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Kinetic growth of field-oriented chains in dipolar colloidal solutions
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Experimental studies on the irreversible growth of field-induced chains of dipolar particles suggest an
asymptotic power-law behavior of several relevant quantities. We introduce a Monte Carlo model of chain
growth that explicitly incorporates the anisotropic diffusion characteristic of a rodlike object. Assuming a
simple power-law form for the mean cluster s&@)~t*, the results of our model are in good agreement with
the experimental measurements of the dynamic exponeNevertheless, an alternative scenario, including
logarithmic corrections to the standard power-law behavior, provides a better and more insightful interpretation
of the anomalous dynamic exponent. In contrast to some experimental findings, we do not observe any
dependence of the exponents on the volume fraction of partitleBSinite-size effects are also explored by
simulating very long time evolutions or highly concentrated systems. Two different behaviors are found,
namely, saturation and a crossover to a quasi-one-dimensional rd@@63-651X99)08201-X]

PACS numbes): 82.70.Dd, 61.43.Hv, 64.60.Cn

I. INTRODUCTION volume, present in the system at timether relevant quan-
tities are the density of clusters at tigen(t) = = n4(t), and
The kinetic properties of the irreversible aggregation ofthe mean cluster size($), defined by
particles has been the subject of great interest over the past

decade[1-3]. In particular, several experimental and theo- S s?ng(t)

retical studies as well as computer simulations have been s

devoted to understanding the behavior of colloidal suspen- S()=——". Ly
sions of dipolar particles, the so-calledectrorheological ES sny(t)

andmagnetorheological fluidgt—11]. After applying an ex-

ternal electric or magnetic field, these suspensions eXperlﬁxperimental results and computer simulations of different

ence a Qramatic c;hange_in thgir rhe_ological properties, i-‘?-’ Buster-cluster aggregation mode[2,3] show that the
notable increase in the viscosity, which renders them particuz ;

larly interesting systems from a technological point of view asymptotic behavior at large times of the mean cluster size
; . . ! "and the total number of clusters is a power law
The change in the rheological properties of dipolar sus-
pensions upon the action of an external field is mainly due to S(t)~t% n(t)~t 2 1.2
the aggregation of the colloidal particles, which form clusters
of macroscopic size. These are usually linear chains, rodshe exponent is the so-calleddynamic exponentn gen-
oriented along the direction of the applied field, although fOI’eradeepends on the dimensioiof the space as well as on
high enough concentrations of dipolar particles more comthe nature of the aggregation process. Another relevant fea-
plex structures may arisgl2,13. The overall spatial ar- ture of the aggregation dynamics is that the characteristic
rangement of the aggregates is very effective in hindering thguantities defined above are related through dyeamic
fluid flow, conferring the suspension a solidlike texture. scaling hypothesig14]
Multiple applications have been envisaged for these ma-
terials: lubricants, dampers, heat and light transmission de- ng(t)=s"2F(s/S(1)), 1.3
vices, etc. Nevertheless, their eventual manufacture still has
to overcome different drawbacks, for instance, the sedimerwhere F(x) is a certain scaling function, independent tof
tation of the clusters. At high fields, the aggregation is irre-ands. The validity of this relation has been systematically
versible; the chains grow longer and never break as long a¢erified in experiments and computer simulations.
the field is present. Thus the study of the kinetics of forma- The dynamics of cluster-cluster aggregation can be theo-
tion of the aggregates turns out to be an issue of practicdetically described in terms of the Smoluchowski equation
importance. [15]. Smoluchowski proposed a kinetic equation describing
Due to its irreversible character, studies have most oftethe temporal evolution of the cluster-size distributinyt):
focused on the dynamic properties of the distribution of clus-
ters, following the approach developed to deal with irrevers- dng(t) D

K(i:j)ni(t)nj(t)_ns(t)zl K(s,i)ni(t).

ible cluster-cluster aggregation modétee Refs[2,3] and dt :szs

references therejnWithin this framework, the quantitative (1.4
features of the aggregation are commonly described in terms

of the cluster-size distributioras a function of timeng(t), HereK(s,s'’) is the reaction kernel, giving the rate at which

which is defined as the number of clusters of sizper unit  clusters of sizes join clusters of sizes’ to form clusters of
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sizes+s’. This equation is an example of a mean-field-typethe homogeneity conditiofil.5 and yields therefore a dy-

theory in which fluctuations are neglected. Moreover, itsnamic exponent given by Eq1.6).

range of applicability is limited to low concentrations, where  Following this approach to the problem, the valueyos

the assumption of exclusively binary collisions is vdli].  the key parameter in order to interpret the experimental data

The results of this theory are expected to hold for dimension§5,7,8. The dynamic exponere is numerically computed

higher than theupper critical dimensior{d.=2 in this case from a log-log plot of the mean chain leng8{t) as a func-

[16]), above which fluctuations become irrelevant. Assumingtion of time. The value obtained is then associated through

that the reaction kernel is a homogeneous function of degreEq. (1.6) with a particular value ofy. In the absence of

v, that is, hydrodynamic interactions among the spheres in a chain, the

effective mobility is inversely proportional to its length.

K(bs,bs")=b"K(s,s’), (1.5 consequently, one would expegto be equal to- 1 which,

according to Eq(1.6), corresponds ta=1/2. In general, this

value ofz deviates from the ones measured experimentally.

A simple way of interpreting this difference is to consider an

it is possible to prove the relatior(.2) and(1.3) [3], with a
dynamic exponent given by

1 ad hocvalue ofy different from— 1, which phenomenologi-
z=—. (1.6)  cally accounts for a more realistic mobility of a rodlike par-
1=y ticle [21].

In this paper we propose an alternative mechanism to ex-
plain those discrepancies in the measured value. dfhe
core of our proposal is a different view of the mobility of a
cluster of mass. Fradenet al. [5] already pointed out that
hydrodynamic interactions shouidcreasethe effective mo-

For instance, Fradeat al. [5] reported a value o£=0.60. bility of a cluster of mass, making it larger than the mobil-
Promislow and Gag8], on the other hand, measured a value, Y ) o 9 9
ity of a collection ofs independent particles. The latter ap-

of zranging between 0.50 and 0.75 for different values of the L is strictly valid for clusters

concentration and the dipolar interaction strengttito be g;og( Ir;r?)ttljorr]{a?;?ég?jE]So)r;nsteractin hereg22]. However
defined later on The interpretation of these results relies on y y y sp ' '

. ' this is too strong an assumption in the case under consider-
Smoluchowski’s assumptions. : . . -
ation, where the magnetic spheres form relatively rigid

In Smoluchowski’'s solutior{15], the reaction kernel is . ; o .
: : g chains. In this case, it is well known that the hydrodynamic
the product of an effective diameter, the collision cross sec- ' o .
. . : . drag for the translational motion &nisotropic[21,23. The
tion of two clusters Rs+Ry/), times an effective relative

e o , drag coefficients along the direction parallel to the axis of the
d|ffu5|o_n coef_f|C|en1[D(s)+D(s ).]’ w_hereRs a_nc_iD(s) ar®  chain and in the perpendicular directiofjsand ¢, , respec-
the radius of influence and the diffusion coefficient of a Clus'tively are approximately given bi23]
ter of masss, respectively{ 18]. By analogy with the Stokes- '

Einstein relation for a single spherical particle of diameter s
moving in a liquidDxa " [19], the effective diffusion co- §=2mna—=, & =2¢, 1.9
efficient is given by a power law of the cluster size In(s)

Most of the experimental and numerical studies of the
anisotropic aggregation obdlike clusterspresented so far
[5,7,8,10,17 seem to indicate the same type of power law
for the asymptotic behavior of the mean cluster s&¢).

D(s)~s”. (1.7) where is the viscosity of the solvent argds the number of
particles composing the cluster, its mass. The mobility of a

Miyazimaet al.[10] proposed this type of power-law ker- cluster is defined as the inverse of the drag coefficient; hence
nel for rodlike clusters of dipolar particles. One can estimatg¢he constant® andD, , characterizing the diffusion paral-
the effective cross section, the radius of influence, of a singléel and perpendicular to the rods’ axis, are given[bg]
magnetic particleR; by comparing dipolafU 4(r)sm?/r3]
and thermal KgT) energies. If we introduce the dimension- _kB_TN In(_s) _kB_T_ﬂ (1.9
less parametex =m?/a’kgT, wherem is the magnetic mo- I~ g s ' g 2 '
ment anda the diameter of a dipolar particle, the effective
cross section can be expressedRaga~\Y3. The detailed That is to say, hydrodynamic interactions generate aniso-
form of the dipolar interaction is not expected to modify thetropic diffusion coefficients, exhibiting logarithmic correc-
asymptotic behavior of the aggregation dynamics. Thustions to the previously considered power laws. In order to
roughly speaking, outside a spherical region of ra®yshe investigate the effect of the new diffusivitig€4.9) on the
relative motion is mainly diffusive and only when one par- dynamics of the process, we have introduced them in a
ticle enters the sphere of influence of another do they sticklonte Carlo[24] computer model for the cluster-cluster ag-
irreversibly. gregation of rodlike particles.

At low concentrations, it is reasonable to assume that rod- By simply considering anisotropic diffusivities with loga-
like clusters of dipolar particles essentially aggregate tip tdithmic corrections and assuming thét) ~t*, we are able
tip. Miyazimaet al. argued that, under such conditions, theto recover a dynamic exponeatin good agreement with
cross section of a chain cannot depend on its total lejfih ~ experimental results. However, a simple heuristic argument
and it is possible to approximaR,~R;. The only source of suggests a different functional form, namely, a power law
dependence on the cluster size should thus come from th&ith logarithmic corrections.
effective diffusion coefficient and the reaction kernel is ap- Let us assume that all clusters in the suspension have the
proximately given byK(s,s')~s”+s'?. This form fulfils  same average lengtB The average separatid® between
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neighboring clusters in a suspension with initial volume frac-Eq. (1.6)]. These corrections to the usual asymptotic behav-
tion ¢, the initial density of dipoles, can then be estimated toior in isotropic cluster-cluster aggregation could explain the

be anomalous dynamic exponent found for the aggregation of
1 anisotropic rodlike clusters. The results of our numerical
§2<§> (1.10 simulations exhibit a surprisingly good fit to the theoretical
¢ ' predictions(1.14) and(1.15), better than to the naive power-
law behavior.

In d=1, only two neighboring clusters are able to aggregate. \We have structured our paper as follows. In Sec. Il we
In general, this is the most likely event in low dimensions. Indescribe the technical details of our algorithm. Section IlI
hlgh dimensions, however, and due to the diffusive nature Oﬂea|s with the properties of rodlike aggrega‘[ion in two di-
their movement, any two clusters are equally likely to join, mensions. In particular, we study the mean cluster Sz
irrespective of their relative distance, as they are quite invisfor a variety of values of the initial volume fractiop. For
ible to each other. A mean-field type of behavior is thussmall to moderate values @ and not very long execution
expected, in the sense that only the density of clustergmes, we recover, assuming a pure power-law forns{a),
presentn(t) is relevant and not their spatial arrangement. yalues ofzin agreement with some of the experimental find-
As the movement of the clusters is essentia”y diﬁUSive,ings_ |mp0rtant|y' in Opposition to some claims in the litera-
the average displacement of a cluster of meanSiker the e [8], we do not observe any dependencezobn the
time intervalt is given by volume fraction. On the other hand, we observe that the
2 same sets of data can be fitted with higher accuracy to our
(RO=D(S)L, (119 predicted power law with logarithmic corrections. By allow-

where, as indicated in E4L.9), D(S)~In(S)/S Aggregation ing very high volume fractions or large exgcution times,. we
of two clusters will occur after a characteristic tiriehas find that our model crosses over to two different behaviors,

been elapsed, a time interval long enough for the clusters tBamer, saturatlon and a qga5|-o_ne—d|men5|onal regime. We
cover their relative separation. believe that the discrepancies with the experimental results

For a low-dimensional system, the characteristic tifrig 1N Ref.[8] might be due to a combination of these types of

that ired t the distanBe i iah finite-size effects and logarithmic corrections. In Sec. IV we
boarsrei}%u”e 0 cover the distaneeseparaling near Neign- - o,1enq our model to three dimensions. We do not observe

significant variations with respect to the two-dimensional ag-
R? 1 g2+dd gregation. Finally, our conclusions are presented in Sec. V.

T B(s) % In(S)

(1.12
Il. COMPUTER MODEL

On the °.th?r hand, in higher dimensions there is no such In our model we consider the irreversible aggregation of
characteristic length scale and, consequently, there is no reﬂgid rodlike clusters inRY. with d=2 and 3. Clusters are
son to expect that the previous expression holds. Howevef i (ioq along th axis. Simulations start &t=0 with a

we can argue that a cluster browsing a volume of order unity- ndom distribution oN, monomers(spherical particles of

will encounter n(t) clusters available to j.oin. The time diametera=1) in a box of volume/ with periodic boundary
needed for a cluster to cover such space will be thus propor

tional tonT. wh bovel is the ch teristic fi f conditions. The initial volume fraction of monomers is de-
lonal fon I, where, as above, 1S the characteristic ime ot 0 by =Ny /V. We have simulated a wide range of vol-
a singleaggregation event. We have then

ume fractionsp (0.001-0.1 and some particular high values
1 1 1 < (up to 0.5). Clusters diffuse performing a free off-lattice ran-
Tt — —— o — ——— (1.13  dom walk; that is, despite the dipolar interactions, we assume
nD(S ¢ In(S) that the temperature in the system is high enough to provide
a mainly diffusive character to the aggregation dynamics.
Nevertheless, dipolar interactions are predominant at short
distances. Therefore, when two clusters come close enough

where we have used that- ¢/S. Note that both estimations
yield the same result at=2, suggesting that the upper criti-
cal dimension of the problem ,=2 [16]. o .

The inspection of Eq91.12 and(1.13 suggests that the to each other, they stick ireversibly.

functional dependence of the mean cluster size with time In the Monte Carlo algorlthm,_ clust_ers are sglected and
moved a distance equal to one diametén a direction cho-
takes the form, fod=d,,

sen randomly from a certain probability distribution. The
movement is performed rigidly, preserving the orientation of

~(tp2d)¢, (1.14  the rod along the axis. When two clusters come within a
[In(S)]¢ distance tip to tip of one diametéthat is, when the distance
between any two of their respective ends is less than or equal
where{=d/(2+d), and ford=d,, to a) they join, forming one single rod of mass, number of

particles, equal to the sum of the masses of the colliding
clusters. When two clusters approach side to side they repel
each other. This is implemented by rejecting all possible
movements leading to a side to side overlap of clusters.
Note that within this approach, we obtain logarithmic correc- In fact, this procedure is equivalent to considering a ra-
tions to the behavior reported in R¢fL0] for y=—1 [see dius of influenceRs=a and, according to the discussion in

S
[MT)]UZN(W)”Z- (1.19
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Sec. |, it mimics a dipolar interaction of strength-1. Dif-  movement from a probability distribution fulfilling this same
ferent values oh could be in principle simulated by joining anisotropy. Let us define the azimuthal anglaith respect
clusters irreversibly when they come within a distanceto the axis of the rod. Then, id=2, the direction for the
~\Y3. Values of A between 1 and 3@that is, radius of tentative movement of a chain of lenggkr s, is selected at
influence between 1 and 3), within the range reported irandom from the probability density
experimental investigations, provide analogous asymptotic
results at large times, differing only in the transient regimes. V2 1

The effect of the anisotropic diffusivitied.9) on the al- P(6)= o m
gorithm is taken into account in two steps: first, in the selec-
tion of the next cluster to be moved, and second, in theyith 0<#<2=. In d=3 we use instead the density
prescription for the direction of its tentative movement. In

2.3

the first step, we choose a cluster among all present at a 1 J2 1 2.4
given time step, with a probability(s) proportional to their P(e,0)= o S 2.4
diffusivity. According to Eq.(1.9 we have 7 In(3+2y2) 1+siro
In(s) with 0<¢<27 and O0< <. These distributions ensure
p(s)~ — (2. the necessary anisotropic conditiorP[ 6=0,7]/P[8

=7/2,37/2]=2, while being continuous in both angles and
easily simulated numerically. For clusters of masss, we
assume that the diffusion is isotropic. Therefore, in this case
we choose a random direction for the tentative movement
from a uniform distribution.

The final implementation of our algorithm runs as fol-
lows. (i) Each time step we select at random a cluster of
In(so)/s for s<s, masss; according to the probability densit2.2) and a di-
(2.2 rection 6;, according to Eq(2.3) [a pair (¢;,¢;), according
to Eq.(2.4), in three dimensionidor s;=s,; in the case that
$<Sp, the direction is drawn from a uniform distribution.
e(ii) The cluster is moved a distanaén the selected direction
and its position with respect to the neighboring chains is
tested, yielding comparable results. analyzed(iii ) If it intersects side to side with another chain,

We discuss now the method employed to sample the clust-he movement is _rejectgd; cherwise, it is .accepte_d.. If the
ters. In cluster-cluster aggregation simulations, the samplingIUSter mtersects tip 'to t'p with another (_:hgm, they join and
with a probability proportional to the mobility is usually per- 1orm @ single clusteriv) Finally, the time is incremented by
formed according to the “rejection” algorithnisee[2,25] &N amount
and Ref.[26], p. 15): A cluster is selected among all the 1
present at a given time, with uniform probability. Then a At=——
random numbery, uniform in the interval 0,1], is drawn. N(t)Dc(s))
The cluster selected is accepted for movement 7if )
<D(s)/Dmay, WhereD(s) is the diffusion coefficient of the where N(t) is the total Dumber of clusters present at the
cluster considered anD ., is the maximum diffusivity of corresponding timé andD(s;) is the effective diffusivity
all the clusters present. Otherwise, the cluster is rejected amf the selected cluster, as given by EB.2). This choice of
both selection steps are repeated. In our simulations, hovihe time step effectively reproduces the real dynamics of the
ever, we have chosen to implement a different sampling alsystem.
gorithm, the “alias” method for discrete distributiorisee

However, given that the expressi¢h.9) is only suitable to
describe the motion of alenderbody (s>1), the previous
expression would be inappropriate for snm&lTherefore, we
actually select the cluster with a probability proportional to
the corrected diffusivity

p(8)~Dels)= In(s)/s for s=s,.

Here we are assuming that small clustessi§,) diffuse as
if composed of hydrodynamically independent particles. W
have selected a cutoff masg= 3; different values were also

(2.9

Ref. [26], p. 158, for a detailed descriptipnBriefly, the IIl. AGGREGATION IN d=2
algorithm works as follows. A clusteZ, of sizes, is selected ) ) ) ) )
uniformly among all clusters. Then, with a certain “alias- /N our simulations ind=2 we have mainly considered

ing” probability p(s), the cluster is replaced by its alias Systems with volume ranging from 25628 to 1024512
C’=7[C], of masss’. The probabilityp(s) is chosen so and initial number of particles between 524 and 67 109. This
corresponds to volume fractions ranging between0.001

; . and $~0.1. We have also considered the extreme case of
lecteg are frequently mapped to clusters with hlgherhigh concentration ¢~0.5) in order to investigate a pos-

Dc(s'). The alias method is more costly in computer time; gjne crossover to a one-dimensional regime. In most cases,
hoy\(ever, |t'prOV|des a more accurate sampling of the pmbaverages were performed over 100-500 simulations.
ability densityp(s).

With the procedure described above, we implement the
mass dependence of the mobilit§.9). However, we also
have to take into account imisotropy Given Eq.(1.9), it is First, in order to check our algorithm, we have simulated
twice more likely for any rod to move along its axis than the aggregation according to the prescription given in Ref.
along any other perpendicular direction. We implement thid10], i.e., the diffusivity of a rod is isotropic and inversely
fact in a second step by selecting the direction of the triaproportional to its mas®(s)~s~ . In Fig. 1(a) we repre-

that clusters with smaiD(s) (low probability of being se-

A. Isotropic diffusion
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FIG. 1. Aggregation with cluster diffusion that is isotropic and  FIG. 2. Aggregation with cluster diffusion that is anisotropic
proportional tos™*. The initial concentrations=0.019.(a) Mean  and proportional to Irs)/s, as defined in Eqg2.2) and (2.3). The
cluster size as a function of timgb) Finite-size scaling of the initial concentrationg=0.009, as in Ref[5]. (a) Mean cluster size
cluster size distribution as a function of time, for fixed lengths as a function of time(b) Finite-size scaling of the cluster size
=10, 20, 30, 40, 50, 60, 70, and 80. distribution as a function of time, for fixed lengtlss- 10, 20, 30,

. . . . 40, 50, 60, 70, and 80.
sent the mean cluster si&§t) obtained from simulations of

a system of size 1024512, with an initial number of par- _ . . .
ticlesNy=10000. These values correspond to an initial Vol_f|n|te-3|ze scaling hypothes(4.3. The good collapse shown

ume fractiong=0.019. We observed a clear power-law re- in this plot corroborates the value of the dynamic exponent
gime covering more than three decades in time. The IeasF-:O'61' . . . '
squares fitting of the curve yields an exponert0.50. As The evidence exposed in the previous figures seems to

expected, this result matches the dynamic exponent predictéﬁnd support to the hypothesis of a simple power-law behav-

. . However, the situation is not completely clear, as we
by Eg. (1.6) for y=—1. In Fig. 1b) we have tested the or. Howev . i 1
finite-size scaling relationshifi.3 by plotting s2n(t) as a show in Fig. 3. Figure @) tests the theoretical prediction

function of the rescaled timgs*? for different values of the (1.14. Plotting S(t) as a function oftIn S in logarithmic
cluster sizes. The best collapse of the plots is obtained for ascale we obtain a slopé=0.51, very close to the expected

_ e o : value 1/2 ind= 2. Moreover, we remark that the goodness of
value ofz=0.50, which is again in agreement with &4.6) fit in this case, as measured by the Pearsooefficient[27],
i o i ) is higher than the one obtained from the linear regression in
B. Anisotropic diffusion: Dilute regime Fig. 2@). Indeed, least-squares fittings covering the last three
We now discuss the results obtained by implementing interders of magnitude in the abscissas of Figs) 2nd 3a),
our algorithm the anisotropic diffusion prescribeddir 2 by  yield the values =0.999 60 and =0.999 948, respectively.
Egs. (2.2 and(2.3). First of all, motivated by the results in In Fig. 3(b) we check the finite-size scaling hypothesis by
Ref. [5], we have duplicated the parameters in that experiplotting s?ng(t) as a function of the rescaled tinién s/s**.
ment, i.e., we have chosen a system of volume ¥0®¥#2  The best collapse again results from a valug &f0.51.
and an initial number of particleN,=5000. These condi- In the simulations presented above we have been able to
tions yield a volume fractiorp~0.01, as in the experiments. match the observed value afby selecting the particular
Figure Za) shows the mean cluster size as a function of timeyalue of ¢ reported in the experiments. It has been argued,
in a double-logarithmic plot. The behavior &t) at late  however, that the value of may depend on the volume
times can be fitted to a power law extending close to thredraction ¢ [8]. In order to verify the accuracy of this state-
orders of magnitude. A least-squares fitting provides an exment, we have performed simulations for several values of
ponentz=0.61, in complete agreement with the experimen-¢, ranging from very dilute $=0.001) to moderate concen-
tal findings in[5]. Similarly, in Fig. Zb) we represent the trations (¢=0.1), in a system of fixed size 1024612. Fig-
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FIG. 3. Same data as in Fig. @) Mean cluster size as a func- FIG. 4. Mean cluster size for anisotropic aggregation, for sev-
tion of tIn S(t). (b) Finite-size scaling of the cluster size distribu- eral values of the volume fraction. From top to bottos 0.064,
tion. 0.032, 0.016, 0.008, 0.004, 0.002, and 0.0@1.As a function of

time. (b) As a function of the rescaled timgt. The average slope

ure 4a) plots the mean cluster si&t) as a function of for obtained from the common scaling regiorzs 0.61.

the different volume fractions considered. The slope of the . | finding$s b ¢ both |
different graphs depicted in this figure does not seem to geRerimental fin _|ng$ ] may be a consequence of both loga-

pend ong. This fact becomes even more clear in Figh)4 rithmic corrections and finite-size effects. In experiments or
where we have plotte§(t) as a function of theescaled time computer simulations, finite-size effects can cause the sys-

¢t. We observe that in this case all the plotdlapseonto a tem to crossover, at Iarge times, 'tos_aturatedregime ﬁn
which any predicted scaling behavior is lost. We have inves-

universal function, independent of the volume fraction. The. & . .
collapse of the different graphs is also shown in Fig. 5, nov\;lgated this issue by simulating systems that were allowed to

as a function of the rescaled quantif In S. Note that Eq. evol\_/e for very Io_ng tim_es, up to tef? times longer than in our
(1.14 leads directly to the required scaling factor éfin previous simulations. Figure 6 depicts the mean cluster size

d=2. As in Fig. 3, the collapse is statistically better in termscomputed for different system sizes, while keeping the same

of this new rescaling than for the single power law.

The collapsed plots allow us to select a common scaling
region for all of them, from which we can extract slopes for
the different values ofp that are directly comparable. An 20
average slope can thus be defined. In the case of Hxy. 4

25

(single power-law interpretationindividual slopes range be- = 15 ]
tween 0.59 and 0.63. From them we obtain an average expo- CQO

nentz=0.61, in accordance with our previous estimate and o 10 T
the experimental results in Ré6]. In addition, from Fig. 5 a8

(power law with logarithmic correctiopnsve obtain slopes 0.5 i
between 0.49 and 0.53, yielding an average value of

=0.51. 0.0 L L . . L ]

2.0 0.0 2.0 40
C. Anisotropic diffusion: Saturated regime logyo[¢t In S(2)]

~ In view of the results presented in the preceding subsec- FIG. 5. Same data as in Fig. 4, but now as a function of the
tion, we naturally conclude that the slope does not depend ofescaled quantityt In S The average slope obtained from the com-
the volume fraction and that the disagreement with prior exmon scaling region ig=0.51.
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FIG. 6. Mean cluster size as a function tdf St), for aniso- FIG. 8. Mean cluster size as a function of the rescaled quantity
tropic aggregation in the saturated regime. The plots correspond t@?t In (t), for anisotropic aggregation id=1. The plots corre-
a fixed volume fractionp=0.019 and different system sizes. The spond to a fixed system size 10 000 and different volume fractions
onset of the plateau and its height are functions of the system volp=0.02, 0.03, and 0.04. The average slope obtained from the com-
ume. mon scaling region ig=0.33.

fixed initial volume fractiongp=0.019. In Fig. 7 we plo§(t) remaining smaller clusters is thus mainly restricted to occur
for a fixed value of the system size 52256 and different within these strips[5], becoming effectively a one-
values of¢p. The chief feature of these plots is the onset of adimensional process.

plateau whose location and height appears to be a function of In a truly one-dimensional model of aggregation, accord-
the system volum&/. This flatter region is indicative of a ing to Eq.(1.14), we expect the mean cluster size to satisfy
considerable slowing down in the dynamics. Finite-size ef-S()~[#°tIn 1. For the sake of completeness, we have
fects, unavoidable at relatively large times, can corrupt thédapted our model to simulate aggregation within a line. The

interpretation of any expected scaling behavior. onl_y relevan_t ch_ange in the alg(_)rithm concerns _the way in
which the direction of the tentative movements is selected:

D. Anisotropic diffusion: Quasi-one-dimensional regime either to the rig_ht or to the left, with equal_probabili_ty. _The
: : results of the simulations are plotted in Fig. 8. This figure

We have established the existence of deviations from theorroborates both the correct scaling of time wit (in
dilute asymptotic behavior due to saturation when the systerontrast to¢ for d=2) and an exponenf=0.33.
evolves up to very long times. In addition, in a highly con- We next present results from simulationsds=2 of a
centrated system, one can also observe a crossover tosgstem exhibiting quasi-one-dimensional behavior. The data
quasi-one-dimensional regimeas remarked by Miyazima in Fig. 9 correspond to a volume fractiah=0.48 in a sys-
et al. [10]. At the late stages of evolution in a very concen-tem of volume 102% 512[28]. After a transient regime, we
trated system, the largest chains attain a length that is of thebserve that the slope stabilizes in a val:€0.32, clearly
order of the system size. Their effect is therefore to dividesmaller than the one found for less concentrated systems and

the plane into one-dimensional strips. The aggregation of thi# excellent agreement with the expongnt 1/3 expected in
d=1. We note that both the slope and the crossover time do

not depend on the volume of the system for a fixed value of

2.0 — . .
slope = 0.32 ///
o Ll _
= .
[} ——
80 >
= © oot :
=
20
=
! ' ) L 1 05 r §
-30 -1.0 1.0 3.0 5.0
108?10 [d)t ln S(t)] 0.0 : L : *
-1.0 1.0 3.0 5.0
FIG. 7. Mean cluster size as a function of the rescaled quantity log o[t In S(t)]

¢t In §t), for anisotropic aggregation in the saturated regime. The
plots correspond to a fixed system size 8256 and different vol- FIG. 9. Mean cluster size as a function th St), for aniso-
ume fractions¢p=0.0048, 0.0095, 0.0191, and 0.038. The collapsetropic aggregation ird=2, in the quasi-one-dimensional regime.
of the curves shows that both the onset and the height of the satdhe dashed lines have slopés 0.32 at larger times and 0.50 at
rated plateau depend only on the system size. intermediate times, corresponding to the asymptotic dilute regime.
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FIG. 10. Jump orientation densify(8) for two systems of size FIG. 11. Mean cluster size as a function of the rescaled quantity
512x 256, at two different volume fractions. The dilute system ¢t (), for anisotropic aggregation id=3. The volume frac-
(¢=0.0048) matches thepriori angle distributior(2.3 (full line). ~ tions plotted arg#=0.0048, 0.024, and 0.048.

The concentrated systen® & 0.38), in the quasi-one-dimensional
regime, shows two sharp peaksét0 and 0= . IV. AGGREGATION IN d=3

Our two-dimensional model can be easily extended to
¢. The results obtained from simulations in a volume 512=3. In this case, the random directions of the jumps are
X 256 (not shown confirm this statement. sampled according to the distributi¢®2.4). Simulations have

We have further investigated the difference between th&een performed for systems of size X1@4x64. Results
saturated and the quasi-one-dimensional regimes. An effe€orrespond to averages over 100 realizations.
tive way of doing so is to consider the movement of the N Fig. 11 we plot our results for the mean cluster size
individual clusters. As discussed above, in the quasi-one>(t), for systems with an initial volume fractions
dimensional regime, average-sized clusters are confined fg0-0048,0.024,0.048. The average slope in the scaling re-
move within the narrow strips delimited by the largestdion yields an exponent equal to the one obtained for two-
chains. Therefore, it is more likely for a cluster to move dimensional aggregation, namely-0.51. This fact is, how-

along the direction parallel to th# axis than in any other gyer, r_10t s%l{[;]prlsmgb:l S'TS we are te:bcf)_v % the cr|t|tcal
direction perpendicular to it. This effect can be quantitativelyir:?eenesr'l%gr?t ofetr?éo direnea;ioﬁ:ﬁ exggcshgv\;g ir?)éﬁgnf?nufe
assessed by estimating the relative frequency with whicl) P Y- gure,

) ) . ) . . the collapse of the mean cluster size for different volume
clusters move in a given directiohh To this end, we define P

. . ) . fractions as a function of the rescaled tirge In S(t) also
the jump orientation density §9) as follows: At the last holds ind=3 e In (O

stages of the simulation@sually the last 25% of the time
alloted for the runhwe keep track of the directio# of all the
acceptedmovements performed by the clusteFg.6)dé is

then defined as the probability that any of those movements | this paper we have investigated the dynamics of the
is directed along a direction included in the interya@ 6 irreversible aggregation of linear rigid chains oriented along
+d#]. At late times in the evolution of the system, most of a preferred direction. A possible physical realization of such
the clusters have a length larger than the cudgfflf there is  a system would be the aggregation of dipolar particles in the
no bias in the direction taken by the accepted steps, we epresence of a strong external field, oriented alongZtheis.
pect that the functiorr(6) will match thea priori angular We have proposed a Monte Carlo model, whose key ingre-
distribution (2.3). In the quasi-one-dimensional regime, on dient is a corrected anisotropic diffusivity of the clusters, as
the other hand, given that the clusters move with higheexpressed in Eq1.8). This diffusivity exhibits a character-
probability along theZ axis, we expeck () to show anoma- istic logarithmic correction due to hydrodynamic interac-
lous maxima at¥=0 and = . tions. A simple heuristic argument suggests that these loga-
In Fig. 10 we plot~(6) as computed from two systems of rithmic corrections should also emerge at a macroscopic
size 51256, with very different values of. The dilute scale, reflected in the asymptotic behavior of various quanti-
system p=0.0048) is well inside the saturation regime. As ties such as the mean cluster size.
we can check from this plot, its angular distribution of jumps We have performed extensive simulationsds 2, in a
matches quite closely the priori distribution of directions, variety of system sizes and initial volume fractions. Assum-
plotted as a reference in full line. In the case of the highlying a simple power-law behavior for the mean cluster size
concentrated systemg(=0.38), we can observe the two S(t)~t? our results yield a dynamic exponent in the scaling
peaks inF(6), characteristic of the quasi-one-dimensionalregion z=0.61. This value is in excellent agreement with
regime. The secondary peaksét w/2 and9=37/2 are a  previous experimental workEs]. For dilute systems, the
spurious result of the presence, even at the large time comwalue of the dynamic exponent seems to be independent of
sidered, of some clusters of sige& s, with an isotropic dif- the initial volume fraction.
fusivity. If they are removed from the statistics, the second- Alternatively, a better fit of our data is obtained in terms
ary peaks disappear. of the functional relationshigs(t)/{In[S(t)]}¢~t¢, which ex-

V. CONCLUSIONS
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plicitly incorporates logarithmic corrections. Within this ap- variations with respect to the cade=2. This result is to be
proach, the anomalous value of the dynamic exponent chaexpected, given that the critical dimension of the problem
acterizing the aggregation of anisotropic rodlike clusters isappears to be = 2.
in fact, the consequence of the logarithmic corrections super- To conclude, we would like to remark the potential appli-
posed to the usual power-law behaviorisétropic cluster-  cations of our model, especially the possibility of character-
cluster aggregation. izing the aggregation of dipolar colloidal suspensions in dif-

Long-time evolutions for any value of the volume fraction ferent geometries of technological importance. For example,
¢ lead to a saturated regime, characterized by a drastic slovin a porous medium, due to the effective reduced dimension-
ing down of the dynamics. The mean cluster size shows a fladlity, we would expect a slowing down of the aggregation
region whose height and onset are exclusively functions ofate, resemblant to the aforementioned quasi-one-
the system volume. dimensional regime.

In highly concentrated systems, we observe a crossover to
a quasi-one-dimensional regime. Characteristic of this tran-
sition is a sharp change in the slope of the mean cluster size,
yielding a valuef=0.32. To support these findings, we have M.C.M. was supported by a grant from the Direc@en-
carried out simulations id=1, where the mean cluster size eral de RecercéGeneralitat de Catalunyand by the NSF
exhibits a similar behavior withf=1/3. In the quasi-one- Grant No. DMR-93-03667. The work of R.P.S. was sup-
dimensional regime, clusters have a higher tendency to mowveorted by the Ministerio de Educaciy Cultura(Spain. We
along the direction parallel to their axis than in any directionare grateful to Professor M. Kardar for pointing out the pos-
perpendicular to it. This point is made clear by analyzing thesibility of logarithmic corrections in the scaling of the mean
jump orientation density(6). cluster size. We appreciate his critical reading of the manu-

The extension of our model =3 shows no significant script.
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