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Model for faceting in a kinetically controlled crystal growth
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A two-dimensional anisotropic nonlinear evolution equation is derived to model the formation of facets and
corners in the course of kinetically controlled crystal growth. The equation is solved numerically in particular
cases corresponding to the faceting@®1], [111], and[110] growing crystal surfaces, and the formation of
hill-and-valley structures in the form of square, triangular, and rhombic pyramids; grooves are observed as
well. The pyramidal slopes far from the vertices are found analytically, and in particular cases exact solutions
of the equation are found. The pyramidal structures coarsen in time, and the rate of coarsening is studied.
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I. INTRODUCTION dimensional structure of grooved,(t), grows asL(t)
~t2, In this case the crystal faceting is analogous to the
Anisotropic surface tension is one of the main causes o$pinodal decomposition of driven systefd®,2Q.
the formation of facets and corners during crystal growth In the present paper, the one-dimensional theory devel-
[1-3). If the surface-tension anisotropy is large, some orien©P€d iN[17] is extended and this is proposed as a phenom-
tations of the crystal surface are unstable and missing in thgn°l0gical model for faceting of thermodynamically unstable
crystal equilibrium shapéa,5]. The decay of an unstable two-dimensional surfaces of three-dimensional crystals in

| f ! ; ith bl ; . . | the course of kinetically controlled growth; for example
crystal surface into faces with stable orientations Is analog,nen yapor deposition, gas or liquid phase epitaxial growth,
gous to spinodal decompositi¢6,7,2,8—10Q. In the case of

> - etc., has the evaporation-condensation mechanism as domi-
the faceting transition caused, say, by a temperature changfnt. A similar model is also derived for solidification of a
[11-13, the spinodal decomposition of a crystal surface carhypercooled melt in order to study the effect of the coupling
be described by phenomenological evolution equations fobetween the temperature field and the shape of the surface on
the order parameter — the local surface slppe9]. These the formation of hill-and-valley structure. Our theory serves
equations are similar to the Cahn-Hilliard equatifi¥], ~ as a generalization in the presence of the growth of phenom-
which describes the dynamics of spinodal decompositionenological models proposed [8,9] for the faceting of ther-

and their solutions exhibit the formation of hill-and-valley M0dynamically unstable crystal surfaces without net surface
structures of new crystal faces with stable orientations whicfgrOWth' It also extends a W'de_ class of models of surface
correspond to bitangent points of the surface free energ)grOWth prqcesse(ssee[Zl] for review) to the growth of ther-

The structures coarsen in time with the rate depending on th@odynammally unstable surfaces.

mechanism of facet growth as well as on the effective dimen-
sion of the structur¢l5,8,9.

If the faceting occurs in the course of a crystal growth In this section an evolution equation is derived for the
controlled by attachment kinetics, e.g., during the solidificakinetically controlled growth of a thermodynamically un-
tion in a hypercooled melt, the Cahn-Hilliard type evolution stable crystal surface with anisotropic surface tension using a
equation describing the formation of facets with stable ori-phenomenological approach similar to that describd@1n.
entations is modified by convective nonlinear terff6,17]  Consider a crystal growing from the other phase, which is
similar to those of the Burgers or Kuramoto-Sivashinskyreferred to as a “liquid,” but which can be either a pure
equations(see alsg 18], where the Kuramoto-Sivashinsky melt, or a solution, or a vapor. There are two modes of crys-
equation, modified by the additional term typical of the tal growth: slow growth, such that there idazal thermody-
Cahn-Hilliard equation, was derived for the evolution of namic equilibrium at the crystal-liquid interface and the
steps on a crystal surface growing from the vapor in thegrowth is controlled by thermal or chemical diffusion in the
presence of steps stiffness anisotrpphhe effect of attach- liquid, and fast growth, controlled by the attachment kinetics,
ment kinetics destroys the bitangent construction and leads which case there is no thermodynamic equilibrium at the
to a fast coarsening with timeat late stages; namely, it was crystal-liquid interface. The latter case will be addressed
found [17] that the mean spatial scale of quasi-one-herein.

In equilibrium if the crystal surface is planar, chemical

potentials of the liquid and the soligy, and ug, respec-
*Present address: Department of Chemical Engineering, Techively, are equalu;= . For the curved surface, there is a
nion, Israel Institute of Technology, Haifa 32000, Israel. jump of the equilibrium chemical potential at the interface
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due to the solid-liquid surface tension. For a crystal with a vn=k(A—A®)=k[A— L], (6)
surface given byz=h(x,y), this jump is found from the
condition[5] where k is the kinetic coefficienthat generally depends on
the local molecular structure of the crystal surface and can
ﬁ =0 (1 vary with the surface orientation. In this paper the anisotropy
oh ™ of k is ignored andk is assumed to be constant.

whereF is the total free energy of the crystal-liquid system. Cc_Jn5|der the surface tension to b? anisotropic, .., to_be a
function of the local surface orientation. Moreover, consider

The free energ¥ is a sum of the bulk energieBs andF,, . X
of the crystal and the liquid, respectively, and the interfaciaI:EEe casde whe.n s”ome Otf gpe grrr)](stql sturg_ell.(t:e qnﬁjntat'ﬂonfs are
energy.F;, ermodynamically unstable. This instability yields the for-
mation of facets divided by edges and corners on the crystal
B B surface. The regions of edges and corners are usually consid-
F=F+Fs+ Fi—f msh(x,y) dx dy—f mh(y)dxdy  greq to have additional energié8,9,16,23 which can be
associated with the additional energy of interaction of steps
+ j yV1+|Vh[“dxdy, ) on the crystal surface in the corner region where the gradient
. . . of the steps density is largd.7]. This is equivalent to the
wherevy is the surface tension ard=(dy,dy). If Eq. (2)is  gependence of the surface tensigron the local curvature
substituted into Eq(1), one obtains [17], and provides for a short-wave regularization of the

faceting instability{17,16]. Thus, it is assumed that

wi— pe=Ln(l), 3

wherel is theweighedsurface tension, y=v(hy,hy, hy Dy hyy). (7)
I=yy1+|Vh|?, (4)  This gives fory(l)

and Ly, is the linear functional whose form depends on )

whether the surface tension is isotropic or not, and whether £ll)= — doad d 5_|+d_ al

edges and corners are present on the crystal sur@;&7). n(1) = dx dh, dy dh,  dx2 dhyy

For isotropic surface tension;y=const, £,(l1)=2yK,

where is the surface mean curvature. d2  al dz 4l

Equation (3) gives the Gibbs-Thomson relation for the (8)
deviation of the equilibrium temperature at a curved liquid-
crystal interfaceT., from the equilibrium melting tempera-
ture at a planar interfacd,,. Namely, expandings, ¢(Te) The normal velocity of the growing surface is related to
~ ) o(Tm) + (9 s/dT)(Te— Tr), and using the thermody- the surface shape as

namic relationdu, s/dT=—5 5, wheres, ¢ are the liquid

and solid specific entropies, one gets h,

Ln(1) T (1+|Vh[)¥
L

T dxdy dhg " dy? ahyy’

€)

Un

Te=Tm 1— ) )

v

The difference between the liquid and the crystal chemi-

wherel, =T (s —s) is the latent heat per unit volume.  cal potentials A, which is thedriving force of the crystal

Consider the case of fast growth, i.e., when the growthgrowth, is a function of temperature and concentration, and it
occurs in the absence of thermodynamic equilibrium at thelepends on the temperature and concentration fields around
crystal-liquid interface. If there is no local thermodynamic the crystal. The latter, in turn, are often determined by the
equilibrium, the difference between the liquid and solidcrystal shape itself, and in this cadedepends orn.
chemical potentialsA = u,— ug, deviates from its equilib- Thus, using Eqs8), (9), (3), one obtains from Eq6) the
rium value, A®, prescribed by the liquid-crystal surface- following evolution equation foh(x,y,t):
tension,A®= u’— ue= Ly (1). For small deviations from the
equilibrium, [(A—A€)/A¢|<1, the local normal velocity,

t
vy, of the crystal surface growing into the liquid is propor- (1+|Vh|2)1/z:K[A(h)+5(h)]' (10
tional to the local deviation from the thermodynamic equi-
librium, i.e., whereé&(h) is
|
@ 7?1 @ @ @ @ 7?1

S(h) = (9( hx)_z hxx+ 2(9hx(7hy hxy+ (9( hy)2 hyy_ a(hxx)z hxxxx_ Za—hxyahxx hxxxy_ (3( hxy)z + z&hxxahyy hxxyy
3l g

22— hy————hyy. (1)
gy Y ()2 VY
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There are three cases for the dependefk). In the Equation (14) has a solution corresponding to a planar
simplest case, if one can neglect the effect of the variation ofiniformly growing surfac€uniformly propagating crystalli-
the temperature or concentration field with the crystal shapeation fronj h=t (the dimensional velocity of the front is
on the difference between the liquid and crystal chemicakAg). Transform to the frame moving with the planar front,
potentials, one can simply sat(h)=const. If the variation change the variable—h+t, and expand Eq(14) for |h|
of temperature or concentration field is important and occurs<1, |Vh|<1. Keeping the terms up to the second order, one
near the crystal surface in a boundary layer whose thicknessbtains
is small in comparison with the surface radius of curvature,
the dependenc&(h) is local, and is generally represented as 1
a nonlinear differential operator. If the characteristic scale of hi— =(Vh)2—=T'&(h)=0, (15)
the temperature or concentration field is comparable with the 2
radius of curvature of the crystal surface, then the depen-
denceA(h) is nonlocal and is usually expressed as a non-where¢, is the linear differential operator
linear integro-differential operator. Below the first two cases
are examined.

2e e
£,=VAV', A:< 20 “). (16)

IIl. CONSTANT DRIVING FORCE e, 2ep

The simplest case is whex(h)=A,=const. Consider a _ ) _ ) )
crystal with the lattice having a cubic symmetry. The crystal Equation(15) is an anisotropic Burgers equation. It can
surface tension has a cubic anisotropy, and its dependence 8f$0 be called the anisotropic, deterministic Kardar-Parisi-
the surface curvaturflL7] is also taken into account. Thus, Zhang (AKPZ) equation[26,27. With noise added, this
following [24], we suggest that in the frame of reference€duation describes kinetic roughening of vicinal surfaces

{eg,eg,eg} aligned with the principal crystal directions [26], epitaxial growth, etc(see[21] for review). If the ei-
([100],[010],[ 001]), genvalues qf the anisotropy matrix are positive, Eq(15 _
describes hill-and-valley structure propagating along the in-
) terface with the amplitude determined by initial conditions
¥= Yol 1+ €4(N3+n§+n3) + €g(N+No+N3) + - - ']+§’C2, [28]. In this case the anisotropic surface tension prevents the
(12) formation of sharp corners in the course of kinetically con-
trolled crystal growth29,30.
wheren, ,n, ,n, are the coordinates of the local unit normal ~ When at least one of the eigenvaluesfa negative, the
to the crystal surface that can be expressed in terms of therystal surface with the orientation characterized by the an-
angular spherical coordinates§ and ¢ as n, isotropy matrixA is thermodynamically unstahleAs dis-
=sinfcose, n=sindsing, n,=cosb, y, is a constant cussed above, this instability yields formation of facets and
characterizing mean surface tension of the crystalcorners. However, in this case E@.5) is ill-posed since it
€4,€5, . .. are the coefficients of the surface-tension anisotdoes not have a short-wave cutoff. In order to describe the
ropy, and §=const-0. Consider a planar crystal surface dynamics of the formation of facets and corners, one has to
growing with the orientation characterized by a normal veckeep higher-order terms in the evolution equation for the
tor e,=(sinfcos¢, sindsing, cosk) and choose the other crystal surface.
two basis vectors in the surface plane todee,x €)/|e, Keeping the terms up to the fourth order in Ef), one
x e, g,=eXe/|e,xg|. In the coordinate system obtains for the shape of the crystal surface in the moving
{e..e &} the position of the crystal surface is given by frame the following evolution equation:
z=h(x,y,t). The weighed surface tensidrdefined by Eq.
(4) can be expanded fgh,|<1, |h|<1 as 1 1 1
htzz(Vh)z— g(Vh)4+F(1+ E(Vh)z)ﬁz(h)ﬁ“&g(h)
[(hy, hy, hy, hyy, hyy)
o +T&,(h)+0(]Vhl|®), a7

=Y 2 emn(€s €60, $)hN]

y:

where one gets from Eq§l1) and (13),

1)
+=(h2 +2h,h, +h2)+---. 13
2( XX XXy yy) ( ) 52(h):aijhxixji

Here the coefficients;; are the functions of the direction of

the crystal growth and of the anisotropy coefficients which E3(h) = Bijkhyx .. (18
are computed if25] and reproduced in the Appendix; the K

dots denote higher-order terms.

After the transformation—t/(xAg), Eq. (10) reads E(h)= 7ijk|hXinthhX|_ Sijki hxixjxkxw
hi=+v1+|Vh[?[1+T&h)], (14)

andi ,j k=1,2, X]::X, X2=Y, aij., Bijk s yij_kl E and 5ijk|
wherel'=y,/A,. do not change with the permutations of their indices;
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@11= 26y, @12=€11, A= 2€p,

B111=6€30, B112=2€51, Br21=2€12, Booy=6€q3,
(19
Y11117= 12840, Y1117 3€31, V11207 2622, Y1205= 3€13, Yo205= 12804,

01111 02205= 301125~ 6l Yo, 61115~ G120~ 0.

The summation over repeated indices is assumed.

The nonlinear termsY(h)?/2— (Vh)*/8 on the right-hand side of E¢17) stem from the projection of the local normal
velocity of the crystallization front on theaxis [cf. Eq. (9)]. Usually, only a ¥h)? term is present in this type of equation
since it already describes the kinematic effect of the interfacial dldpe Moreover, although the two-term expansion that
includes also theYh)* term is more accurate for small surface slopes, it can lead to artifacts if the slope of the interface is
large. Therefore, the fourth-order kinematic term in the evolution equation is omitted. Thuy4,/Eig. written in the following
form:

1
ht:§|Vh|2+hxx[M11+ K1y Nqihy+ ayh’+ b11h§+ Crahyhy ]+ hyy[ maot K+ N ohy + aphl+ b12h)2/+ ciohihy]

+ Nyl oot Ko+ N oghy+azhZ+ bl + coohihy 1= vV *h, (20)
|
where logical model for the formation of facets and corners in the
kinetically controlled growth of ahermodynamically un-
m11=20€5, mi=2I€11, uop=2I€y,, stable surface, in the simplest case of a constant driving
force.
k11=6l ez, k1p=4T'ey, kp=2Ie;s, In the next section a similar evolution equation is derived
for a more complicated case, when the difference between
N1=2Tey, Np=4Teq,, Ayp=6I"eps, the crystal and liquid chemical potentials is not constant, but
it is locally coupled to the temperature field in a thermal
a11=I' (12840t €5), ap=I'(6e31+€19), diffusion boundary layer near the crystal surface. As an ex-
ample, the solidification of a hypercooled melt is discussed.
azn=1'(2er+ep), (21
IV. SOLIDIFICATION IN A HYPERCOOLED MELT:
by =T (2€5+ €50, bio=T(6€15+€11), EFFECT OF THERMAL DIFFUSION BOUNDARY LAYER
Consider a solidification front rapidly propagating
bos=T'(12€04+ €52), through a hypercooled melt, so that the rate of solidification
is controlled by the attachment kinetics. In this case the local
Ciy=6l'es;, C1p=8l'ey,, Cx=6Ieys, velocity, v,,, of the crystal growth in the direction normal to
the surface at a given point is given by E6). The tempera-
v=20lAo. ture at the interfaceT; , is less than the equilibrium tempera-

) ) . ture, T, given by Eq.(5). Taking into account the tempera-

Equation(20) is related to those derived 8,9] for the  ture dependence of the chemical potentials and expanding
faceting of crystal surfaces with unstable orientations Wher)‘l,s(Ti)'\N‘Ml,s(Tm)+((9MI,5/(9T)(Ti_Tm)’ one obtains from
there is no surface growth. The coefficiepts characterize Eq. (6)
the linear faceting instability of the thermodynamically un- _
stable surface, and the coefficients of the nonlinear terms vn=k(Te=Ti), (22
determine the stable orientations of the appearing facets and
the symmetry of the faceted structure. The linear dampin%
coefficientr characterizes the stabilizing effect of the addi-
tional energy of edges and determines their widgee be-
low). The new feature is that ER0) describes the faceting . )
instability in the course of kinetically controlled crystal € normal velocity on temperature likely appl(@2]. How-

growth, which accounts for the presence of the “convec-ever, for our purpose, in orde.r to show thg effect of the
tive” term (Vh)2. On the other hand, it can be consideredtemperature field on the formation of facets in the course of

pKinetically controlled growth of a thermodynamically un-

here k=L, /T, is the renormalized kinetic coefficient
hich is assumed to be constant. Note that @&6) is valid

for small deviations from the equilibrium. This is not the
case for a hypercooled melt and a nonlinear dependence of

as a generalization of isotropic growth models reviewed i ot ©
[21] for the case of an evaporation-condensation growtf‘?table _crysFaI surface, it is sufficient to use E22) as an
mechanism. Other mechanisms of anisotropic growth oftPProximation. _

thermodynamically stableurfaces, such as anisotropic kinet- ~ Choose the following scalingsyt/(«AT) as the unit

ics and anisotropic step flow, were considered 26,31]. length, x1/(kAT)? as the unit time, wherdT=T,,—T.. is
Equation(20) is now considered here to be a phenomenothe difference between the melting temperature at the planar
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front growing in the given directionl,,, and the tempera- From the solvability condition of the problem in the order
ture at infinity T.,, and 1 is the thermal diffusivity of the O(e?) one obtains the following evolution equation flar
melt.

Consider a plane solidification front moving withs yet
unknown velocity V. The shape of the deformed front in the he — !|Vh|2—55(h) -0 27)
frame of reference moving with the velocity is described T2 2 2 '
by z=h(x,y,t), wherezis the coordinate in the propagation
direction of the planar front, anxlandy are the coordinates s ) . .
along the planar front. In the frame of reference moving withWhere&? is the linear differential operator
the front[x, y, {=z—Vt—h(x,y,t)], the kinetically con-
trolled solidification process is described by the following s
system of dimensionless equations and boundary conditions E5=——V2+TVAV', (28
(the same notation is used for the dimensional and dimen- \4
sionless coordinate$33]:

<Dt=[1+(Vh)2]<I>§§+V2<I>+(V+ht—Vzh)(I)g where the anisotropy matri& is defined in Eq(16) andV
acts on the long-scale coordinates.
—2Vh-Vo,, Equation(27) differs from Eq.(15 by the Laplacian in
the operato€3 that describes the effect of the thermal field
z=o, ©=0; (23 in the diffusion boundary layer. It can be seen that even if the

eigenvalues of the anisotropy matixare positive and the
z=0, S(V+h)=-®,+Vh-(VO-®,Vh), (24) crystal surface is thermodynamically stable, it can become
morphologicallyunstable for >S>S;,, whereS;, depends

V+h, on the anisotropic surface tensif2b).
—[1+ (Vh)2]1’2: 1-d+TI&h), (25 As a solvability condition in the ordeéd(€%), one gets the
equation

where &=(T-T,)/AT is the dimensionless temperature,
S=L,/(pcpAT) is the Stefan numbed, = yox T /(x7L), hr,=I&(h), (29
andp andc, are the density and the specific heat, which are
assumed to be equal for both crystal and melt. Equai8n
describes heat transport in the liquid phase, the boundaryhere&;(h) is defined by Eqs(18) and(19).
condition(24) represents the balance of energy at the solidi- However, solutions of Eq(29) blow up, and in order to
fication front, and the boundary conditi¢®5) describes the obtain the equation describing the long-time evolution of the
kinetically controlled growth(22) with the equilibrium tem-  crystal surface, one must proceed to the fourth oro¢e?),
perature governed by the anisotropic Gibbs-Thomson effeahe solvability condition for which gives
(5). In the problem23)—(25) heat transfer is neglected in the
solid phasea one-side modgl The additional energy con-
sumed in the phase transformation due to the creation of a 2S d(hy,hy) , Vv 4
new interface in the growth of a crystal with curved surface hT4=S4(h)_ 3 a—+_Vh'V(Vh) —5(Vh)
_ v3 AX)Y) 2V 8

[34,39 is also neglected.

Assume that the thickness of the thermal diffusion bound- + N, (h), (30)
ary layer is much smaller than the radius of curvature of the
crystal surface. Thus consider perturbations of the crystalli-
zation front to be long wave, and apply a long-scale expanwhere
sion to the problem(23)—(25) suggesting|h,|, [h,| < 1.
Thus, introduce the long-scale coordinatesX,Y)
=¢€(x,y), e<1, the hierarchy of slow time$,,T;,T,, ... _ S(V+1) 74 S(V+2)
such  that T,=¢€, k=23,..., and consider TS Yz
h(X,Y,T5,T3,T4, ...)=0(1), P(LXY, Ty, T3, Ty, ...)
=dO(L, X, Y, Ty, T3, Ty, ... )+ 2P X, Y, T,,Ts,
Ta, .. )+ PO XY, T, T3, Ty, .. )+ 2PA(E XY, s 1
T5,T3,T4, ... )+ ...; functions®®) must decay at infin- N4(h)=1“52(h)<wv2h+ E(Vh)z)
ity.

In the orderO(1) one obtains the following solutidi33]:

S
rvzgz—ﬁr%g,

(31)

s 1 ,
PO Sexgt Ve, Vo1-S, 6 +?F(Vh-52(Vh)— 56((Vh) )) +T & (h),

which corresponds to a planar crystallization front propagat-

ing with the velocityV which is a function of the undercool- with & andé&, defined by formulag16), (18), and(19).

ing S 1. Solution(23) exists only atS<1, i.e., if the under- Finally, going back to the initial variablesy,t, one can
cooling AT>L,/(pc,) (the hypercooledmelf). unify Egs.(15), (29), and(30) in a single evolution equation
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\Y
hi— 5 (V)2 =hyf i+ kushyt Mashy+ @35+ bushf+ Cashyhy ]+ M saat kit Maghy+ a1+ biohf+ cihyhy ]

S 2 S w2 07(hx,hy)
T hyyl oot Kokt Noghy +aghy +bashy +coohihy 1 +9 TIixy) Xk P (32)
where
. S . S . S . S . 28
B1= Ty TR BT Ty TR, ATy A, b22:v+b22- C12=7 T Ci2
S(V+1) 25(V+2) 4s
X111~ tr— v Fe20+$er§0,
S(V+2) 2s_,
X1112= ~ Wreu‘kﬁr €20€11,
S(V+1) N v S(V+ Z)F( reg)+ 4S r2 33
= =— €0+ €0 +——T?%e ,
X1122= 35 3 3% 20T €02 T s 20202
S(V+2) 2S
=~ = Teyu+—T2eueq,
X1222 v utys 0211
S(V+1) 2S(V+2) 48
X2227= " 5 tr— v F602+$er§2,
2S 1
g= V2 I‘(9204'302)_v )
|
the other coefficients are defined by E81), and, as in Eq. On the one hand, physical effects that would lead to the
(20), the term with (V.h)“.in the expansion of the normal appearance of the term with the Gaussian curvature in the
velocity of the crystallization front is omitted. equation describing the evolution of the crystal surface are

Equation(32) is asymptotically correct ifj=0(e?) and  not clear. On the other hand, the Gaussian curvature is the
«ij,Nij=0(€). Otherwise, Eq(32) should be considered as gface invariant of the next order after the mean surface

a model equation for describing formation of corners andcyrvature, and one might expect it to appear naturally in the

facets caused by anisotropic surface tension in the course . . -
kinetically controlled crystal growth when the effect of the 8xpan3|on with respect to small surface slopes. Below it is

thermal boundary layer near the crystal surface is importanSnoWn that the presence of this term leads, within the frame-
One can see that the coefficients of E8@) are determined work of the present model, to the formatlc_m of some of the
not only by the anisotropy of the crystal surface tension, bupatterns observed in crystal-growth experiments.

also by the temperature field near the crystal surface, i.e.,

they depend also on the undercooligg.

Equation (32) contains also a new term, V. FACETING OF GROWING SURFACES WITH
ga(hy,hy)/d(x,y), which is the main part of the Gaussian DIFFERENT ORIENTATIONS WITH CONSTANT
curvature,G= (h,hy,— hiy)/(l-i- |[Vh|?)2, in the long-wave DRIVING FORCE
approximation. This term was first seen[B6] as part of the
intrinsic equation of interfacial motion for solidification in a  In this section consider the faceting of kinetically growing
hypercooled melt in the case of isotropic surface tension; ircrystal surfaces with different orientations when the effects
the isotropic case the coefficiegtcoincides with the corre- of the temperature variations in the diffusion boundary layer
sponding coefficient derived if86]. Note that the evolution can be neglectedconstant driving force In this case the
equation derived if136] contains also a nonlinear term pro- evolution of the shape of the crystal surface is described by
portional to the square of the surface curvatuég, which  Eg. (20). Equation(20) is solved numerically for different
arises if one takes into account thermal diffusion in the cryscases corresponding to different orientations of the growing
tal (the two-sided model In the one-dimensional case the crystal surface. A pseudospectral method is used with 128
term with the Gaussian curvature disappears and®).is  modes in both directions and periodic boundary conditions,
reduced to the evolution equation derived i7]. starting from small-amplitude random initial data. Time in-
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tegration is performed in the Fourier space by means of theture coarsens in time forming square pyramids with larger

semi-implicit Adams-Bashforth/Crank-Nicolson scheme.

A. Orientation [001]

For the growth of thd001] surface, the anisotropy coef-

ficients are computed to be

1 3 5
€20~ €02=5 T 5 €475 €6

1 23 35
€40=C04= ~ g T g €1t 5 €6;
(34
1 15 35
€y0=— Z+ ZE4+ZEG,

€11= €30= €31= €1p= €g3= €37 = €13=0.

Equation(20) then reads
hy=—mV?h—»V*h 1Vh2 h,,[a h2+b h?
t=—m v +§( )+ hydahi+ y]
+hy[b hi+ahi]+c hyh,hy, (35)

where

m=T"(3€e,+5€5—1), a=T(33€,+50e5—1),

(36)
b:F(664+ 1566), C=F(3OE4+ 7066_ 2),

and »>0 is defined in Eq.(21). Consider the anisotropy

coefficientse,, e to be such tham>0, so that thg001]

surface is thermodynamically unstable and faceting occur

horizontal spatial scale. Figure 2 shows the spatial distribu-
tion of the slopes of the pyramidgyh|, for two different
times; one can see that the slopes remain unchanged during
the coarsening process. This is a typical behavior of faceting
instability of thermodynamically unstable surfaces, when the
resulting slopes are determined by anisotropic surface free
energy; in the one-dimensional case the slope of the facets is
determined by the well-known double-tangent construction
[1,8,9. In the case of a kinetically controlled growth, when
the evolution equation for the surface shape contains the
nonlinear growth term{Vh|?, the double-tangent construc-
tion is destroyed, but the slope of facets is still fixed and
depends on both anisotropic surface free energy and the
growth rate[17].

In our case the shapes of the pyramids far from the vertex
and their final slopes can be found analytically. Consider a
square pyramid oriented in such a way that the projections of
its edges on the basis plane coincide witAndy axes. In
this case, the pyramidal shapéx,y,t) has the following
asymptotics:

h~Ay+f(x)+vt asy——oo, (37)
wherev is the speed of the surface growth in thdirection
(i.e., the nonlinear correction of the unit speed of planar sur-
face growth in the laboratory frameA is the slope of the
pyramidal edges, anéi(x) is a function to be determined.
For x— — o one hash~Ax+ f(y) +vt. The functionf must
satisfy the compatibility condition

f'(xo)=FA (39

(the prime denotes differentiatinn

S- By substituting Eq.(37) into Eq. (35), one obtains the

The coefficientsa, b, andc characterizing the stable orien- following equation forf (x):
tation of facets are taken to be positive, and the coeffiaient '
is taken to be small in order to get sharp corners. Equation (1

m

1
(35) does not have a rotational symmetry, but it is symmetric | zA%2—v |+ = (f")2—(m—bA?)f"+a(f’)?f"—vf =0.
2

with respect to the transformations——x, y——y, X 2

—Y. This corresponds to the fourfold symmetry of {l0@1] (39
crystal surface. . . Taking an anzatf19]

Figure 1 shows the results of the numerical solution of
Eq. (35 for b/a<1, i.e., for large anisotropy. Figuresal, f’=Qtanhkx, (40)

1(c), 1(e), and Xg) exhibit the shape of the crystal surface at
different times, and Figs.(f), 1(d), 1(f), and Xh) show the  one obtains from Eq39)

corresponding surface contour plots. First one observes the

formation of a hill-and-valley structure in the form of square ) 3(m—bA% 3 /6w a

pyramids. Note that the square shape of the pyramids can be Q =2 T3V KSQ”Q' k=1/ 5|Q|,
distorted by their interaction. Such pyramids are often seen (41)

on the[001] surfaces growing by chemical vapor deposition

[37], liquid phase epitaxy{38], molecular-beam epitaxy where negativeQ corresponds to a pyramigill) and posi-
[39,40, etc. The pyramids with a characteristic horizontaltive Q corresponds to an antipyramitiole), respectivelyk
scale\, corresponding to the most rapidly growing mode is positive by definition. Equatiof1) shows that the radius
given by the linear stability analysis,, =27y2v/m, are  of curvature of the pyramidal edgesd/y,, i.e., deter-
formed in a characteristic time, =m?/(4v), and they have mined by their additional energy. From the compatibility
a characteristislope This slope is determined by the anisot- condition,Q?= A2, one finds the slope of the square pyramid
ropy of the surface energy as well as by the driving force ofedge far from the vertex,

the crystal growth, i.e., the surface growth speed; the curva-
tures of the pyramid edges and vertex are determined by their
additional energysee belowy. After the pyramids have been
formed, their slopes do not change any longer, but the struc-

m= \3v/(2a)

AT=x \| ———, (42)
b+a/3
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FIG. 1. Hill-and-valley structure on a growing crystal surface in the form of square pyramids: numerical solutior(28)Eq.different
moments of time(a) and (b), t=10% (c) and (d) t=2x10% (e) and (f) t=5%x10* (g) and (h) t=10°; m=0.5, »=0.001, a=1.0, b
=0.1, ¢=0.3. The spatial scale is arbitrary.
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9 ficients €, and eg only, A, is the surface-growth driving
force, andé is the coefficient characterizing the additional
energy of the pyramid edges and vertex defined in(Eg).

If the thermodynamically unstable surface does not grow
(Ag=0), the slopes of the facets that appear when the equi-
librium is restored after the faceting transition are determined
by the anisotropic surface free energy only, by means of the
double-tangent construction. In our caséymamical slope
This effect may be reminiscent of the phenomenon of a dy-
namic contact angle in a moving liquid-solid contact line
[41,47. Itis important that the dynamical slopes of pyramids
and antipyramids beifferent the slope of a hill issmaller
than the slope of a hole. This is due to ttanvectivesffect

of the kinetically controlled surface growth discussed for a
one-dimensional case {17]: in the case of a concave sur-
face (hole), the kinetically controlled growth tends to pro-
duce caustics and steepens the slope, while it tends to
smoothe the sharp corners and to reduce the slope in the case
of a convex surfacéghills). At the same time, the correction

to the dimensionless unit growth speed of a planar surface in
the laboratory framey==(A*)?, is smaller for pyramids
and larger for antipyramids. Thus, faces of antipyramids
propagate in the direction faster than those of pyramids.
This leads to the asymmetry between the pyramids and anti-
pyramids that can be seen in Fig. 1. At the beginning of the
structure formation both pyramids and antipyramids are
present, but in the course of the surface growth antipyramids
“grow out” and gradually disappear. A convective nature of
the pyramid selection mechanism can be understood better if
one considers infinitesimal perturbations of an almost planar
pyramid face far from the vertex, where the surface is locally

20 a0 o & 100 120 described ash=h,~A(x+Y). Indeed, takingh=hy+h,

where the infinitesimal perturbationﬁ~exp[(rt+i(axx
+ayy)], where o in the perturbation growth rate and
(ax,ay) is the perturbation wave vector, one obtains the
following dispersion relation:

FIG. 1 (Continued.

whereA™ corresponds to hills and~ corresponds to holes.
Thus, the shape of a square pyramhd') or antipyramid
(h™) far from the vertex, foly— —o, is

+(AT)%t.

h* Aty —GVI a A*
(X,y, 1) ~ATyF / 5 n cos \/6V| | X
(43 wherea2=a§+ ai. The last(imaginary term on the right-

One can see that the slopes of pyramids depend not onfjand side of the dispersion relatiof5) shows that the dis-
on the anisotropic surface free energy characterized by thélrbances of a pyrami¢hill) travel from the vertex to the
coefficientsm,a,b (as it would be in the case of a faceting periphery, while the disturbances of an antipyramid move
transition of a thermodynamically unstable surface in the abfrom the periphery to the vertex. Thus pyramids are sources
sence of kinetically controlled growthbut also on the driv- of the perturbations and antipyramids are sinks. This accu-
ing force of the crystal growth, i.e., on the surface growthmulation of the perturbations descending from the pyramids
rate. This can be easily seen if one rewrites @@ for the into antipyramids eventually leads the disappearance of the
asymptotic slope of the pyrami@ntipyramid edge in the |atter.

o=a’[m—A%(a+b)] —CaxayAz— va*+iA(ay+ ay),
(45

dimensional variables, Note that since the slopes of the pyramids do not change,
_ _ their heights increase proportionally to their horizontal spa-
(Ai)z_m1A0V35/(Za)’g) 4 tial scale in the course of the surface growth. The similar

behavior caused by the existence of a “magic” slope re-
maining constant during the coarsening of square pyramidal
wherem,a,b are the respective coefficients defined in Eq.Mounds was observed experimentally in molecular-beam ep-
(36) divided byT, i.e., the functions of the anisotropy coef- itaxial growth[43] and reproduced in numerical simulations

b+al3



812 A. A. GOLOVIN, S. H. DAVIS, AND A. A. NEPOMNYASHCHY PRE 59

X

FIG. 2. Spatial distribution of the mean surface sldf#|, corresponding to the numerical solution of E85) shown in Fig. 1, at two
different times: at=10% b, t=10°. The spatial scale is arbitrary.

of the model proposed if81] for the growth and coarsening 223
of pyramidal structures caused by an anisotropic slope- Ag>m ﬂ_ (46)
dependent step current. 36

It should also be mentioned thatat~b in Eq. (35), the
main nonlinear terms in Eq35) become almost rotationally
invariant and the solution of E¢35) exhibits a labyrinthian ~ This corresponds to the case when the energy of the edges or
hill-and-valley pattern similar to that produced by a two- the growth driving force is very large. Our preliminary nu-
dimensional isotropic Cahn-Hilliard equatidd4]. More-  merical simulations of E(35) in this case show an irregular
over, as one can see from E¢42) and(44), solutions in the  pattern. We argue that the conditioh6) may be related to
form of pyramids do not exist im<\/3v/(2a), i.e., if the roughening transition.
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B. Orientation [111] annealing[11-13, during the growth of $il11) by gas

For the growth of thé111] surface, the anisotropy coef- phase epitaxy at high temperatures and by chemical vapor
deposition[45,4€], as well as during liquid phase epitaxial

ficients are growth of LiNbG; thick single-crystal filmg§47]. Evolution
1 3 25 of the triangular pyramidal faceted structure on a growing
€20~ 602:§+ §€4+1_866= [111] surface is the same as described above for the faceting
of the growing[001] surface: after the structure with the
1 horizontal length scale corresponding to the most unstable
€40=€04= — 7—2(9+ 135¢,+ 85¢g), mode has been established, it coarsens with time; the pyra-
mid slopes remain unchanged. Note that @®) is invariant
85 with respect to transformatiod— —d, y——y, and the
ep=—— 1+ 15€4+—ée>, (47)  pyramid orientation depends on the sign of the coefficient
4 9 The structure with pyramids oriented opposite to those

shown in Fig. 3 is shown in Fig. 4.
€4t EGe) As in the case of square pyramids considered in the pre-
37°) ceding subsection, the shape of the triangular pyramids with
equilateral bases and their final slopes far from the vertices
€11= €= €30~ €31=€13=0, can be found analytically in a similar way. Indeed, consider
a triangular pyramid with an equilateral basis oriented in
and Eq.(20) reads such a way that the projection of one of its edges on the basis
1 plane coincides with the negative part of theaxis (i.e.,
hy==(Vh)2—m’ V2h—» V*h+h,,[d’ h,+a’ h§+ b’ hi] oriented as the pyramids shown in Fig. #he shape of the
2 pyramid far from the vertex foy— —c can be described by

ex= —3€g5=— 22

+hyy[—d’ hy+b’ h)2(+a’ h2] Eq. (37). A.simple_geometric _con;ideration of the triangular
y pyramid with equilateral basis gives the following compat-
+2h,,[d" hy+(a"—b") hyhy], (48) ibility condition for the functionf(x) in this case:
where
f'(+0)=73A. (49)

25
m’=—F(l+3e4+ 366),

Substitute Eq(37) into Eq. (48), and obtain the following

a'=—T|1+21e,+ ?66>, equation forf (x):
10 1 1
b'=—T|6est 5 e, SAZ—y [+ 5 (f)2—(m—d'A—~b'A?)f"
3 2 2
d'=—42I(e,+5€4/3). +a'(f")"—vf"=0. (50)

It can be easily checked that E@L8) is invariant with re-
spect to rotations at the anglesr@/3. This corresponds t0 Taking the same anzai{#0) for f’, one obtains from Eq.
the threefold symmetry of EL11] surface of a cubic crystal. (50)
As above, consider the surface to be thermodynamically un-
stable, so one chooses and ez in such a way tham’
>0; a andb are taken to be positive. A RIA2

Figure 3 shows the numerical solution of E48) in a Q2:3(m d’A—b'A") + s \/gsgnQ,
rectangular box with thg/x aspect ratio equal t§3/2. This a’' 2a’ Va'
aspect ratio was chosen in order to diminish the effect of the
rectangular boundaries, breaking the threefold rotational 7

k_ V 6V|Q|’

symmetry, on the formation of the faceted structure. One can
see the formation of the faceted structure consisting of trian-
gular pyramids. Figures(8), 3(c), and 3e) exhibit the shape

of the crystal surface at different moments of time, and Figs.
3(b), 3(d), and 3f) show the corresponding surface contourwhere, as in the case considered in the preceding subsection,
plots. At the initial stages the pyramids are slightly elongatechegativeQ corresponds to a pyramid and positi@ecorre-

in the y direction due to the effect of the boundaries, andsponds to an antipyramid, respectively. From the compatibil-
their shape is distorted by mutual interaction. At the lateity condition, Q?=3A?, one obtains a quadratic equation for
stages the bases of the pyramids become equilateral. Suttie slope of the triangular pyramid edge far from the vertex.
structure of triangular pyramids is observed in experiment#\ stable solution of this equation is determined by the sign
on the faceting of unstablé.11] surfaces caused by thermal of the coefficientd’. Namely,

(51)
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FIG. 3. Hill-and-valley structure on a growing crystal surface in the form of triangular pyramids: numerical solution @8Eqt
different moments of time(a) and (b) t=10% (c) and (d) t=4x10% (e) and (f) t=10°; m'=0.5, »=0.001, a’=1.0, b’=0.1, ¢’
=1.8, d’=0.5. The spatial scale is arbitrary.
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FIG. 4. Surface structure of triangular pyramids with the orientation opposite to that shown in Fig. 3, corresponding to a negative
coefficientd’ in Eq. (48) (m’=0.5, »=0.001, a’=1.0, b’=0.1, ¢'=1.8, d’=—0.5) fort=10*. The spatial scale is arbitrary.

o N2 ., P e~ not form for largev corresponding to either very fast surface
*_ d \/(d )" +4@’+bI[m’F y3v/(2a')] growth or to a large edge energy; these cases are not consid-
2(a’'+b") ered here.
for d’>0, (52) C. Orientation [110]

For this orientation one has

_—d'+V(d)2+4(a’ +b)[m' T \3wi(2a')] o 1,9 25 1.3 5
== ’ , 202 44861 022 4486!
2(a’+b’")
for d’' <0, (53 1 21 115
€<=~ 4~ g € 1g 6
where A= correspond to the hillsA™) and holes A7), 1 49 145 1 31 35

respectively. Thus, the shape of the triangular pyrartéas = - =4+ == -
tipyramidg for y— — is w0~ "g 165 32 CmT g 1%’ 3%

hi Ai — 6V| a Ai
(x,y,t) y+\/;n cos \/5| | X

+2(A%)?t. (54)

€117 €21= €10= €93= €30~ €31 = €13= 0. (55

Equation(20) in this case reads

1 2 2 2
he=5(Vh)24hy [ ~my+a, hi+by hY]

One can see that the parameters and evolution of triangu-
lar pyramids and antipyramids are distinguished, as dis-
cussed in the preceding subsection for the case of square
pyramids. The solution in the form of triangular pyramids (56)
exists if (d’)2+4(a’+b’)[m’'—3v/(2a’)]>0, i.e., as in
the case of the square pyramids, the triangular pyramids camvhere

+hy[ —my+ay hi+by hZ]+Chehhy— v Vh,
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9 25 3 5 b 3(my—a,A? 3  [6v
o =Tl e+ e = 2 _Vy YR 2 20

my F(254+ 1 etl], my F(264+466 1), ky= 6v|Qy|’ Qy b, +2by b, sgnQy,
r(Gg +205 +1) / 3( b,B) 3 [6
Q=—1l |5 €41+ —¢€4 ) ay m, — Dy v
2 4 — /X 2 2 x X2 7 b

kX 6V|QX|1 QX ax + 2a.x ax SgnQX!

45 8)

b,=—T|3e,+ 7 €/

where, as before, negativgositive Q,, correspond to
45 25 pyramids (antipyramidg. The compatibility conditionsQ?
ay=—I'(6€,4+15¢5), by= F(—e4+ —€g— 1) , =A?, Q2=B?yield a system of linear equations for squares
2 2 Y . .
of the limiting slopes of the pyramid edges in tkeandy
directions,A? andB?, respectively, whose solution gives

~ 115
c=-T 2164"!‘ 766+2

(A®)2= 9b,[my+ 3v/(2by)]—3b,[m,+ y3v/(2a,)]

Here consider the anisotropy coefficierds and €5 to be 9ayb,—aby '
such that th¢110] surface is thermodynamically unstable in (59
both x andy directions, i.e.,m,>0 andm,>0. The other
coefficients are also taken to be positive in our simulations. _ _

Equation(56) is invariant with respect to transformations (Bi)2:9ay[mx+ V3v/(2a,)]—3amy+ y3v/(2by)]
X——X, y— —Y, but it is not invariant with respect to the 9a,b,—a,b, ’
transformatiorx—y. This reflects the twofold symmetry of

the[110] surface. Thus one can expect the faceting instabil- ) ) )
ity of this surface to result in the structure of either rhombic 1 "€ Superscripts- and — correspond to pyramids and anti-

pyramids or grooves. One observes that the resulting strudYramids, respectively. Thus the functiofigy) and g(x)
ture depends on the degree of the anisotropy. Figure 5 shot€Scribing the asymptotic shape of the rhombic pyramids in
the evolution of the faceted surface in the case when th&ds-(57) are

asymmetry between theandy directions is not very large,

but the anisotropy is still large so thht/a, anda, /b, are 60 | b 7

small. Figures &), 5(c), 5(e), and §g) show the crystal sur- f5(y)=F 3\ [—in cos)’( w /_V|Bt| x) ,

face shape at different moments of time, and Figb),%5(d), by " 6v ]

5(f), and %h) exhibit the corresponding surface contour (60)
plots. First one observes the formation of a system of - .
grooves[Figs. 5a) and %b)]. Later, the grooves decay into g () =7 /gln cos)‘( ] /&lAi x)

islands in the form of rhombic pyramidd=igs. 5c) and ay | 6v ]’

5(d)]. Similar rhombic pyramids are observed, e.g., during

the epitaxial growth of an In-Ga-As alloy on the @1 ) )

surface[48]. The rhombic pyramids coarsen in tinfigs. ~and the Znonllrjezar correction for the growth speed
5(e)—5(h)], but while the shapes of the square and triangular= z[ (A7)“+(B7)]. Obviously, the solution for the square
pyramids remain self-similar during the coarsening, theoyramlds c_iescrlbed above is the particular case of the rhom-
coarsening rates of the rhombic pyramids are different in th&iC pyramids form,=m,=m, a,=b,=a, a,=b,=b, A

x andy directions. Namely, one observes that the coarsening B- ) ) _

in the y direction goes a little faster, so that the rhombic Note that Eqs(59) have real solutions provided the right-
pyramids gradually thicken in thg direction (see Sec. i  hand sides of the two equations are positive. Thus,for
and tend to a limiting rhombic shape that can be found ana<1, the rhombic pyramids can be formed if

lytically for regions far from the vertex in a way similar to
that described in the preceding subsections for the square and
triangular pyramids. Indeed, consider a rhombic pyramid ori-
ented in such a way that the projections of its edges on the 9ayb,—axby
basis plane coincide with theandy axes. For the asymp-

totics of the pyramid shape far from the vertex one has

9b,m,—3b,m, 9aymx—3axmy>0
9a,b,—a,b, ’

(61)

Otherwise, one obtains the solution in the form of grooves
rather than rhombic pyramids. Numerical solution of Eq.
(56) in this case is shown in Fig. [#igs. §a), 6(c), 6(e), and
(57) 6(g) show the crystal surface shape at different times, and
h~By+g(x)+vt, g'(xx)=+A asy——x. Figs. 6b), 6(d), 6(f), and &h) show the corresponding sur-
face contour plots The grooves do not decay into pyramidal
Taking f'(y)=Qytanhky, g'(X)=Qanhkx, one obtains islands, and in a finite periodic box the structure ultimately
from Eq. (56) becomes quasi-one-dimensional. The groove slope does not

h~Ax+f(y)+ovt, f'(zo)=FB as x——o,
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FIG. 5. Hill-and-valley structure on a growing crystal surface in the form of rhombic pyramids: numerical solution(66Eat. different
moments of timei(@) and (b) t=2x10% (c) and (d) t=10% (e) and (f) t=3x10% (g) and (h) 1¢°; m,=0.3, m,=0.5, a,=1.0, b,
=0.1, a,=0.2, b,=0.8, '¢=0.3, v=0.001. The spatial scale is arbitrary.



818 A. A. GOLOVIN, S. H. DAVIS, AND A. A. NEPOMNYASHCHY PRE 59

9 Thus, one obtains the following exact solution of Esf) for
b,=ay,=0 in the form of a rhombic pyramid or antipyramid:

. 6v . 6v .
h=(x,y,t) =+ \/ Z—In(coshk; x) + \/ —In(coshk; y)
ay by
(63
. m, 3 . my 3
ky = —F\z— k= —F ,
2v 8vay 2v 8vby,

3\/5 —3/2
4

(ax + b; 3/2) ,

where the superscript corresponds to pyramids and to
antipyramids. The exact solutid63) in the form of a rhom-
bic pyramid is shown in Fig. (@).

The exact solution in the form of square pyramids is ob-
tained from Eq.(63) by settingm,=m,=m, a,=b,=a.
One gets

6
h*(x,y,t)==F \/Evln(coshktx coshk*y)+v=t,

. m 3 . 3 3v
K=\ —F\=— ov'=—|\m¥\/—|.
2v 8va a 2a

The exact solutior{64) in the form of a square pyramid is
shown in Fig. Th).

(64)

20 40 60 80 100 120
X

VI. COARSENING RATE

FIG. 5 (Continued. In many systems the coarsening of the structures resulting

from instabilities is known to go with timé at late stages

change during the coarsening. Formation and coarsening @beying a power law, i.eL.(t)~t®, whereL is the charac-
the system of grooves similar to those shown in Fig. 6 argeristic length scale of the structuf61,21 and « is the
observed, e.g., during the faceting of thermodynamically uncoarsening exponent. These have been measured for the
stable(0001) and{1010} surfaces of AJO; caused by ther- growth of thermodynamically unstablg01], [111], and
mal annealind49], as well as in the course of unstable ho-[110] surfaces. Square and triangular pyramids correspond-
moepitaxial growth of GaA®01) [50]. The coarsening rates ing to the faceting of growing001] and[111] surfaces, re-
in the x and y directions differ more than in the case of spectively, remain self-similar during the coarsening, so that
rhombic pyramids. The anisotropy of the coarsening rates ithe coarsening rates in tixeandy directions were the same.
studied in Sec. VI. For this case the characteristic scale of the structure was
computed in two wayst ;(t)=N"1=N ,Z"(t), whereN is
the number of collocation pointdN= 128 in our caseand
Z;(t) is the number of zeros of the functitrix,y; ,t) on the

In the preceding subsections we have numerically studieéth y layer, and_,(t) =N (t)/Ng(t), whereN, is the num-
the formation of square and rhombic pyramids in the caseper of spatial points where(x,y,t) —h(t)>0 andNj is the

when eithetb/a or b, /a, anda, /b, were numerically small number of points wher—h=0 (F is the spatially mean

(large anisotropy It tums out that itb=0 in Eg.(35), or if value ofh which is equal to the zeroth Fourier mgd# was

b,=a,=0 in Eq.(56), it is possible to construct thexact found that ;
i ) . 1(t) andL,(t) are proportional to each other and
solutions of Eqs(35) and(56). First consider the latter case thus both measures of the characteristic spatial scale of the

which is more general. In this case one can seek for th%tructure are equivalent

solution of Eq.(56) in the form Figure 8 shows the growth of the characteristic spatial
h(x,y,t)=f(x)+g(y) +ut. (62) scale of square and triangular pyrami@sjuares and tri-
angles, respectively The results with random initial data are
averaged over ten realizations. One can see the formation of
Substituting Eq(62) in Eg. (56) one obtains two decoupled the initial periodic structure after the characteristic time of
equations forf and g whose solutions are described above.linear instability, and the transition to the power-law coars-

D. Exact solutions



PRE 59 MODEL FOR FACETING IN A KINETICALLY ... 819

FIG. 6. Hill-and-valley structure on a growing crystal surface in the form of grooves: numerical solution &&Eqt different moments
of time: () and (b) t=2x10% (c) and (d) t=2x10% (¢) and (f) t=4x10% (g) and (h) t=10°; m,=0.5, m,=0.1, a,=1.0, by
=0.1, a,=0.2, b,=0.8, '©=0.3, v=0.001. The spatial scale is arbitrary.
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FIG. 7. (a) Exact solution(63) of Eq. (56) for m,=0.5, m,
=0.1, a,=1.0, by=0.4, v=0.001, a,=b,=0, in the form of a
rhombic pyramid. (b) Exact solution (64) of Eq. (35 for m
=0.5, a=1.0, »=0.001, b=0, in the form of a square pyramid.

“, As has been already mentioned, it was found that the rate

. of coarsening of the faceted structure resulting from the face-
FIG. 6 (Continued. ting instability of the growing[110] surface is anisotropic,

i.e., the growth rates of the structure spatial scales are differ-

ent inx andy directions. For this case the length scaleg)

en?ng at the late stage shown in detail in the inset. The coarsy g (L,) in the x andy directions, respectively, are sepa-
ening exponentr was measured to be 0.47 for square pyra-rately )r/neasured 2L, )= N ,12(nx ny)-*/Z; e
, 1= ’ | 1

mids and 0.45 for triangular pyramids, i.e., practically the - sy
same. Similar exponentg, 0.4pgnd 0424, We[r)e obser\yed (nX)ﬁ[(nV)i:] are the number of points in theh x(y) layer

in experiments on coarsening of square pyramids in homowhereh—h is positive, andZ; is the number of zeros of
layer and multilayer epitaxial growth of @#1) [39,40. h—hintheith x ory layer. Figure 9 shows the coarsening
The exponents obtained in the computations are considerabtyf anisotropic faceted structures for the two cases studied in
larger than those corresponding to the coarsening of facetdtie preceding section, namely, for rhombic pyramid&-
thermodynamically unstable surfaces when thermikineti-  monds and for groovegcircles. The two curves for each
cally controlled surface growth. In this case the coarseningtructure correspond to theandy directions in the surface
rate depends on the mechanism of the surface reconstructiogplane; the results are averaged over ten realizations with dif-
and theoretical predictions give 1/4 for the evaporationferent random initial data. The power-law coarsening regime
condensation mechanism and 1/6 for the surface-diffusiois shown in detail in the inset. The coarsening exponents
mechanisn 21], which is confirmed by numerical computa- were found to be 0.61 and 0.41 for rhombic pyramids and
tions [9]. Slow coarsening with the exponents 1/4 and 1/60.57 and 0.23 for grooves. Note that anisotropic facets coars-
was also obtained, theoretically and experimentally, in dif-ening was studied theoreticall$2] and experimentally53]
ferent problems of epitaxial growth and molecular-beam epfor the case of the faceting transition of the thermally
itaxy (see[21] for review). The present exponents are closerquenched crystal surface when the rate-limiting mechanism
to that predicted by Mullins for the evaporation-condensatiorof facet growth was collisions between step bunches. The
mechanism, i.e., 1/P15]. One can attribute the fast coarsen- coarsening exponents were computed to be 1/6 and 1/2 for
ing in our case to the convective effect of kinetics whichthe grooves’ characteristic width and length, respectively.
governs the growth of the crystal surface. Convective effectd his was confirmed in recent experiments with the faceting
are known to increase the rate of coarsening in various prokef the S{113 surface, for which the exponents for the
lems of spinodal decomposition in phase separating systenggoove coarsening were found to be 0.164 for the groove
(see[51] for review). width and 0.44 for the groove lengf3]. In our case the
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FIG. 8. The increase of the mean horizontal spatial s@alerbitrary unit$ of the faceted surface structures in the form of square

(squaresand triangulartriangles pyramids corresponding to the numerical solutions of E8S). and (48), respectively. The inset shows
the power-law regime at the late stage of the coarsening.

groove length also grows much faster in the beginning of thénighly anisotropic case, is close to the value of 1/2 found for
groove formation, but in the power-law regime it grows the one-dimensional ca$#&7].

slower than the groove widths, approaching the limit deter-
mined by the computational domain. In the power-law re-
gime the coarsening exponents are found taxs€0.23 for
groove length ande=0.57 for groove width. After the
groove length has reached the computational domain limit, In order to study the effect of the thermal diffusion
the structure becomes effectively one-dimensional and itboundary layer on the faceting instability of a growing ther-
coarsening is governed by the exponent characterizing theodynamically unstable crystal surface, one can solve Eg.
growth of the groove width. This exponent, in the considered32) numerically for the case of thE01] surface. In this

VIl. EFFECT OF THERMAL DIFFUSION BOUNDARY
LAYER
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FIG. 9. The increase of the mean horizontal spatial sd@earbitrary unitg in x andy directions of the faceted surface structures in the
form of rhombic pyramidsrhombs and grooves(circles corresponding to the numerical solutions of E§6). The inset shows the
power-law regime at the late stage of the coarsening.
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FIG. 10. Solutions of Eq(32) corresponding to the growth of the unstaf@®1] surface foru$,= u3,=0.5, a3;=b3,=1.0, by;=ay,
=0.1, ¢5,=0.3, x1111= X222~ 3X1125= 0.05, and different values of (a) g=0.05,(b) g= —0.05,(c) g=0.0. Other coefficients in E¢32)
are equal to zero. The spatial scale is arbitrary.

case Eq(32) differs from Eq.(35) only by the term with the rounded cones are observed in some epitaxial growth sys-
Gaussian curvatureg d(h,,hy)/d(x,y), on the right-hand tems[54]. It is thus conceivable that the rounding of the
side. It can be seen for the solidification of a hypercooledpyramid edges in the course of epitaxial growth can be
melt in a thermodynamically unstable direction that the co-caused by the effect of interaction between the thermal or
efficient g is negative. However, since for some other sys-concentration field and the shape of the crystal surféicbe
temsg might also be positive, both cases have been studiegyrowth is controlled by the evaporation-condensation mecha-
Figure 10 shows the structure forming from the unstablenism).

growing planar surface fog>0 [Fig. 10a)], g<O0 [Fig. For g<0 [Fig. 10b)], instead of cones one can see now
10(b)], andg=0 [Fig. 10c)]. One can see that f@>0 the  square rounded holes forming on a growing thermodynami-
pyramids are more rounded looking more like “square” cally unstable surface. Square, triangular, and spiral holes on
cones. Such rounded square pyramids as well as almo#ite crystal surface are observed in experiments when the
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crystal surface is evaporatif§5-57], and they are believed antipyramids in the course of the surface growth. For some
to be caused by the dislocations meeting the crystal surfacearticular cases thexactsolutions are found describing the
We are not aware of any experimental observations of thehape of the growing surface in the form of square and rhom-
formation of holes on a growing crystal surface. However,bic pyramids. The selection conditions for rhombic pyramids
since the considered model of surface growth is proposed faand grooves were found analytically.
the evaporation-condensation mechanism, such effects of A more general case was considered where there is a
mass or heat transfer in diffusion boundary layers near théeedback between the evolution of the crystal surface shape
crystal surfaces are conceivable. and the thermal or concentration field near the surface. Tak-
It should be noted, however, that the numerical solutionsng solidification in a hypercooled melt as an example, an
of Eq. (32) always blow up after a certain time interval. It is evolution equation is derived for the growing crystal surface
difficult to determine whether it was purely numerical insta-in the diffusion boundary-layer approximation. The resulting
bility or an intrinsic property of the equation. The latter is equation is similar to that mentioned above, but contains an
possible since the nonlinear evolution equation describingdditional term proportional to the Gaussian curvature of the
the morphologicalinstability of the uniformly propagating surface. The numerical simulations show that, depending on
solidification front in a hypercooled melt derived[iB6] and  the sign of the coefficients of this term, it yields the forma-
containing the term with the Gaussian curvature was provetion of either rounded pyramids or rounded holes on the
to exhibit the self-similar blow-up58]. This question is left growing surface.

for further investigation. The variety of solutions of the derived equations re-
sembles many structures observed in experiments on faceting
VIII. DISCUSSION AND CONCLUSIONS of thermodynamically unstable surfaces, as well as on vapor

. ] and liquid phase epitaxial growth and chemical vapor depo-
A phenomenological equation has been proposed for thgijtion, One should note that the experimental conditions un-
modeling of the formation of facets and corners during theger which the pyramidal structures were observed did not
growth of a thermodynamically unstable crystal surface ing\ways correspond to the evaporation-condensation mecha-
the case when the crystal growth is controlled by the attachnism of the surface growth. In many cases the governing
ment kinetics, evaporation-condensation is the dominanfechanism of the pyramid growth is connected with surface
transport mechanism, and the faceting is caused by stronglitfusion, slope-dependent flow of steps, elastic stresses
anisotropic surface tension. The general form of the equatiopaysed by the misfit of the crystal lattices of the substrate and
for the surface shapecontains, in particular cases, the equa-the growing solid film, etc. These mechanisms, strictly
tions which describe the faceting of growif@01], [111],  speaking, require a special consideration, and the evolution
and[110] surfaces. The equation was solved numerically forequation for the surface shape can be altered when different
these particular cases and the solutionstfan the form of  pechanisms are present. However, the derived equation has
square pyramidg001]), triangular pyramid¢[111]), as well  seyeral important properties which may be applicable to a
as rhombic pyramids and groov€d.10]) were found. The |5rger class of systems. First, it correctly reflects the symme-
nonlinear evolution of the faceted structures is similar in allyjeg of the growing crystal surface and leads to the formation
the cases, namely, after formation the pyramids or groovegg structures seen in many experiments. Second, the nonlin-
have a characteristic slope which remains unchanged whilgyy pehavior of the solutions, namely, the saturation of the
the structure coarsens in time and at the late stages obeypgramid and groove slopes, the power-law coarsening at the
power lawL(t)~t“, wherel(t) is the characteristic hori- |ate stages, as well as anisotropic coarsening for surfaces
zontal spatial scale andl is the coarsening exponent. It was ith certain symmetries, is also observed in many experi-

found thata is praCtically the same for Square and triangularments with different surface_growth mechanis[rﬁg]_
pyramids. In addition, the coarsening of th&l0] faceted

surface was observed to be anisotropic, so that the character-
?stic lengths in thex andy directions have different coarsen- ACKNOWLEDGMENTS
ing exponents.
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APPENDIX

Here we reproduce the coefficiergg( 6, #,€,,€6), defined in Eq(13), characterizing the anisotropy of the free energy of
a crystal surface with the orientatigsin #cos¢, singsing, cosd}, computed in25]:

1
cog 0)6+§[5+3 cog4 ¢)]sin(6)®],

1
ego=1+ €, | cog 0)4+Z[3+ cog4 ¢)] sin( 9)4) + €
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em:%{—4 €4—3 e[ 1—cog2 0)} sin(4 ¢) sin( 6)°,

2 e4(cos( 0)2—‘1—1[3+cos(4 $)]sin(6)?

€01= +366(CO$(0)4—%[5+3 co$4¢)]sin(0)4) sin(2 6),
1 3 , , 1 .
e20=§—§e4<cos(0)4—2 S|r(2¢)23|n(9)2+z[3+cos(4¢)]sm(a)“)

5 3 1
—Ees(coiﬁ)e’—isin(Z ¢)Zsin(0)4+§[5+3c0$4¢)]sin(0)6),
e11=§cos( 6) {4 €4+5 e[ 1—cog2 )]} sin(4 ¢) sin( )2,
3 1 ) 1 .
0z=5 "5 € 00516)4+Z[3+cos(4 $)]sin(6)*— 1+Z[3+cos(4 ¢)]) sin(2 9)2}

1 _ 3
— - €5/ COg 6)5+ g[5+3cog4 ¢)]sin( 0)6—5

2

1 . .
cog 0)2+§[5+3 cog4 ¢)] sin( 0)2) sin(2 0)2},
e30=%{e4[7—3cos{2 6)]+ 15€4 sin( 6)*} sin(4 ¢) sin( 6),
e,=3¢, ( —cog 6)°—sin(2 ¢)2+%[3+c034 )] sin( 0)2) sin(2 )
15 ) ) 1 . .
+ € ( —cog 6)*—sin(2 ¢)? sin( 6)2+§[5+3 cog4 ¢)] sin( 6)4) sin(2 6),
€1,=— 332{8 €4[1+3cog2 0)]+5€5[1+4 cog2 §)—5 cog4 )]} sin(4 ¢) sin( §),
€03= €4 ( —3c0g6)%+2 sin 0)2+£1—1[3+cos(4 $)][—2 cog 6)2+ 3 sin 9)2]) sin(2 6)

5 ) ) 1 i )
+=€gsin(2 6) ( —3cog6)*+ sin(2 0)2+§[5+3 cog4 ¢)][3 sin 6)*— sin(2 0)2]),

2
1 15 . 9. PR 15 . 4
e40=—§+e4 gcosw) —Esm(z @)<sin(H) +Z[3+cos(4¢)] 1+§sm(0) )
35 35 _ 15 , 5
+ €g §c030)6+a[5+3 cog4 ¢)]S|n(0)6+zsm(2 ¢)25|n(¢9)2(1—§sm(0)2) ,
e3=— %cos( 0) {€,[13—9 cog2 )]+ 75€g sin( 6)*} sin(4 ¢),
15 3 15 _
€=~ 7 +€a| 5 CO0)*+ 5[ 1 0S4 ¢)] [~ 1+5 cO82 6)]+ 5[ 3+Cc0og4 ¢)] sin(6)*

4

gcos( 0)4[ —23+37co$2 6)]

1+%[3+cos{4 qb)]) Sin(2 0)? |+ eg
15 ) ) 5 .
+1—6[7+17c0$2 6)] sin(2 ¢)25|n(0)2—a[5+3 cog4 ¢)][23+37 cog2 )] sin(6)*],

elgzgcos{ 0) {2 €4[—7+11co%2 0)]+15€5[ —1+9 cog2 )] sin(6)?} sin(4 ¢),
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Ca= " gtes

15 1 15 9 1
5 cod 6)*+ sin( 0)4+Z[3+cos(4 )] (cos{ 6)4+§sin( 9)4) —7| 1+ z[3+cog4 ¢>)]) sin(2 0)2}

+€6

35 75 15 .
gcos( 0)6+( - §COS( 0)2+Zsm( 0)2) sin(2 6)?

1 35 . 6. [15 , 15 S| )
+§[5+3 cos4 ¢)] §S|n(0) + Zcos{ﬁ) —§3|n(0) sin(2 6)°|;.
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