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Model for faceting in a kinetically controlled crystal growth
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A two-dimensional anisotropic nonlinear evolution equation is derived to model the formation of facets and
corners in the course of kinetically controlled crystal growth. The equation is solved numerically in particular
cases corresponding to the faceting of@001#, @111#, and@110# growing crystal surfaces, and the formation of
hill-and-valley structures in the form of square, triangular, and rhombic pyramids; grooves are observed as
well. The pyramidal slopes far from the vertices are found analytically, and in particular cases exact solutions
of the equation are found. The pyramidal structures coarsen in time, and the rate of coarsening is studied.
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I. INTRODUCTION

Anisotropic surface tension is one of the main causes
the formation of facets and corners during crystal grow
@1–3#. If the surface-tension anisotropy is large, some ori
tations of the crystal surface are unstable and missing in
crystal equilibrium shape@4,5#. The decay of an unstabl
crystal surface into faces with stable orientations is ana
gous to spinodal decomposition@6,7,2,8–10#. In the case of
the faceting transition caused, say, by a temperature ch
@11–13#, the spinodal decomposition of a crystal surface c
be described by phenomenological evolution equations
the order parameter — the local surface slope@7–9#. These
equations are similar to the Cahn-Hilliard equation@14#,
which describes the dynamics of spinodal decomposit
and their solutions exhibit the formation of hill-and-valle
structures of new crystal faces with stable orientations wh
correspond to bitangent points of the surface free ene
The structures coarsen in time with the rate depending on
mechanism of facet growth as well as on the effective dim
sion of the structure@15,8,9#.

If the faceting occurs in the course of a crystal grow
controlled by attachment kinetics, e.g., during the solidifi
tion in a hypercooled melt, the Cahn-Hilliard type evolutio
equation describing the formation of facets with stable o
entations is modified by convective nonlinear terms@16,17#
similar to those of the Burgers or Kuramoto-Sivashins
equations~see also@18#, where the Kuramoto-Sivashinsk
equation, modified by the additional term typical of th
Cahn-Hilliard equation, was derived for the evolution
steps on a crystal surface growing from the vapor in
presence of steps stiffness anisotropy!. The effect of attach-
ment kinetics destroys the bitangent construction and le
to a fast coarsening with timet at late stages; namely, it wa
found @17# that the mean spatial scale of quasi-on
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dimensional structure of grooves,L(t), grows as L(t)
;t1/2. In this case the crystal faceting is analogous to
spinodal decomposition of driven systems@19,20#.

In the present paper, the one-dimensional theory de
oped in@17# is extended and this is proposed as a pheno
enological model for faceting of thermodynamically unstab
two-dimensional surfaces of three-dimensional crystals
the course of kinetically controlled growth; for examp
when vapor deposition, gas or liquid phase epitaxial grow
etc., has the evaporation-condensation mechanism as d
nant. A similar model is also derived for solidification of
hypercooled melt in order to study the effect of the coupli
between the temperature field and the shape of the surfac
the formation of hill-and-valley structure. Our theory serv
as a generalization in the presence of the growth of phen
enological models proposed in@8,9# for the faceting of ther-
modynamically unstable crystal surfaces without net surf
growth. It also extends a wide class of models of surfa
growth processes~see@21# for review! to the growth of ther-
modynamically unstable surfaces.

II. PHENOMENOLOGICAL APPROACH

In this section an evolution equation is derived for t
kinetically controlled growth of a thermodynamically un
stable crystal surface with anisotropic surface tension usin
phenomenological approach similar to that described in@21#.
Consider a crystal growing from the other phase, which
referred to as a ‘‘liquid,’’ but which can be either a pu
melt, or a solution, or a vapor. There are two modes of cr
tal growth: slow growth, such that there is alocal thermody-
namic equilibrium at the crystal-liquid interface and th
growth is controlled by thermal or chemical diffusion in th
liquid, and fast growth, controlled by the attachment kineti
in which case there is no thermodynamic equilibrium at
crystal-liquid interface. The latter case will be address
herein.

In equilibrium if the crystal surface is planar, chemic
potentials of the liquid and the solid,m l and ms , respec-
tively, are equal,m l

e5ms
e . For the curved surface, there is

jump of the equilibrium chemical potential at the interfa
h-
803 ©1999 The American Physical Society
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due to the solid-liquid surface tension. For a crystal with
surface given byz5h(x,y), this jump is found from the
condition @5#

dF

dh
50, ~1!

whereF is the total free energy of the crystal-liquid syste
The free energyF is a sum of the bulk energies,Fs andFl ,
of the crystal and the liquid, respectively, and the interfac
energy,Fi ,

F5Fl1Fs1Fi5E ms h~x,y! dx dy2E m l h~x,y! dx dy

1E g A11u¹hu2 dx dy, ~2!

whereg is the surface tension and¹5(]x ,]y). If Eq. ~2! is
substituted into Eq.~1!, one obtains

m l
e2ms

e5Lh~ I !, ~3!

whereI is theweighedsurface tension,

I[gA11u¹hu2, ~4!

and Lh is the linear functional whose form depends
whether the surface tension is isotropic or not, and whe
edges and corners are present on the crystal surface@22,17#.
For isotropic surface tension,g5const, Lh(I )52g K,
whereK is the surface mean curvature.

Equation ~3! gives the Gibbs-Thomson relation for th
deviation of the equilibrium temperature at a curved liqu
crystal interface,Te , from the equilibrium melting tempera
ture at a planar interface,Tm . Namely, expandingm l ,s(Te)
'm l ,s(Tm)1(]m l ,s /]T)(Te2Tm), and using the thermody
namic relation]m l ,s /]T52sl ,s , where sl ,s are the liquid
and solid specific entropies, one gets

Te5TmF12
Lh~ I !

Lv
G , ~5!

whereLv5Tm(sl2ss) is the latent heat per unit volume.
Consider the case of fast growth, i.e., when the grow

occurs in the absence of thermodynamic equilibrium at
crystal-liquid interface. If there is no local thermodynam
equilibrium, the difference between the liquid and so
chemical potentials,D5m l2ms , deviates from its equilib-
rium value, De, prescribed by the liquid-crystal surface
tension,De5m l

e2ms
e5Lh(I ). For small deviations from the

equilibrium, u(D2De)/Deu!1, the local normal velocity,
vn , of the crystal surface growing into the liquid is propo
tional to the local deviation from the thermodynamic eq
librium, i.e.,
a

.

l

er

-

h
e

-

vn5k~D2De!5k@D2Lh~ I !#, ~6!

wherek is the kinetic coefficientthat generally depends o
the local molecular structure of the crystal surface and
vary with the surface orientation. In this paper the anisotro
of k is ignored andk is assumed to be constant.

Consider the surface tension to be anisotropic, i.e., to b
function of the local surface orientation. Moreover, consid
the case when some of the crystal surface orientations
thermodynamically unstable. This instability yields the fo
mation of facets divided by edges and corners on the cry
surface. The regions of edges and corners are usually con
ered to have additional energies@8,9,16,23# which can be
associated with the additional energy of interaction of st
on the crystal surface in the corner region where the grad
of the steps density is large@17#. This is equivalent to the
dependence of the surface tensiong on the local curvature
@17#, and provides for a short-wave regularization of t
faceting instability@17,16#. Thus, it is assumed that

g5g~hx ,hy ,hxx ,hxy ,hyy!. ~7!

This gives forLh(I )

Lh~ I !52
d

dx

]I

]hx
2

d

dy

]I

]hy
1

d2

dx2

]I

]hxx

1
d2

dxdy

]I

]hxy
1

d2

dy2

]I

]hyy
. ~8!

The normal velocity of the growing surface is related
the surface shape as

vn5
ht

~11u¹hu2!1/2
. ~9!

The difference between the liquid and the crystal che
cal potentials,D, which is thedriving force of the crystal
growth, is a function of temperature and concentration, an
depends on the temperature and concentration fields aro
the crystal. The latter, in turn, are often determined by
crystal shape itself, and in this caseD depends onh.

Thus, using Eqs.~8!, ~9!, ~3!, one obtains from Eq.~6! the
following evolution equation forh(x,y,t):

ht

~11u¹hu2!1/2
5k@D~h!1E~h!#, ~10!

whereE(h) is
E~h!5
]2I

]~hx!
2

hxx12
]2I

]hx]hy
hxy1

]2I

]~hy!2
hyy2

]2I

]~hxx!
2

hxxxx22
]2I

]hxy]hxx
hxxxy2S ]2I

]~hxy!
2

12
]2I

]hxx]hyy
D hxxyy

22
]2I

]hxy]hyy
hxyyy2

]2I

]~hyy!
2

hyyyy. ~11!
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There are three cases for the dependenceD(h). In the
simplest case, if one can neglect the effect of the variation
the temperature or concentration field with the crystal sh
on the difference between the liquid and crystal chem
potentials, one can simply setD(h)5const. If the variation
of temperature or concentration field is important and occ
near the crystal surface in a boundary layer whose thickn
is small in comparison with the surface radius of curvatu
the dependenceD(h) is local, and is generally represented
a nonlinear differential operator. If the characteristic scale
the temperature or concentration field is comparable with
radius of curvature of the crystal surface, then the dep
denceD(h) is nonlocal, and is usually expressed as a no
linear integro-differential operator. Below the first two cas
are examined.

III. CONSTANT DRIVING FORCE

The simplest case is whenD(h)5D05const. Consider a
crystal with the lattice having a cubic symmetry. The crys
surface tension has a cubic anisotropy, and its dependenc
the surface curvature@17# is also taken into account. Thu
following @24#, we suggest that in the frame of referen
$ex

0 ,ey
0 ,ez

0% aligned with the principal crystal direction
(@100#,@010#,@001#),

g5g0@11e4~nx
41ny

41nz
4!1e6~nx

61ny
61nz

6!1•••#1
d

2
K 2,

~12!

wherenx ,ny ,nz are the coordinates of the local unit norm
to the crystal surface that can be expressed in terms of
angular spherical coordinatesu and f as nx
5sinu cosf, ny5sinu sinf, nz5cosu, g0 is a constant
characterizing mean surface tension of the crys
e4 ,e6 , . . . are the coefficients of the surface-tension anis
ropy, and d5const.0. Consider a planar crystal surfac
growing with the orientation characterized by a normal v
tor ez5(sinu cosf, sinu sinf, cosu) and choose the othe
two basis vectors in the surface plane to beex5ez3ez

0/uez

3ez
0u, ey5ez3ex /uez3exu. In the coordinate system

$ex ,ey ,ez% the position of the crystal surface is given b
z5h(x,y,t). The weighed surface tensionI defined by Eq.
~4! can be expanded foruhxu!1, uhyu!1 as

I ~hx , hy , hxx , hxy , hyy!

5g0 (
m,n50

`

emn~e4 ,e6 ,u,f!hx
mhy

n

1
d

2
~hxx

2 12hxxhyy1hyy
2 !1•••. ~13!

Here the coefficientsei j are the functions of the direction o
the crystal growth and of the anisotropy coefficients wh
are computed in@25# and reproduced in the Appendix; th
dots denote higher-order terms.

After the transformationt→t/(kD0), Eq. ~10! reads

ht5A11u¹hu2 @11GE~h!#, ~14!

whereG5g0 /D0 .
of
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Equation ~14! has a solution corresponding to a plan
uniformly growing surface~uniformly propagating crystalli-
zation front! h5t ~the dimensional velocity of the front is
kD0). Transform to the frame moving with the planar fron
change the variableh→h1t, and expand Eq.~14! for uhtu
!1, u¹hu!1. Keeping the terms up to the second order, o
obtains

ht2
1

2
~¹h!22GE2~h!50, ~15!

whereE2 is the linear differential operator

E25¹A¹Á, A5S 2e20 e11

e11 2e02
D . ~16!

Equation~15! is an anisotropic Burgers equation. It ca
also be called the anisotropic, deterministic Kardar-Par
Zhang ~AKPZ! equation @26,27#. With noise added, this
equation describes kinetic roughening of vicinal surfac
@26#, epitaxial growth, etc.~see@21# for review!. If the ei-
genvalues of the anisotropy matrixA are positive, Eq.~15!
describes hill-and-valley structure propagating along the
terface with the amplitude determined by initial conditio
@28#. In this case the anisotropic surface tension prevents
formation of sharp corners in the course of kinetically co
trolled crystal growth@29,30#.

When at least one of the eigenvalues ofA is negative, the
crystal surface with the orientation characterized by the
isotropy matrix A is thermodynamically unstable. As dis-
cussed above, this instability yields formation of facets a
corners. However, in this case Eq.~15! is ill-posed since it
does not have a short-wave cutoff. In order to describe
dynamics of the formation of facets and corners, one ha
keep higher-order terms in the evolution equation for
crystal surface.

Keeping the terms up to the fourth order in Eq.~14!, one
obtains for the shape of the crystal surface in the mov
frame the following evolution equation:

ht5
1

2
~¹h!22

1

8
~¹h!41GS 11

1

2
~¹h!2D E2~h!1GE3~h!

1GE4~h!1O~ u¹hu6!, ~17!

where one gets from Eqs.~11! and ~13!,

E2~h!5a i j hxixj
,

E3~h!5b i jkhxixj
hxk

, ~18!

E4~h!5g i jkl hxixj
hxk

hxl
2d i jkl hxixj xkxl

,

and i , j ,k51,2, x15x, x25y, a i j , b i jk , g i jkl , andd i jkl
do not change with the permutations of their indices;
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a1152e20, a125e11, a2252e02,

b11156e30, b11252e21, b22152e12, b22256e03,
~19!

g1111512e40, g111253e31, g112252e22, g122253e13, g2222512e04,

d11115d222253d11225d/g0 , d11125d122250.

The summation over repeated indices is assumed.
The nonlinear terms (¹h)2/22(¹h)4/8 on the right-hand side of Eq.~17! stem from the projection of the local norma

velocity of the crystallization front on thez axis @cf. Eq. ~9!#. Usually, only a (¹h)2 term is present in this type of equatio
since it already describes the kinematic effect of the interfacial slope@21#. Moreover, although the two-term expansion th
includes also the (¹h)4 term is more accurate for small surface slopes, it can lead to artifacts if the slope of the inter
large. Therefore, the fourth-order kinematic term in the evolution equation is omitted. Thus, Eq.~17! is written in the following
form:

ht5
1

2
u¹hu21hxx@m111k11hx1l11hy1a11hx

21b11hy
21c11hxhy#1hxy@m121k12hx1l12hy1a12hx

21b12hy
21c12hxhy#

1hyy@m221k22hx1l22hy1a22hx
21b22hy

21c22hxhy#2n¹4h, ~20!
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where

m1152Ge20, m1252Ge11, m2252Ge02,

k1156Ge30, k1254Ge21, k2252Ge12,

l1152Ge21, l1254Ge12, l2256Ge03,

a115G~12e401e20!, a125G~6e311e11!,

a225G~2e221e02!, ~21!

b115G~2e221e20!, b125G~6e131e11!,

b225G~12e041e02!,

c1156Ge31, c1258Ge22, c2256Ge13,

n5d/D0 .

Equation~20! is related to those derived in@8,9# for the
faceting of crystal surfaces with unstable orientations wh
there is no surface growth. The coefficientsm i j characterize
the linear faceting instability of the thermodynamically u
stable surface, and the coefficients of the nonlinear te
determine the stable orientations of the appearing facets
the symmetry of the faceted structure. The linear damp
coefficientn characterizes the stabilizing effect of the ad
tional energy of edges and determines their widths~see be-
low!. The new feature is that Eq.~20! describes the faceting
instability in the course of kinetically controlled cryst
growth, which accounts for the presence of the ‘‘conve
tive’’ term 1

2 (¹h)2. On the other hand, it can be consider
as a generalization of isotropic growth models reviewed
@21# for the case of an evaporation-condensation gro
mechanism. Other mechanisms of anisotropic growth
thermodynamically stablesurfaces, such as anisotropic kine
ics and anisotropic step flow, were considered in@26,31#.
Equation~20! is now considered here to be a phenome
n

s
nd
g

-

n
h
f

-

logical model for the formation of facets and corners in t
kinetically controlled growth of athermodynamically un-
stable surface, in the simplest case of a constant driv
force.

In the next section a similar evolution equation is deriv
for a more complicated case, when the difference betw
the crystal and liquid chemical potentials is not constant,
it is locally coupled to the temperature field in a therm
diffusion boundary layer near the crystal surface. As an
ample, the solidification of a hypercooled melt is discuss

IV. SOLIDIFICATION IN A HYPERCOOLED MELT:
EFFECT OF THERMAL DIFFUSION BOUNDARY LAYER

Consider a solidification front rapidly propagatin
through a hypercooled melt, so that the rate of solidificat
is controlled by the attachment kinetics. In this case the lo
velocity, vn , of the crystal growth in the direction normal t
the surface at a given point is given by Eq.~6!. The tempera-
ture at the interface,Ti , is less than the equilibrium tempera
ture,Te , given by Eq.~5!. Taking into account the tempera
ture dependence of the chemical potentials and expan
m l ,s(Ti)'m l ,s(Tm)1(]m l ,s /]T)(Ti2Tm), one obtains from
Eq. ~6!

vn5k̄~Te2Ti !, ~22!

where k̄5kLv /Tm is the renormalized kinetic coefficien
which is assumed to be constant. Note that Eq.~22! is valid
for small deviations from the equilibrium. This is not th
case for a hypercooled melt and a nonlinear dependenc
the normal velocity on temperature likely applies@32#. How-
ever, for our purpose, in order to show the effect of t
temperature field on the formation of facets in the course
kinetically controlled growth of a thermodynamically un
stable crystal surface, it is sufficient to use Eq.~22! as an
approximation.

Choose the following scalings:xT /(k̄DT) as the unit
length,xT /(k̄DT)2 as the unit time, whereDT5Tm2T` is
the difference between the melting temperature at the pla
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front growing in the given direction,Tm , and the tempera
ture at infinity T` , andxT is the thermal diffusivity of the
melt.

Consider a plane solidification front moving with~as yet
unknown! velocity V. The shape of the deformed front in th
frame of reference moving with the velocityV is described
by z5h(x,y,t), wherez is the coordinate in the propagatio
direction of the planar front, andx andy are the coordinates
along the planar front. In the frame of reference moving w
the front @x, y, z5z2Vt2h(x,y,t)#, the kinetically con-
trolled solidification process is described by the followi
system of dimensionless equations and boundary condit
~the same notation is used for the dimensional and dim
sionless coordinates! @33#:

F t5@11~¹h!2#Fzz1¹2F1~V1ht2¹2h!Fz

22¹h•¹Fz ,

z5`, F50; ~23!

z50, S~V1ht!52Fz1¹h•~¹F2Fz¹h!, ~24!

V1ht

@11~¹h!2#1/2
512F1GE~h!, ~25!

where F5(T2T`)/DT is the dimensionless temperatur
S5Lv /(rcpDT) is the Stefan number,G5g0k̄Tm /(xTL),
andr andcp are the density and the specific heat, which
assumed to be equal for both crystal and melt. Equation~23!
describes heat transport in the liquid phase, the bound
condition~24! represents the balance of energy at the sol
fication front, and the boundary condition~25! describes the
kinetically controlled growth~22! with the equilibrium tem-
perature governed by the anisotropic Gibbs-Thomson ef
~5!. In the problem~23!–~25! heat transfer is neglected in th
solid phase~a one-side model!. The additional energy con
sumed in the phase transformation due to the creation
new interface in the growth of a crystal with curved surfa
@34,35# is also neglected.

Assume that the thickness of the thermal diffusion bou
ary layer is much smaller than the radius of curvature of
crystal surface. Thus consider perturbations of the cryst
zation front to be long wave, and apply a long-scale exp
sion to the problem~23!–~25! suggestinguhxu, uhyu ! 1.
Thus, introduce the long-scale coordinates (X,Y)
5e(x,y), e!1, the hierarchy of slow timesT2 ,T3 ,T4 , . . .
such that Tk5ekt, k52,3, . . . , and consider
h(X,Y,T2 ,T3 ,T4 , . . . )5O(1), F(z,X,Y,T2 ,T3 ,T4 , . . . )
5F (0)(z, X, Y, T2 ,T3 ,T4 , . . . )1e2F (2)(z, X, Y, T2 ,T3 ,
T4 , . . . )1 e3F (3)(z,X,Y,T2 ,T3 ,T4 , . . . )1e4F (4)(z,X,Y,
T2 ,T3 ,T4 , . . . )1 . . . ; functionsF ( i ) must decay at infin-
ity.

In the orderO(1) one obtains the following solution@33#:

F~0!5Sexp~2Vz!, V512S, ~26!

which corresponds to a planar crystallization front propag
ing with the velocityV which is a function of the undercool
ing S21. Solution~23! exists only atS,1, i.e., if the under-
cooling DT.Lv /(rcp) ~the hypercooledmelt!.
ns
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e
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From the solvability condition of the problem in the ord
O(e2) one obtains the following evolution equation forh:

hT2
2

V

2
u¹hu22E 2

s~h!50, ~27!

whereE 2
s is the linear differential operator

E 2
s52

S

V
¹21G¹A¹Á, ~28!

where the anisotropy matrixA is defined in Eq.~16! and¹
acts on the long-scale coordinates.

Equation~27! differs from Eq.~15! by the Laplacian in
the operatorE 2

s that describes the effect of the thermal fie
in the diffusion boundary layer. It can be seen that even if
eigenvalues of the anisotropy matrixA are positive and the
crystal surface is thermodynamically stable, it can beco
morphologicallyunstable for 1.S.Scr , whereScr depends
on the anisotropic surface tension@25#.

As a solvability condition in the orderO(e3), one gets the
equation

hT3
5GE3~h!, ~29!

whereE3(h) is defined by Eqs.~18! and ~19!.
However, solutions of Eq.~29! blow up, and in order to

obtain the equation describing the long-time evolution of
crystal surface, one must proceed to the fourth order,O(e4),
the solvability condition for which gives

hT4
5S4~h!2

2S

V3

]~hX ,hY!

]~X,Y!
1

S

2V
¹h•¹~¹h!22

V

8
~¹h!4

1N4~h!, ~30!

where

S452
S~V11!

V5
¹42

S~V12!

V4
G¹2E22

S

V3
G2E 2

2 ,

~31!

N4~h!5GE2~h!S S

V2
¹2h1

1

2
~¹h!2D

1
S

V2
GS ¹h•E2~¹h!2

1

2
E2„~¹h!2

…D1GE4~h!,

with E2 andE4 defined by formulas~16!, ~18!, and~19!.
Finally, going back to the initial variablesx,y,t, one can

unify Eqs.~15!, ~29!, and~30! in a single evolution equation
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ht2
V

2
~¹h!25hxx@m11

s 1k11hx1l11hy1a11
s hx

21b11hy
21c11hxhy#1hxy@m121k12hx1l12hy1a12hx

21b12hy
21c12

s hxhy#

1hyy@m22
s 1k22hx1l22hy1a22hx

21b22
s hy

21c22hxhy#1g
]~hx ,hy!

]~x,y!
2x i jkl hxixj xkxl

, ~32!

where

m11
s 52

S

V
1m11, m22

s 52
S

V
1m22, a11

s 5
S

V
1a11, b22

s 5
S

V
1b22, c12

s 5
2S

V
1c12,

x11115
S~V11!

V5
1n2

2S~V12!
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Ge201

4S

V3
G2e20

2 ,

x111252
S~V12!

2V4
Ge111

2S

V3
G2e20e11,

x11225
S~V11!

3V5
1

n

3
2

S~V12!

3V4
G~e201e02!1

4S

3V3
G2e20e02, ~33!

x122252
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Ge111

2S
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x22225
S~V11!
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1n2
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Ge021

4S

V3
G2e02

2 ,
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V2S G~e201e02!2
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the other coefficients are defined by Eq.~21!, and, as in Eq.
~20!, the term with (¹h)4 in the expansion of the norma
velocity of the crystallization front is omitted.

Equation~32! is asymptotically correct ifm i j 5O(e2) and
k i j ,l i j 5O(e). Otherwise, Eq.~32! should be considered a
a model equation for describing formation of corners a
facets caused by anisotropic surface tension in the cours
kinetically controlled crystal growth when the effect of th
thermal boundary layer near the crystal surface is import
One can see that the coefficients of Eq.~32! are determined
not only by the anisotropy of the crystal surface tension,
also by the temperature field near the crystal surface,
they depend also on the undercoolingS21.

Equation ~32! contains also a new term
g](hx ,hy)/](x,y), which is the main part of the Gaussia
curvature,G5(hxxhyy2hxy

2 )/(11u¹hu2)2, in the long-wave
approximation. This term was first seen in@36# as part of the
intrinsic equation of interfacial motion for solidification in
hypercooled melt in the case of isotropic surface tension
the isotropic case the coefficientg coincides with the corre-
sponding coefficient derived in@36#. Note that the evolution
equation derived in@36# contains also a nonlinear term pro
portional to the square of the surface curvature,K 2, which
arises if one takes into account thermal diffusion in the cr
tal ~the two-sided model!. In the one-dimensional case th
term with the Gaussian curvature disappears and Eq.~32! is
reduced to the evolution equation derived in@17#.
d
of

t.

t
.,

in

-

On the one hand, physical effects that would lead to
appearance of the term with the Gaussian curvature in
equation describing the evolution of the crystal surface
not clear. On the other hand, the Gaussian curvature is
surface invariant of the next order after the mean surf
curvature, and one might expect it to appear naturally in
expansion with respect to small surface slopes. Below i
shown that the presence of this term leads, within the fram
work of the present model, to the formation of some of t
patterns observed in crystal-growth experiments.

V. FACETING OF GROWING SURFACES WITH
DIFFERENT ORIENTATIONS WITH CONSTANT

DRIVING FORCE

In this section consider the faceting of kinetically growin
crystal surfaces with different orientations when the effe
of the temperature variations in the diffusion boundary la
can be neglected~constant driving force!. In this case the
evolution of the shape of the crystal surface is described
Eq. ~20!. Equation~20! is solved numerically for different
cases corresponding to different orientations of the grow
crystal surface. A pseudospectral method is used with
modes in both directions and periodic boundary conditio
starting from small-amplitude random initial data. Time i
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tegration is performed in the Fourier space by means of
semi-implicit Adams-Bashforth/Crank-Nicolson scheme.

A. Orientation †001‡

For the growth of the@001# surface, the anisotropy coe
ficients are computed to be

e205e025
1

2
2

3

2
e42

5

2
e6 ,

e405e0452
1

8
1

23

8
e41

35

8
e6 ,

~34!

e2252
1

4
1

15

4
e41

35

4
e6 ,

e115e305e215e125e035e315e1350.

Equation~20! then reads

ht52m ¹2h2n ¹4h1
1

2
~¹h!21hxx@a hx

21b hy
2#

1hyy@b hx
21a hy

2#1c hxyhxhy , ~35!

where

m5G~3e415e621!, a5G~33e4150e621!,
~36!

b5G~6e4115e6!, c5G~30e4170e622!,

and n.0 is defined in Eq.~21!. Consider the anisotropy
coefficientse4 ,e6 to be such thatm.0, so that the@001#
surface is thermodynamically unstable and faceting occ
The coefficientsa, b, andc characterizing the stable orien
tation of facets are taken to be positive, and the coefficienn
is taken to be small in order to get sharp corners. Equa
~35! does not have a rotational symmetry, but it is symme
with respect to the transformationsx→2x, y→2y, x
→y. This corresponds to the fourfold symmetry of the@001#
crystal surface.

Figure 1 shows the results of the numerical solution
Eq. ~35! for b/a!1, i.e., for large anisotropy. Figures 1~a!,
1~c!, 1~e!, and 1~g! exhibit the shape of the crystal surface
different times, and Figs. 1~b!, 1~d!, 1~f!, and 1~h! show the
corresponding surface contour plots. First one observes
formation of a hill-and-valley structure in the form of squa
pyramids. Note that the square shape of the pyramids ca
distorted by their interaction. Such pyramids are often s
on the@001# surfaces growing by chemical vapor depositi
@37#, liquid phase epitaxy@38#, molecular-beam epitaxy
@39,40#, etc. The pyramids with a characteristic horizon
scalel* corresponding to the most rapidly growing mo
given by the linear stability analysis,l* 52pA2n/m, are
formed in a characteristic time,t* 5m2/(4n), and they have
a characteristicslope. This slope is determined by the aniso
ropy of the surface energy as well as by the driving force
the crystal growth, i.e., the surface growth speed; the cu
tures of the pyramid edges and vertex are determined by
additional energy~see below!. After the pyramids have bee
formed, their slopes do not change any longer, but the st
e

s.

n
c

f

t

he

be
n

l

f
a-
eir

c-

ture coarsens in time forming square pyramids with lar
horizontal spatial scale. Figure 2 shows the spatial distri
tion of the slopes of the pyramids,u¹hu, for two different
times; one can see that the slopes remain unchanged d
the coarsening process. This is a typical behavior of face
instability of thermodynamically unstable surfaces, when
resulting slopes are determined by anisotropic surface
energy; in the one-dimensional case the slope of the face
determined by the well-known double-tangent construct
@1,8,9#. In the case of a kinetically controlled growth, whe
the evolution equation for the surface shape contains
nonlinear growth termu¹hu2, the double-tangent construc
tion is destroyed, but the slope of facets is still fixed a
depends on both anisotropic surface free energy and
growth rate@17#.

In our case the shapes of the pyramids far from the ve
and their final slopes can be found analytically. Conside
square pyramid oriented in such a way that the projection
its edges on the basis plane coincide withx and y axes. In
this case, the pyramidal shapeh(x,y,t) has the following
asymptotics:

h;Ay1 f ~x!1vt as y→2`, ~37!

wherev is the speed of the surface growth in thez direction
~i.e., the nonlinear correction of the unit speed of planar s
face growth in the laboratory frame!, A is the slope of the
pyramidal edges, andf (x) is a function to be determined
For x→2` one hash;Ax1 f (y)1vt. The functionf must
satisfy the compatibility condition

f 8~6`!57A ~38!

~the prime denotes differentiation!.
By substituting Eq.~37! into Eq. ~35!, one obtains the

following equation forf (x):

S 1

2
A22v D1

1

2
~ f 8!22~m2bA2! f 91a~ f 8!2f 92n f 9950.

~39!

Taking an anzatz@19#

f 85Qtanhkx, ~40!

one obtains from Eq.~39!

Q25
3~m2bA2!

a
1

3

2a
A6n

a
sgnQ, k5A a

6n
uQu,

~41!

where negativeQ corresponds to a pyramid~hill ! and posi-
tive Q corresponds to an antipyramid~hole!, respectively;k
is positive by definition. Equation~41! shows that the radius
of curvature of the pyramidal edges;Ad/g0, i.e., deter-
mined by their additional energy. From the compatibili
condition,Q25A2, one finds the slope of the square pyram
edge far from the vertex,

A656Am7A3n/~2a!

b1a/3
, ~42!
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FIG. 1. Hill-and-valley structure on a growing crystal surface in the form of square pyramids: numerical solution of Eq.~35! at different
moments of time:~a! and ~b!, t5104; ~c! and ~d! t523104; ~e! and ~f! t553104; ~g! and ~h! t5105; m50.5, n50.001, a51.0, b
50.1, c50.3. The spatial scale is arbitrary.
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PRE 59 811MODEL FOR FACETING IN A KINETICALLY . . .
whereA1 corresponds to hills andA2 corresponds to holes
Thus, the shape of a square pyramid (h1) or antipyramid
(h2) far from the vertex, fory→2`, is

h6~x,y,t !;A6y7A6n

a
lnFcoshSA a

6n
uA6u xD G1~A6!2 t.

~43!

One can see that the slopes of pyramids depend not
on the anisotropic surface free energy characterized by
coefficientsm,a,b ~as it would be in the case of a facetin
transition of a thermodynamically unstable surface in the
sence of kinetically controlled growth!, but also on the driv-
ing force of the crystal growth, i.e., on the surface grow
rate. This can be easily seen if one rewrites Eq.~42! for the
asymptotic slope of the pyramid~antipyramid! edge in the
dimensional variables,

~A6!25
m̄7D0A3d/~2āg0

3!

b̄1ā/3
, ~44!

where m̄,ā,b̄ are the respective coefficients defined in E
~36! divided byG, i.e., the functions of the anisotropy coe

FIG. 1 ~Continued!.
ly
he

-

.

ficients e4 and e6 only, D0 is the surface-growth driving
force, andd is the coefficient characterizing the addition
energy of the pyramid edges and vertex defined in Eq.~12!.
If the thermodynamically unstable surface does not gr
(D050), the slopes of the facets that appear when the e
librium is restored after the faceting transition are determin
by the anisotropic surface free energy only, by means of
double-tangent construction. In our case adynamical slope.
This effect may be reminiscent of the phenomenon of a
namic contact angle in a moving liquid-solid contact lin
@41,42#. It is important that the dynamical slopes of pyrami
and antipyramids bedifferent: the slope of a hill issmaller
than the slope of a hole. This is due to theconvectiveeffect
of the kinetically controlled surface growth discussed fo
one-dimensional case in@17#: in the case of a concave su
face ~hole!, the kinetically controlled growth tends to pro
duce caustics and steepens the slope, while it tends
smoothe the sharp corners and to reduce the slope in the
of a convex surface~hills!. At the same time, the correctio
to the dimensionless unit growth speed of a planar surfac
the laboratory frame,v65(A6)2, is smaller for pyramids
and larger for antipyramids. Thus, faces of antipyram
propagate in thez direction faster than those of pyramid
This leads to the asymmetry between the pyramids and a
pyramids that can be seen in Fig. 1. At the beginning of
structure formation both pyramids and antipyramids
present, but in the course of the surface growth antipyram
‘‘grow out’’ and gradually disappear. A convective nature
the pyramid selection mechanism can be understood bett
one considers infinitesimal perturbations of an almost pla
pyramid face far from the vertex, where the surface is loca

described ash5h0;A(x1y). Indeed, takingh5h01h̃,

where the infinitesimal perturbationh̃;exp@st1i(axx
1ayy)#, where s in the perturbation growth rate an
(ax ,ay) is the perturbation wave vector, one obtains t
following dispersion relation:

s5a2@m2A2~a1b!#2caxayA
22na41 iA~ax1ay!,

~45!

wherea25ax
21ay

2 . The last~imaginary! term on the right-
hand side of the dispersion relation~45! shows that the dis-
turbances of a pyramid~hill ! travel from the vertex to the
periphery, while the disturbances of an antipyramid mo
from the periphery to the vertex. Thus pyramids are sour
of the perturbations and antipyramids are sinks. This ac
mulation of the perturbations descending from the pyram
into antipyramids eventually leads the disappearance of
latter.

Note that since the slopes of the pyramids do not chan
their heights increase proportionally to their horizontal sp
tial scale in the course of the surface growth. The sim
behavior caused by the existence of a ‘‘magic’’ slope
maining constant during the coarsening of square pyram
mounds was observed experimentally in molecular-beam
itaxial growth@43# and reproduced in numerical simulation
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FIG. 2. Spatial distribution of the mean surface slope,u¹hu, corresponding to the numerical solution of Eq.~35! shown in Fig. 1, at two
different times: a,t5104; b, t5105. The spatial scale is arbitrary.
g
pe

o-
es or
-

r

of the model proposed in@31# for the growth and coarsenin
of pyramidal structures caused by an anisotropic slo
dependent step current.

It should also be mentioned that ifa'b in Eq. ~35!, the
main nonlinear terms in Eq.~35! become almost rotationally
invariant and the solution of Eq.~35! exhibits a labyrinthian
hill-and-valley pattern similar to that produced by a tw
dimensional isotropic Cahn-Hilliard equation@44#. More-
over, as one can see from Eqs.~42! and~44!, solutions in the
form of pyramids do not exist ifm,A3n/(2a), i.e., if
- D0.m̄A2āg0
3

3d
. ~46!

This corresponds to the case when the energy of the edg
the growth driving force is very large. Our preliminary nu
merical simulations of Eq.~35! in this case show an irregula
pattern. We argue that the condition~46! may be related to
the roughening transition.
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B. Orientation †111‡

For the growth of the@111# surface, the anisotropy coe
ficients are

e205e025
1

2
1

3

2
e41

25

18
e6 ,

e405e0452
1

72
~91135e4185e6!,

e2252
1

4S 1115e41
85

9
e6D , ~47!

e21523e03522A2S e41
5

3
e6D ,

e115e125e305e315e1350,

and Eq.~20! reads

ht5
1

2
~¹h!22m8 ¹2h2n ¹4h1hxx @d8 hy1a8 hx

21b8 hy
2#

1hyy @2d8 hy1b8 hx
21a8 hy

2#

12hxy @d8 hx1~a82b8! hxhy#, ~48!

where

m852GS 113e41
25

9
e6D ,

a852GS 1121e41
115

9
e6D ,

b852GS 6e41
10

3
e6D ,

d8524A2G~e415e6/3!.

It can be easily checked that Eq.~48! is invariant with re-
spect to rotations at the angles 2pn/3. This corresponds to
the threefold symmetry of a@111# surface of a cubic crystal
As above, consider the surface to be thermodynamically
stable, so one choosese4 and e6 in such a way thatm8
.0; a andb are taken to be positive.

Figure 3 shows the numerical solution of Eq.~48! in a
rectangular box with they/x aspect ratio equal toA3/2. This
aspect ratio was chosen in order to diminish the effect of
rectangular boundaries, breaking the threefold rotatio
symmetry, on the formation of the faceted structure. One
see the formation of the faceted structure consisting of tr
gular pyramids. Figures 3~a!, 3~c!, and 3~e! exhibit the shape
of the crystal surface at different moments of time, and F
3~b!, 3~d!, and 3~f! show the corresponding surface conto
plots. At the initial stages the pyramids are slightly elonga
in the y direction due to the effect of the boundaries, a
their shape is distorted by mutual interaction. At the la
stages the bases of the pyramids become equilateral.
structure of triangular pyramids is observed in experime
on the faceting of unstable@111# surfaces caused by therm
n-

e
al
n
-

.
r
d

e
ch

ts

annealing@11–13#, during the growth of Si~111! by gas
phase epitaxy at high temperatures and by chemical va
deposition@45,46#, as well as during liquid phase epitaxia
growth of LiNbO3 thick single-crystal films@47#. Evolution
of the triangular pyramidal faceted structure on a grow
@111# surface is the same as described above for the face
of the growing @001# surface: after the structure with th
horizontal length scale corresponding to the most unsta
mode has been established, it coarsens with time; the p
mid slopes remain unchanged. Note that Eq.~48! is invariant
with respect to transformationd→2d, y→2y, and the
pyramid orientation depends on the sign of the coefficiend.
The structure with pyramids oriented opposite to tho
shown in Fig. 3 is shown in Fig. 4.

As in the case of square pyramids considered in the p
ceding subsection, the shape of the triangular pyramids w
equilateral bases and their final slopes far from the verti
can be found analytically in a similar way. Indeed, consid
a triangular pyramid with an equilateral basis oriented
such a way that the projection of one of its edges on the b
plane coincides with the negative part of they axis ~i.e.,
oriented as the pyramids shown in Fig. 4!. The shape of the
pyramid far from the vertex fory→2` can be described by
Eq. ~37!. A simple geometric consideration of the triangul
pyramid with equilateral basis gives the following compa
ibility condition for the functionf (x) in this case:

f 8~6`!57A3A. ~49!

Substitute Eq.~37! into Eq. ~48!, and obtain the following
equation forf (x):

S 1

2
A22v D1

1

2
~ f 8!22~m2d8A2b8A2! f 9

1a8~ f 8!2f 92n f 9950. ~50!

Taking the same anzatz~40! for f 8, one obtains from Eq.
~50!

Q25
3~m2d8A2b8A2!

a8
1

3

2a8
A6n

a8
sgnQ,

k5Aa8

6n
uQu, ~51!

where, as in the case considered in the preceding subsec
negativeQ corresponds to a pyramid and positiveQ corre-
sponds to an antipyramid, respectively. From the compati
ity condition,Q253A2, one obtains a quadratic equation f
the slope of the triangular pyramid edge far from the vert
A stable solution of this equation is determined by the s
of the coefficientd8. Namely,
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FIG. 3. Hill-and-valley structure on a growing crystal surface in the form of triangular pyramids: numerical solution of Eq.~48! at
different moments of time:~a! and ~b! t5104; ~c! and ~d! t543104; ~e! and ~f! t5105; m850.5, n50.001, a851.0, b850.1, c8
51.8, d850.5. The spatial scale is arbitrary.
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FIG. 4. Surface structure of triangular pyramids with the orientation opposite to that shown in Fig. 3, corresponding to a n
coefficientd8 in Eq. ~48! (m850.5, n50.001, a851.0, b850.1, c851.8, d8520.5) for t5104. The spatial scale is arbitrary.
g
di
ua
ds

ca

e
nsid-
A65

2d82A~d8!214~a81b8!@m87A3n/~2a8!#

2~a81b8!

for d8.0, ~52!

A65
2d81A~d8!214~a81b8!@m87A3n/~2a8!#

2~a81b8!

for d8,0, ~53!

where A6 correspond to the hills (A1) and holes (A2),
respectively. Thus, the shape of the triangular pyramids~an-
tipyramids! for y→2` is

h6~x,y,t !;A6y7A6n

a
lnFcoshSA a

2n
uA6u xD G

12~A6!2 t. ~54!

One can see that the parameters and evolution of trian
lar pyramids and antipyramids are distinguished, as
cussed in the preceding subsection for the case of sq
pyramids. The solution in the form of triangular pyrami
exists if (d8)214(a81b8)@m82A3n/(2a8)#.0, i.e., as in
the case of the square pyramids, the triangular pyramids
u-
s-
re

n-

not form for largen corresponding to either very fast surfac
growth or to a large edge energy; these cases are not co
ered here.

C. Orientation †110‡

For this orientation one has

e205
1

2
1

9

4
e41

25

8
e6 , e025

1

2
2

3

4
e42

5

8
e6 ,

e22,52
1

4
2

21

8
e42

115

16
e6 ,

e4052
1

8
2

49

16
e42

145

32
e6 , e0452

1

8
1

31

16
e41

35

32
e6 ,

e115e215e125e035e305e315e1350. ~55!

Equation~20! in this case reads

ht5
1

2
~¹h!21hxx @2mx1ax hx

21bx hy
2#

1hyy@2my1ay hx
21by hy

2#1 c̃ hxyhxhy2n ¹4h,

~56!

where
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mx52GS 9

2
e41

25

4
e611D , my5GS 3

2
e41

5

4
e621D ,

ax52GS 69

2
e41

205

4
e611D ,

bx52GS 3e41
45

4
e6D ,

ay52G~6e4115e6!, by5GS 45

2
e41

25

2
e621D ,

c̃52GS 21e41
115

2
e612D .

Here consider the anisotropy coefficientse4 and e6 to be
such that the@110# surface is thermodynamically unstable
both x and y directions, i.e.,mx.0 and my.0. The other
coefficients are also taken to be positive in our simulatio

Equation~56! is invariant with respect to transformation
x→2x, y→2y, but it is not invariant with respect to th
transformationx→y. This reflects the twofold symmetry o
the @110# surface. Thus one can expect the faceting insta
ity of this surface to result in the structure of either rhomb
pyramids or grooves. One observes that the resulting st
ture depends on the degree of the anisotropy. Figure 5 sh
the evolution of the faceted surface in the case when
asymmetry between thex andy directions is not very large
but the anisotropy is still large so thatbx /ax anday /by are
small. Figures 5~a!, 5~c!, 5~e!, and 5~g! show the crystal sur-
face shape at different moments of time, and Figs. 5~b!, 5~d!,
5~f!, and 5~h! exhibit the corresponding surface conto
plots. First one observes the formation of a system
grooves@Figs. 5~a! and 5~b!#. Later, the grooves decay int
islands in the form of rhombic pyramids@Figs. 5~c! and
5~d!#. Similar rhombic pyramids are observed, e.g., dur
the epitaxial growth of an In-Ga-As alloy on the InP~001!
surface@48#. The rhombic pyramids coarsen in time@Figs.
5~e!–5~h!#, but while the shapes of the square and triangu
pyramids remain self-similar during the coarsening,
coarsening rates of the rhombic pyramids are different in
x andy directions. Namely, one observes that the coarsen
in the y direction goes a little faster, so that the rhomb
pyramids gradually thicken in they direction ~see Sec. VI!
and tend to a limiting rhombic shape that can be found a
lytically for regions far from the vertex in a way similar t
that described in the preceding subsections for the square
triangular pyramids. Indeed, consider a rhombic pyramid
ented in such a way that the projections of its edges on
basis plane coincide with thex and y axes. For the asymp
totics of the pyramid shape far from the vertex one has

h;Ax1 f ~y!1vt, f 8~6`!57B as x→2`,
~57!

h;By1g~x!1vt, g8~6`!57A as y→2`.

Taking f 8(y)5Qytanhkyy, g8(x)5Qxtanhkxx, one obtains
from Eq. ~56!
.

l-

c-
ws
e

f

g

r
e
e
g

a-

nd
i-
e

ky5Aby

6n
uQyu, Qy

25
3~my2ayA

2!

by
1

3

2by
A6n

by
sgnQy ,

kx5Aax

6n
uQxu, Qx

25
3~mx2bxB

2!

ax
1

3

2ax
A6n

ax
sgnQx ,

~58!

where, as before, negative~positive! Qx,y correspond to
pyramids ~antipyramids!. The compatibility conditionsQx

2

5A2, Qy
25B2 yield a system of linear equations for squar

of the limiting slopes of the pyramid edges in thex and y
directions,A2 andB2, respectively, whose solution gives

~A6!25
9bx@my7A3n/~2by!#23by@mx7A3n/~2ax!#

9aybx2axby
,

~59!

~B6!25
9ay@mx7A3n/~2ax!#23ax@my7A3n/~2by!#

9aybx2axby
.

The superscripts1 and2 correspond to pyramids and ant
pyramids, respectively. Thus the functionsf (y) and g(x)
describing the asymptotic shape of the rhombic pyramids
Eqs.~57! are

f 6~y!57A6n

by
lnFcoshSAby

6n
uB6u xD G ,

~60!

g6~x!57A6n

ax
lnFcoshSAax

6n
uA6U xD G ,

and the nonlinear correction for the growth speedv6

5 1
2 @(A6)21(B6)2#. Obviously, the solution for the squar

pyramids described above is the particular case of the rh
bic pyramids formx5my5m, ax5by5a, ay5bx5b, A
5B.

Note that Eqs.~59! have real solutions provided the righ
hand sides of the two equations are positive. Thus, fon
!1, the rhombic pyramids can be formed if

9bxmy23bymx

9aybx2axby
.0,

9aymx23axmy

9aybx2axby
.0. ~61!

Otherwise, one obtains the solution in the form of groov
rather than rhombic pyramids. Numerical solution of E
~56! in this case is shown in Fig. 6@Figs. 6~a!, 6~c!, 6~e!, and
6~g! show the crystal surface shape at different times, a
Figs. 6~b!, 6~d!, 6~f!, and 6~h! show the corresponding sur
face contour plots#. The grooves do not decay into pyramid
islands, and in a finite periodic box the structure ultimate
becomes quasi-one-dimensional. The groove slope does
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FIG. 5. Hill-and-valley structure on a growing crystal surface in the form of rhombic pyramids: numerical solution of Eq.~56! at different
moments of time:~a! and ~b! t523103; ~c! and ~d! t5104; ~e! and ~f! t533104; ~g! and ~h! 105; mx50.3, my50.5, ax51.0, bx

50.1, ay50.2, by50.8, c̃50.3, n50.001. The spatial scale is arbitrary.
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change during the coarsening. Formation and coarsenin
the system of grooves similar to those shown in Fig. 6
observed, e.g., during the faceting of thermodynamically
stable~0001! and$101̄0% surfaces of Al2O3 caused by ther-
mal annealing@49#, as well as in the course of unstable h
moepitaxial growth of GaAs~001! @50#. The coarsening rate
in the x and y directions differ more than in the case
rhombic pyramids. The anisotropy of the coarsening rate
studied in Sec. VI.

D. Exact solutions

In the preceding subsections we have numerically stud
the formation of square and rhombic pyramids in the ca
when eitherb/a or bx /ax anday /by were numerically small
~large anisotropy!. It turns out that ifb50 in Eq. ~35!, or if
bx5ay50 in Eq. ~56!, it is possible to construct theexact
solutions of Eqs.~35! and~56!. First consider the latter cas
which is more general. In this case one can seek for
solution of Eq.~56! in the form

h~x,y,t !5 f ~x!1g~y!1vt. ~62!

Substituting Eq.~62! in Eq. ~56! one obtains two decouple
equations forf and g whose solutions are described abov

FIG. 5 ~Continued!.
of
e
-

is

d
s

e

.

Thus, one obtains the following exact solution of Eq.~56! for
bx5ay50 in the form of a rhombic pyramid or antipyramid

h6~x,y,t !57A6n

ax
ln~coshkx

6x!7A6n

by
ln~coshky

6y!

1v6t,
~63!

kx
65Amx

2n
7A 3

8nax

, ky
65Amy

2n
7A 3

8nby

,

v65
3

2S mx

ax
1

my

by
D7

3A6n

4
~ax

23/21by
23/2!,

where the superscript1 corresponds to pyramids and2 to
antipyramids. The exact solution~63! in the form of a rhom-
bic pyramid is shown in Fig. 7~a!.

The exact solution in the form of square pyramids is o
tained from Eq.~63! by setting mx5my5m, ax5by5a.
One gets

h6~x,y,t !57A6n

a
ln~coshk6x coshk6y!1v6t,

~64!

k65Am

2n
7A 3

8na
, v65

3

a
S m7A3n

2a
D .

The exact solution~64! in the form of a square pyramid i
shown in Fig. 7~b!.

VI. COARSENING RATE

In many systems the coarsening of the structures resu
from instabilities is known to go with timet at late stages
obeying a power law, i.e.,L(t);ta, whereL is the charac-
teristic length scale of the structure@51,21# and a is the
coarsening exponent. These have been measured for
growth of thermodynamically unstable@001#, @111#, and
@110# surfaces. Square and triangular pyramids correspo
ing to the faceting of growing@001# and @111# surfaces, re-
spectively, remain self-similar during the coarsening, so t
the coarsening rates in thex andy directions were the same
For this case the characteristic scale of the structure
computed in two ways:L1(t)5N21( i 51

N Zi
21(t), whereN is

the number of collocation points (N5128 in our case! and
Zi(t) is the number of zeros of the functionh(x,yi ,t) on the
i th y layer, andL2(t)5N1(t)/N0(t), whereN1 is the num-
ber of spatial points whereh(x,y,t)2h̄(t).0 andN0 is the
number of points whereh2h̄50 (h̄ is the spatially mean
value ofh which is equal to the zeroth Fourier mode!. It was
found thatL1(t) andL2(t) are proportional to each other an
thus both measures of the characteristic spatial scale of
structure are equivalent.

Figure 8 shows the growth of the characteristic spa
scale of square and triangular pyramids~squares and tri-
angles, respectively!. The results with random initial data ar
averaged over ten realizations. One can see the formatio
the initial periodic structure after the characteristic time
linear instability, and the transition to the power-law coa
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FIG. 6. Hill-and-valley structure on a growing crystal surface in the form of grooves: numerical solution of Eq.~56! at different moments
of time: ~a! and ~b! t523103; ~c! and ~d! t523104; ~e! and ~f! t543104; ~g! and ~h! t5105; mx50.5, my50.1, ax51.0, bx

50.1, ay50.2, by50.8, c̃50.3, n50.001. The spatial scale is arbitrary.
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ening at the late stage shown in detail in the inset. The co
ening exponenta was measured to be 0.47 for square py
mids and 0.45 for triangular pyramids, i.e., practically t
same. Similar exponents, 0.4 and 0.4260.4, were observed
in experiments on coarsening of square pyramids in ho
layer and multilayer epitaxial growth of Ge~001! @39,40#.
The exponents obtained in the computations are consider
larger than those corresponding to the coarsening of fac
thermodynamically unstable surfaces when there isno kineti-
cally controlled surface growth. In this case the coarsen
rate depends on the mechanism of the surface reconstruc
and theoretical predictions give 1/4 for the evaporatio
condensation mechanism and 1/6 for the surface-diffus
mechanism@21#, which is confirmed by numerical computa
tions @9#. Slow coarsening with the exponents 1/4 and 1
was also obtained, theoretically and experimentally, in d
ferent problems of epitaxial growth and molecular-beam
itaxy ~see@21# for review!. The present exponents are clos
to that predicted by Mullins for the evaporation-condensat
mechanism, i.e., 1/2@15#. One can attribute the fast coarse
ing in our case to the convective effect of kinetics whi
governs the growth of the crystal surface. Convective effe
are known to increase the rate of coarsening in various p
lems of spinodal decomposition in phase separating syst
~see@51# for review!.

FIG. 6 ~Continued!.
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As has been already mentioned, it was found that the
of coarsening of the faceted structure resulting from the fa
ting instability of the growing@110# surface is anisotropic
i.e., the growth rates of the structure spatial scales are dif
ent inx andy directions. For this case the length scales^Lx&
and ^Ly& in the x and y directions, respectively, are sep
rately measured aŝLx,y&5N21( i 51

N 2(nx ,ny) i
1/Zi , where

(nx) i
1@(ny) i

1# are the number of points in thei th x(y) layer

where h2h̄ is positive, andZi is the number of zeros o
h2h̄ in the i th x or y layer. Figure 9 shows the coarsenin
of anisotropic faceted structures for the two cases studie
the preceding section, namely, for rhombic pyramids~dia-
monds! and for grooves~circles!. The two curves for each
structure correspond to thex andy directions in the surface
plane; the results are averaged over ten realizations with
ferent random initial data. The power-law coarsening regi
is shown in detail in the inset. The coarsening expone
were found to be 0.61 and 0.41 for rhombic pyramids a
0.57 and 0.23 for grooves. Note that anisotropic facets co
ening was studied theoretically@52# and experimentally@53#
for the case of the faceting transition of the therma
quenched crystal surface when the rate-limiting mechan
of facet growth was collisions between step bunches. T
coarsening exponents were computed to be 1/6 and 1/2
the grooves’ characteristic width and length, respective
This was confirmed in recent experiments with the facet
of the Si~113! surface, for which the exponents for th
groove coarsening were found to be 0.164 for the groo
width and 0.44 for the groove length@53#. In our case the

FIG. 7. ~a! Exact solution~63! of Eq. ~56! for mx50.5, my

50.1, ax51.0, by50.4, n50.001, ay5bx50, in the form of a
rhombic pyramid. ~b! Exact solution ~64! of Eq. ~35! for m
50.5, a51.0, n50.001, b50, in the form of a square pyramid
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FIG. 8. The increase of the mean horizontal spatial scale~in arbitrary units! of the faceted surface structures in the form of squ
~squares! and triangular~triangles! pyramids corresponding to the numerical solutions of Eqs.~35! and ~48!, respectively. The inset show
the power-law regime at the late stage of the coarsening.
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groove length also grows much faster in the beginning of
groove formation, but in the power-law regime it grow
slower than the groove widths, approaching the limit det
mined by the computational domain. In the power-law
gime the coarsening exponents are found to bea50.23 for
groove length anda50.57 for groove width. After the
groove length has reached the computational domain li
the structure becomes effectively one-dimensional and
coarsening is governed by the exponent characterizing
growth of the groove width. This exponent, in the conside
e

r-
-

it,
ts
he
d

highly anisotropic case, is close to the value of 1/2 found
the one-dimensional case@17#.

VII. EFFECT OF THERMAL DIFFUSION BOUNDARY
LAYER

In order to study the effect of the thermal diffusio
boundary layer on the faceting instability of a growing the
modynamically unstable crystal surface, one can solve
~32! numerically for the case of the@001# surface. In this
he
FIG. 9. The increase of the mean horizontal spatial scales~in arbitrary units! in x andy directions of the faceted surface structures in t
form of rhombic pyramids~rhombs! and grooves~circles! corresponding to the numerical solutions of Eq.~56!. The inset shows the
power-law regime at the late stage of the coarsening.
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FIG. 10. Solutions of Eq.~32! corresponding to the growth of the unstable@001# surface form11
s 5m22

s 50.5, a11
s 5b22

s 51.0, b115a22

50.1, c12
s 50.3, x11115x222253x112250.05, and different values ofg: ~a! g50.05,~b! g520.05,~c! g50.0. Other coefficients in Eq.~32!

are equal to zero. The spatial scale is arbitrary.
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case Eq.~32! differs from Eq.~35! only by the term with the
Gaussian curvature,g ](hx ,hy)/](x,y), on the right-hand
side. It can be seen for the solidification of a hypercoo
melt in a thermodynamically unstable direction that the
efficient g is negative. However, since for some other s
temsg might also be positive, both cases have been stud

Figure 10 shows the structure forming from the unsta
growing planar surface forg.0 @Fig. 10~a!#, g,0 @Fig.
10~b!#, andg50 @Fig. 10~c!#. One can see that forg.0 the
pyramids are more rounded looking more like ‘‘squar
cones. Such rounded square pyramids as well as alm
d
-
-
d.
e

st

rounded cones are observed in some epitaxial growth
tems @54#. It is thus conceivable that the rounding of th
pyramid edges in the course of epitaxial growth can
caused by the effect of interaction between the therma
concentration field and the shape of the crystal surface~if the
growth is controlled by the evaporation-condensation mec
nism!.

For g,0 @Fig. 10~b!#, instead of cones one can see no
square rounded holes forming on a growing thermodyna
cally unstable surface. Square, triangular, and spiral hole
the crystal surface are observed in experiments when
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crystal surface is evaporating@55–57#, and they are believed
to be caused by the dislocations meeting the crystal surf
We are not aware of any experimental observations of
formation of holes on a growing crystal surface. Howev
since the considered model of surface growth is proposed
the evaporation-condensation mechanism, such effect
mass or heat transfer in diffusion boundary layers near
crystal surfaces are conceivable.

It should be noted, however, that the numerical solutio
of Eq. ~32! always blow up after a certain time interval. It
difficult to determine whether it was purely numerical ins
bility or an intrinsic property of the equation. The latter
possible since the nonlinear evolution equation describ
the morphological instability of the uniformly propagating
solidification front in a hypercooled melt derived in@36# and
containing the term with the Gaussian curvature was pro
to exhibit the self-similar blow-up@58#. This question is left
for further investigation.

VIII. DISCUSSION AND CONCLUSIONS

A phenomenological equation has been proposed for
modeling of the formation of facets and corners during
growth of a thermodynamically unstable crystal surface
the case when the crystal growth is controlled by the atta
ment kinetics, evaporation-condensation is the domin
transport mechanism, and the faceting is caused by stro
anisotropic surface tension. The general form of the equa
for the surface shapeh contains, in particular cases, the equ
tions which describe the faceting of growing@001#, @111#,
and@110# surfaces. The equation was solved numerically
these particular cases and the solutions forh in the form of
square pyramids~@001#!, triangular pyramids~@111#!, as well
as rhombic pyramids and grooves~@110#! were found. The
nonlinear evolution of the faceted structures is similar in
the cases, namely, after formation the pyramids or groo
have a characteristic slope which remains unchanged w
the structure coarsens in time and at the late stages ob
power lawL(t);ta, whereL(t) is the characteristic hori
zontal spatial scale anda is the coarsening exponent. It wa
found thata is practically the same for square and triangu
pyramids. In addition, the coarsening of the@110# faceted
surface was observed to be anisotropic, so that the chara
istic lengths in thex andy directions have different coarsen
ing exponents.

The final slope of the pyramids far from the vertex w
found analytically. It was shown that, due to the effect of t
attachment kinetics, thedynamicslope of the pyramid is de
termined by both the anisotropic surface tension and
growth driving force. The convective nature of this effe
makes the slope of the pyramids~hills! smaller than the slope
of the antipyramids~holes!, and leads to the elimination o
e.
e
,
or
of
e

s

-

g

d

e
e
n
h-
nt
ly
n

-

r

ll
s

ile
y a

r

er-

e
t

antipyramids in the course of the surface growth. For so
particular cases theexactsolutions are found describing th
shape of the growing surface in the form of square and rho
bic pyramids. The selection conditions for rhombic pyram
and grooves were found analytically.

A more general case was considered where there
feedback between the evolution of the crystal surface sh
and the thermal or concentration field near the surface. T
ing solidification in a hypercooled melt as an example,
evolution equation is derived for the growing crystal surfa
in the diffusion boundary-layer approximation. The resulti
equation is similar to that mentioned above, but contains
additional term proportional to the Gaussian curvature of
surface. The numerical simulations show that, depending
the sign of the coefficients of this term, it yields the form
tion of either rounded pyramids or rounded holes on
growing surface.

The variety of solutions of the derived equations r
sembles many structures observed in experiments on face
of thermodynamically unstable surfaces, as well as on va
and liquid phase epitaxial growth and chemical vapor de
sition. One should note that the experimental conditions
der which the pyramidal structures were observed did
always correspond to the evaporation-condensation me
nism of the surface growth. In many cases the govern
mechanism of the pyramid growth is connected with surfa
diffusion, slope-dependent flow of steps, elastic stres
caused by the misfit of the crystal lattices of the substrate
the growing solid film, etc. These mechanisms, stric
speaking, require a special consideration, and the evolu
equation for the surface shape can be altered when diffe
mechanisms are present. However, the derived equation
several important properties which may be applicable t
larger class of systems. First, it correctly reflects the symm
tries of the growing crystal surface and leads to the format
of structures seen in many experiments. Second, the no
ear behavior of the solutions, namely, the saturation of
pyramid and groove slopes, the power-law coarsening at
late stages, as well as anisotropic coarsening for surfa
with certain symmetries, is also observed in many exp
ments with different surface-growth mechanisms@32#.
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APPENDIX

Here we reproduce the coefficientsei j (u,f,e4 ,e6), defined in Eq.~13!, characterizing the anisotropy of the free energy
a crystal surface with the orientation$sinu cosf, sinu sinf, cosu%, computed in@25#:

e00511e4 S cos~u!41
1

4
@31cos~4 f!# sin~u!4D1e6 S cos~u!61

1

8
@513 cos~4 f!# sin~u!6D ,
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e105
1

4
$24 e423 e6 @12cos~2 u!#% sin~4 f! sin~u!3,

e015F2 e4 S cos~u!22
1

4
@31cos~4 f!# sin~u!2D13 e6 S cos~u!42

1

8
@513 cos~4 f!# sin~u!4D G sin~2 u!,

e205
1

2
2

3

2
e4 S cos~u!422 sin~2 f!2 sin~u!21

1

4
@31cos~4 f!# sin~u!4D

2
5

2
e6 S cos~u!62

3

2
sin~2 f!2 sin~u!41

1

8
@513 cos~4 f!# sin~u!6D ,

e115
3

4
cos~u! $4 e415 e6@12cos~2 u!#% sin~4 f! sin~u!2,

e025
1

2
2

3

2
e4 Fcos~u!41

1

4
@31cos~4 f!# sin~u!42S 11

1

4
@31cos~4 f!# D sin~2 u!2G

2
5

2
e6 Fcos~u!61

1

8
@513 cos~4 f!# sin~u!62

3

2 S cos~u!21
1

8
@513 cos~4 f!# sin~u!2D sin~2 u!2G ,

e305
1

4
$e4 @723cos~2 u!#115e6 sin~u!4% sin~4 f! sin~u!,

e2153 e4 S 2cos~u!22sin~2 f!21
1

4
@31cos~4 f!# sin~u!2D sin~2 u!

1
15

2
e6 S 2cos~u!42sin~2 f!2 sin~u!21

1

8
@513 cos~4 f!# sin~u!4D sin~2 u!,

e1252
3

32
$8 e4 @113 cos~2 u!#15 e6 @114 cos~2 u!25 cos~4 u!#% sin~4 f! sin~u!,

e035e4 S 23 cos~u!212 sin~u!21
1

4
@31cos~4 f!# @22 cos~u!213 sin~u!2# D sin~2 u!

1
5

2
e6 sin~2 u! S 23 cos~u!41 sin~2 u!21

1

8
@513 cos~4 f!# @3 sin~u!42 sin~2 u!2# D ,

e4052
1

8
1e4 F15

8
cos~u!42

9

2
sin~2 f!2 sin~u!21

1

4
@31cos~4 f!# S 11

15

8
sin~u!4D G

1e6 F35

8
cos~u!61

35

64
@513 cos~4 f!# sin~u!61

15

4
sin~2 f!2 sin~u!2 S 12

5

2
sin~u!2D G ,

e3152
1

4
cos~u! $e4 @1329 cos~2 u!#175e6 sin~u!4% sin~4 f!,

e2252
1

4
1e4 F15

4
cos~u!41

3

8
@12cos~4 f!# @2115 cos~2 u!#1

15

16
@31cos~4 f!# sin~u!4

2
9

4 S 11
1

4
@31cos~4 f!# D sin~2 u!2G1e6 S 5

8
cos~u!4 @223137 cos~2 u!#

1
15

16
@7117 cos~2 u!# sin~2 f!2 sin~u!22

5

64
@513 cos~4 f!# @23137 cos~2 u!# sin~u!4D ,

e135
1

8
cos~u! $2 e4 @27111 cos~2 u!#115e6 @2119 cos~2 u!# sin~u!2% sin~4 f!,
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e0452
1

8
1e4 F15

8
cos~u!41sin~u!41

1

4
@31cos~4 f!# S cos~u!41

15

8
sin~u!4D2

9

4 S 11
1

4
@31cos~4 f!# D sin~2 u!2G

1e6 H 35

8
cos~u!61S 2

75

8
cos~u!21

15

4
sin~u!2D sin~2 u!2

1
1

8
@513 cos~4 f!# F35

8
sin~u!61S 15

4
cos~u!22

75

8
sin~u!2D sin~2 u!2G J .
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