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Scaling of stiffness energy for three-dimensional6J Ising spin glasses

Alexander K. Hartmann*
Institut für Theoretische Physik, Philosophenweg 19, 69120 Heidelberg, Germany

~Received 9 June 1998!

Large numbers of ground states of three-dimensional~3D! Edwards-Anderson Ising spin glasses are calcu-
lated for sizes up to 103 using a combination of a genetic algorithm and cluster-exact approximation. A detailed
analysis shows that true ground states are obtained. The ground-state stiffness~or domain wall! energyD is
calculated. AuDu;LQS behavior withQS50.19(2) is found that strongly indicates that the 3D model has an
equilibrium spin-glass-paramagnet transition for nonzeroTc . @S1063-651X~98!13912-0#

PACS number~s!: 75.10.Nr, 75.40.Mg, 02.10.Jf
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INTRODUCTION

The question as to whether three-dimensional~3D! Ising
spin glasses@1# have a nonzero transition temperatureTc is
still not answered beyond all doubt. The best evidence
ordering below a finiteTc was found recently@2,3# by exten-
sive Monte Carlo simulations. But the authors could n
completely rule out other scenarios.

In this work we address the question by calculating
stiffness or domain wall energyD5Ea2Ep, which is the
difference between the ground-state energiesEa,Ep for anti-
periodic and periodic boundary conditions, respectiv
@4,5#. This quantity was studied earlier only for very sma
system sizes usingT50 transfer matrix methods@4,6# and
Monte Carlo simulations@5#. The stiffness energy shows
finite-size dependence

uDu;LQS, ~1!

where L is the linear system size. A positive value of th
stiffness exponentQs indicates the existence of a spin gla
phase for nonzero temperature. Since the direct calcula
of ground states for 3D spin glasses is NP hard, there is
polynomial algorithm available. In our work we calcula
ground states using a combination of cluster-exact appr
mation~CEA! @7# and a genetic algorithm@8,9#. Similar cal-
culations proved that the 2D spin glass, where exact gro
states can be calculated using a polynomial time algorit
exhibits no ordering forT.0 @10#.

We investigate systems ofN spinss i561, described by
the Hamiltonian

H[2(
^ i , j &

Ji j s is j . ~2!

In this letter we consider 3D cubic systems with period
boundary conditions,N5L3 spins and the nearest-neighb
interactions~bonds! take independentlyJi j 561 with equal
probability. The antiperiodic boundary conditions for calc
lating Ea are realized by inverting one plane of bonds.

*FAX: 149-6221-549331. Electronic address: hartma
@tphys.uni-heidelberg.de
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ALGORITHM

The algorithm for the calculation is based on a spec
genetic algorithm@8,9# and on cluster-exact approximatio
@7# that is a sophisticated optimization method. Now a sh
sketch of these algorithms is given, because later the in
ence of different simulation parameters on the results is
cussed.

The genetic algorithm starts with an initial populatio
of Mi randomly initialized spin configuration
~5individuals!, which are linearly arranged in a ring. The
nMi times two neighbors from the population are tak
~calledparents! and two offsprings are created using a triad
crossover: a mask is used that is a third randomly cho
~usually distant! member of the population with a fraction o
0.1 of its spins reversed. In a first step the offsprings
created as copies of the parents. Then those spins are
lected, where the orientations of the first parent and the m
agree@11#. The values of these spins are swapped betw
the two offspring. Then a mutation with a rate ofpm is ap-
plied to each offspring, i.e., a fractionpm of the spins is
reversed.

Next for each offspring the energy is reduced by apply
CEA. The method constructs iteratively and randomly a n
frustrated cluster of spins, whereas spins with many unsa
fied bonds are more likely to be added to the cluster. For
6J spin glasses each cluster contains typically 58% of
spins. The noncluster spins act like local magnetic fields
the cluster spins. For the spins of the cluster an energ
minimum state can be calculated in polynomial time by u
ing graph theoretical methods@12–14#: an equivalent net-
work is constructed@15#, the maximum flow is calculated
@16,17# and the spins of the cluster are set to their orien
tions leading to a minimum in energy. This minimizatio
step is performednmin times for each offspring. The imple
mentation details are as follows: We used Tarjan’s wave
gorithm together with the heuristic speedups of Tra¨ff. In the
construction of thelevel graphwe allowed not only edges
(v,w) with level(w)5 level(v)11, but also all edges (v,t)
wheret is the sink. For this measure, we observed an ad
tional speedup of roughly a factor of 2 for the systems
calculated.

Afterwards each offspring is compared with one of
parents. The pairs are chosen in such a way that the su
the phenotypic differences between them are minimal. T
84 ©1999 The American Physical Society
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phenotypic difference is defined here as the number of s
positions where the two configurations differ. Each paren
replaced if its energy is not lower~i.e., better! than the cor-
responding offspring. After this whole step is donenMi
times the population is halved: From each pair of neighb
the configuration that has the higher energy is eliminated
not more than four individuals remain the process is stop
and the best individual is taken as result of the calculatio

The following representation summarizes the algorithm
algorithm genetic CEA($Ji j %, Mi , n, pm , nmin)
begin

createMi configurations randomly
while (Mi.4) do
begin

for i 51 to n3Mi do
begin

select two neighbors
create two offspring using triadic crossover
do mutations with ratepm
for each offspringdo
begin

for j 51 to nmin do
begin

construct unfrustrated cluster of spins
construct equivalent network
calculate maximum flow
construct minimum cut
set orientations of cluster spins

end
if offspring is not worse than related paren
then

replace parent with offspring
end

end
half population;Mi5Mi /2

end
return one configuration with lowest energy

end
The whole algorithm is performednR times and all con-

figurations that exhibit the lowest energy are stored, resul
in ng statistical independent ground-state configurations.

This algorithm was already applied to examine t
ground-state structure of 3D spin glasses@18#.

RESULTS

For each system size we tried many different combi
tions of the simulation parametersmi , n, nmin , pm for some
sample systems. The final parameters where determined
way, that by using four times the numerical effort no redu
tion in energy was obtained. Herepm50.2 andnR510 were
used for all system sizes. Table I summarizes the parame
Also the typical computer timet per ground-state computa
tion on a 80 MHz PPC601 is given.

Ground states were calculated for system sizes up tL
510 for NL independent realizations~see Table I! of the
random variables. For each realization the ground states
periodic and antiperiodic boundary condition were calc
lated. One can extract from Table I that theL510 systems
alone required 1990 CPU days. Using these parameter
averageng.8 ground states were obtained for every syst
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sizeL usingnR510 runs per realization.
In the second part of this paragraph a detailed analysi

the influence of the simulation parameters is presented.
at first the results for the stiffness energy are shown in Fig
Also given is a fit D(L);LQS, which results in QS
50.19(2). Because of the large sample sizes the error b
are small enough, so we can be pretty sure thatQS.0. It
means that the 3D EA spin glass exhibits a nonzero tra
tion temperatureTc . SinceD is a small difference of large
values, we have to be sure that we calculate true gro
states in order to believe our results.

Figure 2 shows the average energy per spin for 90
systems of sizeL56 as function of the product of the simu
lation parametersMinnmin , which is proportional to the
computer time since all other parameters are kept fix
The sets (Mi ,n,nmin)5(8,1,1),(8,2,1),(8,4,1) and Mi
58,16,32,64,128 for (n,nmin)5(4,2) were investigated. The
energy decreases with increasing numerical effort. For
sets withMi.32 the energy does not decrease further. W
compared our results for the test systems with exact gro
states, that were obtained using a branch-and-cut prog
@19,20#. For the two largest parameter sets the genetic C
algorithm found the true ground states for all 90 system
The same result was obtained forL54 as well@21#. So we
can be sure that genetic CEA and our method of choosing

FIG. 1. Stiffness energyD as function of system sizeL. The line
represents the functionD(L)5aLQS with QS50.19(2). The inset
shows the same figure on log-log scale. The increase ofD with
system size indicates, that in 3D Ising spin glasses an ordered p
exists below a nonzero temperatureTc .

TABLE I. Simulation parameters:L is the system size,Mi is the
initial size of the population,n is the average number of offspring
per configuration,nmin is the number of CEA minimization step
per offspring,t is the average computer time per ground state o
80-MHz PPC601, andNL is the number of realizations of the ran
dom variables.

L Mi n nmin t ~sec! NL

4 32 3 1 1 10 000
6 64 4 2 20 10 000
8 64 4 5 140 12 469

10 128 6 10 1920 4480
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parameters lead to true ground states or at least to states
close to true ground states.

The choice of the simulation parameters has only a sm
influence on the the energy for large values ofMi . A more
sensitive indicator is the stiffness energy as function of
simulation parameters. This is shown for the same 90
systems in Fig. 3. We also calculated the exact ground st
for the realizations with antiperiodic boundary conditio
and found again that genetic CEA produced the exact res
for the parameter sets withMi.32.

Since the parameters were tested always on a restr
number of systems we cannot absolutely be sure that ge
CEA always finds true ground states. Since we are intere
in the stiffness energyD we take a closer look at it. If state
very close to the true ground states are found, the resu
stiffness energy may be for some realizations smaller and
others higher than the correct result. So we expect that
effect should cancel out with increasing sample size.

This is confirmed by Fig. 4 where the stiffness energy

FIG. 2. Average energy as function of simulation paramet
Minnmin for 90 systems of sizeL56. With increasing numerica
effort the energy lowers. For the two rightmost points~Mi

564,128;n54; nmin52! no further decrease of the energy is po
sible. A comparison with exact ground-state calculations usin
branch-and-cut algorithm confirms that in fact for all 90 systems
true ground states are found.

FIG. 3. Average stiffness energyD as function of simulation
parametersMinnmin for 90 systems of sizeL56. This quantity is
more sensitive to changes in the simulation parameters than
energy.
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ll

e
st
es

lts

ed
tic
ed

g
or
he

s

function of the sample sizeNL is shown for three different
parameter sets~8,4,1!, ~16,4,2!, and ~64,4,2!. The stiffness
energies found using the second set, where we are very c
to the true ground states, converges to the values found u
the third set. The values found using the first set do
converge. So even by calculating states very close to the
ground states one gets very good estimates of the stiffn
energy.

CONCLUSION

Results have been presented from calculations of a la
number of ground states of 3D Ising spin glasses. They w
obtained using a combination of cluster-exact approximat
and a genetic algorithm. The finite-size behavior of the st
ness energy has been investigated. It has been shown
states that were obtained are true ground states or are at
very close to them. Even if one calculates only almost t
ground states the resulting value of the stiffness energ
very reliable. It has been found that the stiffness energy
creases with system size. So strong evidence has been
tained that the 3D Ising spin glass has a nonzero transi
temperatureTc .

The only uncertainty arises from the fact that these cal
lations were restricted to systems sizesL<10, it means any-
way that the number of spins is more than 200 times lar
than for the systems examined before (L56) @4–6#. Addi-
tionally in contrast to former publications it is possible
estimate the quality of the low-energy states.
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schaftliches Rechnenin Heidelberg.
d-

ia,

me
@1# For reviews on spin glasses see K. Binder and A. P. You
Rev. Mod. Phys.58, 801~1986!; K. H. Fisher and J. A. Hertz,
Spin Glasses~Cambridge University Press, New York, 1991!.

@2# N. Kawashima and A. P. Young, Phys. Rev. B53, R484
~1996!.

@3# E. Marinari, G. Parisi, and J. J. Ruiz-Lorenzo, in A. P. Youn
Spin Glasses and Random Fields~World Scientific, Singapore
1998!.

@4# A. J. Bray and M. A. Moore, J. Phys. C17, L463 ~1984!.
@5# W. L. McMillan, Phys. Rev. B30, 476 ~1984!.
@6# M. Cieplak and J. R. Banavar, J. Phys. A23, 4385~1990!.
@7# A. K. Hartmann, Physica A224, 480 ~1996!.
@8# K. F. Pál, Physica A223, 283 ~1996!.
@9# Z. Michalewicz, Genetic Algorithms1Data Structures

5Evolution Programs~Springer, Berlin, 1992!.
@10# N. Kawashima and H. Rieger, Europhys. Lett.39, 85 ~1997!.
@11# K. F. Pál, Biol. Cybern.73, 335 ~1995!.
@12# J. D. Claiborne,Mathematical Preliminaries for Compute
,

,

Networking~Wiley, New York, 1990!.
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