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Kinetic growth of field-oriented chains in dipolar colloidal solutions
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Experimental studies on the irreversible growth of field-induced chains of dipolar particles suggest an
asymptotic power-law behavior of several relevant quantities. We introduce a Monte Carlo model of chain
growth that explicitly incorporates the anisotropic diffusion characteristic of a rodlike object. Assuming a
simple power-law form for the mean cluster sizeS(t);tz, the results of our model are in good agreement with
the experimental measurements of the dynamic exponentz. Nevertheless, an alternative scenario, including
logarithmic corrections to the standard power-law behavior, provides a better and more insightful interpretation
of the anomalous dynamic exponent. In contrast to some experimental findings, we do not observe any
dependence of the exponents on the volume fraction of particlesf. Finite-size effects are also explored by
simulating very long time evolutions or highly concentrated systems. Two different behaviors are found,
namely, saturation and a crossover to a quasi-one-dimensional regime.@S1063-651X~99!08201-X#

PACS number~s!: 82.70.Dd, 61.43.Hv, 64.60.Cn
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I. INTRODUCTION

The kinetic properties of the irreversible aggregation
particles has been the subject of great interest over the
decade@1–3#. In particular, several experimental and the
retical studies as well as computer simulations have b
devoted to understanding the behavior of colloidal susp
sions of dipolar particles, the so-calledelectrorheological
andmagnetorheological fluids@4–11#. After applying an ex-
ternal electric or magnetic field, these suspensions exp
ence a dramatic change in their rheological properties, i.e
notable increase in the viscosity, which renders them part
larly interesting systems from a technological point of vie

The change in the rheological properties of dipolar s
pensions upon the action of an external field is mainly due
the aggregation of the colloidal particles, which form clust
of macroscopic size. These are usually linear chains, r
oriented along the direction of the applied field, although
high enough concentrations of dipolar particles more co
plex structures may arise@12,13#. The overall spatial ar-
rangement of the aggregates is very effective in hindering
fluid flow, conferring the suspension a solidlike texture.

Multiple applications have been envisaged for these m
terials: lubricants, dampers, heat and light transmission
vices, etc. Nevertheless, their eventual manufacture still
to overcome different drawbacks, for instance, the sedim
tation of the clusters. At high fields, the aggregation is ir
versible; the chains grow longer and never break as lon
the field is present. Thus the study of the kinetics of form
tion of the aggregates turns out to be an issue of prac
importance.

Due to its irreversible character, studies have most o
focused on the dynamic properties of the distribution of cl
ters, following the approach developed to deal with irreve
ible cluster-cluster aggregation models~see Refs.@2,3# and
references therein!. Within this framework, the quantitative
features of the aggregation are commonly described in te
of the cluster-size distributionas a function of timens(t),
which is defined as the number of clusters of sizes, per unit
PRE 591063-651X/99/59~1!/826~9!/$15.00
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volume, present in the system at timet. Other relevant quan-
tities are the density of clusters at timet, n(t)5(sns(t), and
the mean cluster size S(t), defined by

S~ t !5

(
s

s2ns~ t !

(
s

sns~ t !

. ~1.1!

Experimental results and computer simulations of differ
cluster-cluster aggregation models@2,3# show that the
asymptotic behavior at large times of the mean cluster s
and the total number of clusters is a power law

S~ t !;tz, n~ t !;t2z. ~1.2!

The exponentz is the so-calleddynamic exponent. In gen-
eral,z depends on the dimensiond of the space as well as o
the nature of the aggregation process. Another relevant
ture of the aggregation dynamics is that the characteri
quantities defined above are related through thedynamic
scaling hypothesis@14#

ns~ t !5s22F„s/S~ t !…, ~1.3!

where F(x) is a certain scaling function, independent ot
and s. The validity of this relation has been systematica
verified in experiments and computer simulations.

The dynamics of cluster-cluster aggregation can be th
retically described in terms of the Smoluchowski equat
@15#. Smoluchowski proposed a kinetic equation describ
the temporal evolution of the cluster-size distributionns(t):

dns~ t !

dt
5 (

i 1 j 5s
K~ i , j !ni~ t !nj~ t !2ns~ t !(

i 51

`

K~s,i !ni~ t !.

~1.4!

HereK(s,s8) is the reaction kernel, giving the rate at whic
clusters of sizes join clusters of sizes8 to form clusters of
826 ©1999 The American Physical Society
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sizes1s8. This equation is an example of a mean-field-ty
theory in which fluctuations are neglected. Moreover,
range of applicability is limited to low concentrations, whe
the assumption of exclusively binary collisions is valid@15#.
The results of this theory are expected to hold for dimensi
higher than theupper critical dimension(dc52 in this case
@16#!, above which fluctuations become irrelevant. Assum
that the reaction kernel is a homogeneous function of deg
g, that is,

K~bs,bs8![bgK~s,s8!, ~1.5!

it is possible to prove the relations~1.2! and~1.3! @3#, with a
dynamic exponent given by

z5
1

12g
. ~1.6!

Most of the experimental and numerical studies of
anisotropic aggregation ofrodlike clusterspresented so fa
@5,7,8,10,17# seem to indicate the same type of power la
for the asymptotic behavior of the mean cluster sizeS(t).
For instance, Fradenet al. @5# reported a value ofz50.60.
Promislow and Gast@8#, on the other hand, measured a val
of z ranging between 0.50 and 0.75 for different values of
concentration and the dipolar interaction strengthl ~to be
defined later on!. The interpretation of these results relies
Smoluchowski’s assumptions.

In Smoluchowski’s solution@15#, the reaction kernel is
the product of an effective diameter, the collision cross s
tion of two clusters (Rs1Rs8), times an effective relative
diffusion coefficient@D(s)1D(s8)#, whereRs andD(s) are
the radius of influence and the diffusion coefficient of a clu
ter of masss, respectively@18#. By analogy with the Stokes
Einstein relation for a single spherical particle of diametea
moving in a liquidD}a21 @19#, the effective diffusion co-
efficient is given by a power law of the cluster size

D~s!;sg. ~1.7!

Miyazimaet al. @10# proposed this type of power-law ke
nel for rodlike clusters of dipolar particles. One can estim
the effective cross section, the radius of influence, of a sin
magnetic particleR1 by comparing dipolar@Ud(r )}m2/r 3#
and thermal (kBT) energies. If we introduce the dimensio
less parameterl5m2/a3kBT, wherem is the magnetic mo-
ment anda the diameter of a dipolar particle, the effectiv
cross section can be expressed asR1 /a;l1/3. The detailed
form of the dipolar interaction is not expected to modify t
asymptotic behavior of the aggregation dynamics. Th
roughly speaking, outside a spherical region of radiusR1 the
relative motion is mainly diffusive and only when one pa
ticle enters the sphere of influence of another do they s
irreversibly.

At low concentrations, it is reasonable to assume that r
like clusters of dipolar particles essentially aggregate tip
tip. Miyazima et al. argued that, under such conditions, t
cross section of a chain cannot depend on its total length@20#
and it is possible to approximateRs;R1 . The only source of
dependence on the cluster size should thus come from
effective diffusion coefficient and the reaction kernel is a
proximately given byK(s,s8);sg1s8g. This form fulfills
s
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the homogeneity condition~1.5! and yields therefore a dy
namic exponent given by Eq.~1.6!.

Following this approach to the problem, the value ofg is
the key parameter in order to interpret the experimental d
@5,7,8#. The dynamic exponentz is numerically computed
from a log-log plot of the mean chain lengthS(t) as a func-
tion of time. The value obtained is then associated throu
Eq. ~1.6! with a particular value ofg. In the absence of
hydrodynamic interactions among the spheres in a chain,
effective mobility is inversely proportional to its length
Consequently, one would expectg to be equal to21 which,
according to Eq.~1.6!, corresponds toz51/2. In general, this
value ofz deviates from the ones measured experimenta
A simple way of interpreting this difference is to consider
ad hocvalue ofg different from21, which phenomenologi-
cally accounts for a more realistic mobility of a rodlike pa
ticle @21#.

In this paper we propose an alternative mechanism to
plain those discrepancies in the measured value ofz. The
core of our proposal is a different view of the mobility of
cluster of masss. Fradenet al. @5# already pointed out tha
hydrodynamic interactions shouldincreasethe effective mo-
bility of a cluster of masss, making it larger than the mobil-
ity of a collection ofs independent particles. The latter a
proximation, statingD(s);s21, is strictly valid for clusters
of hydrodynamically noninteractingspheres@22#. However,
this is too strong an assumption in the case under consi
ation, where the magnetic spheres form relatively rig
chains. In this case, it is well known that the hydrodynam
drag for the translational motion isanisotropic@21,23#. The
drag coefficients along the direction parallel to the axis of
chain and in the perpendicular directionsj i andj' , respec-
tively, are approximately given by@23#

j i52pha
s

ln~s!
, j'52j i , ~1.8!

whereh is the viscosity of the solvent ands is the number of
particles composing the cluster, its mass. The mobility o
cluster is defined as the inverse of the drag coefficient; he
the constantsD i andD' , characterizing the diffusion paral
lel and perpendicular to the rods’ axis, are given by@18#

D i5
kBT

j i
;

ln~s!

s
, D'5

kBT

j'

5
D i

2
. ~1.9!

That is to say, hydrodynamic interactions generate an
tropic diffusion coefficients, exhibiting logarithmic correc
tions to the previously considered power laws. In order
investigate the effect of the new diffusivities~1.9! on the
dynamics of the process, we have introduced them i
Monte Carlo@24# computer model for the cluster-cluster a
gregation of rodlike particles.

By simply considering anisotropic diffusivities with loga
rithmic corrections and assuming thatS(t);tz, we are able
to recover a dynamic exponentz in good agreement with
experimental results. However, a simple heuristic argum
suggests a different functional form, namely, a power l
with logarithmic corrections.

Let us assume that all clusters in the suspension have
same average lengthS. The average separationR̄ between
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828 PRE 59M.-CARMEN MIGUEL AND R. PASTOR-SATORRAS
neighboring clusters in a suspension with initial volume fra
tion f, the initial density of dipoles, can then be estimated
be

R̄.S S

f D 1/d

. ~1.10!

In d51, only two neighboring clusters are able to aggrega
In general, this is the most likely event in low dimensions.
high dimensions, however, and due to the diffusive nature
their movement, any two clusters are equally likely to jo
irrespective of their relative distance, as they are quite in
ible to each other. A mean-field type of behavior is th
expected, in the sense that only the density of clus
presentn(t) is relevant and not their spatial arrangement

As the movement of the clusters is essentially diffusi
the average displacement of a cluster of mean sizeSafter the
time intervalt is given by

^R2&}D~S!t, ~1.11!

where, as indicated in Eq.~1.9!, D(S); ln(S)/S. Aggregation
of two clusters will occur after a characteristic timeT has
been elapsed, a time interval long enough for the cluster
cover their relative separation.

For a low-dimensional system, the characteristic timeT is
that required to cover the distanceR̄ separating near neigh
bors, i.e.,

T}
R̄2

D~S!
}

1

f2/d

S~21d!/d

ln~S!
. ~1.12!

On the other hand, in higher dimensions there is no s
characteristic length scale and, consequently, there is no
son to expect that the previous expression holds. Howe
we can argue that a cluster browsing a volume of order u
will encounter n(t) clusters available to join. The tim
needed for a cluster to cover such space will be thus pro
tional to nT, where, as above,T is the characteristic time o
a singleaggregation event. We have then

T}
1

n

1

D~S!
}

1

f

S2

ln~S!
, ~1.13!

where we have used thatn;f/S. Note that both estimation
yield the same result atd52, suggesting that the upper crit
cal dimension of the problem isdc52 @16#.

The inspection of Eqs.~1.12! and~1.13! suggests that the
functional dependence of the mean cluster size with t
takes the form, ford<dc ,

S

@ ln~S!#z
;~ tf2/d!z, ~1.14!

wherez5d/(21d), and ford>dc ,

S

@ ln~S!#1/2
;~ tf!1/2. ~1.15!

Note that within this approach, we obtain logarithmic corre
tions to the behavior reported in Ref.@10# for g521 @see
-
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Eq. ~1.6!#. These corrections to the usual asymptotic beh
ior in isotropic cluster-cluster aggregation could explain t
anomalous dynamic exponent found for the aggregation
anisotropic rodlike clusters. The results of our numeri
simulations exhibit a surprisingly good fit to the theoretic
predictions~1.14! and~1.15!, better than to the naive power
law behavior.

We have structured our paper as follows. In Sec. II
describe the technical details of our algorithm. Section
deals with the properties of rodlike aggregation in two
mensions. In particular, we study the mean cluster sizeS(t)
for a variety of values of the initial volume fractionf. For
small to moderate values off and not very long execution
times, we recover, assuming a pure power-law form forS(t),
values ofz in agreement with some of the experimental fin
ings. Importantly, in opposition to some claims in the liter
ture @8#, we do not observe any dependence ofz on the
volume fraction. On the other hand, we observe that
same sets of data can be fitted with higher accuracy to
predicted power law with logarithmic corrections. By allow
ing very high volume fractions or large execution times, w
find that our model crosses over to two different behavio
namely, saturation and a quasi-one-dimensional regime.
believe that the discrepancies with the experimental res
in Ref. @8# might be due to a combination of these types
finite-size effects and logarithmic corrections. In Sec. IV w
extend our model to three dimensions. We do not obse
significant variations with respect to the two-dimensional a
gregation. Finally, our conclusions are presented in Sec.

II. COMPUTER MODEL

In our model we consider the irreversible aggregation
rigid rodlike clusters inRd, with d52 and 3. Clusters are
oriented along theZ axis. Simulations start att50 with a
random distribution ofN0 monomers~spherical particles of
diametera51) in a box of volumeV with periodic boundary
conditions. The initial volume fraction of monomers is d
fined byf5N0 /V. We have simulated a wide range of vo
ume fractionsf ~0.001–0.1! and some particular high value
~up to 0.5). Clusters diffuse performing a free off-lattice ra
dom walk; that is, despite the dipolar interactions, we assu
that the temperature in the system is high enough to prov
a mainly diffusive character to the aggregation dynami
Nevertheless, dipolar interactions are predominant at s
distances. Therefore, when two clusters come close eno
to each other, they stick irreversibly.

In the Monte Carlo algorithm, clusters are selected a
moved a distance equal to one diametera in a direction cho-
sen randomly from a certain probability distribution. Th
movement is performed rigidly, preserving the orientation
the rod along theZ axis. When two clusters come within
distance tip to tip of one diameter~that is, when the distance
between any two of their respective ends is less than or e
to a) they join, forming one single rod of mass, number
particles, equal to the sum of the masses of the collid
clusters. When two clusters approach side to side they r
each other. This is implemented by rejecting all possi
movements leading to a side to side overlap of clusters.

In fact, this procedure is equivalent to considering a
dius of influenceRs5a and, according to the discussion
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Sec. I, it mimics a dipolar interaction of strengthl;1. Dif-
ferent values ofl could be in principle simulated by joining
clusters irreversibly when they come within a distan
;l1/3. Values of l between 1 and 30~that is, radius of
influence between 1 and 3), within the range reported
experimental investigations, provide analogous asympt
results at large times, differing only in the transient regim

The effect of the anisotropic diffusivities~1.9! on the al-
gorithm is taken into account in two steps: first, in the sel
tion of the next cluster to be moved, and second, in
prescription for the direction of its tentative movement.
the first step, we choose a cluster among all present
given time step, with a probabilityr(s) proportional to their
diffusivity. According to Eq.~1.9! we have

r~s!;
ln~s!

s
. ~2.1!

However, given that the expression~1.9! is only suitable to
describe the motion of aslenderbody (s@1), the previous
expression would be inappropriate for smalls. Therefore, we
actually select the cluster with a probability proportional
the corrected diffusivity

r~s!;D̃C~s!5H ln~s0!/s for s,s0

ln~s!/s for s>s0 .
~2.2!

Here we are assuming that small clusters (s,s0) diffuse as
if composed of hydrodynamically independent particles. W
have selected a cutoff masss053; different values were also
tested, yielding comparable results.

We discuss now the method employed to sample the c
ters. In cluster-cluster aggregation simulations, the samp
with a probability proportional to the mobility is usually pe
formed according to the ‘‘rejection’’ algorithm~see@2,25#
and Ref.@26#, p. 151!: A cluster is selected among all th
present at a given time, with uniform probability. Then
random numberh, uniform in the interval@0,1#, is drawn.
The cluster selected is accepted for movement ifh
,D(s)/Dmax, whereD(s) is the diffusion coefficient of the
cluster considered andDmax is the maximum diffusivity of
all the clusters present. Otherwise, the cluster is rejected
both selection steps are repeated. In our simulations, h
ever, we have chosen to implement a different sampling
gorithm, the ‘‘alias’’ method for discrete distributions~see
Ref. @26#, p. 158, for a detailed description!. Briefly, the
algorithm works as follows. A clusterC, of sizes, is selected
uniformly among all clusters. Then, with a certain ‘‘alia
ing’’ probability p(s), the cluster is replaced by its alia
C85F@C#, of masss8. The probabilityp(s) is chosen so
that clusters with smallD̃C(s) ~low probability of being se-
lected! are frequently mapped to clusters with high
D̃C(s8). The alias method is more costly in computer tim
however, it provides a more accurate sampling of the pr
ability densityr(s).

With the procedure described above, we implement
mass dependence of the mobility~1.9!. However, we also
have to take into account itsanisotropy. Given Eq.~1.9!, it is
twice more likely for any rod to move along its axis tha
along any other perpendicular direction. We implement t
fact in a second step by selecting the direction of the t
n
ic
.
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movement from a probability distribution fulfilling this sam
anisotropy. Let us define the azimuthal angleu with respect
to the axis of the rod. Then, ind52, the direction for the
tentative movement of a chain of lengths>s0 is selected at
random from the probability density

P~u!5
A2

2p

1

11sin2u
, ~2.3!

with 0,u,2p. In d53 we use instead the density

P~w,u!5
1

2p

A2

ln~312A2!

1

11sin2u
, ~2.4!

with 0,w,2p and 0,u,p. These distributions ensur
the necessary anisotropic conditionP@u50,p#/P@u
5p/2,3p/2#52, while being continuous in both angles an
easily simulated numerically. For clusters of masss,s0 we
assume that the diffusion is isotropic. Therefore, in this c
we choose a random direction for the tentative movem
from a uniform distribution.

The final implementation of our algorithm runs as fo
lows. ~i! Each time step we select at random a cluster
masssi according to the probability density~2.2! and a di-
rectionu i , according to Eq.~2.3! @a pair (u i ,w i), according
to Eq. ~2.4!, in three dimensions# for si>s0 ; in the case that
si,s0 , the direction is drawn from a uniform distribution
~ii ! The cluster is moved a distancea in the selected direction
and its position with respect to the neighboring chains
analyzed.~iii ! If it intersects side to side with another chai
the movement is rejected; otherwise, it is accepted. If
cluster intersects tip to tip with another chain, they join a
form a single cluster.~iv! Finally, the time is incremented by
an amount

Dt5
1

N~ t !D̃C~si !
, ~2.5!

where N(t) is the total number of clusters present at t
corresponding timet and D̃C(si) is the effective diffusivity
of the selected cluster, as given by Eq.~2.2!. This choice of
the time step effectively reproduces the real dynamics of
system.

III. AGGREGATION IN d52

In our simulations ind52 we have mainly considere
systems with volume ranging from 2563128 to 10243512
and initial number of particles between 524 and 67 109. T
corresponds to volume fractions ranging betweenf;0.001
and f;0.1. We have also considered the extreme case
high concentration (f;0.5) in order to investigate a pos
sible crossover to a one-dimensional regime. In most ca
averages were performed over 100–500 simulations.

A. Isotropic diffusion

First, in order to check our algorithm, we have simulat
the aggregation according to the prescription given in R
@10#, i.e., the diffusivity of a rod is isotropic and inverse
proportional to its massD(s);s21. In Fig. 1~a! we repre-
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sent the mean cluster sizeS(t) obtained from simulations o
a system of size 10243512, with an initial number of par-
ticlesN0510 000. These values correspond to an initial v
ume fractionf50.019. We observed a clear power-law r
gime covering more than three decades in time. The le
squares fitting of the curve yields an exponentz50.50. As
expected, this result matches the dynamic exponent pred
by Eq. ~1.6! for g521. In Fig. 1~b! we have tested the
finite-size scaling relationship~1.3! by plotting s2ns(t) as a
function of the rescaled timet/s1/z for different values of the
cluster sizes. The best collapse of the plots is obtained fo
value ofz50.50, which is again in agreement with Eq.~1.6!.

B. Anisotropic diffusion: Dilute regime

We now discuss the results obtained by implementing i
our algorithm the anisotropic diffusion prescribed ind52 by
Eqs.~2.2! and ~2.3!. First of all, motivated by the results i
Ref. @5#, we have duplicated the parameters in that exp
ment, i.e., we have chosen a system of volume 10243512
and an initial number of particlesN055000. These condi-
tions yield a volume fractionf;0.01, as in the experiments
Figure 2~a! shows the mean cluster size as a function of tim
in a double-logarithmic plot. The behavior ofS(t) at late
times can be fitted to a power law extending close to th
orders of magnitude. A least-squares fitting provides an
ponentz50.61, in complete agreement with the experime
tal findings in @5#. Similarly, in Fig. 2~b! we represent the

FIG. 1. Aggregation with cluster diffusion that is isotropic an
proportional tos21. The initial concentrationf50.019.~a! Mean
cluster size as a function of time.~b! Finite-size scaling of the
cluster size distribution as a function of time, for fixed lengthss
510, 20, 30, 40, 50, 60, 70, and 80.
-

t-

ed

o

i-

,

e
x-
-

finite-size scaling hypothesis~1.3!. The good collapse shown
in this plot corroborates the value of the dynamic expon
z50.61.

The evidence exposed in the previous figures seem
lend support to the hypothesis of a simple power-law beh
ior. However, the situation is not completely clear, as
show in Fig. 3. Figure 3~a! tests the theoretical predictio
~1.14!. Plotting S(t) as a function oft ln S in logarithmic
scale we obtain a slopez50.51, very close to the expecte
value 1/2 ind52. Moreover, we remark that the goodness
fit in this case, as measured by the Pearsonr coefficient@27#,
is higher than the one obtained from the linear regressio
Fig. 2~a!. Indeed, least-squares fittings covering the last th
orders of magnitude in the abscissas of Figs. 2~a! and 3~a!,
yield the valuesr 50.999 60 andr 50.999 948, respectively
In Fig. 3~b! we check the finite-size scaling hypothesis
plotting s2ns(t) as a function of the rescaled timet ln s/s1/z.
The best collapse again results from a value ofz50.51.

In the simulations presented above we have been ab
match the observed value ofz by selecting the particula
value off reported in the experiments. It has been argu
however, that the value ofz may depend on the volum
fraction f @8#. In order to verify the accuracy of this state
ment, we have performed simulations for several values
f, ranging from very dilute (f.0.001) to moderate concen
trations (f.0.1), in a system of fixed size 10243512. Fig-

FIG. 2. Aggregation with cluster diffusion that is anisotrop
and proportional to ln(s)/s, as defined in Eqs.~2.2! and ~2.3!. The
initial concentrationf50.009, as in Ref.@5#. ~a! Mean cluster size
as a function of time.~b! Finite-size scaling of the cluster siz
distribution as a function of time, for fixed lengthss510, 20, 30,
40, 50, 60, 70, and 80.
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ure 4~a! plots the mean cluster sizeS(t) as a function oft for
the different volume fractions considered. The slope of
different graphs depicted in this figure does not seem to
pend onf. This fact becomes even more clear in Fig. 4~b!,
where we have plottedS(t) as a function of therescaled time
ft. We observe that in this case all the plotscollapseonto a
universal function, independent of the volume fraction. T
collapse of the different graphs is also shown in Fig. 5, n
as a function of the rescaled quantityft ln S. Note that Eq.
~1.14! leads directly to the required scaling factor off in
d52. As in Fig. 3, the collapse is statistically better in term
of this new rescaling than for the single power law.

The collapsed plots allow us to select a common sca
region for all of them, from which we can extract slopes f
the different values off that are directly comparable. A
average slope can thus be defined. In the case of Fig.~b!
~single power-law interpretation!, individual slopes range be
tween 0.59 and 0.63. From them we obtain an average e
nentz50.61, in accordance with our previous estimate a
the experimental results in Ref.@5#. In addition, from Fig. 5
~power law with logarithmic corrections! we obtain slopes
between 0.49 and 0.53, yielding an average value oz
50.51.

C. Anisotropic diffusion: Saturated regime

In view of the results presented in the preceding subs
tion, we naturally conclude that the slope does not depen
the volume fraction and that the disagreement with prior

FIG. 3. Same data as in Fig. 2.~a! Mean cluster size as a func
tion of t ln S(t). ~b! Finite-size scaling of the cluster size distrib
tion.
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perimental findings@8# may be a consequence of both log
rithmic corrections and finite-size effects. In experiments
computer simulations, finite-size effects can cause the
tem to crossover, at large times, to asaturatedregime in
which any predicted scaling behavior is lost. We have inv
tigated this issue by simulating systems that were allowed
evolve for very long times, up to ten times longer than in o
previous simulations. Figure 6 depicts the mean cluster
computed for different system sizes, while keeping the sa

FIG. 4. Mean cluster size for anisotropic aggregation, for s
eral values of the volume fraction. From top to bottom,f50.064,
0.032, 0.016, 0.008, 0.004, 0.002, and 0.001.~a! As a function of
time. ~b! As a function of the rescaled timeft. The average slope
obtained from the common scaling region isz50.61.

FIG. 5. Same data as in Fig. 4, but now as a function of
rescaled quantityft ln S. The average slope obtained from the com
mon scaling region isz50.51.
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fixed initial volume fractionf50.019. In Fig. 7 we plotS(t)
for a fixed value of the system size 5123256 and different
values off. The chief feature of these plots is the onset o
plateau whose location and height appears to be a functio
the system volumeV. This flatter region is indicative of a
considerable slowing down in the dynamics. Finite-size
fects, unavoidable at relatively large times, can corrupt
interpretation of any expected scaling behavior.

D. Anisotropic diffusion: Quasi-one-dimensional regime

We have established the existence of deviations from
dilute asymptotic behavior due to saturation when the sys
evolves up to very long times. In addition, in a highly co
centrated system, one can also observe a crossover
quasi-one-dimensional regime, as remarked by Miyazima
et al. @10#. At the late stages of evolution in a very conce
trated system, the largest chains attain a length that is o
order of the system size. Their effect is therefore to div
the plane into one-dimensional strips. The aggregation of

FIG. 6. Mean cluster size as a function oft ln S(t), for aniso-
tropic aggregation in the saturated regime. The plots correspon
a fixed volume fractionf50.019 and different system sizes. Th
onset of the plateau and its height are functions of the system
ume.

FIG. 7. Mean cluster size as a function of the rescaled quan
ft ln S(t), for anisotropic aggregation in the saturated regime. T
plots correspond to a fixed system size 5123256 and different vol-
ume fractionsf50.0048, 0.0095, 0.0191, and 0.038. The collap
of the curves shows that both the onset and the height of the s
rated plateau depend only on the system size.
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remaining smaller clusters is thus mainly restricted to oc
within these strips @5#, becoming effectively a one
dimensional process.

In a truly one-dimensional model of aggregation, acco
ing to Eq.~1.14!, we expect the mean cluster size to satis
S(t);@f2t ln S(t)#1/3. For the sake of completeness, we ha
adapted our model to simulate aggregation within a line. T
only relevant change in the algorithm concerns the way
which the direction of the tentative movements is select
either to the right or to the left, with equal probability. Th
results of the simulations are plotted in Fig. 8. This figu
corroborates both the correct scaling of time withf2 ~in
contrast tof for d>2) and an exponentz50.33.

We next present results from simulations ind52 of a
system exhibiting quasi-one-dimensional behavior. The d
in Fig. 9 correspond to a volume fractionf50.48 in a sys-
tem of volume 10243512 @28#. After a transient regime, we
observe that the slope stabilizes in a valuez.0.32, clearly
smaller than the one found for less concentrated systems
in excellent agreement with the exponentz51/3 expected in
d51. We note that both the slope and the crossover time
not depend on the volume of the system for a fixed value
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e
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FIG. 8. Mean cluster size as a function of the rescaled quan
f2t ln S(t), for anisotropic aggregation ind51. The plots corre-
spond to a fixed system size 10 000 and different volume fracti
f50.02, 0.03, and 0.04. The average slope obtained from the c
mon scaling region isz50.33.

FIG. 9. Mean cluster size as a function oft ln S(t), for aniso-
tropic aggregation ind52, in the quasi-one-dimensional regim
The dashed lines have slopesz50.32 at larger times and 0.50 a
intermediate times, corresponding to the asymptotic dilute regim
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f. The results obtained from simulations in a volume 5
3256 ~not shown! confirm this statement.

We have further investigated the difference between
saturated and the quasi-one-dimensional regimes. An e
tive way of doing so is to consider the movement of t
individual clusters. As discussed above, in the quasi-o
dimensional regime, average-sized clusters are confine
move within the narrow strips delimited by the large
chains. Therefore, it is more likely for a cluster to mo
along the direction parallel to theZ axis than in any other
direction perpendicular to it. This effect can be quantitativ
assessed by estimating the relative frequency with wh
clusters move in a given directionu. To this end, we define
the jump orientation density F(u) as follows: At the last
stages of the simulations~usually the last 25% of the time
alloted for the run! we keep track of the directionu of all the
acceptedmovements performed by the clusters.F(u)du is
then defined as the probability that any of those moveme
is directed along a direction included in the interval@u,u
1du#. At late times in the evolution of the system, most
the clusters have a length larger than the cutoffs0 . If there is
no bias in the direction taken by the accepted steps, we
pect that the functionF(u) will match thea priori angular
distribution ~2.3!. In the quasi-one-dimensional regime, o
the other hand, given that the clusters move with hig
probability along theZ axis, we expectF(u) to show anoma-
lous maxima atu50 andu5p.

In Fig. 10 we plotF(u) as computed from two systems o
size 5123256, with very different values off. The dilute
system (f50.0048) is well inside the saturation regime. A
we can check from this plot, its angular distribution of jum
matches quite closely thea priori distribution of directions,
plotted as a reference in full line. In the case of the hig
concentrated system (f50.38), we can observe the tw
peaks inF(u), characteristic of the quasi-one-dimension
regime. The secondary peaks atu5p/2 andu53p/2 are a
spurious result of the presence, even at the large time
sidered, of some clusters of sizes,s0 with an isotropic dif-
fusivity. If they are removed from the statistics, the seco
ary peaks disappear.

FIG. 10. Jump orientation densityF(u) for two systems of size
5123256, at two different volume fractions. The dilute syste
(f50.0048) matches thea priori angle distribution~2.3! ~full line!.
The concentrated system (f50.38), in the quasi-one-dimension
regime, shows two sharp peaks atu50 andu5p.
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IV. AGGREGATION IN d53

Our two-dimensional model can be easily extended tod
53. In this case, the random directions of the jumps
sampled according to the distribution~2.4!. Simulations have
been performed for systems of size 512364364. Results
correspond to averages over 100 realizations.

In Fig. 11 we plot our results for the mean cluster si
S(t), for systems with an initial volume fractionf
50.0048,0.024,0.048. The average slope in the scaling
gion yields an exponent equal to the one obtained for tw
dimensional aggregation, namely,z50.51. This fact is, how-
ever, not surprising: Since we are above the criti
dimension of the problemdc52, we expect to find exponent
independent of the dimensionality. As shown in the figu
the collapse of the mean cluster size for different volu
fractions as a function of the rescaled timeft ln S(t) also
holds ind53.

V. CONCLUSIONS

In this paper we have investigated the dynamics of
irreversible aggregation of linear rigid chains oriented alo
a preferred direction. A possible physical realization of su
a system would be the aggregation of dipolar particles in
presence of a strong external field, oriented along theZ axis.
We have proposed a Monte Carlo model, whose key ing
dient is a corrected anisotropic diffusivity of the clusters,
expressed in Eq.~1.8!. This diffusivity exhibits a character
istic logarithmic correction due to hydrodynamic intera
tions. A simple heuristic argument suggests that these lo
rithmic corrections should also emerge at a macrosco
scale, reflected in the asymptotic behavior of various qua
ties such as the mean cluster size.

We have performed extensive simulations ind52, in a
variety of system sizes and initial volume fractions. Assu
ing a simple power-law behavior for the mean cluster s
S(t);tz, our results yield a dynamic exponent in the scali
region z.0.61. This value is in excellent agreement wi
previous experimental works@5#. For dilute systems, the
value of the dynamic exponent seems to be independen
the initial volume fraction.

Alternatively, a better fit of our data is obtained in term
of the functional relationshipS(t)/$ ln@S(t)#%z;tz, which ex-

FIG. 11. Mean cluster size as a function of the rescaled quan
ft ln S(t), for anisotropic aggregation ind53. The volume frac-
tions plotted aref50.0048, 0.024, and 0.048.
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plicitly incorporates logarithmic corrections. Within this a
proach, the anomalous value of the dynamic exponent c
acterizing the aggregation of anisotropic rodlike clusters
in fact, the consequence of the logarithmic corrections su
posed to the usual power-law behavior ofisotropic cluster-
cluster aggregation.

Long-time evolutions for any value of the volume fractio
f lead to a saturated regime, characterized by a drastic s
ing down of the dynamics. The mean cluster size shows a
region whose height and onset are exclusively functions
the system volume.

In highly concentrated systems, we observe a crossov
a quasi-one-dimensional regime. Characteristic of this tr
sition is a sharp change in the slope of the mean cluster s
yielding a valuez50.32. To support these findings, we ha
carried out simulations ind51, where the mean cluster siz
exhibits a similar behavior withz51/3. In the quasi-one-
dimensional regime, clusters have a higher tendency to m
along the direction parallel to their axis than in any directi
perpendicular to it. This point is made clear by analyzing
jump orientation densityF(u).

The extension of our model tod53 shows no significan
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variations with respect to the cased52. This result is to be
expected, given that the critical dimension of the proble
appears to bedc52.

To conclude, we would like to remark the potential app
cations of our model, especially the possibility of charact
izing the aggregation of dipolar colloidal suspensions in d
ferent geometries of technological importance. For exam
in a porous medium, due to the effective reduced dimens
ality, we would expect a slowing down of the aggregati
rate, resemblant to the aforementioned quasi-o
dimensional regime.
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