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Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape
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We determined scaling laws for the numerical effort to find the optimal configurations of a simple model
potential energy surfacPES with a perfect funnel structure that reflects key characteristics of the protein
interactions. Generalized Monte Carlo methgifonte Carlo minimization and stochastic tunnelidCM,
STUN)] avoid an enumerative search of the PES and thus provide a natural resolution of the Levinthal
paradox. We find that the computational effort grows with approximately the eighth power of the system size
for MCM and STUN, while a genetic algorithm was found to scale exponentially. The scaling behavior of a
derived lattice model is also rationaliz§®1063-651X99)01701-§

PACS numbdrs): 87.10+e, 87.15.By, 02.70.Lq

Despite recent successes in the description of the molecwf the realistic problem. Our results demonstrate that the
lar structure[1,2] and the folding process of small polypep- Levinthal paradoX18-20, which arises from the enormous
tides[3,8], theab initio prediction of the molecular structure number of low-lying conformations of the protein, is natu-
for larger proteins remains an elusive goal. Since sequencinglly resolved in the presence of a funnel structure. For such
techniques presently outperform available experimental technodels, stochastic thermodynamically motivated minimiza-
niques for protein structure predictiéRSH by a wide mar-  tion techniques are generically able to avoid the exponen-
gin, the reservoir of sequenced proteins of unknown structurga|ly difficult enumerative search of the potential energy sur-
represents an ever-growing pool of available, but as of yefgce (PES in favor of a power-law dependence. Our
inaccessible, biological information. These observations momyestigation of a novel stochastic tunneling technique,
tivate the search foab initio techniques to predict the mo- \hich removes the kinetic barriers between local minima of
lecular structure of proteins from the amino acid sequencene PES, demonstrates that the scaling exponeistdeter-
alone as one of the outstanding challenges to biologicahined by the thermodynamic complexity of the model, not
physics. by the barrier height of the kinetic pathways. We find that

In one widely pursued theoretical approach to PSP, thégne computational effort of Monte Carlo—based methods
native structure of the protein is sought as the global minigrows with approximately the eighth power of the system
mum of an appropriate potential or free-energy function ofsjze. The genetic algorithm we investigated was the most
the moleculg2,9-11 often including interactions with the efficient technique for small systems, but its computational
solvent in an approximate, implicit fashion. As the folding effort grew exponentially with system size. This finding
process in nature takes place on a long time scale {10 demonstrates that the investigation of the growth laws yields
—10s), its direct simulation cannot be accomplished witha much stronger criterion for the selection of promising al-
the presently available computational resources. It is theregorithms than the comparison of different techniques for
fore desirable to determine the global minimum of the po-ixed system size. Finally, we provide an explicit demonstra-
tential function without recourse to the foldlng dynamics. It tion that the Sca"ng exponent of Monte Carlo techniques on
has been argued that the resulting minimization problem ig |attice model, which incorporates only the low-energy
NP-hard[12-14, i.e., that the number of low-energy local physics of the continuum model, is consistent with its con-
minima grows exponentially with the number of amino acidtinuum equivalent.
residues. For this reason stochastic minimization procedures Because a detailed direct experimental characterization of
[15] are widely believed to be the most promising avenue tghe protein PES is difficult, there is ample controversy
avoid an eXponentiaI increase of the numerical effort for tth,lﬁ,q regarding its structure and deﬁning features. How-
prObabi”StiC “solution” to this prOblem. Since the available ever, in recent years an consensus regarding the existence of
computational resources fall short by orders of magnitude t@ “funnel structure” has emerged as the most important
treat large proteins, it is important to obtain an order-of-characteristic of the PES in the present paradigm for protein
magnitude estimation of the numerical effort I'ECIUiI'Ed. ThISfo|d|ng [4’7,2:]1 In such a structure the g|oba| minimum can
question can be answered by addressing the scaling lawse reached via a multitude of pathways that traverse a se-
[16,17: quence of increasingly well-formed intermediates in the fold-

ing process. This observation implies a positive correlation
Nepy N) ~ AN, (1) between the “distance” of a given local minimum from the
native state to the relative energy difference between the two
governing the dependence of the computational effogb() minima. There is some evidence to suggest the existence of
on the system sizeN). different families of protein models within this paradigm

In this investigation we determined the scaling exponent$16,6] which may be characterized with different scaling
for four different global minimization methods, for a very laws in their folding time. However, since the origins of
simple, idealized model that reflects some key characteristidhese differences are presently not known, they are difficult
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to incorporate into a simple continuum model that remains
amenable to treatment with present-day computational re-
sources. In order to determine a lower bound on the compu-
tational complexity, we therefore focus on the scaling laws
governing the relaxation in a “perfect funnel” landscape.
Such a landscape is characteristic of the family of “fast fold-
ers” in the lattice models. In addition to the existence of a
funnel structure, we demand that the PES reflects two other
characteristics of their realistic counterparts: a near-solid
packing density in the vicinity of the global minimum and
the existence of two energy scales that are derived from the
two relevant types of interactions in polypeptides. The free-  —————— —
energy difference between low-energy protein conformations % X

s Sma”(lo kcal/mo},. arising. from hydrogen-bonding, dis- FIG. 1. Schematic one-dimensional PEfIl line) and its
p_er3|0n, and solvent Interactions. _In contrast, the ene_rgy bagTUN effective potentialdashed ling where the indicated mini-
rners sgparatlr!g such conformations are characterized umE(X,) is used as the reference. All energies ranging from the
strong interactions 100 kcal/mol), arising from covalent pegt present estimate to infinity are mapped to the intdi®al,

bonding and steric repulsion. Simplifying significantly, the hjle all the energies of all lower minima are exponentially en-
strong interactions are responsible for the reduction of theanced.

phase space to a few energetically allowed “islands,” which

are then differentiated in energy by the weaker interactionsfree extension of simulated annealifid], which accelerates

the minimization process by allowing the configurations to
MODEL relax locally before the Metropolis criterion is applied. Since
only the energies of the local minima are compared to one
To obtain statistically relevant results for sufficiently another, the simulation can proceed at a sufficiently low tem-
large systems, we have investigated a very simple twoperature to differentiate the local minima. Our results for trial
dimensional model, consisting of two types of particles thatuns using straightforward Monte-Carlo and simulated an-
interact pairwise with Lennard-Jones potentials of unit radiusiealing calculations and their recent generalizati®¥s26]
such that like particles attract twice as strongly as unlikeshowed that it would be impossible to obtain sufficiently
particles. The local minima of the model PES are slight dis-good statistics folN¢py for large systems to estimate the
tortions of a triangular lattice. There are exponentially manyscaling behavior.
such minima, which are differentiated by the small energy Second, we investigated a novel stochastic tunneling
difference in the interaction strength of the two types ofmethod(STUN) [27,28, where a transformed PES,
bonds, while the transition states between the local minima
are characterized by the large energy scale of steric repul-
sion. The problem is easily shown to be NP-hftd]. The
dynamical process by which a random initial condition de-
velops to the minimal configuration can be visualized as ds used in the dynamical proce§sg. 1). Since this transfor-
“demixing” of the particles into two adjacent clusters of mation compresses the energy interval above the currently
particles of the same type—the ideal funnel structure of th@ptimal energyE(X,) into the interval0,1], the high-energy
global PES is thus obvious. The average distance any givescale of the problem is effectively eliminated and the simu-
particle must travel from a random initial condition to its lation self-adjusts its “effective temperature” as better and
position in the minimal cluster grows with the system size,better configurations are found.
mirroring the “global” transformations required to fold the  Third, we have investigated a genetic algoritt@A) [29]
protein from the coiled to the native state. as a radically different approach to stochastic global minimi-
We stress that the similarity between this model and thezation. From a population of siZé, we selectP/2 pairs of
PSP is purely abstract; there is no correspondence or magenfigurations, each with probability
ping between the coordinates of the particles and the coordi-
nates of atoms or clusters of atoms in the protein. Given that Emax—Ei
a “global” transformation is required, this minimization pi:E-(E——E-)’
problem is more difficult than the minimization of Lennard- I =max- =)
Jones clusters studied previous$ly], but lacks the specific
one-dimensional constraints of various simple protein modwhereE; designates the energy of configuraticandE, 5« is
els that have recently been studied on the latf2g]. A  the maximal energy of the present population. Two new con-
lattice version of the model is easily derived by associatindgigurations are generated from each pair created by randomly
each local minimum with its closest lattice configuration. exchanging consecutive subsets of coordinates between the
two configurationgcrossover.
METHODS In addition, a random alteration of one coordinate is made
with a small probability(mutation. The latter step insures
As the basic technique we have investigated Monte Carldhe ergodicity of the method, but most novel configurations
with minimization(MCM) [23,24], a generic and parameter- are generated by the crossover mechanism. As a reference,
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we have gathered data for the multistart algoritkiS), (a)
where a sequence of independent random initial conditions is

T &
subject to local minimization. . o 00000 10°
10 o ‘®
o] 5
RESULTS o le " 110
As an unbiased measure of the efficiency of a particular 18 28 38 48 ? 10°
algorithm N¢p, we adopted the average number of function £10° ¢ N
evaluations gg) that is required to locate the global mini- = 3
mum with 90% probability. Given a set of parameters, we 10° 10
conducted between 100 and 500 independent runs. We heu- ,
ristically determined a run-sizey,,(N) for which well over 10* 10
90% of the runs were able to locate the global minimum. ) , L
From these data we directly determined the fraction of runs 4 6 8 10 12 14161820 N
necessary to locate the minimumy, ,,. Because of the (b)

(asymptotig time invariance of the minimization algorithms,
the first-passage probabilify(n) must obey an exponential
distribution. The systematic error gy ,,is therefore small;
the details of the data analysis will be published elsewhere
[30]. For even system sizéé=4— 16 we have optimized the
parameters of the various methods. The optimal parameters
were found to be only slightly dependent on system size and
could be extrapolated to larger system sizes where a full
parameter optimization was too expensjg€)].

For just under a decade of system sigéig. 2) we obtain
a power-law dependence of the computational effort with the
system size with scaling exponents agry=7.6(x1.8) . . , , , ,
and aypycy=6.4(=1.5) for the continuum andwyycmem 4 6 8 10 12 14 16 18 N
=4.7(= 1.6) for the lattice model. The slight curvature of the
MCM data for large system size correlates with an increasing FIG. 2. (a) log-log plot of the average number of function evalu-
efficiency of the local minimization algorithm we usédset  ationsngg -y as a function of system siz¢ for Monte Carlo with
of Fig. 2. Taking into account the exponents of the local minimization MCM (circles and the stochastic tunneling method
minimization method, which scales almost linearly in the STUN (open squaresin the continuum(left scalg and for Monte
range of system size investigated, we filglc atice™ mc _Carlo(triangles) on the lattice(right scale W|th power-lavy_flts. The
— Qconj. gradient FOT the GA and MS an exponential increase inset shows the average number of function evaluati@nshou-

of the computational efforg, ~efN with system size was sand$ for the minimization of a cluster oN particles using the
raw . . . .
. il Z conjugate gradient algorithm. To demonstrate that exponential and
observed, with exponent§;s=0.64 and{sa=0.37 power-law scaling can be clearly distinguished, we show data for

the exponentially scaling MS algorith(full squares. (b) log-linear
CONCLUSIONS plot of Ngg 14w (N) for the multistart methodMS) (squaresand the

. genetic algorithm(GA) (circles with exponential fits.
The demonstration of power-law growth of the computa-

tional effort for the Monte-Carlo methodCM) illustrates  and height of such barriers do not affect the scaling behavior
the fact that the existence of a funnel structure is sufficient t@f the method. It is therefore the thermodynamic complexity
avoid an exponentially expensive search of the PES. Thisf the PES, as opposed to the presence of kinetic constraints,
observation offers a natural resolution of the Levinthal parawhich classifies the folding process here. This observation
dox in the context of thermodynamically motivated, stochasraises the intriguing question whether the scaling exponents
tic minimization methods: The exponential complexity in theare different if the structure of the minima of the PES is
Levinthal paradox results from the assumption that the localtered in the transformation, such as in the diffusion equa-
minima appear as uncorrelated “holes” on an otherwise flation method[31].
PES. Obviously, the enumerative search of such a PES is We note that the superiority of MCM over GA can only
unavoidable. The two necessary ingredients for a power-lawe established in the context of a scaling analysis, as the GA
scaling of the “folding time” are the existence of a hierarchy is the superior method for small system size. The reasons for
of the local minima and a method that can exploit this hier-the failure of the GA are presently ill-understood. Com-
archy by virtue of the correlation of successive configurapounded with theN? effort to evaluate a long-range pair
tions. The key difference between MS and MCM lies in thepotential, the total minimization effort grows with the eighth
lack of correlation between the configurations of the formermower of the system size, which places the protein structure
method and results in the expected exponential increase g@koblem among the computationally hardest problems stud-
the numerical effort for MS. ied today. In the context of the recent discussion regarding
The equivalence of the exponents of MCM and the tun-the “foldability” [20,32,1 of different families of model
neling method, which systematically eliminates kinetic bar-“proteins,” our model is a natural “fast-folder” by virtue of
riers in the minimization process, indicates that the presenceonstruction. It is therefore encouraging that our results offer
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an explicit confirmation that the scaling behavior of the con-will allow us to differentiate between the various mecha-
tinuum systems is consistent with the behavior of the derivedisms that have been postulated to aid the folding process in
lattice model, while the numerical effort of the treatment of nature. Beyond the PSP problem, NP-hard minimization
the latter is orders of magnitude less. It is further encouragproblems are ubiquitous in many scientific and industrial ar-
ing that the scaling exponent for the continuum model agreegas[12] and it would be highly desirable to establish “uni-
within the statistical error with estimations of the “folding- versality classes” for such problems, which are characterized
time” in polymer models[17] and some lattice models for by their scaling exponent.

proteins[16], provided that the number of local minima vis-

ited in the first-passage trajectory is proportional to the fold-

ing time. We hope that our observations motivate the inves- ACKNOWLEDGMENTS
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