PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Nonlinear models for detecting epileptic spikes
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We present a technique for automatic detection of epileptic spikes in electroencephal&gi@nrecord-
ings. We use a nonlinear modeling method based on information theory that enables us to detect rapidly and
accurately epileptic behavior in the EEG signal. An optimal embedding dimension of the model is determined
by the minimum in the mean square error between EEG signals and the corresponding model prediction. Our
approach is illustrated by an application to two EEG time sefigsnterictal activity from a focal epileptic
patient, and(ii) a petit mal from a generalized epilepsy pati¢d®1063-651X98)15612-X

PACS numbegs): 87.10+e, 05.45-a

I. INTRODUCTION Kolmogorov entropy{18—20. For a reliable estimation of
these parameters, large quantities of datsout 10 whered
During recent years several neurophysiological studiess the embedding dimensidr21]) are necessary to achieve
have shown that electroencephalogrdiG) signals have a accurate approximations for the density of points in different
high degree of complexity resulting from either random pro-regions of the attractor. Thus, lorigetween 1000 to 10 000
cesses or chaotic behavior generated by nonlinear dynamicpbintg stationary time serie§22] of EEG signals are re-
systemq1,2]. quired by those methods. In most of the cases, the stationar-
One of the most important uses of the traditional visuality of the signal is usually taken for granted, although this
interpretation of the EEG is the identification of transientcondition may not be satisfied when we deal with EEG sig-
events associated with epilepsy, where the background activals[15], since stationary intervals are of the order of 10 sec
ity is interrupted by sharp waves or spikg3,4]. Sharp (1000 points of standard clinical EBGdepending on the
waves and spikes recorded in the periods between seizureghavioral stat¢23]. Moreover, these methodologies are not
(interictal activity are of great importance for diagnostic useful for an accurate temporal localization of transient
purposes. The morphology and topography of these shamvents in EEG recording. In contrast, with the approach pre-
transients have been correlated with different types of seizurgented here we are able to characterize the dynamics of short
[5]. Epileptic seizures can be focal or generalized. In focaportions of signals.
epilepsy the seizure begins in a restricted brain region and In this communication, we assume that different behav-
either remains localized or spreads to the adjacent cortexgral states are characterized by different dynamics in the
while in generalized epilepsy the seizure involves all theEEG. We could regard epileptic EEG signals as basically
brain. The interictal activityIA) of focal epilepsy is also deterministic chaos with some level of additive random noise
localized, while in generalized epilepsy this activity is re-[24]. This means that the dynamical evolution of the system
corded in the whole cortej3]. could be described, basically, with few variables and one can
The question of how to decide whether a given time seriegonstruct a model able to predict the short future behavior of
is adequately described by a linearly filtered noise or conthe system in terms of its previous staf&s,2§.
tains nonlinearitiegdeterministic chagss a nontrivial prob- In the present effort, we examine the possibility of apply-
lem [6—8]. The situation becomes even more complicated ifing a nonlinear prediction approach for automatically detect-
the time series are nonstationary, and may be due to a conng the |A spikes in EEG. We compare the prediction capa-
bination of nonlinearities and random perturbatiéas EEG  bility of a model constructed from segments without IA
signalg. Some neurophysiological researchers have foundvhen it is applied to an interval containing IA spikes. As the
suggestive evidence of low-dimensional chaos for EEG sigdynamics with IA differs from the dynamics without 1A, we
nals recorded during seizurg®-12|, while normal EEG sig- expect poor prediction power. In this way, we can use some
nals can be described better as linearly filtered nf$eln  estimator of the performance in order to detect IA spikes.
fact, Theiler and Rapp6] found that the evidence for low- The model one is interested in must be able to make predic-
dimensional structure in normal EEG was an artifact of autions on the basis of an adequately selesttking hypoth-
tocorrelation in the oversampled signal. In this context, sevesis This hypothesis is represented by a set of parameters of
eral methods based on lineaispectral analys)s and the model. We apply information theor§fT) techniques,
nonlinear measures have been applied to quantitativeiithin the framework of the maximum entropy principle
EEG analysis[9,13—17. Distances between points in the (MEP) [27-29, in order to select the working hypothesis of
appropriate embedding space of the data are used to computee model. Some preliminary considerations in this direction
a set of metric parameters of nonlinear dynamics analysidjave been advanced jB0].
such as correlation dimension, Lyapunov exponents, and The automatic detection of epileptic spikes can be particu-
larly valuable in dealing with focal epilepsy, especially when
surgical treatment is indicatd@1]. Several methods for au-
*Electronic address: diambra@linpel.if.usp.br tomatic detection of seizures have been propd82d-35.
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The methodology presented here has advantages over tlien can be applied as well. For instance, the linear predictor
calculation parameters based on distances because it presefs autoregressive modéhR)] of orderd is given by

an effective temporal localization, and it uses a short station- g

ary interval(3—4 sec of standard clinical EEGr'he compu- .o

tational burden is significantly lower and can be imple- F (V)_aojzl ajvj - (4)
mented on line with the acquisition of the signal. An

effective temporal localization is useful for the spatial esti-In this case, the working hypothesis is given by the set of
mation of epileptogenic focus1,36. parametersa={a;}.

We organize our presentation as follows: in Sec. Il we The idea is now to introduce the MERBO] in order to
review some ideas concerning both reconstruction of the systetermine the parametesis-{a;; 212, ...,8pqf [Or @a={a;} in
tem’s state and an IT-based parameters estimation procedutae AR model(4)], using the information contained in M
We describe also the procedure used to record the EEG sigoints of the EEG signall,
nals. In Sec. Ill we present our results regarding the EEG of
patients with IA and petit mal. Finally some conclusions are {{va(tn),valty),...vg(ta) Lo (t,+ T} ()

drawn in Sec. IV.
wheren=1,... M.

In order to infer the coefficients consistent with the
data set(5) we shall assume thatach seta is realized
A. Nonlinear prediction approach with probability P(a). Of course,fP(a)da=1, whereda

We shall present briefly the IT-based method for buiIding;de?;bi?lg's' .dapq. Expectation valuegW;) are defined,

a deterministic model. We assume that the EEG signa
is a stroboscopic sequence ®f measurementqv(tg),
v(tgt+ 7g),...,v(tg+N7g)} made at intervalss, and recon- (ai)zf P(a)a;da, (6)
struct the state space using time delay embed{&7g38,

which uses a collection of coordinates with time |ag to Creat%nd are|ativeentropy iS, in the usua' Wﬁ?yza’ associated
a vector ind dimensions, with the probability distribution, namely,

V(t) =[v(ty),v(ta=A4),...0(ty=(d=DA)], (D) P(a)

whereA=nrg, (neN), is the time lag or delay. Takens has Po(a)
shown [37] that, for flows evolving to compact attracting
manifolds of dimensior,, if d>2d,, we can write

Il. METHODS AND MATERIALS

S=—f P(a)ln )da, (7)

wherePy(a) is an appropriately chosempriori distribution
[28,29. Our centralidea is that we reinterpret tHd points

v(t+T)=F(v(t)), (2)  data se(5), according to the expressidB)
where T>0 is the forecasting time. This theorem provides vty +T)=V(n)- (@), (8)
no information regarding either the choice &for the form

where V(n) is a row vector constructed by evaluation of

of F. p Gaussian functiong3) in each component of the vector

Now, we introduce the IT ideas for building a determin-
istic model depending on parameters. The implementation o As is customany28], one is then led to maximizing the

this idea is to build parametrized functiorts” (v(t),a), entropy (7) subject to constraint&3) and the normalization
wherea is the set of parameters of the model. Then, we US€ ) dition obtaining

MEP criteria, i.e., the minimum number of assumptions

compatible with the available data, to determine the set of f [ P(a)
P(a)ln

+1\oP(a)+a-WI\P(a) | da,
Po(a) 0 ( ) ( )

parametersa that constitutes the working hypothesis. The S'=-
motivation for this criteria is to reduce the length of time

series necessary for building a model with good predictive ©

ability. ) ) ) . where)\y and the column vectax are Lagrange multipliers
*We consider a representation of the mapping functionygggciated, respectively, with the normalization condition
F*(v) as an expansion in the form and the constraint$8), and W is a matrix with M rows

d p D V(n). Variation of S' with respect toP(a) immediately
F*(V):Z 2 a;;ex _—(Uj_Xi)z
=1=1 2

, (3) gives

P(a)=exd —(1+Ag)]exp—a-T")Py(a), (10
wherev; are the components of thievector (1), andx; are )
the coordinates ofp equidistant points(we take x;e whereI'=W'\ (W' is the transpose diV).
[—1.5,1.9 in a signal normalized to unity Of course,a;; A choice has now to be made concerning tngriori
constitute our working hypothesis. Thus, the number of paprobability distributionP,. Here we select a Gaussidt,
rameters of the modeN,, is determined by the number of i.e., we choose it to be proportional to ex{®.a/20), with a
Gaussian functiong in Eq. (3), and by the embedding di- free parametes. When we replace this choice of thepriori
mensiond, N.=dX p. Other kinds of expansion fd¥* (v) distribution in Eq.(10), we obtain a Gaussian form for the
may be used, and the MEP approach for parameter estimgrobability distributionP(a), centered ata)= —oT", with
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FIG. 1. Mean deviatiord as a function of the embedding dimensibfior different EEG signals for nonlinear mode{s) EEG segment
with 1A. (b) normal EEG segmeniwigilia, eyes closed (c) EEG segments recorded 2 min before thatan (d) EEG segment with petit
mal seizure. Two of the curves correspond to the models constructed using 400(galidt$éine) and the other two to models constructed
using 300 pointg§dashed ling The models were tested over the remaining 1000 points, which have the same dyftpragistationarity
hypothesis Delay is one sampleX=r,), and we useg=5.

dispersiono. Both the definition of” and the constraint) Ill. RESULTS

allow for the elimination of the Lagrange multiplieks One A. Linear versus nonlinear modeling

can thus express th@;), solely in terms of the data set: ) i i .
In order to build the linear or nonlinear models it is nec-

(@)'=1,dW]vr, (11)  essary to determine the embedding dimensidor order of
the AR model. To this end, we have analyzed the perfor-

where I, {W]=(W)'(W(W))! is the Moore-Penrose mance of the models for different embedding dimensions.
pseudoinversg39], andv is a column vector constructed We compute the mean deviatiah between the EEG nor-
with v(t,+T), n=1,...M. It should be remarked that malized signal ¢;) and the forecastingy() as a function of
l,d W] is well defined forM<N,, and the solution of Eq. the embedding dimensiah The mean deviatiod is defined
(11) coincides with the least squares solution of E8). by
Now, we choose the most probable set of parame(tbies N
mean value of the distributigncompatible with the con-
straints(8) as our working hypothesis. M >N, Eqg. (8) is 5:N7121 V(Uj_vik)z' (12
overdetermined so that it is impossible to satisfy all the con- =
straints imposed by it, unless the mod@) describes the We choose the dimension corresponding to the minimum
noiseless system exactly, which is not the case. So in thef s as th bedding di . F;th 9 del. This crit
case ofM >N, we adopt the least squares solution of Bj. ot o-as the embedding dimension of the model. This crite-

as the solution. Using the above procedure, one can captui% Fr?eft;igﬁn\?;ﬁj'éaé;o?hgf 223:‘2'r;aiﬁ;e%'rcetgirétlifﬁ’ grtrr(])ers is
the dynamics underlying a short portion of the EEG. minimal [40]. We select 1500 points of the EEG signal and

normalize to the unit; one portion of the normalized signal is
employed for adjusting the parameters of the model, which is
The individual digital recordings of subjects have beenthen used in a larger portion of the signal for testing its
obtained from(i) two adult patients with focal epilepsy at predictive power. We use four different segments for the
sleep stage 1-2. The epileptic focus was localized at thenodeling in each case, two segments of 300 points and an-
occipital EEG derivations. (ii) A 12-year-old patient with other two of 400 points. In all cases the adequate embedding
petit mal at sleep stage 1-2. In this case, we used the recordimension was quite robust with respect to different seg-
ings of the occipital channel. We used also two derivationgnents of EEG used in the modeling. In all cases, the time lag
(frontal and occipital from a healthy adult subject. The re- used is one sample\(= 7).
cordings have been obtained using a standard clinical device In the Fig. 1 we can see the mean deviatifor nonlin-
with 16 channels, a reference electrode being placed at thear predictor in four EEG with different dynamics. The mod-
patient's nose. The data were amplified, and filtered using als incorporate five Gaussian functigns 5 [see Eq(3)]. In
low-frequency cutoff of 0.1 Hz, and high-frequency cutoff of Fig. 1(a), corresponding to a patient with focal epilepsy dur-
51.25 Hz. The data were stored on magnetic tape and thang IA, the § minimum is reached at dimension 3 or 4. This
digitized off line at 102.5 Hz with an eight-bit digitizer. result is in clear contrast with the case of a normal EEG

B. Clinical data
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FIG. 2. Mean deviatiord as a function of the embedding dimensibffor different EEG signals for the linear predictéa) EEG segment
with 1A. (b) normal EEG segmeniwigilia, eyes closed (c) EEG segments recorded 2 min before thatan (d) EEG segment with petit
mal seizure. Two of the curves correspond to the models constructed using 400(galidtéine) and the other two to models constructed
using 300 pointg§dashed ling The models were tested over the remaining 1000 points, which have the same dyftpragistationarity
hypothesis Delay is one sampleX= 7).

(vigilia, eyes closed For comparison we show in the Fig. recordings in order to characterize the loss of complexity.
1(b) the mean deviatior versus embedding dimensiah  This is a remarkable facet of our approach because, when we
computed on a normal EEG where clearly we cannot see angeal with the EEG signal, it is difficult to obtain long tran-
minimum at low dimensionality. Figure(d) corresponds to sient for a reliable estimation of the parameters like correla-
EEG without IA[interval recorded 2 min before the interval tion dimension or Lyapunov exponents.
with IA used in Fig. 18)], and the models constructed with
300 points reach the minimum dt=3 as in the Fig. (@)
(poor discrimination powgr Figure 1d) corresponds to the
case of an EEG signal from a patient with petit mal, during Our procedure for the automatic detection of epileptic
the seizure. In this case theminimum is at 2 or 3. We can spikes will be illustrated with reference to two situations:
see that Figs. (&), 1(c), and 1d) exhibit clearly a minimum during interictal activity from two patients with focal epi-
when the embedding dimension reaches a certain value, thispsy, and during a seizure from a patient with petit mal
value depending on the signal nature. epilepsy (as already mentioned, in both cases we use the
In Fig. 2, we show the results applying the linear predictoroccipital channgl We select 3000 points of the EEG signal
to the same EEG signals used in Fig. 1. In Fip)2corre-  (about 30 seconglsand normalize to unit the whole segment
sponding to a patient during IA, the mean deviation reachesf data points. This normalization procedure is to avoid that
a saturation or minimum at dimension 4 or 5, while in thesome data points exceed the boyndl.5,1.5 in the func-
case of normal EEGvigilia, eyes closeddisplayed in Fig. tional form (3). Then, one portion of the normalized EEG
2(b), 6 versus the embedding dimension shows a minimurnsignal (400 point$ is employed for adjusting the parameters
at much higher-order valugapproximately 35—-50 Figures  of the model, which is then used in the whole segment of
2(c) and 2d) show a saturation around dimension 5, result-3000 points of the normalized EEG signal for testing its
ing in poor discrimination between the EEG with [&ig.  predictive power. We expect good predictive performance
2(a)] and the EEG without IAFig. 2(c)], as in both cases the when the dynamics of the EEG interval used for building the
suggested dimension is 5. model is similar to the dynamics of the interval used for
These results show that the nonlinear predictor and th&esting. Poor forecasting indicates that the system has
linear predictor produce similar mean deviations, nevertheehanged its dynamics.
less we can say that the nonlinear predictor represents an In Fig. 3 we can see the EEG signal at the top, as well as
improvement over the linear predictor as it provides a bettethe error from two different nonlinear models in a segment
characterization of the dynamics. However, this evidencevith IA spikes (in all the figures both the signal and the
does not constitute a rigorous mathematical argurpemta  prediction error are rescaled to the original scale; i.e., we
nonlinear structure in the EEG. multiplied by the normalization factor, and plotted in mV
As many authors have reported using other techniquesynits). The graph in the middle of Fig. 3 displays the error
we found low dimensionalitfor a complexity decreagén from a nonlinear model with embedding dimenside 6.
the EEG during the seizure. The main advantage of our techFhe model was built using the first 400 poiritegion with-
nigue is that we use only 3 or 4 sec of standard clinicalout IA spikeg of the EEG signal shown at the top of Fig. 3.

B. Automatic detection of spikes
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FIG. 3. Top: 30 sec of the EEG recording from a patient with focal epilepsy. Middle: prediction error from the nonlinear model
constructed using the first 400 poiritsithout IA spikeg with embedding dimensiod=6. Bottom: prediction error from the model using
the 400 points with 1A spikegbetween 1350 and 175®ith embedding dimensiod= 3.

We can clearly see huge sharp peaks, related to big errothat the amplitude of the peaks in the prediction error is
(notice that the scale of this plot is 10 times lapgat the  considerably smallef2 or 3 orders of magnitudehan in the
points where IA spikes occur. In the graph at the bottom ofcase in the middle of Figs. 3 and 4. It can be seen that these
Fig. 3 we can see the concomitant error from a nonlineasmaller spikes of the prediction error occur at the same time
model constructed using 400 points of the region with 1Aof the epileptic spikes. This is an indication that the present
spikes(between 1350 and 1750The model has dimension model is not properly capturing the whole dynamical mecha-
d=3. In Fig. 4, we can see the case of another patient witmism of the IA contained in the EEG.

focal epilepsy. We found the same results as in the case of We can conclude that these kinds of modgisnlinear

Fig. 3. In both cases, when we test the model constructednd deterministic modelscan capture some aspects of the
using segments with 1&bottom of Figs. 3 and4we can see dynamics but not all of them, perhaps due to the presence of
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FIG. 4. Top: 30 sec of the EEG recorded from another patient with focal epilepsy. Middle: prediction error from the model constructed
using the first 400 pointéwithout 1A spikes with embedding dimensiod= 6. Bottom: prediction error from the model constructed using
400 points with IA spikegbetween 1800 and 22p®ith d=3.
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FIG. 5. The same as in Fig. 3 for a linear predictor. Middle: prediction error of a linear model constructed using the first 400 points
(without 1A spikes, with embedding dimensiod=40. Bottom: prediction error of a linear model using the 400 points with 1A spikes
(between 1350 and 175With embedding dimensiod=4.

a stochastic component in the EEG signal or a limitation in The automatic detection of epileptic spikes is not specific
the functional form(3). Nevertheless, as we can see from theto the focal epilepsy, these peaks in the prediction error also
Fig. 3, given a model constructed using a segment withouoccur in the spikes of generalized epilepsy. We applied this
IA spikes, if we compute its predictive performance in seg-technique to petit mal epilepsy, shown at the top of Fig. 6. In
ments with IA spikes, these spikes can be detected clearlyhe middle of the Fig. 6 we show the prediction error from a
by means of the peaks localization in the prediction error. Imonlinear model, with embedding dimensial6, which

the case of linear predictor, we show in the Fig. 5 that thewas constructed using the 400 points in a region without
ability to detect spikes in the same conditions are very lim-seizure(between 1300 and 1700Again, we can see clearly
ited. It is clearly seen that there is no distinction between thesharp peaks, related to large errors in the seizure segment. In
cases in the middléwe tested a model with embedding di- the plot at the bottom of Fig. 6, we can see the concomitant
mensiond=12 with the same resyliand at the bottom of errors from a nonlinear model with=2 constructed with

Fig. 5. 400 points in a region with seizufbetween 600 and 1000
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FIG. 6. Top: 30 sec of the EEG recorded from a patient with petit mal. Middle: prediction error from the nonlinear model constructed
using 400 points without epilepsy activithetween 1300 and 17P@ith d=6. Bottom: prediction error from the model constructed using
400 points with IA spikegbetween 600 and 1000vith d=2.
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FIG. 7. Prediction errors for the EEG displayed at the top of Fig. 4, using the same nonlinear models as in Fig 3. Top: prediction error
from the model without IA of Fig. 3to be compared with the prediction error displayed in the middle of FigBdttom: prediction error
from the model with IA of Fig. 3(to be compared with the prediction error displayed at the bottom of the Fig. 4

In this case, as in the case of the plot at the bottom of Figserror could arise from other sources such as eye blink, mo-

3, 4, and 6, the error does not show sharp peaks. tion artifacts, etc. At the top of Fig. 8 we show the EEG
signal of the frontal channel from a healthy subjégilia,
C. Two interesting examples closed eyes This signal has several eye blinks. In this case,

In this section, we test our method in some interestingfarge peaks are observed in the prediction error of the non-
situations in order to detect epileptic spikes. In the first casdN€ar model without IA used in the middle of Fig. 3. We

we applied the models used in Fig. 3 to the signal displayed@ve not displayed the corresponding figure as this is an
at the top of Fig. 4. The corresponding prediction errors aréXpected result because the model and the signal do not have
displayed in the Fig. 7. As we can see, the result is essedbe same dynamics. In the middle of Fig. 8 we show the
tially the same as shown in the Fig. 4. This means that théoncomitant prediction error from the nonlinear model con-
present method is robust in the sense that the models coufdructed using 400 points in the region with eye blinks
be constructed once and for all using the signal of one patbetween 1550 and 1950No significant peaks are seen. In
tient, and provided the signals are normalized, the sameontrast, as we can see at the bottom of Fig. 8, the prediction
models can be used for analyzing the EEG signals of othegrror using the nonlinear model constructed with 1A in Fig. 3
patients. shows significant peaks, indicating that the signal with eye
The other situation of interest is related to the problem ofblinks has different dynamics from that of the signal with IA.
false positives. In some cases, the peaks in the predictioim order to corroborate the sensitivity of the model to

EEG (mV)

2001

ERROR (mV)

-200

Time (sample)

FIG. 8. Top: 30 sec of the EEG recording with eyes blinks from a healthy subject. Middle: prediction error from the nonlinear model
constructed using the 400 points with eye blinks betw@d&b0—1950 with embedding dimensiod= 6. Bottom: prediction error from the
nonlinear model with IA of Fig. 3.
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FIG. 9. Top: the same as in Fig.(8p). Bottom: prediction error from the model constructed using eye blinks used in Figidglle).

changes in the dynamics, we tested the nonlinear model wittesolution. In dealing with focal epilepsy, the high temporal
eye blinks used in the middle of Fig. 8 on a signal with IA. resolution is particularly valuable because it improves the
The corresponding prediction error is displayed in Fig. 9.possibility of localizing and monitoring the epileptic focus
The presence of spikes again indicates distinctive dynamic&ctivity using a multichannel EEG recordifge].

This means that the false positives can be discriminated from A remarkable fact is to be emphasized: the ratsreall

the true positives by testing over all the positives with thequantity of points needed in order to characterize the dynam-
model constructed using the region with eye bliriks the €S of the EEG. In this sense, the problems associated with
model constructed using the region with)IAf the error the nonstationarity of the EEG signals are avoided. More-
presents a peak, then it is an epileptic spike, otherwise it is gver, these results corroborate the conjecture that epileptic

false positive (If the error presents a peak then it is an eye,‘["‘Ct'\t’Ity cohu_lld ::horres?ond tfo a Iowl—dérgznsmnatlj Cr:jaOt'C.t?t'd
blink, otherwise it is true positiveWe could use a similar ractor, whiie the natureé of norma can be describe

R . better as linearly filtered noise. But the results also suggest
procedure for discriminating other artifacts. that this question continues to be an open problem.

We conclude by pointing out that the application of de-
IV. DISCUSSION AND CONCLUSIONS terministic nonlinear models to the analysis of complex sig-
é}gls should receive renewed impetus from the present con-
Siderations. However, more studies are needed for reliable
validation of the method for recognition of IA during long-
term EEG recordindintensive monitoringy[33,34].

We have presented here a new method, based on det
ministic IT modeling of EEG signals, for automatically de-
tecting 1A spikes. By suitably adjusting the dimension, our
nonlinear model is able to “capture” the essential correla-
tions of the system. The ratio betwe_en th_e amplitude of the ACKNOWLEDGMENTS
peaks and the background error signal is greater than the
ratio between the amplitude of the spikes and the background L.D. acknowledges the financial support of CNPq, Brazil,
EEG. By appropriately handling the normalization of theand C.P.M. acknowledges partial financial support by CNPq.
data, our method could be implemented in the on-line detecthe authors want to thank both Daniel Lorenzo and Alberto
tion of 1A during EEG recording. The detection power, using Capurro for providing the EEG signals and for useful com-
the error signal, is good enough without loss of temporaiments concerning their clinical interpretation.
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