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Large numbers of ground states of three-dimensi¢B) Edwards-Anderson Ising spin glasses are calcu-
lated for sizes up to Fusing a combination of a genetic algorithm and cluster-exact approximation. A detailed
analysis shows that true ground states are obtained. The ground-state stiffndsmain wall energyA is
calculated. A/A|~L®s behavior with®s=0.19(2) is found that strongly indicates that the 3D model has an
equilibrium spin-glass-paramagnet transition for nonZero[S1063-651X98)13912-Q

PACS numbeps): 75.10.Nr, 75.40.Mg, 02.10.Jf

INTRODUCTION ALGORITHM

The algorithm for the calculation is based on a special
genetic algorithn{8,9] and on cluster-exact approximation

still not answered beyond all doubt. The best evidence fom that is a sophisticated optimization method. Now a short

ordering below a finitd, was found recentlj2,3] by exten- sketch of these algorithms is given, because later the influ-
sive Monte Carlo simulations. But the authors could not€Nce of different simulation parameters on the results is dis-
completely rule out other scenarios. cussed. _ _ _ o _

In this work we address the question by calculating the The genetic algorithm starts with an initial population
stiffness or domain wall energg=E2—EP, which is the ©Of M; randomly initialized spin  configurations
difference between the ground-state ener§ie€P for anti-  (=individuals, which are linearly arranged in a ring. Then
periodic and periodic boundary conditions, respectively?M; times two neighbors from the population are taken
[4,5]. This quantity was studied earlier only for very small (calledparents and two offsprings are created using a triadic
system sizes usin@=0 transfer matrix methods4,6] and  crossover: a mask is used that is a third randomly chosen
Monte Carlo simulation$5]. The stiffness energy shows a (usually distantmember of the population with a fraction of
finite-size dependence 0.1 of its spins reversed. In a first step the offsprings are

created as copies of the parents. Then those spins are se-
|A|~LOs, 1) lected, where the orientations of the first parent and the mask
agree[11]. The values of these spins are swapped between

whereL is the linear system size. A positive value of the the two offspring. Then a mutation with a rate f, is ap-
stiffness exponen®. indicates the existence of a spin glassPlied to each offspring, i.e., a fractiop, of the spins is
phase for nonzero temperature. Since the direct calculatioffVersed: _ _ .

of ground states for 3D spin glasses is NP hard, there is ng NeXt for each offspring the energy is reduced by applying
polynomial algorithm available. In our work we calculate CEA- The method constructs iteratively and randomly a non-
ground states using a combination of cluster-exact approxirustrated cluster of spins, whereas spins with many unsatis-
mation (CEA) [7] and a genetic algorithiig,9]. Similar cal- fied bo_nds are more likely to be adde_d to th_e cluster. For 3D
culations proved that the 2D spin glass, where exact ground J SPin glasses each cluster contains typically 58% of all
states can be calculated using a polynomial time algorithmSPIns: The noncluster spins act like local magnetic fields on

The question as to whether three-dimensigi3dl) Ising
spin glasse$l] have a nonzero transition temperatdrgis

exhibits no ordering foff >0 [10]. the cluster spins. For the spins of the cluster an energetic
We investigate systems of spinsa; = =+ 1, described by minimum state can be calculated in polynomial time by us-
the Hamiltonian ' ’ ing graph theoretical method42-14: an equivalent net-

work is constructed15], the maximum flow is calculated
[16,17 and the spins of the cluster are set to their orienta-
H=-, Jjoi0;. (2)  tions leading to a minimum in energy. This minimization
.5 step is performedh,,, times for each offspring. The imple-
mentation details are as follows: We used Tarjan’s wave al-
In this letter we consider 3D cubic systems with periodicgorithm together with the heuristic speedups offfrim the
boundary conditionsN=L?3 spins and the nearest-neighbor construction of thdevel graphwe allowed not only edges
interactions(bonds take independently;; = =1 with equal  (v,w) with level(w)=level(v) + 1, but also all edgesu(t)
probability. The antiperiodic boundary conditions for calcu-wheret is the sink. For this measure, we observed an addi-
lating E? are realized by inverting one plane of bonds. tional speedup of roughly a factor of 2 for the systems we
calculated.
Afterwards each offspring is compared with one of its
*FAX: +49-6221-549331. Electronic address: hartmannparents. The pairs are chosen in such a way that the sum of
@tphys.uni-heidelberg.de the phenotypic differences between them are minimal. The
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phenotypic difference is defined here as the number of spin  TABLE I. Simulation parameterd: is the system size; is the
positions where the two configurations differ. Each parent idnitial size of the populationy is the average number of offsprings
replaced if its energy is not lowsr.e., bettey than the cor-  per configurationn,, is the number of CEA minimization steps
responding offspring. After this whole step is dom; per offspring, 7 is the average computer time per ground state on a
times the population is halved: From each pair of neighbor@O'MHZ _PPC601, andN, is the number of realizations of the ran-
the configuration that has the higher energy is eliminated. Ifom variables.

not more than four individuals remain the process is stopped

and the best individual is taken as result of the calculation. M; v Nmin 7 (seq N
The following representation summarizes the algorithm. 4 32 3 1 1 10 000
algorithm genetic CEA(J;}, M, v, P, N 6 64 4 2 20 10000
begin _ _ 8 64 4 5 140 12 469
createM; configurations randomly 10 128 6 10 1920 4480
while (M;>4) do
begin
fori=1to vXM,; do . . o
begin sizeL usingng=10 runs per realization.

select two neighbors In the second part of this paragraph a detailed analysis of
create two offspring using triadic crossover the influence of the simulation parameters is presented. But

do mutations with rate,, at first the results for the stiffness energy are shown in Fig. 1.
for each offspringdo Also given is a fit A(L)~L®s, which results in®g
begin =0.192). Because of the large sample sizes the error bars
for j=1 to Ny, do are small enough, so we can be pretty sure that-0. It
begin means that the 3D EA spin glass exhibits a nonzero transi-
construct unfrustrated cluster of spins tion temperaturel ;. SinceA is a small difference of large
construct equivalent network values, we have to be sure that we calculate true ground
calculate maximum flow states in order to believe our results.
construct minimum cut Figure 2 shows the average energy per spin for 90 test
set orientations of cluster spins systems of sizé =6 as function of the product of the simu-
end lation parameteraM;vn,, which is proportional to the
if offspring is not worse than related parent computer time since all other parameters are kept fixed.
then The sets ¥M;,v,nmin=(8,11),(8,21),(8,4,1) and M,
replace parent with offspring =8,16,32,64,128 for %,n,;i,)=(4,2) were investigated. The
end energy decreases with increasing numerical effort. For the
end sets withM;>32 the energy does not decrease further. We
half population;M;=M,/2 compared our results for the test systems with exact ground
end states, that were obtained using a branch-and-cut program
return one configuration with lowest energy [19,20. For the two largest parameter sets the genetic CEA
end algorithm found the true ground states for all 90 systems!

The whole algorithm is performexs, times and all con-  The same result was obtained for=4 as well[21]. So we
figurations that exhibit the lowest energy are stored, resultingan be sure that genetic CEA and our method of choosing the
in ng statistical independent ground-state configurations.

This algorithm was already applied to examine the 3.2 : : : . :
ground-state structure of 3D spin glas§&8]. . 10 .
RESULTS so0r
For each system size we tried many different combina- 29T
tions of the simulation parametens , v, Ny, Py, fOr some Sos| |
sample systems. The final parameters where determined ina
way, that by using four times the numerical effort no reduc- 27 r
tion in energy was obtained. Hepg,= 0.2 andng=10 were 26 b
used for all system sizes. Table | summarizes the parameters.
Also the typical computer time per ground-state computa- 25 1
tion on a 80 MHz PPC601 is given. 04 . . . . .
Ground states were calculated for system sizes up to 0 2 4 6 8 10
=10 for N, independent realizationsee Table )l of the L

random variables. For each realization the ground states with G 1. Stiffness energy as function of system size. The line
periodic and antiperiodic boundary condition were calcu-rgpresents the function(L)=alL®s with ©s=0.192). Theinset
lated. One can extract from Table | that the-10 systems  shows the same figure on log-log scale. The increasa wfith
alone required 1990 CPU days. Using these parameters Gstem size indicates, that in 3D Ising spin glasses an ordered phase
averagen,>8 ground states were obtained for every systemexists below a nonzero temperatdrg.
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FIG. 2. Average energy as function of simulation parameters

M;vn,, for 90 systems of sizé =6. With increasing numerical

effort the energy lowers. For the two rightmost points; L=6. If the calculated states are close to the true ground gate

=64,128,v=4; nyjn=2) no further decrease of the energy is pos- (16,4,2] the resulting stiffness energy is very close to the true value

sible. A comparison with exact ground-state calculations using 4nd converges towards it with increasing sample sig@e 90

branch-and-cut algorithm confirms that in fact for all 90 systems the . . :
samples from Fig. 3 are not included in the samples here, so the
true ground states are found.

values forN, =100 are different from the results aboye.

FIG. 4. Average stiffness energy as function of sample size
N, for three different sets of simulation parameters for system size

parameters lead to true ground states or at least to states veQixction of the sample sizBl, is shown for three different
close to true ground states. arameter set§8,4,1), (16,4,2, and (64,4,9. The stiffness

The choice of the simulation parameters has only a smagnergies found using the second set, where we are very close
influence on the the energy for large valuesyf. A more o the true ground states, converges to the values found using
sensitive indicator is the stiffness energy as function of thehe third set. The values found using the first set do not
simulation parameters. This is shown for the same 90 testonverge. So even by calculating states very close to the true

systems in Fig. 3. We also calculated the exact ground statgfiound states one gets very good estimates of the stiffness
for the realizations with antiperiodic boundary conditionsenergy.

and found again that genetic CEA produced the exact results
for the parameter sets witl;>32.

Since the parameters were tested always on a restricted
number of systems we cannot absolutely be sure that genetic CONCLUSION
CEA always finds true ground states. Since we are interested

in the stiffness energy we take a closer look at it. If states number of around states of 3D Ising spin qlasses. Thev were
very close to the true ground states are found, the resultin 9 gsping : y

stiffness energy may be for some realizations smaller and fo btained using a combination of cluster-exact approximation

others higher than the correct result. So we expect that th%nd a genetic algorithm. The finite-size behavior of the stiff-

effect should cancel out with increasing sample size. 222 SRR B B U ORE |1 s or are at least
This is confirmed by Fig. 4 where the stiffness energy as . 9
very close to them. Even if one calculates only almost true

ground states the resulting value of the stiffness energy is

Results have been presented from calculations of a large

80 ' ' ' very reliable. It has been found that the stiffness energy in-
70 | o . creases with system size. So strong evidence has been ob-
olL=6 tained that the 3D Ising spin glass has a nonzero transition
60 1 temperatureT . .
50 L o 4 The only uncertainty arises from the fact that these calcu-
o lations were restricted to systems sites 10, it means any-
240 - o o ] way that the number of spins is more than 200 times larger
50 F-———————————e -2 _o_o o] than for the systems examined befote<(6) [4—6]. Addi-
tionally in contrast to former publications it is possible to
20 T estimate the quality of the low-energy states.
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