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This paper discusses stochastic approaches to dispersed two-phase flow modeling. A general probability
density functionPDPF formalism is used since it provides a common and convenient framework to analyze the
relations between different formulations. For two-phase flow PDF modeling, a key issue is the choice of the
state variables. In a first formulation, they include only the position and velocity of the dispersed particles. The
kinetic equation satisfied by the corresponding PDF is derived in a different way using tools from the theory
of stochastic differential equations. The final expression is identical to an earlier proposal by[Rbgks
Fluids A 4, 1290(1992] obtained with a different method. As the kinetic equation involves the instantaneous
fluid velocity sampled along the particle trajectories, it is unclosed. Another, more general, formulation is then
presented, where the fluid velocity “seen” by the solid particles along their paths is added to the state
variables. A diffusion model, where trajectories of the process follow a Langevin type of equation, is proposed
for the time evolution equation of the fluid velocity “seen” and is discussed. A general PDF formulation that
includes both fluid and particle variables, and from which both fluid and particle mean equations can be
obtained, is then put forwarS1063-651X99)09901-§

PACS numbds): 47.55.Kf, 47.27.Eq

I. INTRODUCTION dx

Two-phase flow modeling is a fascinating subject at the

X . . . 1
crossroads of theoretical considerations and very practical @
. ; dv. uU-V
needs. Among the various flow regimes where the geometry T +F,,
of the interface between the two phases difféos example: dt Tp

annular, slug, or bubble floysthe dispersed flow regime is

a particularly important one. Indeed, particulate flows withwherex andV are the particle location and velocity. The
the dispersed phase present in the form of small sphericlrag term is written using the particle aerodynamic relax-
solid particles(or liquid droplet$ suspended in a gaseous or ation time scaler,, and U stands for the fluid velocity
liquid carrier phase are both of theoretical interest and of Seen” or sampled by the particle as it moves across the
considerable practical importance in environmental studiefoW- In terms of the instantaneous Eulerian velocity field
and for numerous industrial processes. of the carrier(fluid) phase, this fluid velocity “seen” is sim-

To simulate these flows, the basic field equations must bBIY U=Ui(t,x). The two phasegthe fluid and the particles

stated first. A classical hydrodynamical description is as_exchange momentum and energy. Furthermore, one may

sumed for the carrier phase which follows the mass conselhave to take particle collisions into account for high-enough
gpncentrations.

vation and the Navier-Stokes equations. For the disperse . : .

. L . . : One possible way to simulate two-phase flows is therefore
pha;e, the stqrtmg point is t_o write the particle gquatlons 0{0 solve the Navier-Stokes equations, to which source terms
motlon,. but FhIS is less obvious thgn for the f|UId. case. 'n'that represent the exchange of momentum between the par-
deed, in spite of numerous studig$,2], expressing the icies and the flow may be added. Once the instantaneous
forces acting on a particle in a general flow is still an opene|qcity field of the carrier flow is known, particles can be
issue. General expressions usually involve the so-called preggyanced since there is no unknown in the particle momen-
sure gradient, drag, added mass, and often Basset forcgsm equation. However, most of the flows encountered in
[1,2] However, for partiCIeS heavier than the carrier ﬂOW, practice are turbulent. They involve a huge number of de-
pp>pt With pr andp,, the fluid and particle densities, respec- grees of freedom, scaling as #ewhere the Reynolds num-
tively (for example, solid particles or droplets in a gas flow ber is typically of the order Re10°—10’. Consequently,
an acceptable approximation is to retain only the drag forcguch a direct approach, in the spirit of DN@rect numerical
(as well as external forcds, such as gravityin the particle  simulation, is not feasible in practice and one has to come
momentum equation which has then the form up with areduced or contracted descriptidhat involves far

fewer degrees of freedom.
In dispersed turbulent two-phase flow modeling, the first
*Electronic address: jp@galia.imp.pg.gda.pl step consists in adopting a statistical point of view, just as in
"Electronic address: Jean-Pierre.Minier@der.edfgdf.fr most single-phase turbulence models. This is actually a clas-
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sical step in physics where probabilistic arguments are useels are also PDF models, however presented directly as a
in (deterministig systems involving a very large number of Monte Carlo simulation of an underlying PDF. For that pur-
degrees of freedom. This also reflects the fact that we arpose, basic elements of stochastic modeling are briefly pre-
usually not interested in the full description of the flow andsented in Sec. Il for the sake of completeness. A second
of the particles in space and time but rather in limited infor-purpose is to put the emphasis on a central issue which is the
mation about some statistical characteristics, such as meamoice of the state variables retained to describe two-phase
velocities, particle mean concentration, and energy, etc. Thiows. This choice is important for many reasons: it defines
statistical approach can be performed at different levels ofthe amount of information available within one formulation;
description. The most fundamental level is the direct simu-a different choice makes the modeling step more or less dif-
lation mentioned above in which all the degrees of freedonficult and, above all, more or less justified. This point should
(or the exact instantaneous equatioaee explicitly solved. not be confused with the precise form of expressions put in
This is the equivalent of a microscopic description. At thethe different models. A given model can perform more or
other extreme of the modeling spectra, one can try to expregéss satisfactorily even if the choice of the variables appears
directly the statistical quantities of intergshean velocities, “reasonable.” Yet, a satisfactory model is probably more
mean energies, ejcas the solutions of partial differential difficult to express with an unsuitable choice of state vari-
equations. These equations are derived by applying an avesples. The present work has also some precise aims. In the
aging operatoReynolds operator or even spatial filtering first part of the papefSec. Il), a different way to obtain the

to the exact instantaneous equations. This leads to unclos@ghetic equation is presented. The method used Henefly
mean equations; phenomenological assumptions have thentgcalled in the Appendixis based on the cumulant expan-
be made(such as the existence of a turbulent viscosity orsjon of the governing stochastic differential equati®DE)
models for pressure redistribution teomSuch an approach which is the particle equation of motion with a random term.
is the equivalent of a macroscopic description. In the presenthijs alternative derivation is believed to be more evident,
paper, the leading idea is to propose closures at an intermgpth mathematically and physically, than previous methods
diate level: the exact instantaneous behavior of the system igs it avoids the explicit introduction of Kraichnan’s LHDIA
replaced by a probabilistic model and closures are thereforgyrmalism. In the second part of the present contribution
put forward for the probability density functidi’DF) of the  (Sec. IV), a more general formulation is put forward, with
state variables which are retained to describe the systenhe phase space including the fluid velocity along the particle
This is called a PDF approach since what is actually modelegajectories as an additional variable. A stochastic diffusion
is a certain PDF; it can be regarded as a mesoscopic descrigrodel for this variable is written, so that the formulation
tion. This approach is similar to the one already applied tthecomes closed and the governing PDF equation can be de-
derive the hydrodynamical equations, such as Euler ofived. Then(Sec. \}, a new general one-point PDF is intro-
Navier-Stokes equations. In that context, the hydrodynamicajuced from which both sets of equatiofrelated to both
level of description defines the macroscopic level. The equafiuid and particle mean variabl¢san be obtained. The dis-
tions can either be derived directly by writing balance equacussion is also extended to two-point PDF for the fluid phase
tions and by assuming Fick and Fourier laws, or by firstsince this is the first level of description where the issue of

modeling the PDF equatioftypically the Boltzmann equa- particle dispersion appears in closed form.
tion) at the mesoscopic level from which the hydrodynamical

equations are obtained simply as transport equations for dif-
ferent moments of the PDF. _ _ Il. TRAJECTORY AND PDF APPROACHES
In the following, we limit our attention to dllut_e two- TO STOCHASTIC MODELING
phase flows where, due to low particle concentration, inter-
particle collisions and modification of fluid turbulence by the  Most attempts at turbulence modeling follow a statistical
particles can be neglected. However, one central issu@pproach, either in terms of transport equations for some
namely particle dispersion, remains to be addressed. Thimean valuesmoment$ or using the stochastic reasoning. It
refers to the fact that in the particle equation of motidh is the latter that will be of interest for us hefmoment equa-
the driving term, which involves the instantaneous fluid ve-tions can always be derived from the closed PDF of a sto-
locity “seen” by the particlesU, is not known since only chastic procegsin stochastic modeling, there are two differ-
limited information(such as the mean fluid veloci{yJ;) or  ent, yet corresponding, points of vig®&]. The first one is the
its turbulent kinetic energyis available. This guestion has trajectory point of view which consists in writing an evolu-
already received a great deal of attention in the past yeartion equationgenerally a stochastic differential equatidor
Most notably, Reeks has proposed an equation, called the large number of samples of the vector proc¥ssThe
kinetic equation, for the PDF of particle location and veloc-second one is the PDF standpoint which deals with the time
ity [3—5]. Apart from this classical PDF approach, a numberevolution equation of the PDP of the process. The equiva-
of stochastic models have been devised to represent the suence is clearly exemplified for the class of so-called stochas-
cessive fluid velocities encountered by the particles usuallyic diffusion processef8], to which we restrain ourselves in
under the name of Lagrangian or particle-tracking ap-he present paper. The trajectory point of view consists then
proacheg6] (cf. [7] for a discussion of popular modgls in writing Langevin types of equations involving the incre-
The present paper has several aims. The first purpose is toents of the Wiener processes,
propose a general framework, the PDF framework, to ana-
lyze and discuss various proposals. This formulation helps to
recall and clarify an often-forgotten point: Lagrangian mod- dX;=D;(X)dt+b;;(X)dW;, (2
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whereD stands for the drift vector anld; for the diffusion  the driving fluid velocityU in Eq. (1); the actual form ofu,
matrix. In that case, the corresponding PDF equation is tha, andy will be given below.
Fokker-Planck equation, We will now derive the kinetic equatiof), starting from
b 1P the system of governing equatiofi§ for the particle motion
A J in turbulent fluid. To this aim, the method described in the
ot (9_xi[Di(X)P]+ 2 9%;0x; [B;(X)P]. @ Appendix will be applied directly to Eq1), written in short-

. . . hand notation ag;=F;. It is equivalent to Eqs(A3) and
wherex is the phase space variable corresponding.tdhe (A4) with al=l anld ! IS equiv As(A3)

Fokker-Planck equation involves the matr;; = bjbj
which is always a positive-definite matrix. Strictly speaking, Vv

there is more information contained in the trajectory point of 72| X =TI R VARN(V) , F(l)zm’ )
view since different diffusion matrices; can give the same \% -—+—+F f
matrix Bj; in the Fokker-Planck equation. It is only when T

there is a one-to-one correspondence between the matricg$,qre
bi; andB;; that the two points of view are strictly equivalent.

However, in a loose sense they will be considered below as (U)
equivalent. - +Fe=C.
Models considered in the present paper also fit into this P

description. The Lagrangian particle models, common in atThe velocity of the fluid “seen” by the particles has been
mospheric dispersion studies, illustrate the trajectory point ofjecomposed here into the mean and fluctuatidr: (U)
view: they consist in a trajectory or Monte-Carlo simulation 1y’ andf=U’/~. .
of the underlying PDF. On the other hand, the model from As shown in F'Ehe Appendix, from the SDEA3) for a
Sec. ”l, which we will Call(fOI’ historical I’eaSOf)SIhe kinetic processZ’ the Corresponding PDF transport equat(m:g)
equation model, retains only solid particle locations and vegan be derived. In order to apply this statement here, a few
locities and handles a probability densRyt,x,v). The fluid  more expressions present in E#13) have to be specified
seen herelJ, is therefore an external force whose statisticaland computed first for a particular procegsas defined by
effect has to be modeled. On the contrary, in the Lagrangiagq. (5).
approach(Sec. IV), this very variable is included in the defi- As already noted in Sec. II, we will adopt throughout the
nition of the system considered and the PDF actually handlegaper the following convention: stochastic processes are de-
is P(t,x,v,u). The point that sometimes gets confused is thahoted by capital lettergU,V,Z, etc) to distinguish them
the major difference between models lies not in the formufrom the Corresponding phase space VariabJE\SZ, respec-
lation (either trajectory or PDF; because they are equivalent, tively) or, alternatively, from a particular realization of the
but rather in the choice of the vector of state variables. process. The unperturbed equation for a determin(ﬂm_
stochastig systemzqy writes z.4)=F© or, explicitly,
Ill. THE KINETIC EQUATION MODEL

In the turbulent two-phase flow domain, pioneering works X =V ©6)
of Reeks[3,4] established the kinetic equation for dispersed Via)
particles and derived the conservation equations next. Analo- Vigy=——+G.
gously to the Boltzmann equation for gas molecules, the ki- 7p

netic equation for particles is an evolution equation of theThe subscript
probability densityP(x,v,t) in the phase space of particle o Appendix, we nota=v(t) andv_"=v(t— 7). For G
positionx and velocityv. Reekd 3] derived the kinetic equa- _ ;e obtainy

tion for particles in homogeneous turbulence, using the ran-

dom Galilean transformatiofRGT). In a subsequent paper V=V exp( — 7/7,),

[4], the equation has been obtained for the general case of

nonhomogeneous turbulent flows. The method used was first X"=xX+ V[ 1—exp(— 7/ 7p)],

developed within the Lagrangian history direct interaction

approximation(LHDIA, [9], comprehensively described by or 7
McComb[10]). Recently, Hyland11] presented his alterna-

tive derivation of the kinetic equation for dispersed patrticles, v=V" exp( 7/ 7p),

based on results from advanced functional calculus. The re-

sulting equation can be written in the form X=X"— 7V exp( 7/ 7p) — 1].

“€e)” will now be skipped; as explained in

(7+ J J vi> d ( d N J A+ |p For any function
o T\ o M T o M T Y P
ot dvj \ du; X
vi LY j @ h=hX(x"7,v""),v(x" v 7))

Here, uij(x,v,t) and \jj(x,v,t) are diffusion tensors in the W€ have
phase space ang(x,v,t) is a drift vector reflecting the in-

homogeneities of the fluid turbulence. They dependrgn Sl I
and are also functionally dependent on the random part of dui T Xy dui T dvj dui T

()



858 JACEK POZORSKI AND JEAN-PIERRE MINIER PRE 59

Thus, using Eq(7), X=Xy (X, t]8),
(13

=r1,(1—e ") i+e*7’7pi. (9) V=V (g)(X,V,t[S),
07v| P OX; ovj

and should be read as the positimelocity, respectivelyat

Substitution into Eq(A13), with s=t—7, results in time s of a particle that passes througkv) at timet. We

P 0 P define
o P e T
d
P (e P gy (sl =~ (Ji, i (slt) = tg.,<s|t> (14
—_ s—t)/r . (55t |
avi[foe p<f,(z,t)&vjf,(z ,s)>ds
. So, instead of Eq(9) we have
+f Tp(l_e(sft)/'rp)
0 J J
9 (90;5 g”(S|t +g|](s|t)_] (15)
X<f|(Z,t)§fJ(ZSt,S)>dS] P. (10)
: Then, following the same steps as in the derivation of the
We recall that in the notation of LHDIACf. Eq. (A8)] PDF transport equation in the previous cfie. (11)], the
corresponding PDF equation for dispersed particles in gen-
f(274,5)=f(x,v,t|s) eral nonuniform flows, identical to Eq88) in the Reeks

paper{4], is obtained:
andf should mean the generalized Lagrangian force acting at
time s on the particle that passes througkvith a velocityv d d i
at some labeling tim¢. The force depends on the particle Eﬂ”a_xi_ o T—) P(x,v,t)
trajectory(and this somehow explains the words “Lagrang-
ian history™); it is, obviously, proportional to the velocity of d t d
the fluid “seen” by the particle. ~ 90, fogik(sm fk(x,t)&—vjfj(x,v,t|s) ds

If t is considered as the initial timé,is the “classical”

Lagrangian force. On the other hand, ot we identify f t d
as the Eulerian force and note + fogik(sm D) =~ fi(x,v,t[s) jds; P(x,v,t).
i
f(22,t)=f(x1). (16)

Thus the final form of the kinetic equation for homogeneousComparing the above equation with the shorthand féim
turbulence is obtained and E(LO) becomes identical with  explicit expressions for diffusion tensogs A, and fory can
formula (41) of Reeks[4]: be easily found.

Contrary to the Boltzmann equation for gas, where the

(iJr Jd 9 _|) P(X.V,1) only mechanism to change the velocity of molecules is via
gt Ui X v T, Y the collision term and the interactions between molecules are
supposed to be instantanedusth no history, in the case of
_ i J’te(sft)/f f(x, t) J f (v tls) )d the kinetic equation for particles in turbulent flow, history
avi| Jo terms are present. Roughly speaking, these terms are the time

integrals over the correlations of fluid velocity along the par-
ticle trajectory(fluid “seen” by particles.
Although formally the above equation is akin to the
Fokker-Planck equation, in fact it is not. It has been put
XP(Xv,1). (1) forward[3] that the kinetic equation differs from a classical
Fokker-Planck equation since in the particle equation of mo-
In the general case of nonuniform flows, the unperturbedjon the fluid velocity “seen” could not be regarded, in gen-

ftr (1—es” t>’Tp)<f (X, t) f i(x,v t|s)>ds]

equation takes the form eral, as a white-noise term. However, this single argument is
) not sufficient to rule out similarity with Fokker-Planck equa-
X(d)=Vid)» tions. If we skip the issue of the modeling Mfand u and

(12 only regard them as given functions, it appears that with the
proposed closure expression the resulting kinetic equation
does have the form of a general Fokker-Planck equation.
Indeed, using vector notation for the state vector, hére

So, unperturbed particle trajectories are more complicatee- (x,V), and considering constant; and w;; (for the sake

than those given explicitly in Eq7). Following our standard of simplicity), the kinetic equation is easily rewritten in the

notation, forr=t—s they are symbolically written as form (3) with B expressed as a block matrix:

V(d):_ V(d)+G(X(d) ,t)

To(X(a) »1)
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0 | \jj P P d
_+vi_: —_—

B=| —— . . 17 ot X av;
A

(Ui_vi) J
P}—&—WKAJ(X,V.U))P]-

Tp
21
il it (

The diffusi trix which enters th d-order deri Since the fluid velocity seen is now included in the state
e difiusion matrix which enters the second-order derivay,qo . e particle momentum equation is closed. However,
tive in the Fokker-Planck equation has to be positive definite

However. in the present case, it is straightforward to ShoV\E/he closure issue has been shifted to the change rate of the
that its determinant is d&= — (det\)2. This implies that ariableV, as manifested by the unknown te(|(x,v,u))

the product of the eigenvalues Bfis negative and tha@ has in the PDF equation; it denotes the mean valueApht X,

always at least one negative eigenvalue. Therefore, it is nq onditioned onV=v and U=u. This procedure could be
simply the very existence of the tensworbut rather the fact peated any number of times and is typical of a hierarchy of

. . " . (unclosedl PDF equations such as the BBGKY equations in
that it causes theB matrl'x no'g to be posﬂwe—dgﬂmte that statistical mechanics. There is, however, a precise physical
makes the kinetic equation different from classical FOkker'reasoning behind such a method that can justify such a move
Planck equations. This also means that the vector stochastﬂ'Ez] In a given situation, one introduces typidair refer-
processx(t), V(1) is not Markowgn. I\_/Ioreover,_ since the ence length and time scales which, roughly speaking, define
elgenvalues o8 corr_espo_nd to_diffusion coefﬂu_ents, the the scales or levels at which a system is studied. Various
existence of a negative eigenvalue means that, in the pha grees of freedom of the systeépossibly an infinite num-

space of(x,V), the effect of the fluid velocity seen by par- ber of them are then divided into slow and fast variables

ticles is to induce an "antidiffusion” behavior. with respect to these scalés fast variable is a random vari-
able whose characteristic time scale is much smaller than the
IV. THE LANGEVIN EQUATION MODEL reference one The main idea is to retain in the state vector

o . , : . i the slow modes while removing the fast on@sing, for
The klnetlc equation denvejd in the precedlng_ section can,yample, fast-variable elimination techniqués]) and re-

moments of the PDF, such as the mean particle velocCity,oq ang ysually involve white-noise terms. This procedure is
field, the particle turbulent kinetic energy, etc. It is devel-gccassfyl when the so-called “fast modes” have character-
oped following the PDF point of view and retains only par- jgic time scales which are negligible with respect to the ref-
t'CIe. varlables(x,V)_ n the state vector. C_onsequently, m_for- erence time scale, thereby justifying replacing their effects
mation on the statistics of the fluid velocity seen by partlclesby Wiener processes. As an illustration of this procedure,
U, has to be input since this variable is external to the SySteerpIication of Kolmogorov's hypotheses suggests that, in

considered. In the simplest case of homogeneous turbulencgiyn_reynolds turbulent flows and for a reference time scale
the statistics of the random force can tentatively be assumegipich belongs to the inertia range, fluid particle accelera-

known. In particular, the Lagrangian autocorrelation of thejjong are nearly uncorrelated while fluid velocities are still

fluid velocity along the particle trajectories can be taken ag,q| correlated[14]. Therefore, using the present terminol-

the decaying exponential with the modified integral correla—ogy’ Kolmogorov theory indicates that, for a time interval in

tion time (cf. below. However, in the general case, coming q inertia range, fluid particle accelerations are fast variables

up with a satisfactory closure for the flux induced by the,a¢ can be eliminated. In other words, Kolmogorov theory

fluid seen appears as a difficult task. supports the idea of keeping fluid velocity in the vector of
An alternative approach to the two-phase system degaie variables and of modeling fluid particle acceleration.

scribed is to include the fluid velocity along the particle tra- ;g approximation is the starting point behind Langevin

jectories as a new independent variable.. The 'state vector &uations[lZ,lSl proposed for fluid particle velocitiet;

theﬂ extended t’x_: (X’V'U): The new variable is governed (yongteq by the subscriptto distinguish them from the fluid

by its own evolution equation, and the complete system O{q|qcities seen by solid particlesThey are developed along

time evolution equations becomes the trajectory point of view and the time evolution equations

are SDEs. The model takes the form of a diffusion process

x_v (18 with a linear drift term[15]
dt
1 p) ——
dV U_V de’i:_Eﬁ_)(idt+Gij(Uf'j_<Uf'j>)dt+ C0<E>dVV|
T — (19 (22)
Here,(p) is the mean pressure fiek) is the mean turbulent
du O :
— =A. (20) energy dissipation rate, amtV stands for a vector of inde-
dt pendent Gaussian white noise. This form of the model can be

directly assumed or can be derived from underly{figi-
In the last equation, the time rate of change of the fluidcroscopic”) modeling steps which make use of Onsager’'s
velocity seen, sayA, is an external term which has to be hypotheseq16]. The particular model we will consider,
modeled. The correspondin@inclosed equation for the mainly for simplicity reasons, uses an isotropic form with a
PDF P(t,x,v,u) is return-to-equilibrium term for the matri& (Ref.[17]):
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1 1 3 (€) 2 3
wherek is the turbulent kinetic energy. In the case of small-inertia particle®;&E1), B; becomes

For two-phase flow modeling purposes, the problem isequal toyCq(e) and the evolution of the fluid seen, EG4),
more complicated since one has to write a model for thdecomes identical with that of the fluid, E2), as ex-
velocity of the fluid seenU, whose statistics differ from pected. Yet, in the presence of a mean drift between the fluid
fluid particle velocitiedJs . The issue is further compounded and the particlestf# 1), it is worth noting that the diffusion
by particle inertia and by crossing-trajectory effects. Neverierm in the equation for the fluid seen has now an anisotropic
theless, a current and simple way is to use similar ideas angxpression contrary to the fluid particle case.
to propose a Langevin model far[7,18,19. Still relying on The corresponding PDF equation f8(t,x,v,u) is closed
Kolmogorov hypotheses, a simple model consists in assun@&nd has the form
ing a form similar to the fluid particle case and to write

sum overi) PP 2 M)p L1 Ap) P
ot Ié)Xi (9Ui Tp P ﬁXi (9Ui
190 U;,— (U,
dUi=—— §f>dt— 'Tf ) g Baw, (24 ARl A PR IR
Pt i L,i au; T"L‘ 2 (9_u|2 A
where B; is the diffusion term and’} is the integral time (27

scale of the fluid seen. Csanady’s expressi@hsan be used ) ) . ) o

for the time scales to account for the crossing-trajectory ef- The Langevin equatiof4) is certainly not definitive for
fect when a mean drift of particléslue, for example, to an the general nonhomogeneous case where one expects spatial
external fieldF, such as gravityis present gradients of turbulence statistics to enter into the picture. The
above derivation of the diffusion coefficients can still be car-
ried out but becomes more involved and this extension is not

T T . : . s
T H:ﬁ, T’EL:—L“- (25)  included here. Indeed, the point of the present discussion is
ToNI+BE ToV1+4pB%€ not to go into details of various proposals which belong to

the same type but rather to compare characteristics of differ-
¢ is the normalized drift velocity ang is the ratio of La-  ent types of models. Therefore, the simple case of isotropic
grangian to Eulerian time scales, turbulence is only considered to avoid more complicated
forms. Nevertheless, it should be emphasized that, although
, {U)—(V)|? I some proposals have been discussed and used at [@®gth
- 2ki3 B T_E they still lack rigorous theoretical justification. They are sim-
ply direct extensions of models for real fluid particles. Even
The corrections to théisotropio fluid time scale,T,, are if one accepts a Langevin equation fdy, there is at present
different in the direction parallel to the mean drift betweenno theoretical derivation of a similar Langevin equation for
the particles and the fluithoted with the indeX) and in the  U. In other words, improvement of current models is still
direction perpendicular to iinoted with the index.). When  very much an important issue and accurate modeling of the
the reference system is chosen with one direction aligned ttuid velocity seen remains an open question.
the mean drifti=1 say, thenT ;=T for i=1 and T}
=Ty, for i=2,3. Therefore, even with the simplest fluid V. FLUID AND SOLID PARTICLE PDF PICTURE

_le_artche LangeV|_n model which involves only one time scale The PDF transport equations for the Langevin equation
L, the extension to two-phase flows requires already a

. . e . model(27) and the kinetic equatio(l6) differ by the use of
I’lOI’]ISOtiOpIC form of the retum-to-equilibrium terrG; an extra variable. However, both PDF concern only variables
=— 1T 6 o o . attached to solid particles and consequently only statistical

The value of the diffusion coefficient; can be obtained

- a 3 properties of the solid phase can be extracted from these
as follows. Letb; denote the denominator in ERS), i.e.,  ppF. Characteristics of the fluid phase remain external and

bi=_TL ITE ;. The turbulent kinetic energy of the fluid seen is have to be developed by another routesually classical
defined as Reynolds-stress modelingThe discussion about the choice
of the variables suggests extending the PDF framework to
k= E((U—<U>)2> include the two phases. Indeed, we are not dealing only with
2 ' solid particles being randomly carried about by fluid turbu-
lence but with a two-component system. Therefore, it seems
In the case of isotropic turbulence, using the Ito formula,a logical step to introduce a fluid-solid particle PDF picture
from Eq. (24) we can establish the corresponding evolutionand to discuss fluid and solid properties from the same point
equation fork and use the identitgk/dt= —(€) which as-  of view. The corresponding PDF that is needed for the pur-
sumes that the time evolution of the kinetic energy of thepose is written asP;p(t,X¢,Us;X,v,u). It represents the
fluid seen is the same as that of the fluid kinetic endvgy  probability that, at time, a fluid particle takes at locatiog
assume here no bipgrinally, this results in the expression a velocityu; while a solid patrticle at locatior has a veloc-
for B;: ity v and samples a fluid velocity equal to It is necessary

(26)
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to introduce two different independent location variables, VI. CONCLUSION
namelyx; andx, since fluid and solid particles are not con-
vected with the same velocities. The indexesPefs stand
for fluid, particle, and samplefor “seen”) fluid, respec-

The purpose of the present paper is to discuss the La-
grangian modeling of two-phase dispersed turbulent flows.
tively The important issue for modeling is the choice of the vari-

Two marginal PDF have then a clear meaning and Corre<§1bles that enter the state vector to represent a particular
spond to known proposals. The first one is obtained by intePhysical system. In the first formulation presented abitve

grating over all solid-phase characteristics and is the PDKIN€tic equationonly solid particle characteristics were con-
related to fluid-phase characteristics, nokad sidered while the Langevin model includes the fluid velocity
“seen” as a further and independent variable. It has been
recalled that accurate modeling of the fluid seen remains an
Pf(tvxfiuf):f Pros(t, X, U ;x,v,u)dxdvdu.  (28)  gpen issue.
Concerning the first formulation in terms of particle loca-
The second marginal PDF is obtained by integrating over altion and velocity, we have proposed a new, concise, and
fluid-phase characteristics and is the PDF related to solidhopefully elegant way to derive formally the kinetic equation
phase characteristi¢the same as in Sec. )VnotedP, here:  for particles in a turbulent flow. The equation is not closed,
because of the unknown form of the correlation of fluid ve-
locity along particle trajectories.

In the second formulation, velocity of the fluid seen by
particles has been added to the system. This velocity is pro-
Computations of the complete fluid-particle PPk,s can be  posed to be governed by the Langevin equation model; this
performed using the trajectory point of view or, in other represents an extension of ideas already used for turbulence
words, by Lagrangian-Lagrangian simulations. Time evolu-modeling. Alternatively, the Langevin model can be looked
tion equations are then written for an ensemble made up dit as a PDF kind of closure. Therefore, the discussion was
fluid and solid particles which are tracked together. Bothcarried out using the PDF formalism. Reformulation in terms
have specified variables attached to them which appear adf PDF leads quite naturally to the theoretical considerations
independent variables in the POMg .. Fluid particle time  of consistency relations between different closure proposals.

Pp(t,x,v,U)=f Pips(t.Xs,Us i X, V,u)dxedus . (29)

evolution equations can be modeled as Moreover, once a general model for the correlations of fluid
velocity “seen” by the particles is proposed and validated,
dx; = U;dt, (30)  the governing Euleriafi.e., two-fluid equations for the two-

phase flow can be derived from the PDF equation.
1 Finally, it is suggested not to limit oneself to variables
dUi=— ;V(p)dt— G(Us—(Uy))dt+ JCo(e)dW. related to solid particles only and to extend the PDF formal-
(31) ism to include quantities of both phases. A first proposal for
a fluid-solid particle PDF has been presented.

This indicates that for fluid-phase characteristics the model is
identical to Pope’s modéll5]. Relations with classical mo-
ment equations and interest in this model have already bee®PPENDIX: FROM SDE TO PDF TRANSPORT EQUATION
discussed17]. The time evolution equations for the vari- . . . .
ables attached to solid particles are EGS®), (19), and(24). Th's appendix descrlbes a general method to ob.tam agov-
This means that for solid-phase characteristics the model g§rning transport e_qua_tlon for_ the PDF.Of a StO.ChaSt'.C process,
identical to the one discussed just before. Use of this fluigdiVen @ stochastic differential equation for its trajectories.
particle PDF allows an equal treatment of both phases and i-ghe mathematical formalism prest_anted be!ow IS ta_ken pasp
a compact way to present a complete two-phase model. Ye ally from Van Kamper{20]; technical details are given in
it neither solves nor simplifies the difficulties related to the 21]. . , . S . .
modeling of the fluid velocity seen. The necessity of such "}Sgg)nfyder f|rs£t a Imeatz.stochastlc differential equation
model, even for the fluid-solid particle PO, is not an Or & Vector procesz.
inherent element of the PDF framework but stems from a
limitation to one-point PDF. For two-phase flow problems,
the choice of only one-point PDF implies insufficient avail- d_Z_

! . . . i =[Ag+ aAq(1)]Z, (A1)
able information at the particle level. It is worth emphasizing dt
that, if a generatwo-point PDF model were available, the
problem of determining solid particle statistical properties
would be closed. Indeed, in this case the model for the fluidvhereAy,A; are linear operatoré@hey can be thought of as
velocity “seen” U would no longer be needed, since the matrices or differential operatgrsA, is deterministic while
fluid velocity at the particle locatior, att,, given the par- A; is random with a finite autocorrelation time; « repre-
ticle locationx, att,, could be determined directly from the sents the level of fluctuations; it is supposed that<1.
conditional probability P¢(t,X5,U|t1,X1,U7). This is  Using the substitutioZ (t) =exptAy)V(t), applying the cu-
clearly an indication that, more than improved kinetic clo-mulant expansiorf20], limited to the second order im,
sures, the real issue is a multipoint PDF or statistical treattaking the ensemble average of the solution of the corre-
ment of the fluid phase. sponding SDE fol/, and substituting back fa£, results in
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dz(0)
dt

Aot a(A(t))

t
+azf()((Al(t)eTAOAl(t—T)))G_TAOdT (Z(1)).
(A2)

The symbole®, whereB is an operator, is formally defined
as the sum of the Taylor series with powersBo&and double

angular brackets stand for the central moments; for exampl

a symbol

((ab))=((a—(a))(b—(b)))

denotes the covariance of two random varialsles. Equa-
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Ap)  dFp)]
at 9z;
t/oFi(t) |, aFi(t—7)
+{a2fo< iz e ;zj‘f >e7AOdT {p)-
(A7)

The superscript notation represents an important point and

is used as follows: lez denote the valudat timet) of a
particular realization of the stochastic process, tifestands
for its value at time instant+ 7; in particular,z"t is the
value at the initial time. More generally, suppose thas a
function defined along the trajectory af Thenf(z",t+ 7)

denotes the value of the function at time 7 on the trajec-
tory that passed by a particular valuezaditt. In the LHDIA

tion (A2) can be thought of as a “renormalized” form of the notation, it would be written as

initial equation, Eq.(Al), where the effect of fluctuations

appears in the form of an additional deterministic operator.

The expansion limited to first order ia represents the de-
terministic ordinary differential equatiofODE) with no ef-
fect of random fluctuations.

For a nonlinear SDE, instead of EGA1) we consider

dz =F(Z,tY A3
a_ ( 1t! ) ( )

and suppose that; can be split into two parts,
Fi(Z,t,Y)=F%Z)+aF1(Z,1Y), (A4)

whereF? is stationary and not stochastic whit¢ is random
and of zero mean. Let the functiogrit) be a single realiza-
tion of a stationary stochastic procesét). A deterministic
ODE,

dz B
4t =Fiaty), (A5)

gives the trajectory of a particular realizatinof the process
Z in the phase space. Density of the flowzispace satisfies
the Liouville equation

IFL(z,ty)

o P

op(zh) _ [FN@)
at 9z,

:[AO(Z)"'QAl(thaY)]Pa

(A6)
with the operator#\, andA; introduced as

a(FY-)
Ag=———, A=

I(Fi)
a9z, B '

9z,

The explicit dependence (Ffil andA; on Y(t) will hence-
forth be skipped in the notation. Whenhis substituted foy,
Eqg. (A6) becomes a linear SDE fgr. The form of Eq.(A6)
is identical to that of Eq(A1) with z replaced by. Thus, we
can write an equivalent of EqA2) as

f(Zt+ n)=f(zt|t+1); (A8)

t is called the labeling time andt 7 is the measuring time.
This generalized notation contains both Eulerifor 7=0)
and Lagrangian descriptions.

At any value oft, the density of the flow in the phase
space ofz, averaged over all possible realizatiop@), is
equal to the probability density o (cf. [20], Lemma
XV1.5.3),

(p(z1))=P(z1). (A9)
Moreover, the flow density iz space verifies
—t
p(z)=p(z"',0) (A10)

Dz’

whereDz"/Dz stands for the Jacobian of the transformation
z=2(t)—2"=2z(t+ 7).

Now, consider the unperturbed Liouville equation, i.e.,
Eqg. (A6) with «=0. It is easily verified that its solution is
given by e"of(z), where f(z) is any function. Then, the
following identity is obtained from EqAL10):

—t
efof(2)=1f(z"")

5 (A11)

We also note in passing that, in particular, one can make the

substitutione™ =Dz~ "/Dz in Eq. (A7). As a consequence
of Eq. (A11), we have

T

Dz’

e ™op(z,t)=p(Z"t) (A12)

Substituting this in Eq(A7), accounting for Eq(A9), and
using the identityA11) with
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T

IF(z,t—1) IFi(z oy 1) D2
== 7 (z ’t)E’

_, _ dF; Jt—=17)
é,zj € A0<p(zit)>_ Z:

f(2) 5
i

the final form of the transport equation for the probability density function

IP(zt) a[F?P(z,t)]+ , 0 J'td - tDz‘T 3 Flpry Dz Bt AL3
a iz oz )97\ Fi@ 5, 0z " iz ht=n) ) 5=PEY (AL3)

is obtained. The first expression on the right-hand side represents the transport of the PDF by a purely deterministic operator
FO while the second corresponds to the influence of the stochastic term which depends on correlations of the random
componenfl. Moreover, it is noticed that to treat a nonlinear SDE, one has to revert to the PDF of the process, which restores
linearity of the description at the expense of increasing the dimensionality of the problem, ¢AZyersus Eq(A13).
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