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Nonlinear models for detecting epileptic spikes

L. Diambra* and C. P. Malta
Instituto de Fı´sica, Universidade de Sa˜o Paulo, C.P. 66318, cep 05315-970, Sa˜o Paulo, SP, Brazil

~Received 22 January 1998; revised manuscript received 22 June 1998!

We present a technique for automatic detection of epileptic spikes in electroencephalogram~EEG! record-
ings. We use a nonlinear modeling method based on information theory that enables us to detect rapidly and
accurately epileptic behavior in the EEG signal. An optimal embedding dimension of the model is determined
by the minimum in the mean square error between EEG signals and the corresponding model prediction. Our
approach is illustrated by an application to two EEG time series:~i! interictal activity from a focal epileptic
patient, and~ii ! a petit mal from a generalized epilepsy patient.@S1063-651X~98!15612-X#

PACS number~s!: 87.10.1e, 05.45.2a
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I. INTRODUCTION

During recent years several neurophysiological stud
have shown that electroencephalogram~EEG! signals have a
high degree of complexity resulting from either random p
cesses or chaotic behavior generated by nonlinear dynam
systems@1,2#.

One of the most important uses of the traditional vis
interpretation of the EEG is the identification of transie
events associated with epilepsy, where the background a
ity is interrupted by sharp waves or spikes@3,4#. Sharp
waves and spikes recorded in the periods between seiz
~interictal activity! are of great importance for diagnost
purposes. The morphology and topography of these sh
transients have been correlated with different types of seiz
@5#. Epileptic seizures can be focal or generalized. In fo
epilepsy the seizure begins in a restricted brain region
either remains localized or spreads to the adjacent cor
while in generalized epilepsy the seizure involves all
brain. The interictal activity~IA ! of focal epilepsy is also
localized, while in generalized epilepsy this activity is r
corded in the whole cortex@3#.

The question of how to decide whether a given time se
is adequately described by a linearly filtered noise or c
tains nonlinearities~deterministic chaos! is a nontrivial prob-
lem @6–8#. The situation becomes even more complicated
the time series are nonstationary, and may be due to a c
bination of nonlinearities and random perturbations~as EEG
signals!. Some neurophysiological researchers have fo
suggestive evidence of low-dimensional chaos for EEG
nals recorded during seizures@9–12#, while normal EEG sig-
nals can be described better as linearly filtered noise@6#. In
fact, Theiler and Rapp@6# found that the evidence for low
dimensional structure in normal EEG was an artifact of
tocorrelation in the oversampled signal. In this context, s
eral methods based on linear~spectral analysis! and
nonlinear measures have been applied to quantita
EEG analysis@9,13–17#. Distances between points in th
appropriate embedding space of the data are used to com
a set of metric parameters of nonlinear dynamics analy
such as correlation dimension, Lyapunov exponents,
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Kolmogorov entropy@18–20#. For a reliable estimation o
these parameters, large quantities of data~about 10d whered
is the embedding dimension@21#! are necessary to achiev
accurate approximations for the density of points in differe
regions of the attractor. Thus, long~between 1000 to 10 000
points! stationary time series@22# of EEG signals are re-
quired by those methods. In most of the cases, the statio
ity of the signal is usually taken for granted, although th
condition may not be satisfied when we deal with EEG s
nals@15#, since stationary intervals are of the order of 10 s
~1000 points of standard clinical EEG!, depending on the
behavioral state@23#. Moreover, these methodologies are n
useful for an accurate temporal localization of transie
events in EEG recording. In contrast, with the approach p
sented here we are able to characterize the dynamics of s
portions of signals.

In this communication, we assume that different beh
ioral states are characterized by different dynamics in
EEG. We could regard epileptic EEG signals as basica
deterministic chaos with some level of additive random no
@24#. This means that the dynamical evolution of the syst
could be described, basically, with few variables and one
construct a model able to predict the short future behavio
the system in terms of its previous states@25,26#.

In the present effort, we examine the possibility of app
ing a nonlinear prediction approach for automatically dete
ing the IA spikes in EEG. We compare the prediction cap
bility of a model constructed from segments without I
when it is applied to an interval containing IA spikes. As t
dynamics with IA differs from the dynamics without IA, w
expect poor prediction power. In this way, we can use so
estimator of the performance in order to detect IA spik
The model one is interested in must be able to make pre
tions on the basis of an adequately selectedworking hypoth-
esis. This hypothesis is represented by a set of parameter
the model. We apply information theory~IT! techniques,
within the framework of the maximum entropy princip
~MEP! @27–29#, in order to select the working hypothesis
the model. Some preliminary considerations in this direct
have been advanced in@30#.

The automatic detection of epileptic spikes can be parti
larly valuable in dealing with focal epilepsy, especially wh
surgical treatment is indicated@31#. Several methods for au
tomatic detection of seizures have been proposed@32–35#.
929 ©1999 The American Physical Society
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The methodology presented here has advantages ove
calculation parameters based on distances because it pre
an effective temporal localization, and it uses a short stat
ary interval~3–4 sec of standard clinical EEG!. The compu-
tational burden is significantly lower and can be imp
mented on line with the acquisition of the signal. A
effective temporal localization is useful for the spatial es
mation of epileptogenic focus@31,36#.

We organize our presentation as follows: in Sec. II
review some ideas concerning both reconstruction of the
tem’s state and an IT-based parameters estimation proce
We describe also the procedure used to record the EEG
nals. In Sec. III we present our results regarding the EEG
patients with IA and petit mal. Finally some conclusions a
drawn in Sec. IV.

II. METHODS AND MATERIALS

A. Nonlinear prediction approach

We shall present briefly the IT-based method for buildi
a deterministic model. We assume that the EEG sig
is a stroboscopic sequence ofN measurements$v(t0),
v(t01ts),...,v(t01Nts)% made at intervalsts , and recon-
struct the state space using time delay embedding@37,38#,
which uses a collection of coordinates with time lag to cre
a vector ind dimensions,

v~ tn!5@v~ tn!,v~ tn2D!,...,v„tn2~d21!D…#, ~1!

whereD5nts , (nPN), is the time lag or delay. Takens ha
shown @37# that, for flows evolving to compact attractin
manifolds of dimensionda , if d.2da , we can write

v~ t1T!5F„v~ t !…, ~2!

whereT.0 is the forecasting time. This theorem provid
no information regarding either the choice ofD or the form
of F.

Now, we introduce the IT ideas for building a determi
istic model depending on parameters. The implementatio
this idea is to build parametrized functionsF* „v(t),a…,
wherea is the set of parameters of the model. Then, we
MEP criteria, i.e., the minimum number of assumptio
compatible with the available data, to determine the se
parametersa that constitutes the working hypothesis. T
motivation for this criteria is to reduce the length of tim
series necessary for building a model with good predict
ability.

We consider a representation of the mapping funct
F* (v) as an expansion in the form

F* ~v!5(
j 51

d

(
i 51

p

ai j expF2
p

2
~v j2xi !

2G , ~3!

wherev j are the components of thed vector ~1!, andxi are
the coordinates ofp equidistant points~we take xiP
@21.5,1.5# in a signal normalized to unity!. Of course,ai j
constitute our working hypothesis. Thus, the number of
rameters of the model,Nc , is determined by the number o
Gaussian functionsp in Eq. ~3!, and by the embedding di
mensiond, Nc5d3p. Other kinds of expansion forF* (v)
may be used, and the MEP approach for parameter est
the
ents
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tion can be applied as well. For instance, the linear predic
@or autoregressive model~AR!# of orderd is given by

F* ~v!5a0 (
j 51

d

ajv j . ~4!

In this case, the working hypothesis is given by the set
parametersa5$aj%.

The idea is now to introduce the MEP@30# in order to
determine the parametersa5$a11,a12,...,apd% @or a5$aj% in
the AR model~4!#, using the information contained in M
points of the EEG signal,

ˆ$v1~ tn!,v2~ tn!,...,vd~ tn!%,v~ tn1T!‰, ~5!

wheren51,...,M .
In order to infer the coefficients consistent with th

data set~5! we shall assume thateach seta is realized
with probability P(a). Of course,*P(a)da51, whereda
5da11da12 . . . dapd . Expectation valueŝWi& are defined,
as usual, as

^ai&5E P~a!aida, ~6!

and arelativeentropy is, in the usual way@27,28#, associated
with the probability distribution, namely,

S52E P~a!lnS P~a!

P0~a! Dda, ~7!

whereP0(a) is an appropriately chosena priori distribution
@28,29#. Our central idea is that we reinterpret theM points
data set~5!, according to the expression~3!

v~ tn1T!5V~n!•^a& t, ~8!

where V(n) is a row vector constructed by evaluation
p Gaussian functions~3! in each component of thed vector
v.

As is customary@28#, one is then led to maximizing the
entropy ~7! subject to constraints~8! and the normalization
condition, obtaining

S852E H P~a!lnS P~a!

P0~a! D1l0P~a!1a–WtlW P~a!J da,

~9!

wherel0 and the column vectorlW are Lagrange multipliers
associated, respectively, with the normalization condit
and the constraints~8!, and W is a matrix with M rows
V(n). Variation of S8 with respect toP(a) immediately
gives

P~a!5exp@2~11l0!#exp~2a–G!P0~a!, ~10!

whereG5WtlW ~Wt is the transpose ofW!.
A choice has now to be made concerning thea priori

probability distributionP0 . Here we select a GaussianP0 ,
i.e., we choose it to be proportional to exp(2a.a/2s), with a
free parameters. When we replace this choice of thea priori
distribution in Eq.~10!, we obtain a Gaussian form for th
probability distributionP(a), centered at̂ a&52sG, with
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FIG. 1. Mean deviationd as a function of the embedding dimensiond for different EEG signals for nonlinear models.~a! EEG segment
with IA. ~b! normal EEG segments~vigilia, eyes closed!. ~c! EEG segments recorded 2 min before that in~a!. ~d! EEG segment with petit
mal seizure. Two of the curves correspond to the models constructed using 400 points~solid line! and the other two to models constructe
using 300 points~dashed line!. The models were tested over the remaining 1000 points, which have the same dynamics~quasistationarity
hypothesis!. Delay is one sample (D5ts), and we usedp55.
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dispersions. Both the definition ofG and the constraints~8!

allow for the elimination of the Lagrange multiplierslW . One
can thus express thêai&, solely in terms of the data set:

^a& t5I ps@W#vT , ~11!

where I ps@W#5(W) t
„W(W) t

…

21 is the Moore-Penrose
pseudoinverse@39#, and v is a column vector constructe
with v(tn1T), n51,...,M . It should be remarked tha
I ps@W# is well defined forM<Nc , and the solution of Eq
~11! coincides with the least squares solution of Eq.~8!.
Now, we choose the most probable set of parameters~the
mean value of the distribution! compatible with the con-
straints~8! as our working hypothesis. IfM.Nc Eq. ~8! is
overdetermined so that it is impossible to satisfy all the c
straints imposed by it, unless the model~3! describes the
noiseless system exactly, which is not the case. So in
case ofM.Nc we adopt the least squares solution of Eq.~8!
as the solution. Using the above procedure, one can cap
the dynamics underlying a short portion of the EEG.

B. Clinical data

The individual digital recordings of subjects have be
obtained from~i! two adult patients with focal epilepsy a
sleep stage 1–2. The epileptic focus was localized at
occipital EEG derivations. ~ii ! A 12-year-old patient with
petit mal at sleep stage 1–2. In this case, we used the rec
ings of the occipital channel. We used also two derivatio
~frontal and occipital! from a healthy adult subject. The re
cordings have been obtained using a standard clinical de
with 16 channels, a reference electrode being placed a
patient’s nose. The data were amplified, and filtered usin
low-frequency cutoff of 0.1 Hz, and high-frequency cutoff
51.25 Hz. The data were stored on magnetic tape and
digitized off line at 102.5 Hz with an eight-bit digitizer.
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III. RESULTS

A. Linear versus nonlinear modeling

In order to build the linear or nonlinear models it is ne
essary to determine the embedding dimensiond ~or order of
the AR model!. To this end, we have analyzed the perfo
mance of the models for different embedding dimensio
We compute the mean deviationd, between the EEG nor
malized signal (v j ) and the forecasting (v j* ) as a function of
the embedding dimensiond. The mean deviationd is defined
by

d5N21(
j 51

N

A~v j2v j* !2. ~12!

We choose the dimension corresponding to the minim
of d as the embedding dimension of the model. This cri
rium is a generalization of linearoptimalpredictor, i.e., if the
expectation value of the square of the prediction errors
minimal @40#. We select 1500 points of the EEG signal a
normalize to the unit; one portion of the normalized signa
employed for adjusting the parameters of the model, whic
then used in a larger portion of the signal for testing
predictive power. We use four different segments for t
modeling in each case, two segments of 300 points and
other two of 400 points. In all cases the adequate embed
dimension was quite robust with respect to different s
ments of EEG used in the modeling. In all cases, the time
used is one sample (D5ts).

In the Fig. 1 we can see the mean deviationd for nonlin-
ear predictor in four EEG with different dynamics. The mo
els incorporate five Gaussian functionsp55 @see Eq.~3!#. In
Fig. 1~a!, corresponding to a patient with focal epilepsy du
ing IA, the d minimum is reached at dimension 3 or 4. Th
result is in clear contrast with the case of a normal EE
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FIG. 2. Mean deviationd as a function of the embedding dimensiond for different EEG signals for the linear predictor.~a! EEG segment
with IA. ~b! normal EEG segments~vigilia, eyes closed!. ~c! EEG segments recorded 2 min before that in~a!. ~d! EEG segment with petit
mal seizure. Two of the curves correspond to the models constructed using 400 points~solid line! and the other two to models constructe
using 300 points~dashed line!. The models were tested over the remaining 1000 points, which have the same dynamics~quasistationarity
hypothesis!. Delay is one sample (D5ts).
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3.
~vigilia, eyes closed!. For comparison we show in the Fig
1~b! the mean deviationd versus embedding dimensiond
computed on a normal EEG where clearly we cannot see
minimum at low dimensionality. Figure 1~c! corresponds to
EEG without IA @interval recorded 2 min before the interv
with IA used in Fig. 1~a!#, and the models constructed wit
300 points reach the minimum atd53 as in the Fig. 1~a!
~poor discrimination power!. Figure 1~d! corresponds to the
case of an EEG signal from a patient with petit mal, duri
the seizure. In this case thed minimum is at 2 or 3. We can
see that Figs. 1~a!, 1~c!, and 1~d! exhibit clearly a minimum
when the embedding dimension reaches a certain value,
value depending on the signal nature.

In Fig. 2, we show the results applying the linear predic
to the same EEG signals used in Fig. 1. In Fig. 2~a!, corre-
sponding to a patient during IA, the mean deviation reac
a saturation or minimum at dimension 4 or 5, while in t
case of normal EEG~vigilia, eyes closed! displayed in Fig.
2~b!, d versus the embedding dimension shows a minim
at much higher-order values~approximately 35–50!. Figures
2~c! and 2~d! show a saturation around dimension 5, resu
ing in poor discrimination between the EEG with IA@Fig.
2~a!# and the EEG without IA@Fig. 2~c!#, as in both cases th
suggested dimension is 5.

These results show that the nonlinear predictor and
linear predictor produce similar mean deviations, nevert
less we can say that the nonlinear predictor represent
improvement over the linear predictor as it provides a be
characterization of the dynamics. However, this evide
does not constitute a rigorous mathematical argumentpro a
nonlinear structure in the EEG.

As many authors have reported using other techniqu
we found low dimensionality~or a complexity decrease! in
the EEG during the seizure. The main advantage of our te
nique is that we use only 3 or 4 sec of standard clini
ny
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recordings in order to characterize the loss of complex
This is a remarkable facet of our approach because, when
deal with the EEG signal, it is difficult to obtain long tran
sient for a reliable estimation of the parameters like corre
tion dimension or Lyapunov exponents.

B. Automatic detection of spikes

Our procedure for the automatic detection of epilep
spikes will be illustrated with reference to two situation
during interictal activity from two patients with focal ep
lepsy, and during a seizure from a patient with petit m
epilepsy ~as already mentioned, in both cases we use
occipital channel!. We select 3000 points of the EEG sign
~about 30 seconds!, and normalize to unit the whole segme
of data points. This normalization procedure is to avoid t
some data points exceed the bound@21.5,1.5# in the func-
tional form ~3!. Then, one portion of the normalized EE
signal~400 points! is employed for adjusting the paramete
of the model, which is then used in the whole segment
3000 points of the normalized EEG signal for testing
predictive power. We expect good predictive performan
when the dynamics of the EEG interval used for building t
model is similar to the dynamics of the interval used f
testing. Poor forecasting indicates that the system
changed its dynamics.

In Fig. 3 we can see the EEG signal at the top, as wel
the error from two different nonlinear models in a segme
with IA spikes ~in all the figures both the signal and th
prediction error are rescaled to the original scale; i.e.,
multiplied by the normalization factor, and plotted in m
units!. The graph in the middle of Fig. 3 displays the err
from a nonlinear model with embedding dimensiond56.
The model was built using the first 400 points~region with-
out IA spikes! of the EEG signal shown at the top of Fig.
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FIG. 3. Top: 30 sec of the EEG recording from a patient with focal epilepsy. Middle: prediction error from the nonlinear
constructed using the first 400 points~without IA spikes! with embedding dimensiond56. Bottom: prediction error from the model usin
the 400 points with IA spikes~between 1350 and 1750! with embedding dimensiond53.
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We can clearly see huge sharp peaks, related to big e
~notice that the scale of this plot is 10 times larger! at the
points where IA spikes occur. In the graph at the bottom
Fig. 3 we can see the concomitant error from a nonlin
model constructed using 400 points of the region with
spikes~between 1350 and 1750!. The model has dimensio
d53. In Fig. 4, we can see the case of another patient w
focal epilepsy. We found the same results as in the cas
Fig. 3. In both cases, when we test the model construc
using segments with IA~bottom of Figs. 3 and 4!, we can see
rs

f
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d

that the amplitude of the peaks in the prediction error
considerably smaller~2 or 3 orders of magnitude! than in the
case in the middle of Figs. 3 and 4. It can be seen that th
smaller spikes of the prediction error occur at the same t
of the epileptic spikes. This is an indication that the pres
model is not properly capturing the whole dynamical mec
nism of the IA contained in the EEG.

We can conclude that these kinds of models~nonlinear
and deterministic models! can capture some aspects of t
dynamics but not all of them, perhaps due to the presenc
structed
ng
FIG. 4. Top: 30 sec of the EEG recorded from another patient with focal epilepsy. Middle: prediction error from the model con
using the first 400 points~without IA spikes! with embedding dimensiond56. Bottom: prediction error from the model constructed usi
400 points with IA spikes~between 1800 and 2200! with d53.
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FIG. 5. The same as in Fig. 3 for a linear predictor. Middle: prediction error of a linear model constructed using the first 400
~without IA spikes!, with embedding dimensiond540. Bottom: prediction error of a linear model using the 400 points with IA spi
~between 1350 and 1750! with embedding dimensiond54.
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a stochastic component in the EEG signal or a limitation
the functional form~3!. Nevertheless, as we can see from t
Fig. 3, given a model constructed using a segment with
IA spikes, if we compute its predictive performance in se
ments with IA spikes, these spikes can be detected cle
by means of the peaks localization in the prediction error
the case of linear predictor, we show in the Fig. 5 that
ability to detect spikes in the same conditions are very l
ited. It is clearly seen that there is no distinction between
cases in the middle~we tested a model with embedding d
mensiond512 with the same result! and at the bottom of
Fig. 5.
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The automatic detection of epileptic spikes is not spec
to the focal epilepsy, these peaks in the prediction error a
occur in the spikes of generalized epilepsy. We applied
technique to petit mal epilepsy, shown at the top of Fig. 6.
the middle of the Fig. 6 we show the prediction error from
nonlinear model, with embedding dimensiond56, which
was constructed using the 400 points in a region with
seizure~between 1300 and 1700!. Again, we can see clearly
sharp peaks, related to large errors in the seizure segmen
the plot at the bottom of Fig. 6, we can see the concomit
errors from a nonlinear model withd52 constructed with
400 points in a region with seizure~between 600 and 1000!.
tructed
ng
FIG. 6. Top: 30 sec of the EEG recorded from a patient with petit mal. Middle: prediction error from the nonlinear model cons
using 400 points without epilepsy activity~between 1300 and 1700! with d56. Bottom: prediction error from the model constructed usi
400 points with IA spikes~between 600 and 1000! with d52.
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FIG. 7. Prediction errors for the EEG displayed at the top of Fig. 4, using the same nonlinear models as in Fig 3. Top: predict
from the model without IA of Fig. 3~to be compared with the prediction error displayed in the middle of Fig. 4!. Bottom: prediction error
from the model with IA of Fig. 3~to be compared with the prediction error displayed at the bottom of the Fig. 4!.
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In this case, as in the case of the plot at the bottom of F
3, 4, and 6, the error does not show sharp peaks.

C. Two interesting examples

In this section, we test our method in some interest
situations in order to detect epileptic spikes. In the first ca
we applied the models used in Fig. 3 to the signal displa
at the top of Fig. 4. The corresponding prediction errors
displayed in the Fig. 7. As we can see, the result is ess
tially the same as shown in the Fig. 4. This means that
present method is robust in the sense that the models c
be constructed once and for all using the signal of one
tient, and provided the signals are normalized, the sa
models can be used for analyzing the EEG signals of o
patients.

The other situation of interest is related to the problem
false positives. In some cases, the peaks in the predic
s.
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error could arise from other sources such as eye blink, m
tion artifacts, etc. At the top of Fig. 8 we show the EE
signal of the frontal channel from a healthy subject~vigilia,
closed eyes!. This signal has several eye blinks. In this ca
large peaks are observed in the prediction error of the n
linear model without IA used in the middle of Fig. 3. W
have not displayed the corresponding figure as this is
expected result because the model and the signal do not
the same dynamics. In the middle of Fig. 8 we show
concomitant prediction error from the nonlinear model co
structed using 400 points in the region with eye blin
~between 1550 and 1950!. No significant peaks are seen.
contrast, as we can see at the bottom of Fig. 8, the predic
error using the nonlinear model constructed with IA in Fig
shows significant peaks, indicating that the signal with e
blinks has different dynamics from that of the signal with IA
In order to corroborate the sensitivity of the model
model
FIG. 8. Top: 30 sec of the EEG recording with eyes blinks from a healthy subject. Middle: prediction error from the nonlinear
constructed using the 400 points with eye blinks between~1550–1950! with embedding dimensiond56. Bottom: prediction error from the
nonlinear model with IA of Fig. 3.
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FIG. 9. Top: the same as in Fig. 3~top!. Bottom: prediction error from the model constructed using eye blinks used in Fig. 8~middle!.
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changes in the dynamics, we tested the nonlinear model
eye blinks used in the middle of Fig. 8 on a signal with I
The corresponding prediction error is displayed in Fig.
The presence of spikes again indicates distinctive dynam
This means that the false positives can be discriminated f
the true positives by testing over all the positives with t
model constructed using the region with eye blinks~or the
model constructed using the region with IA!. If the error
presents a peak, then it is an epileptic spike, otherwise it
false positive.~If the error presents a peak then it is an e
blink, otherwise it is true positive.! We could use a similar
procedure for discriminating other artifacts.

IV. DISCUSSION AND CONCLUSIONS

We have presented here a new method, based on d
ministic IT modeling of EEG signals, for automatically d
tecting IA spikes. By suitably adjusting the dimension, o
nonlinear model is able to ‘‘capture’’ the essential corre
tions of the system. The ratio between the amplitude of
peaks and the background error signal is greater than
ratio between the amplitude of the spikes and the backgro
EEG. By appropriately handling the normalization of t
data, our method could be implemented in the on-line de
tion of IA during EEG recording. The detection power, usi
the error signal, is good enough without loss of tempo
ys
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resolution. In dealing with focal epilepsy, the high tempo
resolution is particularly valuable because it improves
possibility of localizing and monitoring the epileptic focu
activity using a multichannel EEG recording@36#.

A remarkable fact is to be emphasized: the rathersmall
quantity of points needed in order to characterize the dyn
ics of the EEG. In this sense, the problems associated
the nonstationarity of the EEG signals are avoided. Mo
over, these results corroborate the conjecture that epile
activity could correspond to a low-dimensional chaotic
tractor, while the nature of normal EEG can be describ
better as linearly filtered noise. But the results also sugg
that this question continues to be an open problem.

We conclude by pointing out that the application of d
terministic nonlinear models to the analysis of complex s
nals should receive renewed impetus from the present c
siderations. However, more studies are needed for relia
validation of the method for recognition of IA during long
term EEG recording~intensive monitoring! @33,34#.
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