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Simulation of a two-dimensional shear cell

Steffen Scho¨llmann
Solitudeallee 82, 70825 Korntal-Mu¨nchingen, Germany

~Received 5 August 1998!

Molecular dynamics~MD! simulations of a two-dimensional~2D! shear cell of Couette type are presented.
The simulation is adjusted to corresponding experimental studies and the results are compared with the
experimental results of model granulate consisting of about 3000 photoelastic disks. A shear zone next to the
rotating inner wall is observed. The distribution of tangential velocity of the disks shows an exponential
decrease within the shear zone and the angular velocities of the disks oscillate in the shear zone. The prob-
ability distributions of the fluctuational tangential, radial, and angular velocities of the disks become narrower
with increasing distance from the inner boundary and are non-Gaussian with exponential flanks. We find a
comparatively weak influence of both, the restitution coefficient, and the friction coefficient, on the tangential
velocity profile, whereas the packing fraction crucially determines the system’s response. The contact network
of the disk packing reveals force chains. The mean fabric tensor for each disk shows a different behavior within
and outside the shear zone. The probability distribution of normal contact forces shows an exponential decay
for high forces.@S1063-651X~99!12301-8#

PACS number~s!: 83.50.Ax, 83.20.Jp, 83.10.Hh, 83.70.Fn
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I. INTRODUCTION

For several decades, granular media such as sand, gr
powder, or pills were a research topic almost only in t
engineering community@1#. In recent years, physicists hav
become more and more interested in granular media@2–4#.
A lot of experimental and theoretical work was and still
carried out@5,6,3#. Whereas engineers frequently use co
tinuum models to describe the behavior of granular mat
als, a discrete view is also possible. Using well known sim
lation methods like Monte Carlo~MC! and molecular
dynamics~MD! simulations@7#, such different effects as siz
segregation@8–10#, convection@11,12# or pattern formation
@13–15# can be studied. Simple shear flow of granulates
also been explored using discrete simulations@16–19#.

Different types of shear cells have been studied@20–22#.
These studies are often performed using ‘‘real’’ granular m
terials such as sand or soils and are focused on topics im
tant for industrial applications. But, since detailed insig
into the microscopic behavior of these materials is hard
achieve, the use of ‘‘model granulates’’ consisting of rath
small numbers of idealized grains such as spheres or dis
recommended. Experimental studies of the dynamics wi
a shear cell focus on force fluctuations and stress distr
tions @23–25#.

Here, we focus on molecular dynamics~MD! simulations
of a two-dimensional~2D! cylindrical shear cell, as also ex
amined experimentally@26#. The experimental shear ce
consists of an inner ring that rotates with a variable angu
velocity and a fixed outer ring, both confining about 30
disks in the gap. The disks are made of photoelastic mate
and the top and bottom plates are transparent with cro
polarizers to visualize stresses@26#—one aim is to get agree
ment with the experimental results. Furthermore, we m
some predictions on the distribution of contact forces. W
describe the simulation method in Sec. II, and the shear
setup in Sec. III. Parameter studies and results concer
the kinematics will be presented in Sec. IV. In Sec. V co
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tacts and forces within the granular packing will be inves
gated. A discussion and outlook follow in Sec. VI.

II. SIMULATION METHOD

We use a discrete MD simulation method@27,7#, i.e., we
integrate the equations of motion for each particle. The
fore, the forcefW i(t) on particlei at time t is needed to cal-
culate the acceleration. In general,fW i consists of a forcefW i

ex

due to an external field as gravitation, and pair interact
forces fW i j exerted by another particlej on particlei. In our
simulation, the particles experience no external field andfW i j

is a contact interaction and thus of short range. The forcefW i j

is divided into two components: a forcefW i j
(n) normal to the

contact plane between two disks andfW i j
(t) parallel to the con-

tact plane. ForfW i j
(n) we use a linear spring-dashpot mod

consisting of two components. First, a linear elastic repuls
force

fW i j
~el!5knyi j nW i j ~1!

with the overlapyi j 5r i j 2
1
2 (di1dj ) of particlesi and j, the

spring constantkn and normal unit vectornW i j 5(rW j2rW i)/r i j
pointing from particlei to particle j. The distance between
the centers of the particlesi and j with positionsrW i andrW j is
r i j 5urW i2rW j u anddi(dj ) is the diameter of particlei ( j ). Sec-
ond, we use a viscous damping force

fW i j
~diss!5gn~vW i j •nW i j !nW i j , ~2!

with the relative velocitiesvW i j 5vW j2vW i of particles i and j
and a phenomenological viscositygn . For high values of the
viscositygn the normal forcefW i j

(n)5 fW i j
(el)1 fW i j

(diss) is discontinu-
ous at the beginning of the interaction and can become
889 ©1999 The American Physical Society
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890 PRE 59STEFFEN SCHO¨ LLMANN
tractive at the end@28,29#. We avoid the latter numerica
artifact by settingfW i j

(n) to zero if fW i j
(n)
•nW i j would become posi-

tive and thus attractive.
The tangential componentfW i j

(t) is the friction force be-
tween two disks in contact. Several types of friction forc
can be found in literature@30#. Most simple is a Coulomb
friction where fW i j

(t) is proportional to the normal forcefW i j
(n) :

fW i j
~ t!52mu fW i j

~n!u tW i j , ~3!

with a friction coefficientm and directed opposite to the un
vector in tangential directiontW i j 5vW i j

(t)/uvW i j
(t)u and so antiparal-

lel to the tangential velocityvW i j
(t)5vW i j 2(vW i j •nW i j )nW i j . Because

of the discontinuity oftW i j at zero relative tangential veloc
ties, the use of a regularized force law

fW i j
~ t!52 min~ ug tvW i j

~ t!u,um fW i j
~n!u! tW i j . ~4!

is recommended@30#. Here,g t may be considered as a tec
nical parameter that should be large enough to avoid subs
tial differences to Eq.~3! and small enough to avoid th
discontinuities mentioned above. However, the force in
~4! is not able to model tangential elasticity, i.e., an invers
of tangential velocity during a contact, as measured exp
mentally @31,32#.

To model tangential elasticity and static friction, Cund
and Strack@27# proposed the use of a tangential spring b
tween two disks in contact:

fW i j
~ t!52minS ktzW i j ,

um fW i j
~n!u

uzW i j u
zW i j D , ~5!

wherekt is the tangential stiffness andzW i j denotes the elon
gation of the spring since timet0 when the contact was es
tablished:

zW i j ~ t !5E
t0

t

vW i j
~ t!~ t8!dt8. ~6!

Let us point out that Eq.~5! is not just the minimum of the
spring force in Eq.~6! and the Coulomb force in Eq.~3!. The
Coulomb force in Eq.~5! can have a different direction tha
in Eq. ~3! since it is coupled to the direction of the sprin
elongationzW i j rather than to the direction of relative veloci
tW i j . For more details on modeling the tangential force s
@30#.

Recently, the question came up as to whether Eq.~5! is
the correct implementation or not@33,29#. Different ways of
implementation were tested with the conclusion that eit
the viscous force law in Eq.~4! or a special implementation
of Eq. ~5! should be used. The latter includes that the spr
is kept at a length that resembles a fully activated frictio
contact. This is in contrast to the model where the spring
released or cut when the force exceeds the Coulomb li
Illustratively speaking, the spring has to be dragged. Ho
ever, a comparison of the different implementations did
yield different results.

Finally, we will introduce a friction forceFbottom between
a disk and the bottom plate:
s

n-

.
n
ri-

l
-

e

r

g
l

is
it.
-
t

FW bottom52mbottomuGW disku
vW i

uvW i u
. ~7!

Gdisk is the weight of one disk andmbottom is the friction
coefficient between disks and bottom plate.FW bottom is ori-
ented in the opposite direction of the momentary velocityvW i
of disk i.

The linear elastic repulsion of Eq.~1! together with the
viscous damping of Eq.~2! constitute a damped harmon
oscillator whose motion can be solved analytically. The ty
cal contact duration for smallg is found to betc5p/v, with

the damped frequencyv5Av0
22ḡ2, the frequencyv0

5Akn /mi j for gn50, the scaled viscosityḡ5gn /(2mi j ),
and the reduced massmi j 5mimj /(mi1mj ). The coefficient
of normal restitutionen is defined as the ratio of the norma
velocities after and before contacten52v (n)(tc)/v

(n)(0) and
can be calculated asen5exp(2pḡ/v). Note thattc anden

are strictly valid for smallḡ only, since we use the conditio
fW i j nW i j .0 to determine when a contact ends. For a more
tailed calculation see Ref.@34#. Technically, in MD simula-
tions one has to ensure that the integration time steptMD is
small compared to the contact durationtc , in order to have
the integration algorithm working well. To get good ener
conservation forgn50, the ratiotc /tMD must not be smaller
than about 40. We compared several integration schemes
present here results obtained with the Verlet method us
tc /tMD560. There are several techniques known to red
time and memory consumption of MD simulations@7#. In the
simulations presented here, we use Verlet neighborh
tables, since the neighborhood is changing rather slowly

The stiffnesskn is a function of the Young modulusY and
the Poisson ration of the material. According to the Hert
theory @35#, a more complicated dependence ofkn on the
impact velocity and the overlap is found for spheres, e
kn}Ay with the overlapy. For disks a linear dependence
kn on the overlapy is found@36#. We use for all simulations
the linear spring model according to Eqs.~1! and 2 because
we have disks, not spheres. Furthermore, the linear sp
model is easier to handle numerically than the nonlin
Hertz model and the normal interaction during a contac
supposed to be less important than the tangential friction
the shear cell@37#. Thus, we use for all simulations the linea
spring-dashpot model according to Eqs.~1! and 2.

The two parameterskn andgn can be determined by ap
plying two criteria: first, the spring constantkn can be di-
rectly derived from the Young modulusY of the material.
Second, the restitution coefficient used should be of the s
order of magnitude as the one measured.

III. SIMULATION SETUP

The geometrical setup of the shear cell is shown in Fig
The radii of the inner and the outer ring arer (in)

510.32 cm andr (out)525.24 cm, respectively. The inne
ring is rotating with a typical angular velocityv (in)

50.1 s21 while the outer ring is immobile. Thus, one revo
lution takes approximately 1 m. Typically one observes
shear zone of several particle diameters thickness close to
inner ring. It is also possible to rotate the outer ring inste
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PRE 59 891SIMULATION OF A TWO-DIMENSIONAL SHEAR CELL
of the inner one. In the experiment the rings are appro
mately 6 mm high and the system is confined in the plane
transparent plexiglass plates. For an enlarged sketch o
surfaces of the rings used in the experiment, see Fig. 2~a!.
We implement these walls as shown in Fig. 2~b!. It is more
convenient to simulate the wall surface by a smooth cy
drical wall overlapped with disks as shown in Fig. 2~b! than
to simulate the exact polygonal experimental boundary@38#.
This difference between experiment and simulation sho
not influence the results remarkably. If not explicitly me
tioned, we use 2911 disks with two different diameters: 25
small disks with diameterd(small)57.42 mm and 400 large
disks withd(large)58.99 mm. The heighth of all disks is 6
mm, in the experiment. In the simulations, however, we
glect the third dimension, as far as the size of the particle
concerned, and assume the system to be infinitely long.
volume fractionr of this configuration is 0.811. The materi
properties of the disks are given in Table I. For the fricti
law of Eq.~4! we use the experimentally determined value
m and chooseg t to be 0.15. We adjusted the parameterskn
5352.1 N/m andgn50.19 kg/s so thattc and en take the
values measured experimentally. The parameters of
simulations are given in Table II. To get an initial shear c
setup, we put the desired number of disks on a triang
lattice with spacinga5d(large) @as shown in Fig. 3~a!#, give
them random initial velocities and compress the system,
we reduce the radius of the outer ring until it reaches
selected valuer (out). The system after compression is show
in Fig. 3~b!. First, we checked different random sequences
the small and large disks on the lattice and found no in
ence on the behavior of the packing during shearing. Sec
we varied the initial lattice spacinga, also without a detect-
able effect on the global behavior of the system. Howev
we recognized that the system remembers its initial reg

FIG. 1. Schematic picture of the 2D shear cell.

FIG. 2. Surface of rings in the experiment~a! and in the simu-
lation ~b!.
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packing after the compression if the lattice spacing is
small. Only for a lattice spacing ofa55d(large) we found no
more indication of the initial regularity after compressio
Since we could not detect an influence ofa on the system
behavior, we usea5d(large) in the following.

IV. PARAMETER STUDIES AND KINEMATICS

The first task is to check the agreement with the exp
ment. As one criterion for agreement we use the tangen
velocity profile, i.e., the mean tangential velocityv t8 of disks
as a function of the radial distance from the center. We n
malize the tangential velocityv t5v t8/(v

(in)r 8) and the radial
position r 5(r 82r (in))/d(small). Thus, v t51 means that a
disk follows the rotation of the inner ring, like a solid objec
and r measures the distancefrom the inner ring in units of
disk diameters.

In order to get a mean tangential velocity at a cert
radiusr we perform temporal and spatial averaging. First,
average over a numbernt of snapshots of the shear cell sep
rated by time intervalsDt. Second, we average over all disk
at a radial positionr 8 with r 8P@r 2Dr /2,r 1Dr /2#, where
Dr is determined by the total numbernr of radial positions
used for the statistics. For the results presented in this p
we usent5300,Dt50.2 s,nr550, andDr 51.5 mm if not
explicitly mentioned.

At the beginning of the shearing, the system passe
transition from the initial configuration to a steady state w
a stationary shearing of the granulate and thus a tim
independent tangential velocity profile. Our simulatio
shows that this transient period happens during the first re
lution of the inner wheel. After two revolutions we could n
recognize any systematic change in the averaged quant
However, since we simulated only a maximum of 10 rev
lutions a long-time change cannot be excluded from our
sults. The following results are obtained during the seco
revolution of the cell.

TABLE I. Experimentally determined material parameters.

Density r̄ 1.06 g cm23

Young modulusY 4.8 MPa
Poisson ration 0.5
Restitution coefficienten 0.3
Friction coefficientm 0.44

TABLE II. Parameters used for a typical simulation.

Density r̄ 1.06 g cm23

Normal spring constantkn 352.1 N/m
Normal viscositygn 0.19 kg/s
Restitution coefficienten 0.3
Friction coefficientm 0.44
Tangential viscosityg t 0.15 kg/s
Contact durationtc 2.431023 s
Time discretizationtMD 431025 s
Tangential spring constantkt 0 N/m
Bottom friction mbottom 231025
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892 PRE 59STEFFEN SCHO¨ LLMANN
A. Variation of the model parameters

In Fig. 4 we compare the tangential velocities measure
the simulation with those from the experiment. In the expe
ment, a strong decay ofv t from the inner ring outwards is
observed. In the outer regionsv t is comparable to the nois
level. We will refer to the area of the strong decay~within
the innermost disk layers! as theshear zone. Note thatv t
,1 close to the inner wall, indicating that an essential p
tion of the particles at the shear wall are sliding. The resul
the simulation is qualitatively the same but the velocities

FIG. 3. ~a! Initially, the disks are put on a triangular lattice wit
spacingd(large). ~b! Shear cell after compression when the outer r
has reached the radiusr (out).
in
i-

-
f
e

systematically too high. In the following, we study the infl
ence of several parameters on the tangential velocity pro
Figure 5 shows that a higher friction coefficientm leads to a
larger tangential velocity in the shearing zone but tosmaller
velocities outside. The width of the shear-zone is not infl
enced much bym, i.e., the curves in Fig. 5 cross atr'6.
There are two types of friction between the inner ring and
adjacent disks: first a ‘‘microscopic’’ friction that result
from the Coulomb friction according to Eq.~3!, and second,
a ‘‘macroscopic’’ friction due to the surface roughness
shown in Fig. 2. Note that even with very low Coulom
friction (m50.05) a considerable shearing of the granul
takes place mostly due to the rough surface of the inner r

In Fig. 6 we present tangential velocity profiles obtain
from simulations with different restitution coefficientsen . A
weak dependence of the tangential velocity profile on
restitution coefficienten is found but no clear tendency ca
be evidenced. The data foren50.2 anden50.8 are almost
indistinguishable, whereas the results foren50.6 show
slightly larger tangential velocities. This result indicates th
the system is in a state where most of the kinetic energ
dissipated and the rate of energy dissipation in normal dir
tion is not very important.

Especially in the outer area where the particles are alm
at rest, the static friction between disks is supposed to p
an important role. Therefore we use the friction law of E
~5! with tangential springs to model a kind of static frictio
between disks and also between disks and boundaries.
simulated two particle collisions as described in@30# to
check the friction law, Eq.~5!, and found that the influence
of the tangential springs on the tangential velocity gets str
ger with increasinga5kt /kn . The value ofa'0.5 leads to a
reasonable agreement of the model with experiments@30#.

FIG. 4. Mean tangential velocityv t as a function of the radiusr.

FIG. 5. Semilogarithmic plot of the mean tangential velocityv t

vs radiusr for different friction coefficientsm.
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PRE 59 893SIMULATION OF A TWO-DIMENSIONAL SHEAR CELL
For kn5352.1 N/m, a50.5 yields a tangential stiffnesskt
5176 N/m; the stiffnesskt for a different value ofa is
being calculated correspondingly. Figure 7 shows that a
ferent strength of the tangential springkt in Eq. ~5! does not
influence the shear zone, while we evidence a very sm
effect in the outer region. Since even different values ofa do
not produce remarkably different tangential velocities,
will use a50 in the following. We thus apply no static fric
tion.

We were not able to achieve a reasonable agreemen
tween experiments and simulations by changing the frict
coefficientm, the restitution coefficienten , or the tangential
stiffnesskt . This rather unexpected result indeed rectifies
choice of an interaction model as simple as possible from
numerical viewpoint.

B. Friction with the walls

In the experiment, there is an additional friction betwe
the disks and the bottom~or top! of the shear cell@39#. In-
cluding such friction according to Eq.~7!, with the weight of
the smaller disksG(small)50.0036 N and of the larger disks
G(large)50.005 N, should reduce the tangential velocities
the disks in the shear cell. From Fig. 8 we learn, that onl
rather small value of the friction coefficientmbottom suffices
to reduce the tangential velocities essentially. Thus, we
able to reach comparatively small tangential velocities@see
profile for mbottom51024 in Fig. 8# with the additional bot-
tom friction. The system is thus much stronger influenced
the boundaries than by the details of the interaction mode

FIG. 6. Mean tangential velocityv t vs radiusr obtained from
simulations with different restitution coefficientsen . The Coulomb
friction is m50.44.

FIG. 7. Mean tangential velocityv t versus radiusr measured in
a simulation using the friction law in Eq.~5!, with m50.44 and
different values ofa compared with the experimental data.
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Fig. 9 we show the linear and logarithmic tangential veloc
profiles for mbottom5231025 which turned out to give the
best agreement with the experiment.

For the following simulations we use the parameters fr
Table II and the Coulomb force from Eq.~4! between the
disks and the bottom@see Eq.~7!# with mbottom5231025.
Also between the disks and the two cylindrical walls a
between the disks themselves, we use Coulomb friction@see
Eq. ~4!# with a coefficient of frictionm50.44.

C. Rotations of the particles

The disks are free to rotate in our simulations. Besides
tangential velocities, also the spins8, i.e., the angular veloc-
ity of the disks, is of interest@see Fig. 10#. We obtain the
mean spin in the same way as the tangential velocities

FIG. 8. Semilogarithmic plot of mean tangential velocityv t vs
radius r measured in a simulation with Coulomb friction betwe
disks and bottom@see Eq.~7!# for different friction coefficients
mbottom.

FIG. 9. Mean tangential velocityv t versus radiusr measured in
a simulation with the parameters from Table II friction an
mbottom5231025. ~a! Linear plot. ~b! Semilogarithmic plot. We
plotted results from the experiment obtained with different ro
tional frequenciesv (in) of the inner wheel to show the noise level
the ‘‘static’’ outer area.
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894 PRE 59STEFFEN SCHO¨ LLMANN
use the normalized spins5(s8d(small))/(v (in)2r (in)). Thus,
s51 means that a disk rolls over the inner wheel, and is
,1 there exists some sliding. Between the inner wheel
r'4 the spins oscillates between negative and positive v
ues, i.e., the rotation sense of the disk changes and the
nitude decreases with increasingr. This result indicates tha
the disks are preferentially rolling over each other within t
shear zone. Rolling necessarily requires that the rota
sense changes@see the sketch in Fig. 11#. Compared with the
experiment, the absolute values ofs are too high in the simu-
lation. We attribute this to the fact that the friction with th
bottom according to Eq.~7! only influences the translationa
motion of a disk but not its rotation.

The third kinematic quantity we look at is the radial v
locity v r of the disks. Due to the cylindrical boundaries t
mean radial velocities obtained through the above descr
statistics must vanish, but still we can measure the fluc
tions of the radial velocities. Therefore we take a closer lo
at the distribution of tangential, radial, and spin velocitiesv t ,
v r , ands of the disks. To quantify the distributions we us
the root-mean-square~rms!, defined as

rms~x!5A^~x2^x&!2&, ~8!

where^•••& denotes an average over time and a spatial
erage over a ring of radiusr 8 and widthDr . Using the dis-
crete probability distributionpi for the n valuesxi with i
51, . . . ,n, we can calculate the average^•••& in Eq. ~8! to
^x&5( i 51

n xipi .
As an example, we show in Fig. 12 the rms forv t . A

steep decrease within the shear zone can be found, wh

FIG. 10. Normalized mean spins vs radiusr.

FIG. 11. Radially adjacent disks are rolling over each othe
d
-
ag-

e
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ed
a-
k

v-
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the decrease more outside is much slower. Thus, the di
butions ofv t are most broad near the inner wheel. This c
be understood because the innermost area is most dyn
and the disks experience many collisions changing their
gential velocity. Compared with the experiment, the distrib
tions within the shear zone are too narrow in the simulati
Let us remark that the rms ofv r ands show qualitatively the
same behavior. The fluctuations of the tangential velocity
comparable to thev t in the shear zone, but they are larg
thanv t in the outer area.

In Fig. 13 we show distributions forv t at three different
rings of widthDr 51/2 and different radiir 51 ~next to the
shearing wheel!, r 54 ~near to the outer border of the shea
ing zone!, andr 510 ~in the static area!. It can be seen tha
the distributions are becoming narrower with increasingr
and that the averages of the distributions behave as desc
above. The semilogarithmic plots in Fig. 14 show that t
distributions of all three quantitiesv t , v r , ands have expo-
nentially decaying flanks at least forr 54 and r 510. This
matches the experimental results qualitatively except for
distributions atr 51. Experimentally, a non-Gaussian but b
modal distribution is measured with two peaks atv t50 and
v t'0.6 @26#. Thus a considerable amount of disks is at re
Mainly some isolated disks without any contact with oth
disks contribute to these@40#. In simulations, a friction co-
efficient as small asmbottom5231025 is possibly too low to
bring particles to a halt fast enough. Such a friction wou
have to act about 50 s to stop a disk with an initial veloc
of 0.01 m/s, which is approximately the velocity of the inn
ring of the shear cell and thus a realistic velocity for disks
the shear zone. Consequently, it is not surprising that we

FIG. 12. Fluctuations of the tangential velocity distribution
radiusr.

FIG. 13. Tangential velocity distribution for three different rad
r. We plot the probability densitypt vs v t . pt fulfills the relation:
*2`

1`p t(v t)dv t51.
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PRE 59 895SIMULATION OF A TWO-DIMENSIONAL SHEAR CELL
not find in the simulation many disks at rest when us
mbottom5231025.

D. Variation of the volume fraction

Simulations with different volume fractions of the gran
late also give different results. For the previous results
usedr50.811. In Fig. 15 we show that increasing the de
sity by a certain amount (r50.824) increases the velocitie

FIG. 14. Semilogarithmic plot of distributions for three differe
radii. ~a! Distributionspt of tangential velocitiesv t . ~b! Distribu-
tionspr of radial velocitiesv r . ~c! Distributionsps of spin velocities
s.

FIG. 15. Tangential velocity profiles for different volume fra
tions.
e
-

in the inner regions. With even higher densities (r50.834)
the system becomes blocked, it is too dense so that ha
any shearing takes place. Decreasing the volume frac
(r50.793 andr50.784) reduces the velocities.r50.793
means that approximately the innermost layer of disks
removed, which should therefore be the lowest possible v
ume fraction for that motion of the disks that can be e
pected. Thus, withr50.784 no shearing takes place. Cons
quently, a shearing of the granulate is possible only in a v
small range of packing densities. In Fig. 16 we present s
velocity profiles for three different values ofr. Increasing
the density moves the first peak nearer to the inner shea
wheel. An influence of the packing density on the amplitu
of the oscillations may also be expected because rotation
the disks are supposed to be increasingly frustrated by hig
packing densities. On the other hand, the disks will not rot
at all if the packing density is too small and the disks are
in mutual contact.

In Fig. 17 the volume fraction of the disk packing at di
ferent radial positions in the shear cell is plotted.r shows
distinct oscillations with a period of about one particle dia
eter in the shear zone and also close to the outer wall. Th
oscillations indicate that the disks are located in layers p
allel to the wall within the shear zone. The density is lowe
near the inner shearing wheel. This is reasonable bec
shearing is possible only in connection with dilatancy. T
oscillations near the outer ring cannot be caused by
shearing but originate from the compression and the s
range order induced by the outer ring. The solid line in F
17 is an average of the oscillations and shows the dilata
in the shear zone more clearly. Outsider is almost constant.
This result is also obtained from the experiment.

FIG. 16. Spin velocity profiles for three different volume fra
tions r.

FIG. 17. Volume fractionr vs radial positionr.
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E. Inversion of the boundary condition

Now we present a simulation with rotating outer whe
and an immobile inner one@see Fig. 18 for the tangentia
velocities#. The situation with rotating outer wheel is ver
different from the one described above where the in
wheel rotated. Besides the disks within the innermost fi
disk radii, all disks follow the movement of the outer rin
almost completely. This difference indicates that inertia
fects can be important. It is clear that a disk tends to incre
their radial position during shearing because of the centr
gal acceleration it experiences. In the case when the in
wheel rotates, the contact between the inner wheel and
disks is diminished due to this fact. In the case when
outer ring rotates, the disks are kept in good contact with
outer wheel and the disk packing follows its motion almo
like a solid block.

V. CONTACTS AND FORCES

In this section, we focus on the contacts and cont
forces within the packing of the disks. The contact netwo
can easily be obtained by the simulation, whereas its re
duction from the experiment is difficult. Large contact forc
are found along so-called force chains which can clea
been seen in Fig. 19. In some small areas, the initial trian
lar lattice remains frozen. Looking at a real-time movie
the simulation or at the experiment reveals that these fo
chains seem to have a certain mean direction dependin
the rotation sense of the inner ring. A suitable quantity
measure the orientation of contacts is the fabric tensor

a j5(
i 51

N

nji (nji , ~9!

whereni j denotes the unit vector of contacti of disk j and(
is the dyadic product. The sum in Eq.~9! runs over all con-
tactsi 51, . . . ,N of disk j so that a fabric tensora j for each
disk j is defined.a j is a symmetric second rank tensor and
principal axis ~eigenvectors! can be calculated. The mea
fabric tensorsā j are obtained by averaging overnt51500
snapshots taken at intervals ofDt50.2s during 5 revolutions
of the inner ring, starting after the first revolution. We u
the parameters shown in Table II.

ā j has different properties within the shear zone and o
side. Relative to the radial direction, the orientation ofā j is

FIG. 18. Mean tangential velocityv t vs radiusr measured in a
simulation with rotating outer wheel and immobile inner ring.
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almost the same for all disks in the shear zone. For an es
tial fraction of the particles in the shear zone, the princip
axis are tilted into the direction of the rotation of the inn
ring @see Fig. 20~a!#. If the rotation sense of the inner rin
changes, the principal axis are tilted into the opposite dir
tion @see Fig. 20~d!#. Outside the shear zone, a peculiar stru
ture can be seen; the orientation ofā j differs from one disk
to the next, meaning that the contact network outside
shear zone, built up during the first revolution, remains sta
during the following shearing. For given velocity and rot
tion sense of the inner ring, this structure only depends
the spacing of the initial lattice, the distribution of the dis
on the sites of the lattice, and their random, initial velocitie
This observation is confirmed by a real-time movie of t
simulation or the experiment. Since the time of examinat
is finite ~e.g., five rotations! we are not able to observe ver
slow changes in the outer area.

A probability distribution of the orientation of the princi
pal axis of the fabric tensorsā j elucidates the described phe
nomena further in Fig. 20. Whereas it is difficult to extra
this information from the experiment, a simulation is a co
paratively easy and powerful tool for this task. Because
the rotational symmetry of the shear cell, we measure
orientation as the angle between the major principal axis
the radial direction. We define this angle as positive if t
contact is tilted in mathematically positive direction, i.e
counterclockwise against the radial, outward direction. T
following results were obtained by the same averaging p
cedure as described above. Figure 20 reveals distinct di
ences between the orientation of fabrics within different
dial areas. In the shear zone@Figs. 20~a! and 20~d!#, a
triangular structure with preferred angles 90°,230°, and
130° is obvious. Furthermore, the angle230° is found
more frequently than the angle130°. Farther outside, the
distribution is more homogenous@see Fig. 20~b!#. Near the
outer ring, again a very distinct triangular structure occu
but now, the peaks at230° and130° are equal. In Fig.

FIG. 19. Snapshot of simulation. The color indicates the norm
stress acting on the disk: dark means low stress, light means
stress.
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FIG. 20. Probability distributions of the orientation of the principal axis of the fabric tensorā j are shown in polar plots. They ar
measured in three different radial rings:~a! In the shear zone betweenr 50 andr 56.6, ~b! betweenr 56.6 andr 513.2, and~c! between
r 513.2 andr 520. The data in~d! are measured with an opposite rotation sense of the inner ring than in~a!–~c! with 0.0,r ,6.6 as in~a!.
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20~d! we present the data for an opposite rotation sens
the inner ring, to be compared to Fig. 20~a!. We note that the
peaks at230° and130° are exchanged with respect to the
magnitude.

The angles 90°,230°, and130° correspond to an an
nular triangular lattice or, in other words, the disks are
cated in annular layers. In the shear-zone@Figs. 20~a! and
20~d!#, this structure is reasonable because it may allow s
ing of the layers. A homogenous distribution outside t
shear zone as in Fig. 20~b! is due to the missing influence o
both dilation and geometrical order due to a wall. The
peated occurrence of the annular triangular lattice near
outer boundary cannot be ascribed to the shearing bu
formed during the initial compression of the shear cell. If t
rotation sense of the inner ring is changed, we get the s
results as in Figs. 20~b! and 20~c!. Only in the shear zone
more fabric tensors are oriented along230° than along
130° @Fig. 20~d!# whereas in Fig. 20~a! we measured the
opposite.

Note that the properties of the stress tensors~averaged
over all contacts of one particle! have qualitatively the sam
properties as the fabric tensors. The major principal eig
value is preferentially tilted by 30° from the radial outwa
of

-

-
e

-
e
is

e

n-

direction into the direction of rotation, and the distributio
resembles a triangular network close to the walls.

Finally, we focus on the distribution of normal conta
forces in sheared granulates. During the last years, this q
tion became interesting mainly due to the so-calledq model
@41#. Also experimental @24,42# and numerical studies
@43,44# examined the force distributions in static granu
assemblies. Both experiment and simulation of the shear
show force chains in the granulate during shearing wh
indicates that the contact force distribution is worth looki
at. For the distributionp( f /^ f &) of normalized contact forces
f /^ f & within a static granular material, theq model predicts
an exponential decay for high forces and a power law
small forces.̂ f & is the average contact force andp( f /^ f &) is
normalized so that*2`

1`p(x)dx51. In order to obtain the
distribution of forces in the shear cell, we use 600 snapsh
taken during one revolution of the inner ring and avera
over all disks. In Fig. 21 the results for the normal conta
forces are shown. The distribution shows a distinct tail
high forces that can be fitted by an exponential function w
an exponent between20.6f /^ f & and 21.05f /^ f &. The dis-
tribution becomes very noisy for small forces due to log
rithmic binning and no clear statement is possible there.
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VI. DISCUSSION AND OUTLOOK

It was shown that MD simulations are a suitable tool
reproduce the main features of granular shear flow in a C
ette shear cell. We get quantitative agreement with the
periments, concerning the extent of the shear zone nea
inner ring, the tangential velocity as function of the distan
from the shearing wheelr, and the packing fraction, also a
function ofr. We achieve at least qualitative agreement wh

FIG. 21. ~a! Distribution of normal contact forcesp( f /^ f &). ~b!
Semilogarithmic plot of the decrease for large normal cont
forces.
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comparing the rotational velocities, the behavior of the v
locity distributions, and the probabilities for large forces.

Predictions, concerning the orientation of the fabric ten
of the disks and the distribution of contact forces in the d
packing, have been made. For the first point, experime
results are very difficult to be obtained and are not access
yet, and for the second point, reliable experimental res
are possible for large forces only.

In general, simulations are a very powerful tool for
least two reasons. First, it is less difficult to change para
eters in a simulation than in a real experiment, and seco
some quantities are easily accessible from simulation but
from experiment. Thus, the simulation is useful to get mo
detailed insights, to make predictions, and to check exp
mental data-analysis methods.

The friction between disks and the bottom plate we us
in the simulation causes further questions. Even when
agreement concerning the distribution of tangential veloci
near the inner ring is reasonably reproduced by simulatio
the rotational velocities are not damped by friction. Furth
more, we did not check how important inhomogeneities
the third dimension are. Especially the influence of the pa
ing density and of the friction coefficientm should be stud-
ied.
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