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Noise-induced fronts
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A simple model is introduced that exhibits a noise-induced front propagation and where the noise enters
multiplicatively. The invasion of the unstable state is studied, both theoretically and numerically. A good
agreement is obtained for the mean value of the order parameter and the mean front velocity using the
analytical predictions of the linear marginal stability analyp&1063-651X98)14912-7

PACS numbdps): 05.40—a

I. INTRODUCTION Il. MODEL AND ANALYTICAL RESULTS

We start with a generic model of reaction diffusion,
As is well known, nontrivial noise sources in stochastic
equations may give rise to a strikingly rich phenomenology i P )
representing a drastic contrast with respect to the determin- ot ﬁ —¢(at ¢, @)
istic (noiselessbehavior[1,2]. The study of the influence of

noise in several systems continues being an active field Qfyerea is the control parametdil7]. As far asa=0, the

research, but only very recently has attention been paid to thg,y steady solution of this equation is the homogeneous one
kind of model that possesses a deterministic global stablg;iin #(x)=0. Let us allow this parameter to fluctuate as
ground state that becomes unstable due to the presence of a

nontrivial noise source, thus exhibiting a genuine noise in-
duced transition3—8]. These include those models exhibit-
ing noise induced ordering transitiofi§—8], or noise in- - yherey(x,t) is a Gaussian noise of zero mean and correla-
duced patterng3]. Front dynamics have already been studiedijon given by
under fluctuations but always starting from a deterministic
model that itself possesses frontlike solutiggs13. (n(X,0) p(x",t"))=2C(x—x")8(t—t"). )

In this work we will address the issue of the generation of
fronts in such a noisy framework as well as their descriptionAs the noise is white in time the proceg$x,t) is Markov-
both analytically and numerically. The model is formulatedian. This is not a strong assumption if we consider that the
in terms of a stochastic partial differential equati®@DB  time scale of the noise is much shorter than any other of the
of Langevin type, which contains a multiplicative noise- field. This spatial part of the correlation functi@(x—x")
source term. This kind of noise is in general associated withwill be approximated also by & function because we will
external fluctuationgl], although internal noise sources may assume that its correlation length is much more smaller than
as well give rise to such a coupling with the field under quiteany other spatial scale of the system. Once we introduce a
general condition§14]. A standard way for the introduction mesh grid for the spatial domain, this will correspond to
of an external noise is to let a control parameter of the detaking the correlation Iength of the noise of the order of the

a—a(x,t)=a—e2p(x,1), 2

terministic model to fluctuatgl]. mesh sizeAx. Thus Eq.(1) becomes a SPDE of the form
We will start with a model where in the absence of noise R

the homogeneous sta#ix,t) =0 is globally stable and thus dp ¢ 2 U2

neither fronts nor any other kind of spatial structures are ot ﬁ_d’(fﬁd’ )T e hnx.D). )

allowed. Any initial condition will relax to this steady state.
We can conjecture whether it would be possible to generate e will strictly follow the theoretical approach formu-
fronts by a kind of coupling with an external noise. We will |ated in Ref.[13], based in a former techniquya5,16, for
see that this is the case. So we will have genuine noise indescribing the effects of the noise by the way of explicitly
duced fronts. This is not a surprise. We have commentedeparating the systematic contribution of the noise in(&x.
before that external multiplicative noise can induce patternThe main steps are summarized in what follows.
[3] or phase$4,6—8. We will show here that fronts can also  An important point here is the fact that the noise term in
be generated in the same way, explicitly, by the presence d&qg. (4) has a nonzero mean value. Using Novikov's theorem
external fluctuations. [18], and the Stratonovich interpretation, we get

In the next section we present the model and the theoret-
ical framework and results. Section Il is devoted to the nu- (dn(x,1))=€Y2C(0)( ), (5)
merical technique and results. Finally, we end with a conclu-
sion and some perspectives of this work. where,C(0) is explicitly given by
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1 0.5 T
C(0)= 15 (6)
04 | :
in the white noise approximation in a lattice.
According to this result we can rewrite E@) as 03|
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and x
u FIG. 1. Initial stages and propagation of a noisy front. The ini-
R(é,x,t)=dn(X,t)—€ 2C(0)¢- ©) tial Gaussian pulse increases to some saturated value and then gives
L o . rise to a front invading theb=0 state. Snapshots were takert at
Taking into account these definitions, the noisy tdRmhas  —50, 100, 240, and 450. The continuous line shows the expected

zero mean value and a correlation

<R(¢1X1t)R( ¢1X’ 1t’)> :<¢(th) U(th)ﬁb(X’ ,t’) 77()(, !t,)>
+0(e*?). (10

theoretical value forgst. Simulations were performed fa=0.1
ande(0)=0.15.

Lo (16)
Assuming now that the field is expanded as Pst

oc a curious result that indicates that this quantity is indepen-
X,t) = (X, 1)+ 24 (x.t), 11 dent of any parameter of the model. These are very smple
PO = do(x.1) 21: €7 dnlxt) (a1 and precise predictions that we want to check by numerical
simulations of Eq(4).
and, substituting this expression into H@) we get to the

lowest order IIl. NUMERICAL PROCEDURE AND RESULTS
ddo Py We have numerically integrated our model using a for-
5 e — po(a’ + ¢3). (12  ward propagation scheme in the way of a basic finite-
ox

difference Euler algorithm. Periodic boundary conditions

. . _ . _ have been imposed in a linear system of lergthivided in
Details of this theoretical approach are given in HdS], N cells of mesh sizeAx. Simulations were performed for

including next order corrections. So we have now that théyy_ g 5 andAt=0.01 except were otherwise indicated. For

linear control parameter is renormalized, the implementation of the noise source a standard random
number generator has been ud@d|, while the needed
Gaussian numbers have been obtained using the algorithm
implemented in Ref[21].

An initial Gaussian-like pulse localized in the center of
|the system, of heightt=0.01 and width(mean standard de-
viation) w=8/3 has been chosen as a perturbation to favor
the development of a front. This perturbation is necessary
because the homogeneous initial stgte0, although un-
stable, will remain there for ever. Multiplicative noise alone
cannot trigger the evolution of a front or any other structure,
precisely because it is coupled multiplicatively with the field
that is now zero.

When considering the finite difference version of &4,
the noise acquires an effective intensity that is given by

a’'=a—eC(0). (13

Hence, for those cases in whieti[ eC(0)]<1, or,a’<0,
then the homogeneous solution of H42) ¢,=0 is not
longer stable and any spatial perturbation will grow unti
nonlinear terms saturate it. Thus this type of instability will
produce a front propagating in both directions if a perturba
tion of any size is present.

This new state is a spatiotemporal fluctuating field
¢(x,t), and not a smooth front such as it is either in the
deterministic case or in the case of R&X]. Nevertheless one

can define a kind of mean stationary va@g as the nonzero
steady state that can be calculated from @4),

$st= Po(sy=[€C(0) — a]'? (14 €(0)=€e/Ax=€C(0). 17
The linear marginal stability analysj49] applied to Eq. Several front trajectories appear in Fig. 1. Frontlike struc-
(12) gives that the front velocity is ture and propagation characteristics are clear. We see how
- the initial spatial perturbation grows up to some saturated
v=2[eC(0)—a]'? (15 value and after that, the structure formed invades the un-

stable statep=0. Moreover, the noise influence is much
and from Eqgs(14) and (15) we have also that more apparent here than in those models where their deter-
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ministic part already allows for fronts to rise (ip]. Hence
one cannot expect priori, better agreements with the the-
oretical predictions than in those cases. Indeed, as the front is
completely induced by the external fluctuations, the steady
state is spatiotemporal stochastic, and hence the characteriza
tion of the front will deserve a more detailed numerical |
analysis than in those cases with a deterministic dominant
component superimposed on spatiotemporal small fluctua-
tions.

For those systems a common procedure for defining the

location of a front propagating into thg=0 state is via the
integral

xdx(;b(x,t):xo-l—?[—A(t),

st¥ Xo

z(t)= (18

&(0)

FIG. 2. Front mean velocity vs noise intensity for two values of
the order parametea,= 0.1 (triangles anda= 0.3 (squares Closed

wherex, is an arbitrary constant that can be considered asymbols correspond to numerical simulations of the stochastic

the location of the initial pulsegy; is the steady state left
behind the front, an@d will correspond to the mean propa-
gation velocity of the deterministic effective froftl3],
which indeed corresponds to the front-end speed of the a
tual front, while A(t) gives account for the stochastic wan-

dering of the front. As long as we are interested in the evo
lution of an initial perturbation located somewhere inside the
spatial domain, a slightly different numerical approach mus

model (4) for Ax=0.5 andAt=0.01; open triangles and squares
stand for Ax=0.1 andAt=0.001. Circles show results for the

simulation of the deterministic mod€l2). Lines show the expected

theoretical predictior{15).

C_

In the first case we have to wait for the front to occupy all the

domainL, provided we have periodic boundary conditions,
hereas the second one will allow the determinatiorpgf

be prescribed to evaluate the mean velocity and the medfQ" earlier, although late enough times. However, the first
steady field. In this work, we will concentrate in the case of9'V€S better results and was the one used in our simulations.

an initial symmetric perturbation.
The position of the front is defined as

2(t)=3L ()= f x40 - o), (19

where 6(y) is the Heaviside step function, amd(t) is the

When the front reaches the boundaries at the time
t [Ls(t.)=L], the sampling ofé(t) starts. Its stationary
value will be calculated as

1 T 1
b= Tty LL‘“‘“”:HE pu @

length of the front evaluated as the distance from its twovheren=(T—t,)/At, and T is the time during which the
extremes points propagating in opposite directions. Henc#ont is let to evolve, always greater thap. This corre-

z(t) gives the position of the leading part of the half right

hand side of the front. We will also consider the area com-

prised by the front

A(t)= dexqﬁ(x,t), (20

sponds to an ergodic average @ft).
The mean velocity has been estimated averaging

_ La(t)—Ls(to)

v(t)= Tt t>

to (29

betweent=t,+20 andt=t, .

where both integrals extend over the whole spatial domain These two definitions give reliable values faj(t)

under consideratiorl. s(t) andA(t) are necessary quantities
to evaluate the mean velocityand the mean steady stabg,

~ st andv(t)~v_if transitory contributions have died out
by a proper election df,. The value of§ in the definition of

of the front. It should be borne in mind that some kind of Ls(t) has been chosen small enough=0.001) for it not to
quotient of both magnitudes at late enough times should aPeécome a sensible source of errors.

low us the evaluation of thebs,. At the same time, the
evolution ofL 4(t) will be used to obtain.

For the numerical evaluation Qﬁt we have considered
two possibilities, namely,

)= A 21
&( )—m, (21
as well as
A —A(L)
PO Lot 22

In Fig. 2 we see the mean front velocity versus the effec-
tive intensity of the multiplicative noise. It is clearly seen
that for intensities lower than a critical value,

ec(0)=a, (25

the velocity is zero, which means that there is no front at all.
The agreement with the theoretical predict{@s) is remark-
able. Also,v turns out to be less sensitive to the discretiza-
tion scheme ofAx and At, than ¢4, as we will see later.
Some values have been obtained for the deterministic effec-
tive front (12), which are shown as four circles for the case
a=0.1 and two fora=0.3 one. For the rest of the symbols
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— . ) . FIG. 4. Ratio of the front mean velocity and steady field vs
FIG. 3. Mean steady stats; vs noise intensity for different  otective control parameter. See previous figures for symbol nota-
values of the control parameter. Diamonds show results fOkjon The error bars were calculated as the mean standard error for

Ax=0.25 andAt=0.01 for each value of. The same notation as gach ergodic average, once the front occupied the whole spatial
in Fig. 2 has been chosen for the rest of the symbols. lengthLL.

their sizes give an upper bound to the error of each point. o
From now on, each of the symbols will refer to the sameseen that this is the case. Thus we have shown that fronts can

values of the parameters as stated for this figure. be generated in the same way as other kind of instabilities
Figure 3 presents the mean fiefd, versus the effective like patterns or phases, for example. We have studied and
noise intensity. We see also that for noise intensities lowegharacterized the front dynamics of a system that exhibits
than the critical value no front does exist. The theoreticalonly one unique stable ground state in its deterministic ver-
values are sensible greater than the numerical ones, but prgion, but which undergoes a nonequilibrium transition via a
gressive improvement is achieved by smaller gdds This ~ symmetry breakingstochasti¢ perturbation in the control
effect is clearly seen in this figure. Reducing the mesh siz@arameter.
Ax for a fixed value of the effective noise intensigf0) For the velocity of the front we have obtained perfect
corresponds to making smaller, and the solution of the agreement with the well known results of linear marginal
SPDE[Eq. (4)] will tend to that of the effective deterministic g¢apjlity in the presence of noise. The valuesfgf show up
front (12). _ _ _to be more sensitive to the mesh steps of the numerical al-
In Fig. 4, the ratio of the mean velocity and steady fieldgorithm, but great improvement is achieved by reducing the
are plotted versus the effective control paramaferWe see  mesh gridAx, in consistency with the results for the veloc-
that the theoretical predictio(i6) is well followed by nu-
merical data. Indeed, the=0.3 values forg(t) systemati- Due to the symmetry of the model and the fact that the
cally come up lower than the ones for the case0.1. This  ¢coypling with the noise is linear, only fronts propagating into
is not so forv(t) where both sets give the same mean valuejinearly unstable states are expected. We have also studied a
Hence this shows up in Fig. 4 as a systematically greatefigher-order coupling. If a quadratic contribution is consid-
value for the casea=0.3, and consequently a greater devia-gred in the reaction term then fronts invading a metastable
tion from the expected theoretical val(®6). In calculating  state are possible. Preliminary results confirming the ex-

the error bars, just the fluctuations of the sampled values gfected possibility of that kind of noise generated front will
#(t) andv(t) have been considered. Thus, this does nobe presented elsewhere.

include possible systematic error that arises from the numeri-

cal integration of Eq(4). ACKNOWLEDGMENT
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