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A contact map is a simple representation of the structure of proteins and other chainlike macromolecules.
This representation is quite amenable to numerical studies of folding. We show that the number of contact
maps corresponding to the possible configurations of a polypeptide ch&naofino acids, represented by
(N—1)-step self-avoiding walks on a lattice, grows exponentially Wtfor all dimensionsD>1. We carry
out exact enumerations =2 on the square and triangular lattices for walks of up to 20 steps and investigate
various statistical properties of contact maps corresponding to such walks.. We also study the exact statistics of
contact maps generated by walks on a ladf®1063-651%99)10101-9

PACS numbeps): 87.15.By, 87.10te, 05.50+q

I. INTRODUCTION of these, however, do not correspond to physical structures;

Prediction of a protein’s structure from its amino acid these matrices cannot be realized as contact maps of real,
P hysical chains or SAW'’s.

sequence is an important and challenging open problem. THE In fact, as we shall se&jy, , the total number of physical

first choice one has to make when approaching the problem X . : g
is that ofstructure representatiorOne of the most minimal- maps obtainable for a chain of lengthon a lattice, satisfies

ist representations of a protein’s structure is in terms of its:[he bounds

contact mag1,2] which, for a polypeptide chain of length
N—1, is anNXN matrix S. Denoting byi,j the position
index of the amino acids along the chain, the elementS of
are defined as

eSN< N =<eSN, )

The upper bound in Ed2) follows trivially from the bound
on Ngaw, the total number of SAW’s, which is asymptoti-
cally given by[9]
1 ifamino acidd andj are in contact, 1 N e
Sj= 0 otherwise. (1) Npu<Nsaw~N"""u"~e"", ¢, =In u, ()
wherepu is the connectivity constant of the lattice, apds a

“Contact” can be defined in various ways: for examp8,  critical exponent.
one can se;=1 when there exist two heavgll but hy- A simple construction of a special set of walks, each with
droge[) atoms, one from amino acidand one fron]', sepa- a distinct contact map provides the lower bound. Start the
rated by less than some threshold distance. Contact maps &feain at the the originj=1; the first step and all odd-
independent of the coordinate frame used and for compadfdexed steps are in the positive horizontal directiom,
structures, such as the native state of proteins, with manyhereas every even indexed step is in the vertical direction,
contacts, it is relatively easy to go from a map to a set ofither +y or —y. The decision taken for stepi Zither
possible structures to which it may correspd@¢ht,5. On a brings the site P+ 1 into contact with 2— 2, in which case
lattice, a protein conformation, or fold, is represented as &j-22+1=1, or this contact is absent arf;_,,,;=0.
self-avoiding random walkSAW) [6]. A site on the lattice Hence for every choice of the set of vertical steps we get a
visited by the walk represents an amino acid. Two sites ofvalk whose contact map does not appear for any different
the SAW are in contact if they are nearest neighbors and theyalk from the set. Clearly, the maps constructed this way
arenonconsecutivalong the walk. must haveS,;_y 51=0 for k>1. In this way we obtain

To search for a protein’s native structure in the space oNg, SAW'’s and the following exponential lower bound for
contact mapsas has been proposed by several groupss  the number of contact maps,
important to have general knowledge about the size and na-
ture of this space. Recent studigg8] of the dynamics of Ny =NEan~ 2N2~eSN, (4
naturally occurring proteins have shown that the contact
maps along with simple energetics is enough information tcClearly the argument works for any dimension and can be
reproduce the vibrational spectrum with some accuracy. Thiextended for the triangular lattice. Thisather pooy bound
makes it important to understand the statistics of the contaetan be improved by including walks whose maps can have
map representation. In particular, one would like to knowother nonvanishing elements, e.g., W8}_45+1=1. A bet-
how the number of differernphysicalcontact maps depends ter lower bound for the square lattice is obtained by an ex-
on the chain length\. Clearly one has "N+ distinctN  plicit construction given in Sec. IIl.
XN symmetric matrices of binary elemerfs§ =0,1. Most We actually expect that Ihg,)/N approaches a limit,
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FIG. 2. A comparison of the connective constantfor the
N walks and the exponential growth factor expfor the contact maps
generated on a square lattice evolving with the size of the walk.

FIG. 1. Upper curveNsaw, the number of SAW's vs their  Horizontal lines are the known valye=2.638[9] and our estimate
length N, obtained by exact enumeration féf<25 on the 2D  ga— 3 phased on the data for alls.

square lattice and fitted with E@2). The lower curve shows the
exponential variation oN,,, the number of contact maps corre-
sponding to all possible SAW’s withl<20. Data were obtained
from complete enumeration.

0.0 5.0 10.0 15.0 20.0 25.0

strictly less than Ing), we present in Fig2 a plot of the
running value of the connective constanfor the walks and
the running value of expj for the maps as the size of the
walk increases. The running slopgN) is computed from
(5) ~ enumeration data using the standard formula

In 1£(N)=3[In Nsaw(N+1)—In NsafN—1)],  (6)

as N becomes lardéhe existence of a limit does not follow
directly from Eq.(2)]. To estimatea we computed, foN  and an analogous one for the factdior maps. This figure is
<20, the precise numbefs), on the square and triangular consistent witra<<In .
lattices. This is done by exact enumeration of all possible Most biologically functional proteins fold into remarkably
distinct SAW’s, i.e., not related by symmetry operations ofcompact conformations, with very few solvent molecules in
the lattice, and the corresponding contact maps. the interior. Therefore it is of interest to consider how the

Using this enumeration for lom and sampling for larger number of contact maps and their corresponding walks var-
N, we also computed various other statistics of contact mapses with the number of contacts.
such as the number of maps with particular density of con- Denote byNgaw(c) the number of walks with a fixed
tacts, the number of SAW'’s that correspond to this set ohumberNc of contacts. When there is an interaction energy
maps, etc. We also obtained explicit results about the corray associated with each contact, thenNg(y) is identical to
sponding quantities for walks on a special “ladder” lattice. the entropy of the chain at enerfy=Ncu. In Fig. 3 we plot

the fractions

IN(Np)
N

II. EXACT ENUMERATION IN D=2

. Nsaw(€)=IN[Nsaw(C)/N] (7)
In the upper curve of Fig. 1 we plot the number of walks

Nsaw, Obtained by complete enumeratiphl], versusN,  for chains of different lengthsl on the 2D square lattice.

fited (for N<25) with the known [9] estimates u The time required to enumerate walks and maps increases
=2.6381585 for the connective constant apd 43/32 for  exponentially with the siz&\ and it becomes impractical to
the critical exponent on the two-dimension@D) square use this method. However, we want to generate the statistics
lattice. The lower curve is the total numbhg, of contact  for larger values ofN, which is the actual physical situation.
maps, corresponding to all possible SAW’s witk=20 on a  Standard techniques are routinely u$8iito generate unbi-

2D square lattice. Fitting Eq(2), we obtaina=0.831). ased samples of SAW'’s on the lattice. We use the method of
This result was obtained previously, by enumerating walkgncomplete enumeratiofRedner-Reynoldsto generate our
with N=<14, by Chan and Dil[10]. For comparison, we note sample of unbiased SAWIL2].

that a straightforward fit oNga With Eq. (3) gives the We use our sample to generate the distribution of the
upper bound prefactoc,=1.00(1), and that the lower fraction of the walks with a given number of contacts
bound prefactor, as from E), is c,=0.346. We obtained ngay(Nc) as introduced before for SAW's of lengtN

the corresponding results for the triangular lattice. But in this=64,128,256. In Fig. 3, we plot the result.

case due to the higher density of contacts, we were able to One would like to say something about how this distribu-
obtain results only foN=<11 as shown in Fig. 1. Our fit gave tion looks in the asymptotic limit. We try to analyze this by
c,=1.47(1) anda=1.281). To address the question rescaling the finite-size variables such that the distributions
whether inD=2 the constanta for the contact maps is collapse on top of each other. If Fig. 4, we observe that
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Nsaw nM(C):ln[NM(C)/N] (8)
1.00 |- /256
128 vary with ¢, again for various chain lengths.
] The main difference between Figs. 3 and 5 is that the
- _— 64 S ) -
080 L distribution of walks has its maximum at smaller values of

than the distribution of contact maps. This can be understood
intuitively by noting that for smalt the number of maps is
suppressed in comparison iy (C): for example, there is
only a single contact map with= 0, whereas there are many
walks with no contacts. In general, the degeneracy of contact
maps has a nontrivial dependence on the number of their
contacts.

Consider walks of lengtiN and denote by
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G=eN9 9
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the degeneracy of a map, i.e., the number of walks corre-

FIG. 3. Logarithmngay(c) of the fraction of walks with a given ~ sponding to that contact map. For each valug @fe deter-
fraction ¢ of contacts. On the square lattice, we show data obtainesninedH(g), the number of maps whose degeneracgis
from exact enumeration for chain lengtNs-14,16,18,20, and data This information is shown in Fig. 6 where we present
obtained from sampling foN=64,128,256. For clarity, errors on h(g)=In H(g)/N versusg, for walks of lengthN=20 on the
data from sampling are shown only féf=64. On the triangular  square lattice. We further analyze the degeneracy by concen-
lattice, we show the fractiongay(c) of walks with a given number trating on thesubset of mapsvith a fixed number of con-
Nc of contact forN=9,10,11. tacts,Nc. In Fig. 6 we show results foNc=3,4,5,6,9, i.e.,

¢=0.15,0.2,0.25,0.3,0.45. Not surprisingly, the maps with

normalizing the variance to 1 and the mean to 0, results itarge number of contacts which correspond to the typical
the collapse of the distributiongfor the three different native folds of proteins generally have small degeneracy. It
lengths ofN=64,128,256). We compare this to the normal-is the maps with few contacts which account for the large
ized Gaussian. From the data obtained, it appears that wdegeneracy. In general the map with O (all zero entries in
cannot rule out either possibility(Gaussian or non- the matriy has G>2N corresponding to all the directed
Gaussiaj We also list the kurtosis valuésobtained for the  walks with no contacts. The walks that correspond to maps
different data sets. For a Gaussian distribution, we expect awith different degeneracies differ in the lengths of contact-
exact value of 3.00. free segments that the walk has. Fo+=20 andNc=6 on

It is, however, not clear how one should generate the disthe square lattice, we measured the lengtbf the longest
tribution of the maps with a given number of contactscontact-free stretch at the ends of the walk. Maps with low
Nm(Nc). While we have standard and efficient algorithms todegeneracy have, on the averages; 1, whereas for highly
generate SAW’s with the desired weight, it seems difficult todegenerate maps we found, typicallys=7 (there are also
generate contact maps that are equally weighted in thhighly degenerate maps and walks with long contact-free
sample and not biased with their degeneracies. stretches far from the endsClearly, the presence of long

Let now Ny (c) be the number of distinct contact maps stretches free of contacts is responsible for the high degen-
with Nc contacts. We show in Fig. 5 how the fractions eracy of a map.

0.45 T T T T T

. FIG. 4. The collapse of distributioffer three
different lengthg for the fraction of walks with a
K=3.30 for N=64 T given number of contacts after rescaling the

K=2.99 for N=128 finite-size variables.
K=3.25 for N=256 1

Normalized Distributions

b

2
Rescaled Density of Contacts
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FIG. 5. Logarithmny(c) of the fraction of contact maps with a
given fractionc of contacts, shown for four different walk lengths
on the 2D square lattice, and for three different walk lengths on th
triangular lattice.

FIG. 7. Scaling plot of the degeneracy functi@@c) averaged
Qver all the contact maps witNc contacts, plotted for different
chain lengthaN on the triangular and square lattices.

. EXACT RESULTS FOR WALKS AND MAPS ON A
Let now G(Nc) denote the average degeneracy over all LADDER
the maps witiNc contacts. We studie@(Nc) as a function In this section, we introduce and solve the problem ex-
of Nc. As already mentioned, contact maps corresponding t@ctly on a toy lattice. The lattice is a ladder of two rows of
maximally compact walks have, on the average, a very smaljtes, at pointsx,y) with y=0,1 andx=0,1,2 . . . . Wecon-
degeneracy. It seems reasonable to assume that for a fixgflier all walks starting at the origin with horizontal steps in
c=N./N, G(Nc) will grow exponentially withN, such that the positivex direction. We first show that the numbers of
SAW'’s and contact maps is exponentialNip with different
coefficientsa. Denote byA(N) the number of walks oN

In G(N,Nc)=aNf(c). (10)  steps,
A(N)=Ar(N)+A,(N),

The enumeration results seem to support this assumption Q\%ereAh(N) is the number of walks that end with a hori-

seen in the collapse plot in Fig. 7 with=0.86 for the square ;5| step and, (N) walks end with a vertical step. Since a
lattice anda=1.07 for_the triangular lattice. The value af |0 icq stepmustbe preceded by a horizontal one we have
is extracted by fittingG(N,0)~e“N. As we can see the as-

sumption Eq.{10) seems to hold to good accuracy. A,(N)=Ap(N—-1).
08 On the other hand, to every walk one can add a horizontal
’ step so that
h(g)
06 . total Ap(N)=A(N-1).

Thus we get, using these three relationships, the recursion for
the Fibonacci numbers:

04 ¥ I A(N)=A(N—1)+A(N—2) (11)
and hence the number of walks grows, for laijeexponen-
0.2 8 tially
5
A(N)~exN  a,=In 5 ~0.481. (12
%%00 010 020 | 030 0.40 0.50

A recursion for the number of contact maps can be calculated
FIG. 6. Histogram oh(g)=In H(g)/N, whereH(g) is the num-  as well. One way to do this is by representB@\), the total
ber of maps with degeneray=e\?, for walks of lengttiN=20on  number of distinct contact maps bf steps as a sum
the square lattice. Separate curves are shown for subset of maps
with ¢=0.15,0.2,0.25,0.3,0.45. B(N)=Bgy(N)+B4(N),
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1 2 3 4 5 6 a two-step of type 2 and the second and third steps of which
‘ ‘ ‘ |—| LI u ‘ ‘ ‘ qonstitute a two-step pf type 4. Note that only those transi-
tions that do not terminate the walke., do not generate a

FIG. 8. The six possible two successive steps on a ladder. contac} are designated as possible by the maitrixfor ex-
ample, we havé 3,=0 sin@ a 4 followed ly a 3 generates a

where Bo(N) is the number of contact matricegnaps contact,
whose first row contains only zeroése., the first site does
not have a contaitB;(N) is the number of those maps for
which the first site does have a contact. Since to every map
we can add a first rowand column of zeroes, we have

Bo(N)=B(N—1). L= (14
For all maps that start with a contact, the first four steps are
fixed; the corresponding walks can be continued in two dif-

ferent ways, either with a vertical step or with a horizontal

one. These two possibilities give rise to a recursion of th
form

O O O O b B
O O O O O
O r O O O O
= O O O O O
O »r O O O -
=, O O +— O

Note that to have a contact by adding two-steghe two-
stepn—1 must be either of type 4 or 5; the corresponding
B,(N)=B,(N—2)+B(N-5). vectors areV,= (000 100) andVs=(000010). The degen-
eracy of walks of lengtimin between contacts is then given
With a little algebra the last three equations yield the finalby

recursion
D(M)=[(Va) T+ (Vs)TIL™ 1V,
B(N)=B(N—1)+B(N—2)—B(N—3)+B(N—-5).

(13 or [(Vy)T+(Vs)TIL™ 1V, (15
If we now assume that The possible lengths fom are 2,5,6,7. .., and thecorre-
IN[B(N) sponding degeneracies are given by 1,1,1,1,23,
M_)eam 4,6,9,13,19,28,41(6. . . . Note thatD(100)~ 10 and as-
N ymptotically
asN becomes large, we find thafm is the solution of the D(m)(1.469™=g038an (16)
equation ' '
P-q*—qi+q2—1=0, where 1.465 is the largest eigenvalue of the madlirix
An NXN contact map is completely specified by the set
which yields of intercontact interval$m}. If for a given map an interval

of lengthm appeardN(m) times, denote

an~0.36Ka,.
Having counted the number of walks and maps, we turn to P(m)=N(m)/N.
calculate various statistical features of maps and walks on a
ladder. For example, we can consider the fraction of maps
with a given number of contacts; the degeneracy of maps[,)
i.e., the number of different walks that have the same map,
etc. Analytical examination of such quantities sheds light on In Ngaw({m})= NE P(m)In D(m). (17)
the origin of results obtained from exact enumeration of m
walks in two dimensions and indicate the extent to which the
relatively short chains that can be enumerated represent thide number of contacts of this map is given by
true two-dimensional behavior.

A walk of N steps taken according to the rules given
above can be characterized by the sequence of the contact- NCGm})Z% N(m)=N; P(m)=Nc,
free intervals between all pairs of consecutive contacts. We
denote bym the number of steps needed to walk from thenere the number of contacts per step is
end site of contach—1 to the end site of contact. Let
D(m) denote the degeneracy of such a contact-free walk, N
i.e., the number of different SAW'’s of length. To calculate c= 2 P(m)= WC (19
D(m), we introduce a transition matrix, among six pos- m
sible “states,” of pairs of consecutive steps, referred to as L i
“two-steps.” The six possible two-steps that can occur on al '€ normalization of th&(m) is
ladder are shown in Fig. 8.

The fact thatl ,,=1 shows that it is possible to have a 2 P(m)m=1. (20)
three-step walk the first and second steps of which constitute m

he logarithm of the number of SAW's associated with this
articular map is then given by

(18
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The number of map$l,, characterized by the same set of 0.50
fractions{P(m)} (with different orderings of the contact-free Nsaw
intervalg is
0.40 |, 1

In Ny=—N>, P(m)In P(m)+NcInc (22)

0.30 .
and therefore the number of SAWMN,,,, associated with all
maps characterized by the same fractipR$¢m)} is
0.20 | 1
In NSAV\[ P(m)] ladder
=-N % P(m)[In P(m)=In D(m)]=clnc,. 0'1%.00 o.‘10 0.20 0.30 o.‘40 o 050
(22 FIG. 9. ngaw=In(Nsaw/N) vs ¢, for maps ofNc contacts.

The interplay between these two terms is clear. As thd he numerical solutio.n of the saddle poin'g equations gives
distancem between contacts increases, the number of SAW'§1/N)_|HN5AWaS a fu_nct|o_n ot, the concentration of contacts,
corresponding to such a map increases exponentially, but 2'd 1S presented in Fig. 9. The maximum NJIA(Nsaw

the same time the number of contacts in the map decreasee)-481, as expected, is obtained for 0.105. .
One can calculate Ihy,) as a function ofc in a similar

and the number of such mafisermutation of the distances quhion. All one has to do is to sB(m) =1 in Eq.(23): the

decreases exponentially. Some limiting cases can be anresultin saddle point equations are obtained from E2@
lyzed as follows. For the case densest with contacts,d.e., 9 €p quatic T :
7 . and(25), by using there, agai)(m)=1.
=0.5, there are only two possible maps and hence . ; .

; The numerical solution for (N)In(N,,) as a function of
IN(Ns/N-—0. On the other hand, for maps witx(1) con- ¢, with the trivial end points (0,0) and (0.5,0), are presented
tacts, and hencec—0, m scales with N, and D(N) iﬁ Fig. 10 b ' B P

0.38N 038N Qinee i -
::caeses Iﬁﬂaneotgifgogﬁsggeeas 0 422(5:;”; OEQZH)TIHTE The final property of walks and maps on a ladder that we
SA : 9 ' calculate deals with the degeneracy of a map Wihcon-

quantity Infsay) is expected to have a maximum at somey, o "o by = eN9 the number of walks that have the

intermediate value ot. same map and bl (g,c) the number of maps dfic con-
The number of SAW's associated with maps that hstee tacts and this value of the degeneracy. The quaktity,c)

contacts can be studied analytically,

is given by
1 1
Nsmc):f wdp(m)a{z mP(m)—l} H(g,c):f0 de(m)a‘[E P(m)In D(m)—g}
0 m m
X8>, P(m)—c exp(—N X8 Y, mP(m)—lHE P(m)—c
m m m
x{ > P(m)[In P(m)—In D(m)]—c In c]) . xex;{ —N[ > P(m)[In P(M)]—c In c])
m m
(23 (26)
0.40
The integrals are evaluated by the saddle point method; the n,
resulting equations can be reduced to the following coupled
equations foP(2) andP(5): 030 | |
1=P(2)2 D(M[P(5)/P(2)]™?"m,
m 0.20 b
c=P(2)X D(M[P(5)/P(2)I™ " (24 1o ladder
m 0T
where for every allowedn=2,5,6,7 ..., the degeneracy
D(m) is determined by Eq15); these are supplemented by 0.00 o 010 0.0 050 040 050

C

P(m)=P(2)D(m)[P(5)/P(2)](M~27, (25) FIG. 10. ny=In(Ny/N) vs c; Nc is the number of contacts.
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FIG. 11. Histogram oh(g,c)=In H(g,c)/N vs g, for c=0.2 on
a ladder.

and the saddle point equations fd?(m)} are

P(Z) P(S) [In D(m)/In 2]

P(S) (m-2)/3
P(m)=P(2)D(m) BB )

P(2)

(27)

The three unknown fractiorB(2), P(5), andP(8) are de-
termined through the three global constraints

c=2, P(m),

m

1=, P(m)m, g=_>, P(m)In D(m).

A typical result forc=0.2 is presented in Fig. 11. Figure 1

plots g versusc.

IV. SEMIDIRECTED RESTRICTED WALKS

STATISTICAL PROPERTIES OF CONTACT MAPS

983

Denote the total number of walks bY%(N). As before,
An(N) of these walks end with a horizontal step alkgN)
walks end with a vertical step,

A(N)=An(N)+A,(N).

A,(N) can be further classified inﬂoclassesAiU(N) corre-
sponds to walks that end with exactilyertical steps,

A,(N)=ALN)+AZ(N)+ - - - +AK(N),
AL(N)=AI"Y(N=-1),
AL(N)=2A(N-1).
A little algebra gives the following recursive relation:
AN)=A(N=1)+2[A(N=2)+--- +A(N—Kk—-1)].

So the connective constariof exponential growth is
given by the root of the following polynomial equation:

1-yk
1-y

(y—1)y*=2 -
For k=1 this reduces toy(—1)y=2, i.e.,y=2, whereas in
the k—oo limit it simplifies to (y—1)?=2 so that the con-
nective constant increasesyte- 1+ \2~2.42.

Computing the number of contact matrices for a genleral
seems slightly more tedious, but it is possible to do it explic-
itly for k=1. We denoteB(N) by the number of distinct
maps of sizeN. It can be classified into maps with either one

2 contact or no contact in the first row. The number of the

former isBy(N) and the latteB,(N),
B(N)=Bo(N) +B1(N),

Bo(N)=B(N—1),

A related problem is that of semidirected restricted walks
(SRW'’9 on a square lattice. These walks are defined as fol-
lows: all horizontal steps are directedin the + x direction.
Vertical steps are restricted so that the number of consecu- A little algebra leads to the following recursive relation:
tive vertical steps never exceeklsThek=1 case is already

B,(N)=B(N—4)+B;(N—2).

a superset of walks on a ladder.
The number of SRW's can be computed as follows.

0.40 T T T

9

ladder

0.30

0.20

0.10

0-00 1 1 L
0.00 0.10 0.20 0.30 0.40 0.50

c

FIG. 12. Plot ofg vs c on a ladder.

B(N)=B(N—1)+B(N—-2)—B(N—3)+B(N—-4),
which, in turn, leads to the polynomial equation
q*-9*-qg?+q—1=0.

The root,q~1.51, corresponding to the growth factor for the
maps, is slightly higher than that of the ladder1.44). We
have not found a simple way to compuéN) for generalk
values.

V. SUMMARY

Contact maps are a compact and useful representation of a
protein’s structure. Contact maps are used for screening can-
didate structures from a database. More recently attempts
were made to use them to fold proteins, i.e., determine the
map of a protein of known sequence by minimizing some
energy function.

In order to have a handle on the work involved in search-
ing the subspace of physical maps, it is important to know
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various statistics. For example, how the number of physicaContact maps corresponding to very compact waikes.,

maps increases with the protein’s length, the dependence bighestN:) have low degeneracy. The ground state of a

various properties on the number of contacts, etc. In thigrotein is most likely to be found among these maps.

paper we studied these issues on several lattices; for an es-

sentially one-dimensional ladder the results were obtained
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