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Statistical properties of contact maps
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A contact map is a simple representation of the structure of proteins and other chainlike macromolecules.
This representation is quite amenable to numerical studies of folding. We show that the number of contact
maps corresponding to the possible configurations of a polypeptide chain ofN amino acids, represented by
(N21)-step self-avoiding walks on a lattice, grows exponentially withN for all dimensionsD.1. We carry
out exact enumerations inD52 on the square and triangular lattices for walks of up to 20 steps and investigate
various statistical properties of contact maps corresponding to such walks.. We also study the exact statistics of
contact maps generated by walks on a ladder.@S1063-651X~99!10101-6#

PACS number~s!: 87.15.By, 87.10.1e, 05.50.1q
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I. INTRODUCTION

Prediction of a protein’s structure from its amino ac
sequence is an important and challenging open problem.
first choice one has to make when approaching the prob
is that ofstructure representation. One of the most minimal-
ist representations of a protein’s structure is in terms of
contact map@1,2# which, for a polypeptide chain of lengt
N21, is anN3N matrix S. Denoting by i , j the position
index of the amino acids along the chain, the elements oS
are defined as

Si j 5H 1 if amino acidsi and j are in contact,

0 otherwise.
~1!

‘‘Contact’’ can be defined in various ways: for example@3#,
one can setSi j 51 when there exist two heavy~all but hy-
drogen! atoms, one from amino acidi and one fromj, sepa-
rated by less than some threshold distance. Contact map
independent of the coordinate frame used and for com
structures, such as the native state of proteins, with m
contacts, it is relatively easy to go from a map to a set
possible structures to which it may correspond@2,4,5#. On a
lattice, a protein conformation, or fold, is represented a
self-avoiding random walk~SAW! @6#. A site on the lattice
visited by the walk represents an amino acid. Two sites
the SAW are in contact if they are nearest neighbors and
arenonconsecutivealong the walk.

To search for a protein’s native structure in the space
contact maps~as has been proposed by several groups!, it is
important to have general knowledge about the size and
ture of this space. Recent studies@7,8# of the dynamics of
naturally occurring proteins have shown that the cont
maps along with simple energetics is enough information
reproduce the vibrational spectrum with some accuracy. T
makes it important to understand the statistics of the con
map representation. In particular, one would like to kn
how the number of differentphysicalcontact maps depend
on the chain lengthN. Clearly one has 2N(N11)/2 distinct N
3N symmetric matrices of binary elementsSi j 50,1. Most
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of these, however, do not correspond to physical structu
these matrices cannot be realized as contact maps of
physical chains or SAW’s.

In fact, as we shall see,NM , the total number of physica
maps obtainable for a chain of lengthN on a lattice, satisfies
the bounds

ecl N<NM<ecuN. ~2!

The upper bound in Eq.~2! follows trivially from the bound
on NSAW, the total number of SAW’s, which is asymptot
cally given by@9#

NM<NSAW;Ng21mN;ecuN, cu5 ln m, ~3!

wherem is the connectivity constant of the lattice, andg is a
critical exponent.

A simple construction of a special set of walks, each w
a distinct contact map provides the lower bound. Start
chain at the the origin,i 51; the first step and all odd
indexed steps are in the positive horizontal direction1x,
whereas every even indexed step is in the vertical direct
either 1y or 2y. The decision taken for step 2i either
brings the site 2i 11 into contact with 2i 22, in which case
S2i 22,2i 1151, or this contact is absent andS2i 22,2i 1150.
Hence for every choice of the set of vertical steps we ge
walk whose contact map does not appear for any differ
walk from the set. Clearly, the maps constructed this w
must haveS2i 2k,2i 1150 for k.1. In this way we obtain
NSAW8 SAW’s and the following exponential lower bound fo
the number of contact maps,

NM>NSAW8 ;2N/2;ecl N. ~4!

Clearly the argument works for any dimension and can
extended for the triangular lattice. This~rather poor! bound
can be improved by including walks whose maps can h
other nonvanishing elements, e.g., withS2i 24,2i 1151. A bet-
ter lower bound for the square lattice is obtained by an
plicit construction given in Sec. III.

We actually expect that ln(NM)/N approaches a limit,
977 ©1999 The American Physical Society
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ln~NM !

N
→a, ~5!

as N becomes large@the existence of a limit does not follow
directly from Eq. ~2!#. To estimatea we computed, forN
<20, the precise numbersNM on the square and triangula
lattices. This is done by exact enumeration of all possi
distinct SAW’s, i.e., not related by symmetry operations
the lattice, and the corresponding contact maps.

Using this enumeration for lowN and sampling for larger
N, we also computed various other statistics of contact m
such as the number of maps with particular density of c
tacts, the number of SAW’s that correspond to this set
maps, etc. We also obtained explicit results about the co
sponding quantities for walks on a special ‘‘ladder’’ lattic

II. EXACT ENUMERATION IN D52

In the upper curve of Fig. 1 we plot the number of wal
NSAW, obtained by complete enumeration@11#, versusN,
fitted ~for N<25) with the known @9# estimates m
52.638 158 5 for the connective constant andg543/32 for
the critical exponent on the two-dimensional~2D! square
lattice. The lower curve is the total numberNM of contact
maps, corresponding to all possible SAW’s withN<20 on a
2D square lattice. Fitting Eq.~2!, we obtaina50.83(1).
This result was obtained previously, by enumerating wa
with N<14, by Chan and Dill@10#. For comparison, we note
that a straightforward fit ofNSAW with Eq. ~3! gives the
upper bound prefactorcu51.00(1), and that the lower
bound prefactor, as from Eq.~4!, is cl 50.346. We obtained
the corresponding results for the triangular lattice. But in t
case due to the higher density of contacts, we were abl
obtain results only forN<11 as shown in Fig. 1. Our fit gav
cu51.47(1) and a51.28(1). To address the questio
whether in D52 the constanta for the contact maps is

FIG. 1. Upper curve:NSAW, the number of SAW’s vs their
length N, obtained by exact enumeration forN<25 on the 2D
square lattice and fitted with Eq.~2!. The lower curve shows the
exponential variation ofNM , the number of contact maps corre
sponding to all possible SAW’s withN<20. Data were obtained
from complete enumeration.
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strictly less than ln(m), we present in Fig. 2 a plot of the
running value of the connective constantm for the walks and
the running value of exp(a) for the maps as the size of th
walk increases. The running slopem(N) is computed from
enumeration data using the standard formula

ln m~N!5 1
2 @ ln NSAW~N11!2 ln NSAW~N21!#, ~6!

and an analogous one for the factora for maps. This figure is
consistent witha, ln m.

Most biologically functional proteins fold into remarkabl
compact conformations, with very few solvent molecules
the interior. Therefore it is of interest to consider how t
number of contact maps and their corresponding walks v
ies with the number of contacts.

Denote byNSAW(c) the number of walks with a fixed
numberNc of contacts. When there is an interaction ener
u associated with each contact, then ln(NSAW) is identical to
the entropy of the chain at energyE5Ncu. In Fig. 3 we plot
the fractions

nSAW~c!5 ln@NSAW~c!/N# ~7!

for chains of different lengthsN on the 2D square lattice.
The time required to enumerate walks and maps increa

exponentially with the sizeN and it becomes impractical to
use this method. However, we want to generate the statis
for larger values ofN, which is the actual physical situation
Standard techniques are routinely used@9# to generate unbi-
ased samples of SAW’s on the lattice. We use the metho
incomplete enumeration~Redner-Reynolds! to generate our
sample of unbiased SAW’s@12#.

We use our sample to generate the distribution of
fraction of the walks with a given number of contac
nSAW(Nc) as introduced before for SAW’s of lengthN
564,128,256. In Fig. 3, we plot the result.

One would like to say something about how this distrib
tion looks in the asymptotic limit. We try to analyze this b
rescaling the finite-size variables such that the distributi
collapse on top of each other. If Fig. 4, we observe t

FIG. 2. A comparison of the connective constantm for the
walks and the exponential growth factor exp(a) for the contact maps
generated on a square lattice evolving with the size of the w
Horizontal lines are the known valuem52.638@9# and our estimate
ea52.3, based on the data for allN’s.
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normalizing the variance to 1 and the mean to 0, result
the collapse of the distributions~for the three different
lengths ofN564,128,256). We compare this to the norm
ized Gaussian. From the data obtained, it appears tha
cannot rule out either possibility~Gaussian or non-
Gaussian!. We also list the kurtosis valuesK obtained for the
different data sets. For a Gaussian distribution, we expec
exact value of 3.00.

It is, however, not clear how one should generate the
tribution of the maps with a given number of contac
NM(Nc). While we have standard and efficient algorithms
generate SAW’s with the desired weight, it seems difficult
generate contact maps that are equally weighted in
sample and not biased with their degeneracies.

Let now NM(c) be the number of distinct contact map
with Nc contacts. We show in Fig. 5 how the fractions

FIG. 3. LogarithmnSAW(c) of the fraction of walks with a given
fractionc of contacts. On the square lattice, we show data obtai
from exact enumeration for chain lengthsN514,16,18,20, and data
obtained from sampling forN564,128,256. For clarity, errors o
data from sampling are shown only forN564. On the triangular
lattice, we show the fractionnSAW(c) of walks with a given number
Nc of contact forN59,10,11.
in

-
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nM~c!5 ln@NM~c!/N# ~8!

vary with c, again for various chain lengths.
The main difference between Figs. 3 and 5 is that

distribution of walks has its maximum at smaller values oc
than the distribution of contact maps. This can be underst
intuitively by noting that for smallc the number of maps is
suppressed in comparison toNSAW(c): for example, there is
only a single contact map withc50, whereas there are man
walks with no contacts. In general, the degeneracy of con
maps has a nontrivial dependence on the number of t
contacts.

Consider walks of lengthN and denote by

G5eNg ~9!

the degeneracy of a map, i.e., the number of walks co
sponding to that contact map. For each value ofg we deter-
minedH(g), the number of maps whose degeneracy iseNg.
This information is shown in Fig. 6 where we prese
h(g)5 ln H(g)/N versusg, for walks of lengthN520 on the
square lattice. We further analyze the degeneracy by con
trating on thesubset of mapswith a fixed number of con-
tacts,Nc. In Fig. 6 we show results forNc53,4,5,6,9, i.e.,
c50.15,0.2,0.25,0.3,0.45. Not surprisingly, the maps w
large number of contacts which correspond to the typi
native folds of proteins generally have small degeneracy
is the maps with few contacts which account for the lar
degeneracy. In general the map withc50 ~all zero entries in
the matrix! has G.2N corresponding to all the directe
walks with no contacts. The walks that correspond to m
with different degeneracies differ in the lengths of conta
free segments that the walk has. ForN520 andNc56 on
the square lattice, we measured the lengthL of the longest
contact-free stretch at the ends of the walk. Maps with l
degeneracy have, on the average,L.1, whereas for highly
degenerate maps we found, typically,L.7 ~there are also
highly degenerate maps and walks with long contact-f
stretches far from the ends!. Clearly, the presence of lon
stretches free of contacts is responsible for the high deg
eracy of a map.

d

e

FIG. 4. The collapse of distributions~for three
different lengths! for the fraction of walks with a
given number of contacts after rescaling th
finite-size variables.
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Let now Ḡ(Nc) denote the average degeneracy over

the maps withNc contacts. We studiedḠ(Nc) as a function
of Nc. As already mentioned, contact maps correspondin
maximally compact walks have, on the average, a very sm
degeneracy. It seems reasonable to assume that for a
c5Nc /N, Ḡ(Nc) will grow exponentially withN, such that

ln Ḡ~N,Nc!5aN f~c!. ~10!

The enumeration results seem to support this assumptio
seen in the collapse plot in Fig. 7 witha50.86 for the square
lattice anda51.07 for the triangular lattice. The value ofa

is extracted by fittingḠ(N,0);eaN. As we can see the as
sumption Eq.~10! seems to hold to good accuracy.

FIG. 5. LogarithmnM(c) of the fraction of contact maps with
given fractionc of contacts, shown for four different walk length
on the 2D square lattice, and for three different walk lengths on
triangular lattice.

FIG. 6. Histogram ofh(g)5 ln H(g)/N, whereH(g) is the num-
ber of maps with degeneracyG5eNg, for walks of lengthN520 on
the square lattice. Separate curves are shown for subset of
with c50.15,0.2,0.25,0.3,0.45.
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III. EXACT RESULTS FOR WALKS AND MAPS ON A
LADDER

In this section, we introduce and solve the problem e
actly on a toy lattice. The lattice is a ladder of two rows
sites, at points (x,y) with y50,1 andx50,1,2, . . . . Wecon-
sider all walks starting at the origin with horizontal steps
the positivex direction. We first show that the numbers
SAW’s and contact maps is exponential inN, with different
coefficientsa. Denote byA(N) the number of walks ofN
steps,

A~N!5Ah~N!1Av~N!,

whereAh(N) is the number of walks that end with a hor
zontal step andAv(N) walks end with a vertical step. Since
vertical stepmustbe preceded by a horizontal one we hav

Av~N!5Ah~N21!.

On the other hand, to every walk one can add a horizo
step so that

Ah~N!5A~N21!.

Thus we get, using these three relationships, the recursion
the Fibonacci numbers:

A~N!5A~N21!1A~N22! ~11!

and hence the number of walks grows, for largeN, exponen-
tially

A~N!;eawN, aw5 ln
11A5

2
'0.481. ~12!

A recursion for the number of contact maps can be calcula
as well. One way to do this is by representingB(N), the total
number of distinct contact maps ofN steps as a sum

B~N!5B0~N!1B1~N!,

e

ps

FIG. 7. Scaling plot of the degeneracy functionḠ(c) averaged
over all the contact maps withNc contacts, plotted for different
chain lengthsN on the triangular and square lattices.
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where B0(N) is the number of contact matrices~maps!
whose first row contains only zeroes~i.e., the first site does
not have a contact!; B1(N) is the number of those maps fo
which the first site does have a contact. Since to every m
we can add a first row~and column! of zeroes, we have

B0~N!5B~N21!.

For all maps that start with a contact, the first four steps
fixed; the corresponding walks can be continued in two d
ferent ways, either with a vertical step or with a horizon
one. These two possibilities give rise to a recursion of
form

B1~N!5B1~N22!1B~N25!.

With a little algebra the last three equations yield the fi
recursion

B~N!5B~N21!1B~N22!2B~N23!1B~N25!.
~13!

If we now assume that

ln@B~N!#

N
→eam

as N becomes large, we find thateam is the solution of the
equation

q52q42q31q22150,

which yields

am'0.367,aw .

Having counted the number of walks and maps, we turn
calculate various statistical features of maps and walks o
ladder. For example, we can consider the fraction of m
with a given number of contacts; the degeneracy of ma
i.e., the number of different walks that have the same m
etc. Analytical examination of such quantities sheds light
the origin of results obtained from exact enumeration
walks in two dimensions and indicate the extent to which
relatively short chains that can be enumerated represen
true two-dimensional behavior.

A walk of N steps taken according to the rules giv
above can be characterized by the sequence of the con
free intervals between all pairs of consecutive contacts.
denote bym the number of steps needed to walk from t
end site of contactn21 to the end site of contactn. Let
D(m) denote the degeneracy of such a contact-free w
i.e., the number of different SAW’s of lengthm. To calculate
D(m), we introduce a transition matrixL, among six pos-
sible ‘‘states,’’ of pairs of consecutive steps, referred to
‘‘two-steps.’’ The six possible two-steps that can occur o
ladder are shown in Fig. 8.

The fact thatL4251 shows that it is possible to have
three-step walk the first and second steps of which const

FIG. 8. The six possible two successive steps on a ladder
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a two-step of type 2 and the second and third steps of wh
constitute a two-step of type 4. Note that only those tran
tions that do not terminate the walk~i.e., do not generate a
contact! are designated as possible by the matrixL—for ex-
ample, we haveL3450 since a 4 followed by a 3 generates a
contact,

L5S 1 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

D . ~14!

Note that to have a contact by adding two-stepn, the two-
stepn21 must be either of type 4 or 5; the correspondi
vectors areV45(000 100) andV55(000 010). The degen
eracy of walks of lengthm in between contacts is then give
by

D~m!5@~V4!T1~V5!T#Lm21V2

or @~V4!T1~V5!T#Lm21V3. ~15!

The possible lengths form are 2,5,6,7, . . . , and thecorre-
sponding degeneracies are given by 1,1,1,1,2
4,6,9,13,19,28,41,60 . . . . Note thatD(100);1016 and as-
ymptotically

D~m!}~1.465!m5e0.382m, ~16!

where 1.465 is the largest eigenvalue of the matrixL.
An N3N contact map is completely specified by the s

of intercontact intervals$m%. If for a given map an interval
of lengthm appearsN(m) times, denote

P~m!5N~m!/N.

The logarithm of the number of SAW’s associated with th
particular map is then given by

ln NSAW~$m%!5N(
m

P~m!ln D~m!. ~17!

The number of contacts of this map is given by

Nc~$m%!5(
m

N~m!5N(
m

P~m!5Nc, ~18!

where the number of contacts per step is

c5(
m

P~m!5
Nc

N
. ~19!

The normalization of theP(m) is

(
m

P~m!m51. ~20!
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The number of mapsNM characterized by the same set
fractions$P(m)% ~with different orderings of the contact-fre
intervals! is

ln NM52N(
m

P~m!ln P~m!1Nc ln c ~21!

and therefore the number of SAW’s,NW , associated with all
maps characterized by the same fractions$P(m)% is

ln NSAW@P~m!#

52NH(
m

P~m!@ ln P~m!2 ln D~m!#2c ln cJ .

~22!

The interplay between these two terms is clear. As
distancem between contacts increases, the number of SAW
corresponding to such a map increases exponentially, b
the same time the number of contacts in the map decre
and the number of such maps~permutation of the distances!
decreases exponentially. Some limiting cases can be
lyzed as follows. For the case densest with contacts, i.ec
50.5, there are only two possible maps and he
ln(NSAW)/N→0. On the other hand, for maps withO(1) con-
tacts, and hencec→0, m scales with N, and D(N)
}e0.382N, and thereforeNSAW;e0.382N. Since in both limiting
cases ln(NSAW) does not scale as 0.481N @see Eq.~12!#, the
quantity ln(NSAW) is expected to have a maximum at som
intermediate value ofc.

The number of SAW’s associated with maps that haveNc
contacts can be studied analytically,

NSAW~c!5E
0

1

pdP~m!dF(
m

mP~m!21G
3dF(

m
P~m!2cGexpS 2N

3H(
m

P~m!@ ln P~m!2 ln D~m!#2c ln cJ D .

~23!

The integrals are evaluated by the saddle point method;
resulting equations can be reduced to the following coup
equations forP(2) andP(5):

15P~2!(
m

D~m!@P~5!/P~2!#~m22!/3m,

c5P~2!(
m

D~m!@P~5!/P~2!#~m22!/3, ~24!

where for every allowedm52,5,6,7, . . . , the degeneracy
D(m) is determined by Eq.~15!; these are supplemented b

P~m!5P~2!D~m!@P~5!/P~2!#~m22!/3. ~25!
e
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The numerical solution of the saddle point equations gi
(1/N)lnNSAWas a function ofc, the concentration of contacts
and is presented in Fig. 9. The maximum (1/N)ln(NSAW)
50.481, as expected, is obtained forc;0.105.

One can calculate ln(NM) as a function ofc in a similar
fashion. All one has to do is to setD(m)51 in Eq.~23!; the
resulting saddle point equations are obtained from Eqs.~24!
and ~25!, by using there, again,D(m)51.

The numerical solution for (1/N)ln(NM) as a function of
c, with the trivial end points (0,0) and (0.5,0), are presen
in Fig. 10.

The final property of walks and maps on a ladder that
calculate deals with the degeneracy of a map withNc con-
tacts. Denote byG5eNg the number of walks that have th
same map and byH(g,c) the number of maps ofNc con-
tacts and this value of the degeneracy. The quantityH(g,c)
is given by

H~g,c!5E
0

1

pdP~m!dF(
m

P~m!ln D~m!2gG
3dF(

m
mP~m!21GdF(

m
P~m!2cG

3expS 2NH 2(
m

P~m!@ ln P~m!#2c ln cJ D
~26!

FIG. 9. nSAW5 ln(NSAW/N) vs c, for maps ofNc contacts.

FIG. 10. nM5 ln(NM /N) vs c; Nc is the number of contacts.
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PRE 59 983STATISTICAL PROPERTIES OF CONTACT MAPS
and the saddle point equations for$P(m)% are

P~m!5P~2!D~m!FP~2!P~8!

P~5!2 G [ ln D~m!/ ln 2]S P~5!

P~2! D
~m22!/3

.

~27!

The three unknown fractionsP(2), P(5), andP(8) are de-
termined through the three global constraints

c5(
m

P~m!, 15(
m

P~m!m, g5(
m

P~m!ln D~m!.

A typical result forc50.2 is presented in Fig. 11. Figure 1
plots ḡ versusc.

IV. SEMIDIRECTED RESTRICTED WALKS

A related problem is that of semidirected restricted wa
~SRW’s! on a square lattice. These walks are defined as
lows: all horizontal steps are directed2 in the1x direction.
Vertical steps are restricted so that the number of cons
tive vertical steps never exceedsk. Thek51 case is already
a superset of walks on a ladder.

The number of SRW’s can be computed as follows.

FIG. 11. Histogram ofh(g,c)5 ln H(g,c)/N vs g, for c50.2 on
a ladder.

FIG. 12. Plot ofḡ vs c on a ladder.
s
l-

u-

Denote the total number of walks byA(N). As before,
Ah(N) of these walks end with a horizontal step andAv(N)
walks end with a vertical step,

A~N!5Ah~N!1Av~N!.

Av(N) can be further classified intok classes.Av
i (N) corre-

sponds to walks that end with exactlyi vertical steps,

Av~N!5Av
1~N!1Av

2~N!1•••1Av
k~N!,

Av
i ~N!5Av

~ i 21!~N21!,

Av
1~N!52Ah~N21!.

A little algebra gives the following recursive relation:

A~N!5A~N21!12@A~N22!1•••1A~N2k21!#.

So the connective constant~of exponential growth! is
given by the root of the following polynomial equation:

~y21!yk52
12yk

12y
.

For k51 this reduces to (y21)y52, i.e.,y52, whereas in
the k→` limit it simplifies to (y21)252 so that the con-
nective constant increases toy511A2'2.42.

Computing the number of contact matrices for a generk
seems slightly more tedious, but it is possible to do it exp
itly for k51. We denoteB(N) by the number of distinct
maps of sizeN. It can be classified into maps with either on
contact or no contact in the first row. The number of t
former isB0(N) and the latterB1(N),

B~N!5B0~N!1B1~N!,

B0~N!5B~N21!,

B1~N!5B~N24!1B1~N22!.

A little algebra leads to the following recursive relation

B~N!5B~N21!1B~N22!2B~N23!1B~N24!,

which, in turn, leads to the polynomial equation

q42q32q21q2150.

The root,q'1.51, corresponding to the growth factor for th
maps, is slightly higher than that of the ladder ('1.44). We
have not found a simple way to computeB(N) for generalk
values.

V. SUMMARY

Contact maps are a compact and useful representation
protein’s structure. Contact maps are used for screening
didate structures from a database. More recently attem
were made to use them to fold proteins, i.e., determine
map of a protein of known sequence by minimizing som
energy function.

In order to have a handle on the work involved in sear
ing the subspace of physical maps, it is important to kn
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various statistics. For example, how the number of phys
maps increases with the protein’s length, the dependenc
various properties on the number of contacts, etc. In
paper we studied these issues on several lattices; for an
sentially one-dimensional ladder the results were obtai
analytically and in two dimensions we studied the square
triangular lattices by exact enumeration and sampling. In
dition we provide exact bounds on the number of disti
physical maps, valid in any dimension.

Our main findings can be summarized as follows:~i! The
number of physical contact maps scales exponentially w
the lengthN of the walk. ~ii ! The number of contact map
~and of walks as well! is a nonmonotonic function of the
number of contacts.~iii ! The average degeneracy of conta
maps that haveNC contacts decreases asNC increases.~iv!
-

al
of

is
es-
d
d

d-
t

h

t

Contact maps corresponding to very compact walks~i.e.,
highest NC) have low degeneracy. The ground state o
protein is most likely to be found among these maps.
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