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Simulation of a two-dimensional shear cell

Steffen Schidmann
Solitudeallee 82, 70825 Korntal-ichingen, Germany
(Received 5 August 1998

Molecular dynamicgMD) simulations of a two-dimension&2D) shear cell of Couette type are presented.
The simulation is adjusted to corresponding experimental studies and the results are compared with the
experimental results of model granulate consisting of about 3000 photoelastic disks. A shear zone next to the
rotating inner wall is observed. The distribution of tangential velocity of the disks shows an exponential
decrease within the shear zone and the angular velocities of the disks oscillate in the shear zone. The prob-
ability distributions of the fluctuational tangential, radial, and angular velocities of the disks become narrower
with increasing distance from the inner boundary and are non-Gaussian with exponential flanks. We find a
comparatively weak influence of both, the restitution coefficient, and the friction coefficient, on the tangential
velocity profile, whereas the packing fraction crucially determines the system’s response. The contact network
of the disk packing reveals force chains. The mean fabric tensor for each disk shows a different behavior within
and outside the shear zone. The probability distribution of normal contact forces shows an exponential decay
for high forces[S1063-651X99)12301-§

PACS numbsg(s): 83.50.Ax, 83.20.Jp, 83.10.Hh, 83.70.Fn

[. INTRODUCTION tacts and forces within the granular packing will be investi-
gated. A discussion and outlook follow in Sec. VI.

For several decades, granular media such as sand, gravel,

pow_der, or pills were a research topic almost_o_nly in the Il. SIMULATION METHOD
engineering community/1]. In recent years, physicists have _ . . .
become more and more interested in granular mgiad]. We use a discrete MD simulation meth[i7,7], i.e., we

A lot of experimental and theoretical work was and still is integrate the equations of motion for each particle. There-

carried out[5,6,3. Whereas engineers frequently use con-fore, the forceﬂ(t) on particlei at timet is needed to cal-

tinuum models to describe the behavior of granular materipyate the acceleration. In gener§j,consists of a forcd®

als, a discrete view is also possible. Using well known simuyye to an external field as gravitation, and pair interaction

lation methods like Monte CarlodMC) and molecular f ;i ted b th i ticlei. |

dynamics(MD) simulationd 7], such different effects as size grces 1l exerte y another par icleon partic e"_ n our

segregatiorf8—10], convection[11,12 or pattern formation simulation, the particles experience no external field gpd

[13-15 can be studied. Simple shear flow of granulates hass a contact interaction and thus of short range. The fésce

also been explored using discrete simulatiph—19. is divided into two components: a fordé” normal to the
Different types of shear cells have been studB@-22.  ,qact plane between two disks afffl parallel to the con-

These studies are often performed using “real” granular ma- 2(n) . .

terials such as sand or soils and are focused on topics impo}2ct Plane. Forfij” we use a linear spring-dashpot model

tant for industrial applications. But, since detailed insightsconS'St'ng of two components. First, a linear elastic repulsion

into the microscopic behavior of these materials is hard tdoree

achieve, the use of “model granulates” consisting of rather R R

small numbers of idealized grains such as spheres or disks is fi(je'>= KnYijNij 1)

recommended. Experimental studies of the dynamics within

f_\ she[g; Cgllls_] focus on force fluctuations and stress distribugith the overlapy;; =fij—%(di+dj) of particlesi andj, the

ions[23-25.

. . . spring constank, and normal unit vecton;, =(r. —r;)/r;:
Here, we focus on molecular dynami@ddD) simulations pring n i = (= r)/n

of a two-dimensionai2D) cylindrical shear cell, as also ex- pointing from particlei to particlej. The distance between

amined experimentallyi26]. The experimental shear cell the centers of the particlésand] with positionsr; andrj is
consists of an inner ring that rotates with a variable angulafi;=|r;—r;| andd;(d;) is the diameter of particlg(j). Sec-
velocity and a fixed outer ring, both confining about 30000nd, we use a viscous damping force

disks in the gap. The disks are made of photoelastic material

and the top and bottom plates are transparent with crossed fldiss _ Y (vii-nA: )
polarizers to visualize stressgZb]—one aim is to get agree- ! e

ment with the experimental results. Furthermore, we make ) . . ] ) ]
some predictions on the distribution of contact forces. WweWith the relative velocities);;=v;—v; of particlesi and ]
describe the simulation method in Sec. Il, and the shear cefind & phenomenological viscosify. For high values of the
setup in Sec. Ill. Parameter studies and results concerningscosity y, the normal force ()= f{*)+ f{#*9is discontinu-
the kinematics will be presented in Sec. IV. In Sec. V con-ous at the beginning of the interaction and can become at-
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tractive at the end28,29. We avoid the latter numerical o

- - - > - i
artifact by setting "’ to zero iff{["- n;; would become posi- F bottom™ — Mbotion] G diskl = )

tive and thus attractive. |vil

The tangential componerft) is the friction force be- G, is the weight of one disk angpyuen is the friction

tween two disl§s in contact. Several 'pres pf friction forces.geafficient between disks and bottom plaf%ottom is ori-
can be found in literatur€30]. Most simple is a Coulomb

L 200 , > ented in the opposite direction of the momentary velogit
friction wheref{) is proportional to the normal forc&": of diski. PP y i

The linear elastic repulsion of Eql) together with the
viscous damping of Eq(2) constitute a damped harmonic
oscillator whose motion can be solved analytically. The typi-
cal contact duration for smadt is found to bet.= 7/ w, with

the damped frequencyy= \/wé—?, the frequencyw,
=vkn/my; for y,=0, the scaled viscosity= y,/(2m;;),
and the reduced masg; =m;m;/(m;+m;). The coefficient
of normal restitutiore,, is defined as the ratio of the normal
velocities after and before contagj=—uv™(t¢)/v("(0) and

“) can be calculated am,=exp(— wy/w). Note thatt, ande,

is recommendef30]. Here, y, may be considered as a tech- i\r(istrictly valid for smally only, since we use the condition
nical parameter that should be large enough to avoid substafi;n;;>0 to determine when a contact ends. For a more de-
tial differences to Eq(3) and small enough to avoid the tailed calculation see Ref34]. Technically, in MD simula-
discontinuities mentioned above. However, the force in Eqtions one has to ensure that the integration time gjgpis
(4) is not able to model tangential elasticity, i.e., an inversionsmall compared to the contact durati in order to have
of tangential velocity during a contact, as measured experithe integration algorithm working well. To get good energy
mentally[31,32. conservation fory,= 0, the ratiot./tyyp must not be smaller

To model tangential elasticity and static friction, Cundall than about 40. We compared several integration schemes and
and StracK27] proposed the use of a tangential spring be-present here results obtained with the Verlet method using
tween two disks in contact: t./typ=060. There are several techniques known to reduce
time and memory consumption of MD simulatidm. In the
simulations presented here, we use Verlet neighborhood
tables, since the neighborhood is changing rather slowly.

The stiffnesg, is a function of the Young moduluéand
the Poisson ratio of the material. According to the Hertz
theory [35], a more complicated dependencelgfon the
impact velocity and the overlap is found for spheres, e.g.,
kn \ly with the overlapy. For disks a linear dependence of
k,, on the overlapy is found[36]. We use for all simulations
the linear spring model according to Eq$) and 2 because
we have disks, not spheres. Furthermore, the linear spring
model is easier to handle numerically than the nonlinear
Hertz model and the normal interaction during a contact is
supposed to be less important than the tangential friction in

fiy=—ulfiPlt, 3

with a friction coefficientu and directed opposite to the unit
vector in tangential directioty; =vP/|v{’| and so antiparal-
lel to the tangential velocity ) =v;; — (vj; - nyj) ny; . Because
of the discontinuity offij at zero relative tangential veloci-
ties, the use of a regularized force law

—ulf

0=~ min(lyo 'l IufDT; .

il

|ufl g)'

12yl "

wherek; is the tangential stiffness ar{d]- denotes the elon-
gation of the spring since timg when the contact was es-
tablished:

iy —min( ki ©)

- t -

gij(o:ft o (t)at’ (6)
0

Let us point out that Eq(5) is not just the minimum of the

spring force in Eq(6) and the Coulomb force in E¢3). The
Coulomb force in Eq(5) can have a different direction than

in Eq. (3) since it is coupled to the direction of the spring
elongationfij rather than to the direction of relative velocity

the shear cell37]. Thus, we use for all simulations the linear
spring-dashpot model according to E¢¥). and 2.
The two parameterk, and y,, can be determined by ap-

fij . For more details on modeling the tangential force seelying two criteria: first, the spring constakt, can be di-

[30].
Recently, the question came up as to whether (Bis
the correct implementation or np33,29. Different ways of

rectly derived from the Young modulug of the material.
Second, the restitution coefficient used should be of the same
order of magnitude as the one measured.

implementation were tested with the conclusion that either
the viscous force law in Eq4) or a special implementation
of Eq. (5) should be used. The latter includes that the spring
is kept at a length that resembles a fully activated frictional The geometrical setup of the shear cell is shown in Fig. 1.
contact. This is in contrast to the model where the spring iFhe radii of the inner and the outer ring an€™
released or cut when the force exceeds the Coulomb limit=10.32 cm and ®“9=2524 cm, respectively. The inner
lllustratively speaking, the spring has to be dragged. How+ing is rotating with a typical angular velocityw(™
ever, a comparison of the different implementations did not=0.1 s ! while the outer ring is immobile. Thus, one revo-
yield different results. lution takes approximately 1 m. Typically one observes a
Finally, we will introduce a friction forcé-om between  shear zone of several particle diameters thickness close to the
a disk and the bottom plate: inner ring. It is also possible to rotate the outer ring instead

Ill. SIMULATION SETUP
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TABLE |. Experimentally determined material parameters.

outer ring

Densityp 1.06 g cm®
Young modulusY 4.8 MPa
Poisson ratiov 0.5
Restitution coefficieng, 0.3
Friction coefficientu 0.44

inner ring

packing after the compression if the lattice spacing is too
small. Only for a lattice spacing @f=5d{29) we found no
more indication of the initial regularity after compression.
- Since we could not detect an influenceabn the system
FIG. 1. Schematic picture of the 2D shear cell. behavior, we usa=d@9 in the following.
of the inner one. In the experiment the rings are approxi-

mately 6 mm high and the system is confined in the plane by V. PARAMETER STUDIES AND KINEMATICS
transparent plexiglass plates. For an enlarged sketch of the

surfaces of the rings used in the experiment, see Rig. 2 ment. As one criterion for agreement we use the tangential

We |mplement t.hese walls as shown in Figol2 It is more . velocity profile, i.e., the mean tangential velocity of disks
convenient to simulate the wall surface by a smooth cylin-

drical wall overlapped with disks as shown in Figbpthan as a function of the radial distance from the center. We nor-
to simulate the exact polygonal experimental boundas}. malize the tangen(t_igl ve(lgnc;ltlz)yﬁv /(«r’) and the radial

™ — r__ | —
This difference between experiment and simulation should@0s'tion r=(r'-r ),/d ' '_I'hus, Ut— 1, means that_ a
not influence the results remarkably. If not explicitly men- disk follows the rotation of the inner ring, like a solid object,
tioned, we use 2911 disks with two different diameters: 25112nd " measures the distané®m the inner ring in units of

small disks with diameted®™)=7.42 mm and 400 larger dislk dia;netetrs. . . tial velocity at (i
disks withd(@99=8.99 mm. The height of all disks is 6 n order fo get a mean fangenfia’ velocity at a certain

mm, in the experiment. In the simulations, however, we ne_radlusr we perform temporal and spatial averaging. First, we

glect the third dimension, as far as the size of the particles jgverage over a numbef of snapshots of the shear cell sepa-

concerned, and assume the system to be infinitely long. ThE€d by time intervalat. Second, we average over all disks

volume fractionp of this configuration is 0.811. The material Zt a r?jdial pqsit(ijorg’ Vr\]'ith r le[r—ﬁréz,;+chr/|2], W_here
properties of the disks are given in Table I. For the friction r is determined by the total numbar of radial positions

law of Eq.(4) we use the experimentally determined value 0fused fortthe statistics. For trhe results presented in _thls paper
w and choosey, to be 0.15. We adjusted the parameteys V¢ :Jseln :300_’Atz0‘2 $,n'=50, andAr=1.5 mm if not
=352.1 N/m andy,=0.19 kg/s so that. and e, take the eX[')AICIthy rrgent]on.e ' f the sheari h

values measured experimentally. The parameters of the t the beginning of the shearing, the systém passes a
simulations are given in Table II. To get an initial shear celtransition from the initial configuration to a steady state with

setup, we put the desired number of disks on a triangula?l stationary shearlng of the _granulaf[e and thu_s a time-
lattice with spacinga=d (@9 [as shown in Fig. @], give independent tangential velocity profile. Our simulation

them random initial velocities and compress the system, i'eSurlﬁ)vxsotfhtztet?rﬁ(tar?\?vﬂgglt F,)A?‘tr:aordtvr\;gegsglsu Sg;'ggvéhgggfc} ::)\:O'
we reduce the radius of the outer ring until it reaches thel :

selected value(®, The system after compression is shown' cc0gnize any systematic change in the averaged quantities.

in Fig. 3(b). First, we checked different random sequences OE ggfgz’lsén?gmﬁecﬂ:nuIztign%rg%/ l?ergiz;%irg ;?I)rioorjrvfe--
the small and large disks on the lattice and found no influ- g 9

ence on the behavior of the packing during shearing. Secont Its. The following results are obtained during the second

we varied the initial lattice spacing, also without a detect- revolution of the cell.
able effect on the global behavior of the system. However,
we recognized that the system remembers its initial regular

The first task is to check the agreement with the experi-

TABLE Il. Parameters used for a typical simulation.

Densityp 1.06 g cm?
\‘l Normal spring constark,, 352.1 N/m
1 mm Normal viscosityy, 0.19 kg/s
(a) Restitution coefficienge, 0.3
‘ | Friction coefficientu 0.44
5 mm r=1mm Tangential viscosityy, 0.15 kg/s
Contact duratiort, 2.4x10 3%s
’////’////’/ b Time discretizatiortyp, 4x10°°s
Tangential spring constaiit 0 N/m
FIG. 2. Surface of rings in the experimef@ and in the simu-  Bottom friction upoom 2x10°°

lation (b).



(b)

FIG. 3. (a) Initially, the disks are put on a triangular lattice with
spacingd(®99. (b) Shear cell after compression when the outer ring
has reached the radiu&",

A. Variation of the model parameters

In Fig. 4 we compare the tangential velocities measured in
the simulation with those from the experiment. In the experi-

ment, a strong decay af; from the inner ring outwards is
observed. In the outer regioms is comparable to the noise
level. We will refer to the area of the strong dedayithin
the innermost disk layersas theshear zoneNote thatv,

<1 close to the inner wall, indicating that an essential por-
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simulation —=—
experiment —e—

25

FIG. 4. Mean tangential velocity, as a function of the radius

systematically too high. In the following, we study the influ-
ence of several parameters on the tangential velocity profile.
Figure 5 shows that a higher friction coefficiqutleads to a
larger tangential velocity in the shearing zone bustaaller
velocities outside. The width of the shear-zone is not influ-
enced much by, i.e., the curves in Fig. 5 cross bt=6.
There are two types of friction between the inner ring and the
adjacent disks: first a “microscopic” friction that results
from the Coulomb friction according to E¢3), and second,

a “macroscopic” friction due to the surface roughness as
shown in Fig. 2. Note that even with very low Coulomb
friction (u=0.05) a considerable shearing of the granulate
takes place mostly due to the rough surface of the inner ring.

In Fig. 6 we present tangential velocity profiles obtained
from simulations with different restitution coefficiergs. A
weak dependence of the tangential velocity profile on the
restitution coefficiene, is found but no clear tendency can
be evidenced. The data fe;,=0.2 ande,=0.8 are almost
indistinguishable, whereas the results fef=0.6 show
slightly larger tangential velocities. This result indicates that
the system is in a state where most of the kinetic energy is
dissipated and the rate of energy dissipation in normal direc-
tion is not very important.

Especially in the outer area where the particles are almost
at rest, the static friction between disks is supposed to play
an important role. Therefore we use the friction law of Eq.
(5) with tangential springs to model a kind of static friction
between disks and also between disks and boundaries. We
simulated two particle collisions as described [B0] to
check the friction law, Eq(5), and found that the influence
of the tangential springs on the tangential velocity gets stron-
ger with increasingr=k;/k,. The value ofe=~0.5 leads to a
reasonable agreement of the model with experimgeBs.

I]=1 =

y=02 ——

y=0.05 —— |
experiment <

1
01 ¢
0.01
0.001
0.0001

10-5 1 L 1 L
0

25

tion of the particles at the shear wall are sliding. The result of FIG. 5. Semilogarithmic plot of the mean tangential velogity
the simulation is qualitatively the same but the velocities aress radiusr for different friction coefficientsu.
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0.6 — T T T T 1 T T T r
r=02 —a— Hbottom = 104 ——
05 r=06 —o— 1 0.1 bottom = 10-% —=—
04 | =08 —— | pbottom =10 —s—
03 experiment —— 0.01 experiment s 7
= I i > 001 F o ]
0z | | 0.00
01 L i 0.0001 A :
ot - 105 | * s 7
_0.1 1 1 1 1 L 1 1 1 1 10 6 1 1 1 1 1
01 2 3 456 7 8 910 0 5 10 15 20 25 30
r
FIG. 6. Mean tangential velocity, vs radiusr obtained from FIG. 8. Semilogarithmic plot of mean tangential velocityvs
simulations with different restitution coefficienég. The Coulomb  radiusr measured in a simulation with Coulomb friction between
friction is u=0.44. disks and bottonisee Eq.(7)] for different friction coefficients

Mbottom-
For k,=352.1 N/m, «a=0.5 yields a tangential stiffnedg ] ] o ) ]
=176 N/m; the stiffness, for a different value ofa is Fig. 9 we show the linear and logarithmic tangential velocity
. ! . . . t — —5 H H

being calculated correspondingly. Figure 7 shows that a difProfiles for ipetom=2> 107> which turned out to give the
ferent strength of the tangential sprikgin Eq. (5) does not ~ Pest agreement with the experiment.

influence the shear zone, while we evidence a very small For the following simulations we use the parameters from
effect in the outer region. Since even different valuesdio ~ 1aPle 1l and the Coulomb force from E¢4) between the

not produce remarkably different tangential velocities, wedisks and the bottorfisee Eq.(7)] with sepoton=2%10"°.
will use @=0 in the following. We thus apply no static fric- Also between the disks and the two cylindrical walls and

tion. between t_he disks t_hgmselves_, we use Coulomb frigsee

We were not able to achieve a reasonable agreement bEd- (4)] with a coefficient of frictionu=0.44.
tween experiments and simulations by changing the friction
coefficientu, the restitution coefficieng,,, or the tangential C. Rotations of the particles
stiffnessk;. This rather unexpected result indeed rectifies the The disks are free to rotate in our simulations. Besides the
choice of an interaction model as simple as possible from theyngential velocities, also the spn, i.e., the angular veloc-
numerical viewpoint. ity of the disks, is of interesfsee Fig. 1Q} We obtain the

mean spin in the same way as the tangential velocities and
B. Friction with the walls

In the experiment, there is an additional friction between O'odfi I " Ubottom=210"5— ]

the disks and the bottorfor top) of the shear cel[39]. In- experiment -
cluding such friction according to E7), with the weight of
the smaller disk&s°™Y=0.0036 N and of the larger disks

. . = 4
G(a19®)=0,005 N, should reduce the tangential velocities of ]
the disks in the shear cell. From Fig. 8 we learn, that only a _
rather small value of the friction coefficieptygyom Suffices .
to reduce the tangential velocities essentially. Thus, we are ]
able to reach comparatively small tangential velocifisse 1'0 1'5 2'0 o5
profile for pponon=10"% in Fig. 8] with the additional bot- (@)
tom friction. The system is thus much stronger influenced by '
the boundaries than by the details of the interaction model. In 1 " tibottom = 210"5—
0.1 experiment e 1
>
E 1 0.01 :
q>> 0 1 4 >‘- 0001 SE- o - 3
= - O O ®
2 0.0001 f oo TR B @ ]
QC, 0.01 E o %  og® ©
-5 o oo
g) 10 L o o oo ° ]
© ] <)
§ 0.001 1078 . ) . '
2 50001 1 0 5 10 15 20 25
g (b) r
a 10-5 \ 1 f 1 . . . .
e 0 5 10 15 20 25 FIG. 9. Mean tangential velocity, versus radius measured in
normalized radial position a simulation with the parameters from Table Il friction and

Mbottoni=2X 1075, (@) Linear plot. (b) Semilogarithmic plot. We
FIG. 7. Mean tangential velocity, versus radius measured in  plotted results from the experiment obtained with different rota-
a simulation using the friction law in Ed5), with ©=0.44 and tional frequencies™ of the inner wheel to show the noise level in
different values ofe compared with the experimental data. the “static” outer area.
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simulation —=— ] simulation —=—
- experiment —— experiment —e—
5 02 0.3 1
(7]
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£
2 -0.2 0.1 .
0.4 0 1 1 1 1 1 1 P ©
2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16 18 20
normalized radial position r

FIG. 12. Fluctuations of the tangential velocity distribution vs

FIG. 10. Normalized mean spgvs radiusr. '
radiusr.

use the normalized spia=(s'd®™)/(w(M2r(M)  Thus, o o
s=1 means that a disk rolls over the inner wheel, and if the decrease more outside is much slower. Thus, the distri-

<1 there exists some sliding. Between the inner wheel angutions ofv, are most broad near the inner wheel. This can
r~4 the spins oscillates between negative and positive val-be understood because the innermost area is most dynamic

ues, i.e., the rotation sense of the disk changes and the ma@nd the disks experience many collisions changing their tan-

nitude decreases with increasingThis result indicates that 9ential velocity. Compared with the experiment, the distribu-
the disks are preferentially rolling over each other within thelions within the shear zone are too narrow in the simulation.
shear zone. Rolling necessarily requires that the rotatioh®t us remark that the rms of ands show qualitatively the
sense changdsee the sketch in Fig. 11Compared with the ~Same behavior. The fluctuations of the tangential velocity are
experiment, the absolute valuessare too high in the simu- comparable to the, in the shear zone, but they are larger
lation. We attribute this to the fact that the friction with the thanv in the outer area. _
bottom according to Eq7) only influences the translational N Fig. 13 we show distributions far, at three different
motion of a disk but not its rotation. rings of widthAr=1/2 and different radir =1 (next to the
The third kinematic quantity we look at is the radial ve- Shearing whegl r=4 (near to the outer border of the shear-
locity v, of the disks. Due to the cylindrical boundaries theing zong, andr =10 (in the static area It can be seen that
mean radial velocities obtained through the above describe@ie distributions are becoming narrower with increasing
statistics must vanish, but still we can measure the fluctua@nd that the averages of the distributions behave as described
tions of the radial velocities. Therefore we take a closer look&bove. The semilogarithmic plots in Fig. 14 show that the
at the distribution of tangential, radial, and spin velocitigs ~ distributions of all three quantities;, v,, ands have expo-
v,, ands of the disks. To quantify the distributions we use nentially decaying flanks at least for=4 andr=10. This
the root-mean-squar@ms), defined as matches the experimental results qualitatively except for the

distributions atr = 1. Experimentally, a non-Gaussian but bi-
rms(x) = V((x—(x))?),

modal distribution is measured with two peakwat 0 and
v +~0.6[26]. Thus a considerable amount of disks is at rest.
where(- - -} denotes an average over time and a spatial avMainly some isolated disks without any contact with other
erage over a ring of radiug and widthAr. Using the dis-  disks contribute to thest0]. In simulations, a friction co-
crete probability distributiorp; for the n valuesx; with i efficient as small agipeyor=2 10"° is possibly too low to
=1,... 1, we can calculate the average-) in Eq. (8) to bring particles to a halt fast enough. Sych a .frI.C.tIOFI woqld
(x)=3"_xp;. have to act abqut 50 s to stop a disk with an initial ve_Iouty
As an example, we show in Fig. 12 the rms fgr. A of 0.01 m/s, which is approximately the velocity of the inner

steep decrease within the shear zone can be found wherddag of the shear cell and thus a realistic velocity for disks in
’ the shear zone. Consequently, it is not surprising that we do

®)

30 T
25

20
o 15
[—\

10 +
5

0 s
-0.2 -0.1

Vi

@ FIG. 13. Tangential velocity distribution for three different radii
r. We plot the probability density, vsv,. p; fulfills the relation:
FIG. 11. Radially adjacent disks are rolling over each other. [*Zp (v)dv,=1.
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100 0.4 T T T T T T T
w0l e 02 1
a 0
ot g 02 :
* oal 5 04 -
E
0.01 | g 06 —
-0.8 e
0.001 1 N
6 7 8
(a) normalized radial position
100
FIG. 16. Spin velocity profiles for three different volume frac-
10 tions p.
1 L
o in the inner regions. With even higher densitigs=(0.834)
01 the system becomes blocked, it is too dense so that hardly
0.01 L any shearing takes place. Decreasing the volume fraction
(p=0.793 andp=0.784) reduces the velocitiep=0.793
0.001 " means that approximately the innermost layer of disks is
b) ' removed, which should therefore be the lowest possible vol-
ume fraction for that motion of the disks that can be ex-
100 pected. Thus, witlb=0.784 no shearing takes place. Conse-
10 b quently, a shearing of the granulate is possible only in a very
small range of packing densities. In Fig. 16 we present spin
1F velocity profiles for three different values @f Increasing
o 01 b the density moves the first peak nearer to the inner shearing
wheel. An influence of the packing density on the amplitude
0.01 F of the oscillations may also be expected because rotations of
0.001 Y e ma the d'isks are _gupposed to be increasingly frustratged by higher
T 16-12-08-04 0 04 08 1.2 1.6 packing densities. On the other hand, the disks will not rotate
©) s at all if the packing density is too small and the disks are not

in mutual contact.

FIG. 14. Semilogarithmic plot of distributions for three different  In Fig. 17 the volume fraction of the disk packing at dif-
radii. (a) Distributionsp, of tangential velocities,. (b) Distribu- ferent radial positions in the shear cell is plottgdshows
tionsp, of radial velocitiey, . (c) Distributionsps of spin velocities  distinct oscillations with a period of about one particle diam-

S. eter in the shear zone and also close to the outer wall. These
o . . . _oscillations indicate that the disks are located in layers par-
not find in the simulation many disks at rest when usinga)e| to the wall within the shear zone. The density is lowest

- -5 : . .

Mbottom— 2X107°. near the inner shearing wheel. This is reasonable because
shearing is possible only in connection with dilatancy. The

D. Variation of the volume fraction oscillations near the outer ring cannot be caused by the

Simulations with different volume fractions of the granu- SN€&ring but originate from the compression and the short
dange order induced by the outer ring. The solid line in Fig.

late also give different results. For the previous results w 17 i f th ilati dsh the dilat
usedp=0.811. In Fig. 15 we show that increasing the den-; IS an average ol the oscillations and shows the dilatancy

sity by a certain amountp(=0.824) increases the velocities In t.he Sheaf zone more clearly. Outsjalés a'T“OSt constant.
This result is also obtained from the experiment.

0.6 ———————1———
o =0.784—=—
05 r ¥ o =0.793—— 7 0.88
04 | 4 o =0811+—— |
: o =0.824—— 0.84 1
_ o3¢t o =0.834—— -
” 02 0.8 1
0.1 S 076 ]
0 0.72 .
-0.1
068 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

r
FIG. 15. Tangential velocity profiles for different volume frac-

tions. FIG. 17. Volume fractiorp vs radial positiorr.
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FIG. 18. Mean tangential velocity, vs radiusr measured in a
simulation with rotating outer wheel and immobile inner ring.

E. Inversion of the boundary condition

Now we present a simulation with rotating outer wheel
and an immobile inner ongsee Fig. 18 for the tangential
velocitied. The situation with rotating outer wheel is very
different from the one described above where the inner _ _ .
wheel rotated. Besides the disks within the innermost five G- 19 Snapshot of simulation. The color indicates the normal
disk radii, all disks follow the movement of the outer ring stress acting on the disk: dark means low stress, light means high
almost completely. This difference indicates that inertia ef—Stress'
fects can be important. It is clear that a disk tends to increase ) )
their radial position during shearing because of the centrifu@lmost the same for all disks in the shear zone. For an essen-
gal acceleration it experiences. In the case when the inndi@l fraction of the particles in the shear zone, the principal
wheel rotatesy the contact between the inner wheel and tr@“s are tilted into the direction of the rotation of the inner
disks is diminished due to this fact. In the case when thding [see Fig. 2()]. If the rotation sense of the inner ring
outer ring rotates, the disks are kept in good contact with théhanges, the principal axis are tilted into the opposite direc-
outer wheel and the disk packing follows its motion almosttion[see Fig. 20d)]. Outside the shear zone, a peculiar struc-

like a solid block. ture can be seen; the orientation@f differs from one disk
to the next, meaning that the contact network outside the
V. CONTACTS AND FORCES shear zone, built up during the first revolution, remains stable

] ] during the following shearing. For given velocity and rota-
In this section, we focus on the contacts and contacfion sense of the inner ring, this structure only depends on
forces within the packing of the disks. The contact networkihe spacing of the initial lattice, the distribution of the disks
can easily be obtained by the simulation, whereas its repragn the sites of the lattice, and their random, initial velocities.
duction from the eXperiment iS d|ff|CU|t Large contact fOFCGSThiS observation is confirmed by a real-time movie of the
are found along so-called force chains which can clearlysimylation or the experiment. Since the time of examination

been seen in Fig. 19. In some small areas, the initial triangus finite (e.g., five rotationswe are not able to observe very
lar lattice remains frozen. Looking at a real-time movie ofgjow changes in the outer area.

the simulation or at the experiment reveals that these force A probability distribution of the orientation of the princi-

chains seem fto have a certain mean dlreqtlon depeno!lng %I axis of the fabric tensows’ elucidates the described phe-
the rotation sense OT the inner fing. A sunabl_e quantity tonomena further in Fig. 20 Whereas it is difficult to extract
measure the orientation of contacts is the fabric tensor this information from the experiment, a simulation is a com-
paratively easy and powerful tool for this task. Because of
the rotational symmetry of the shear cell, we measure the
orientation as the angle between the major principal axis and
the radial direction. We define this angle as positive if the
contact is tilted in mathematically positive direction, i.e.,
counterclockwise against the radial, outward direction. The
following results were obtained by the same averaging pro-
cedure as described above. Figure 20 reveals distinct differ-
ences between the orientation of fabrics within different ra-
dial areas. In the shear zorn€igs. 2Ga) and 2Qd)], a
triangular structure with preferred angles 96°30°, and
+30° is obvious. Furthermore, the angle30° is found

N
o= nionl, 9)
= =1- -

wheren'! denotes the unit vector of contdasf diskj and©®

is the dyadic product. The sum in E@) runs over all con-
tactsi=1,... N of diskj so that a fabric tensa#’ for each
diskj is defined.a’ is a symmetric second rank tensor and its
principal axis (eigenvectors can be calculated. The mean

fabric tensorse! are obtained by averaging ovat=1500
snapshots taken at intervals &f=0.2s during 5 revolutions

of the inner ring, starting after the first revolution. We Use 1 ore frequently than the angle 30°. Farther outside, the
the_paramgters shown in '.I'able. ”j distribution is more homogenousee Fig. 2(b)]. Near the

! has different properties within the shear zone and outpyter ring, again a very distinct triangular structure occurs,
side. Relative to the radial direction, the orientatioraéfis  but now, the peaks at30° and+30° are equal. In Fig.
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FIG. 20. Probability distributions of the orientation of the principal axis of the fabric te@c&re shown in polar plots. They are
measured in three different radial rings) In the shear zone betweern-0 andr =6.6, (b) betweenr =6.6 andr =13.2, and(c) between
r=13.2 andr =20. The data ir(d) are measured with an opposite rotation sense of the inner ring thajc) with 0.0<r <6.6 as in(a).

20(d) we present the data for an opposite rotation sense dalirection into the direction of rotation, and the distribution
the inner ring, to be compared to Fig.(2D We note that the resembles a triangular network close to the walls.
peaks at- 30° and+30° are exchanged with respect to their ~ Finally, we focus on the distribution of normal contact
magnitude. forces in sheared granulates. During the last years, this ques-
The angles 90°~30°, and+30° correspond to an an- tion became interesting mainly due to the so-catiedodel
nular triangular lattice or, in other words, the disks are lo-[41]. Also experimental[24,42 and numerical studies
cated in annular layers. In the shear-zgfgs. 2Ga) and  [43,44 examined the force distributions in static granular
20(d)], this structure is reasonable because it may allow slidassemblies. Both experiment and simulation of the shear cell
ing of the layers. A homogenous distribution outside theshow force chains in the granulate during shearing which
shear zone as in Fig. &) is due to the missing influence of indicates that the contact force distribution is worth looking
both dilation and geometrical order due to a wall. The re-at. For the distributiop(f/(f)) of normalized contact forces
peated occurrence of the annular triangular lattice near th&(f) within a static granular material, tteemodel predicts
outer boundary cannot be ascribed to the shearing but i8n exponential decay for high forces and a power law for
formed during the initial compression of the shear cell. If thesmall forces(f) is the average contact force ap(if/(f)) is
rotation sense of the inner ring is changed, we get the sameormalized so thaff *Zp(x)dx=1. In order to obtain the
results as in Figs. ZB) and 2@c). Only in the shear zone, distribution of forces in the shear cell, we use 600 snapshots
more fabric tensors are oriented alorg30° than along taken during one revolution of the inner ring and average
+30° [Fig. 20d)] whereas in Fig. 2@ we measured the over all disks. In Fig. 21 the results for the normal contact
opposite. forces are shown. The distribution shows a distinct tail for
Note that the properties of the stress tens@eeraged high forces that can be fitted by an exponential function with
over all contacts of one partigldave qualitatively the same an exponent between 0.6f/(f) and —1.05f/(f). The dis-
properties as the fabric tensors. The major principal eigentribution becomes very noisy for small forces due to loga-
value is preferentially tilted by 30° from the radial outward rithmic binning and no clear statement is possible there.
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. comparing the rotational velocities, the behavior of the ve-
locity distributions, and the probabilities for large forces.

Predictions, concerning the orientation of the fabric tensor
of the disks and the distribution of contact forces in the disk
packing, have been made. For the first point, experimental
results are very difficult to be obtained and are not accessible
yet, and for the second point, reliable experimental results
are possible for large forces only.

In general, simulations are a very powerful tool for at
least two reasons. First, it is less difficult to change param-
eters in a simulation than in a real experiment, and second,

p(f/<f>)

(a) fl<f>

1 T exp(-1.05 f/<f>) ] some quan_tities are easily ac.cessiblle fr_om simulation but not

o OXp(-0.6 f/<t>) - 1 from experiment. Thus, the simulation is useful to get more

0.01 [T 1 detailed insights, to make predictions, and to check experi-

2 00001 F . mental data-analysis methods.

s i T The friction between disks and the bottom plate we used
g 10° ¢ T in the simulation causes further questions. Even when the
108 | - agreement concerning the distribution of tangential velocities

- near the inner ring is reasonably reproduced by simulations,

10710 ' : ' ' the rotational velocities are not damped by friction. Further-
0 4 8 12 16 20 - . . N
(b) y more, we did not check how important inhomogeneities in
<> the third dimension are. Especially the influence of the pack-
FIG. 21. (a) Distribution of normal contact forcgs(f/(f)). () ~ ing density and of the friction coefficient should be stud-
Semilogarithmic plot of the decrease for large normal contacied.
forces.
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