that for

each value ofm in Eq. ~7! the terms in the sum overi are
homogeneous in powers ofh0, we take

g5 1
2 .

Similarly, to insure that for each value ofm the terms in the
sum overi are homogeneous in time, we take

f ~s!5
1

sp/2
.

For a constantlearning rate (p50), we rescale the time
ass→h0s to allow Eq.~7! to be written in a form convenien
for a perturbation expansion of the solution in powers ofh0.
Typically, the small learning rate limith0→0 is invoked,
and only the lowest order terms inh0 retained~e.g., Ref.
@3#!. The remaining differential equation contains a simp
diffusion operator, which results in a Gaussian approxim
tion for equilibrium densities. Higher order terms have be
successfully used to calculate corrections to the equilibri
moments in powers ofh0 @17#.

Of primary interest here is the case ofannealed learning,
as required for convergence of the parameter estima
Again assuming a quadratic bowl withg5 1

2 and f (s)
51/sp/2, the first few terms of then-dimensional form of Eq.
~7! are

]sP5¹jF S h0

sp
G„f~s!…2

p

2 sD jPG
1

1

2

h0

sp
¹j~a2

~0! ¹j P!1OS h0

sp D 3/2

, ~8!

where the curvatureG and diffusion coefficientsa2
(0) are

matrices now. Ass5t→`, the right hand side of Eq.~8! is
dominated by terms explicitly written~since 0,p<1). Pre-
cisely which terms dominate depends onp.

Classical annealing

We first review the classical casep51 ~1/t annealing!.
The first three leading terms on the right hand side of Eq.~8!
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are all of order 1/s. For s→`, these terms dominate, and w
discard the remaining terms. The deterministic trajectory~6!

is a standard gradient flow~in transformed timeŝ5 ln s), and
thus limt→`f(s)5w* , wherew* is a local minimum of the
average cost̂E(w,x)&x . The fluctuation dynamics carrie
by the first three terms of Eq.~8! are a sensible diffusion
process only if theeffectivelinearized drift

Deff[h0 G2 1
2

is a positive definite matrix. This clearly requires

h0.h0
crit51/~2 lmin!, ~9!

wherelmin is the smallest eigenvalue ofG* [G(w* ).
If the criticality condition in Eq.~9! is met, then the equi-

librium density is a zero-mean Gaussian with a covaria
Sj that satisfies

Deff Sj1Sj Deff5h0 a2
~0!. ~10!

With our choice of g and f (s), the weight error v5w
2w* is related to the fluctuationj by v5Ah0 /s j. Conse-
quently, Asv is asymptotically normal and the expecte
squared weight error drops off asymptotically as

E@ uvu2#5Tr~E@vvT# !}
1

s
, ~11!

which is the well-known optimal asymptotic convergen
rate.

If the criticality condition is not met, the Gaussian equ
librium is not reached. The asymptotic convergence
E@ uvu2#) can still be calculated by developing the dynam
of the second momentRj[E@jjT#. One obtains the differ-
ential equations of motion by multiplying Eq.~8! by j i j j
and integrating overdnj to obtain

d

ds
Rj52

1

s
~DeffRj1RjDeff!1

h0

s
a2

~0! , ~12!

which has the solutions

Rj~s!5U~s,s0!Rj~s0!UT~s,s0!

1E
s0

s

dt
h0

t
U~s,t!a2

~0!UT~s,t!, ~13!

U~s,s0!5exp„2 ln~s/s0!Deff…. ~14!

Transforming the result back tow coordinates, we obtain
equation for the time-evolution of the weight error corre
tion matrix C5E@v vT#, and hence for the misadjustme
~derived by an alternative approach in Ref.@5#!

E@ uvu2#5 (
k51

n

Ckk~s0!S s0

s D 2h0lk

1
h0

2a2 kk
~0!

~2h0lk21!F1

s
2

1

s0
S s0

s D 2h0lkG , ~15!
e

f

-

wherelk is the eigenvalue of the curvatureG* ~at the local
optimum w* ), and Ckk and a2 kk

(0) are the diagonal compo
nents of the weight error correlation and the diffusion mat
~respectively!, both in coordinates for whichG* is diagonal.

From Eq.~15!, it is clear that whenh0.h0
crit , one has a

1/s decay of the misadjustment, while forh0,h0
crit the decay

progresses as (1/s)2h0lmin, i.e.,slower than 1/s. The above
confirm the classical results@1# on asymptotic normality and
convergence rate for 1/t annealing.

Alternative annealing schedules

In the case of 0,p,1 the right-hand side of Eq.~8! is
dominated at late times by the terms of order 1/sp. Now,
since G* is, by assumption, positive definite, there is n
criticality or switching behavior in the convergence. W
have a Gaussian equilibrium density forj, with a covariance
that satisfies

G* Sj1Sj G* 5a2
~0!

in analogy to Eq.~10!. The weight error is related to th
fluctuations byv5Ah0 /sp j ~so thatAsp v is asymptotically
normal! and consequently the expected squared weight e
drops off asymptotically as

E@ uvu2#}
1

sp
. ~16!

Notice that~i! the convergence isslower than 1/s, and ~ii !
there is no critical value of the learning rate to obtain
sensible equilibrium distribution. Related results are in R
@18#.

This approach to obtain the asymptotic dynamics of
fluctuations, and hence the misadjustmentE@ uvu2#, is quite
general. The derivations assume that the minimum stud
has a positive definite Hessian, and positive definite diffus
matrix a2

(0) . The latter is true for any nonrealizable task,
for a realizable task with noisy cost targets. The results h
for arbitrarily large systems, though the critical learning ra
for 1/t annealing depends on the eigenvalue spectrum of
curvature. The latter depends on the specifics of the c
function and input-target distribution.

Connection to neural networks

In the context of neural networks, the cost functio
E(w,x) measures the deviation between the trained netwo
output~here termed ‘‘students’’! and the output of the under
lying process represented here by a teacher network, sp
fied by some weight vector. The performance measure
interest is then not the misadjustment but the generaliza
error, defined for a given~student!weight distributionp(w)
as

eg5Š^E~w,x!&x‹w. ~17!

In the asymptotic regime the excess generalization e
eg2emin @whereemin is the least generalization error achie
able in the area of the~possibly local! minimum considered#
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follows the same decay rate as the misadjustment. Using
Taylor expansion of Eq.~17!, to lowest order in the weigh
error, one has

eg2emin 5 1
2 E@vTG* v#5 1

2 Tr~G* C!.

Thus the excess generalization error is bounded above~be-
low! by the maximum~minimum! eigenvalue ofG* times
the misadjustmentE@ uvu2#. These eigenvalues and eigenve
tors depend on the actual architecture of the neural netw
considered. In Sec. III we will use a different approach,
lying on the order parameter ansatz, to derive the learn
behavior for a neural network of a concrete architectu
namely, the soft committee machine.

III. ORDER PARAMETERS

In the master equation approach, one focuses attentio
the weight space distributionP(w,t), and calculates quanti
ties of interest by averaging over this density. An alternat
approach is to choose a smaller set ofmacroscopicvariables,
called order parameters, that are sufficient for describ
principal properties of the system such as the generaliza
error ~in contrast to the evolution of the weightsw which are
microscopic!.

Formally, one can replace the parameter dynamics
sented in Eq.~2! by the corresponding equation for macr
scopic observables, which can be easily derived from
corresponding expressions forw and the formal definition of
macroscopic observables@19#. By choosing an appropriat
set of macroscopic variables and invoking the thermo
namic limit ~i.e., looking at systems where the number
parameters is infinite!, one obtains a closed set of equatio
of point distributions for the order parameters, rendering
dynamics deterministic. Note that in contrast to the mas
equation approach, which provides an approximation of
weight space distribution, the order parameter approach
vides an exact closed set of deterministic equations wh
fully describe their dynamics, and can be employed for c
culating other observables which are of interest. The dis
vantages of this approach is that we are restricted to ca
lating observables which can be formulated in terms of
order parameters, and the approach is exact only in the t
modynamic limit ~although finite-size analysis shows qui
good agreement between theory and simulations for sm
systems@20#!.

Practically, the formal replacement of the microscopic p
rameters by the order parameters in Eq.~2! is usually unnec-
essary, and it is possible to set up the equations for the o
parameters straight away once the appropriate order pa
eters have been identified. We use this approach now to
vestigate the asymptotic behavior of the training dynam
with annealed learning rate of a soft committee mach
~SCM!, which is a generic two-layer neural network@9#, ex-
tending the results obtained in the master equation appro
The SCM maps inputsxPRN to a scalar, realized through
model r(w,x)5( i 51

K g(wi•x). The activation function of
the hidden units isg(u)[erf(u/A2), andwi is the set of
input-to-hidden adaptive weights for thei 51, . . . ,K hidden
nodes. The hidden-to-output weights are set to 1. The le
ing dynamics and generalization error evolution in this arc
he
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tecture are similar to that of a general two-layer netwo
Several researchers@9,10# have already employed the orde
parameter approach for calculating the training dynamics
a SCM, and the formalism can be easily extended to acc
modate adaptive hidden-to-output weights@21#.

The training examples (x,y) are independently drawn in
put vectors with zero mean, and unit variance and the co
sponding targetsy are generated by the response of a de
ministic teacher network corrupted by additive Gauss
output noise of zero mean and variancesn

2 . The teacher
network is also a SCM, characterized by input-to-hidd
weights wi* . The order parameters sufficient to close t
dynamics, and to describe the network generalization er
are overlaps between various input-to-hidden vectors

wi•wk[Qik , wi•wn* [Rin , wn* •wm* [Tnm . ~18!

Employing the learning rule given in Eq.~1! and using gra-
dient descent on a squared error measure as the weigh
date, focusing on a 1/t annealing, we obtain

wt115wt2
h0

t
¹w

1

2
@r~w* ,x!1z2r~w,x!#2 ~19!

as the update rule, wherez is the disruption of the teache
output by the additive Gaussian noise of variancesn

2 . By
calculating the corresponding dot products and averag
over the random training pattern distribution and the out
noise, one easily obtains update equations for the order
rameter which, in the thermodynamic limit (N→`), became
a deterministic set of coupled differential equations. The
equations are given in a closed form in Ref.@10#, where only
the constant learning rateh is examined, while in the curren
paper we concentrate on the annealed learning rateh0 /t. The
general solution of the coupled differential equations can
obtained only through numerical integration. However, t
asymptotic behavior in the case of annealed learningis ame-
nable to analysis, and this is one of the primary results of
paper.

Finally, the network performance is measured in terms
the generalization error

eg[^1/2@r~w,x!2y#2&x , ~20!

which can be expressed in closed form in terms of the or
parameters@10# @this is also the reason for the absence of
w average in comparison to Eq.~17!#. The goal of this study
is to solve the dynamics at late times, and find a learning
schedule which gives the optimal decay of the generaliza
error.

We assume an isotropic teacherTnm5dnm , and use task
symmetry to reduce the system to a vector of four or
parametersuT5(r ,q,s,c) related to the overlaps byRin
5d in(11r )1(12d in)s and Qik5d ik(11q)1(12d ik)c.
With learning rate annealing and limt→`u→0, we describe
the dynamics in this vicinity by a linearization of the equ
tions of motion in Ref.@10#, giving

d

dt
u5hMu1h2sn

2b, ~21!

wheresn
2 is the noise variance,bT5(2/p)(0,1/A3,0,1/2),h

5h0 /tp, and
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9
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A3 3A3~K22!16 23A3~K22!26

2 . ~22!

FIG. 1. ~a! The dependence o
the eigenvalues ofM on the num-
ber of hidden unitsK. Note that
the constant eigenvaluea1 domi-
nates the convergence forK>2.
~b! h0

opt and the resulting prefacto
for the generalization error decay
as a function ofK. ~c! The depen-
dence of the generalization erro
decay prefactor on the choice o
h0.
-

ic
ci
a

in
to
io
in

,
the
The asymptotic equation of motion~21! was derived by
dropping terms of orderO(huuuuu2) and higher,and terms of
orderO(h2 u). While the latter are linear in the order param
eters, they are negligible in comparison to theh u and
h2sn

2b terms in Eq.~21! as t→`.
The truncations used to arrive at the asymptotic dynam

shed light on an approach to equilibrium that is not impli
in the master equation approach. In the latter, the domin
terms for the asymptotic behavior of Eq.~8! were identified
by the coefficient’s time scale; there is no indication,
terms of system observables, for the onset of the asymp
regime. In contrast, in the present approach, the condit
for the validity of the asymptotic approximations are cast
terms of system observables directly by comparingh2u ver-
sushu andh2sn

2 .
The solution to Eq.~21! is

u~ t !5g~ t,t0!u01sn
2b~ t,t0!b, ~23!

whereu0[u(t0),
s
t
nt

tic
ns

g~ t,t0!5expH ME
t0

t

dt h~t!J
~24!

b~ t,t0!5E
t0

t

dt g~ t,t! h2~t!.

Both matricesg and b can be calculated in closed form
whereby each matrix element is a linear combination of
modesf i for b andu i for g ( i 51, . . . ,4) with

f i5S t

t0
D a ih0

~25!

u i52
h0

2

11a ih0
F1

t
2ta ih0t0

2~a ih011!G ,
wherea i is the eigenvalue of the matrixM @Fig. 1~a!#. Com-
paring this to Eq.~15!, one sees that thef i ’s andu i ’s have
the same general structure as the terms in Eq.~15!. Using
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these solutions, one obtains an explicit expression for
linearized generalization error~first order inu)

e l5
K

pS 1

A3
~q22r !1

K21

2
~c22s!D . ~26!

It turns out that only two modes survive, and we obtain

e l5sn
2@c1u1~ t !1c2u2~ t !#1a1f11a2f2 , ~27!

with the eigenvalues

a152
1

pS 4

A3
22D , a252

1

pS 4

A3
12~K21!D .

~28!

The constantsc1 andc2 depend only onK, while a1 anda2
also depend on the initial conditions. Obviously, the fast
decay one can obtain is 1/t when choosingh0.h0

crit , which
is ~for K>2)

h0
crit5maxS 2

1

a1
,2

1

a2
D5

p

4/A322
. ~29!

In this case the modesf i in Eq. ~27! decay faster then 1/t
and can be ignored, while the modesu i are dominated by the
1/t component; we thus have a 1/t decay independent of th
initial conditions, which is of the form

e l52sn
2h0

2S c1

11a1h0
1

c2

11a2h0
D1

t
[sn

2f ~h0 ,K !
1

t
.

~30!

For optimal decay of the asymptotic error we also have
minimize the prefactorf (h0 ,K) in Eq. ~30!. The values of
h0

opt(K) for various valuesK are shown in Fig. 1~b!, where
the special case ofK51 ~see below! is also included: There
is a significant difference between the values forK51 and 2,
and a rather weak dependence onK for K>2 which may be
explained by the need to unlearn correlations between
tors associated with different hidden nodes which is absen
the case of single node systems. The sensitivity of the g
eralization error decay factor on the choice ofh0 is shown in
Fig. 1~c!.

The influence of the noise strength on the generaliza
error can be seen directly from Eq.~30!: the noise variance
sn

2 is just a prefactor scaling the 1/t decay. Neither the value
for the critical nor for the optimalh0 is influenced by it.

The calculation above holds for the caseK51 ~wherec
ands and the modeu1 are absent!. In this case

h0
opt~K51!52h0

crit~K51!52
2

a2
5

A3p

2
~31!

Finally, for the general annealing schedule of the formh
5h0 /tp with 0,p,1, the equations of motion~23! can be
investigated, and one again finds a 1/tp decay.

One other point that is worthwhile mentioning is that t
exact asymptotic results obtained here are consistent
those obtained using a variational method aimed at find
e

t

o

c-
in
n-

n

ith
g

the globally optimal learning rate at all times@14,15#, but
which requires a numerical solution of a set of coupled d
ferential equations.

IV. DISCUSSION AND SUMMARY

We employed the master equation and order param
approaches to study the convergence of on-line learning
der different annealing schedules. For the 1/t annealing
schedule, the small noise expansion provides a critical va
for h0 ~Eq. 9! in terms of the curvature, above whichAt v is
asymptotically normal, and the misadjustmentE@ uvu2# de-
cays as 1/t. Though not developed here, the approach a
tells us that to achieve the most rapid decay of the mis
justment, one should seth05G* 21. Further development o
the dynamics suggests algorithms that automatically at
this optimal decay rate using only orderO(N) computation
and storage@5,22#.

The approach naturally extends to 1/tp annealing with
0,p,1, where we find that the misadjustment decays
1/tp. This behavior is independent ofh0; that is, there is no
critical value ofh0 to obtain the asymptotically normal dis
tribution onAtpv. Upon naı¨ve inspection, this is a very cu
rious result, as it suggests that one can pickp arbitrarily
close to unity, and obtain a decay of the misadjustment a
trarily close to the optimal 1/t rate. The caveat is that, in
deriving these results, we have truncated Eq~8!, retaining
only the terms pertinent to the asymptotic distribution. T
approachto the asymptotic distribution is not discussed
all. Clearly there is an interesting dynamics in this pr
equilibrium regime, none of which is developed in th
framework as it stands. The analysis has been carried bey
the lowest-order description of the fluctuation density fo
constantlearning rate@17,23#, by a perturbation expansion o
the fluctuation densityP. Presumably a similar approac
could be developed for annealed learning in order to disc
theapproachto the equilibrium density. However, a numer
cal solution to the full nonlinear order parameter equatio
would provide this information with less computational a
paratus.

The analysis of learning dynamics through the mas
equation is completely general, placing noa priori con-
straints on the architecture or data distribution, but it requi
a knowledge of the jump moments in the asymptotic regi
for calculating the relevant properties. These jump mome
are of course architecture and data dependent. Since
analysis proceeds from the Kramers-Moyal expansion~3!,
which is an infinite order partial differential equation, it
necessarilyperturbative in its approach.

In contrast, the order parameter approach begins
choosing appropriate order parameters, which are arch
ture dependent, making specific assumptions regarding
data distribution, and then writing down equations of moti
in closed form. The latter are coupled, nonlinear, ordina
differential equations that can be solved numerically, or
plored asymptotically using suitable linearization, as carr
out here. The fact that the equations are ordinary differen
equations, with a finite number of terms, rather than infin
order partial differential equations, holds obvious advanta
for numerical investigation.

Using the order parameter approach we considered
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task of a soft committee machine~architectural constraint!
learning from a teacher of the same architecture charac
ized by a set of isotropic teacher vectors with added no
~assumptions on data distribution!. We obtain the dynamics
in the asymptotic regime for any number of hidden nod
and provide explicit expressions for the decaying general
tion error and for the critical@Eq. ~29!# and optimal learning
rate prefactors for any number of hidden nodesK. Similar
results have been obtained for critical learning rate prefac
using both methods, and both methods have been use
study general 1/tp annealing@24#.

The order parameter approach provides a potentially h
ful insight on passage into the asymptotic regime. Unlike
truncation of the small noise expansion, the truncation of
order parameter equations to obtain the asymptotic dynam
is couched in terms of system observables@cf. the discussion
following Eq. ~22!#. That is, one knows exactly which ob
servables must be dominant for the system to be in
asymptotic regime. Equivalently, starting from the full equ
tions, the order parameter approach can tell us when
system is close to the equilibrium distribution.
e-
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cs
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We see the two approaches as complementary: the pe
bative expansion of the master equation provides anal
results on the asymptotic behavior without reference to s
cific architecture or data distributions. In this respect, it
entirely general. However, the technique is most facile wh
limited to the lowest order in perturbation, as used here,
this focuses attention on the asymptotic regime. In pract
much algorithmic effort is expendedoutsidethe asymptotic
regime. The order parameter approach provides finite o
equations of motion for specific systems, with restricted d
distributions. However these equations of motion are con
nient for numerical solution, and express the learning
namics throughout the training.
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