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Crystallization and vitrification of semiflexible living polymers: A lattice model

Gautam |. Menon
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Rahul Pandit
Department of Physics, Indian Institute of Science, Bangalore 560 012, India
(Received 2 June 1998; revised manuscript received 6 Octobe) 1998

We study the systematics ofdadimensional lattice model for melts of semiflexible living polymers. For
d=2 and 3 our model, which includes vacancies, loops, and the possibilities of polymerization and polydis-
persity, exhibits both equilibrium crystallization and glass formation in the wake of a quench. We study these
analytically, in some limits, and via extensive Monte Carlo simulations. A continuous Ising-type transition
separates crystalline and disordered phases fodth2 square lattice. If loop formation is favored ih=2,
crossover effects lead to power-law decays of polymer-length distributions over large length scales, strong
fluctuations in thermodynamic quantities, and slow relaxation. These crossover effects arise because of the
proximity of a phase with an infinite correlation length in one limit of our model. Fordthe3 simple cubic
lattice our model has a first-order crystallization transition. Quenches from the disordered to the ordered phase
yield glassy, metastable configurations for bats2 and 3. We study the latter case in detail and find
logarithmically slow relaxation out of these metastable configurations, a frustration-driven glass-crystal tran-
sition, and an exotic lamellar glass. We propose a Monte Carlo analog of scanning calorimetry and use it to
study these glasses. We discuss the relevance of our work to experiments on different systems of living
polymers, earlier studies of crystallization in polymeric melts, and some theories of the glass transition in
model systemd.S1063-651X%99)07201-3

PACS numbdss): 61.25.Hq, 64.60.Cn, 02.70.Lq

INTRODUCTION (a-methylstyreng [12,13, and protein filament§14] are
also assemblies of living polymers. These living polymers
The crystallization and vitrification of polymer melts has are semiflexible: It costs energy to bend them, so at Tow
been of considerable interest since the early work of Flonthey straighten, thereby favoring the formation of ordered
[1] and Gibbs and DiMarzi$2]. Crystalline phases may be phases, but, as noted above, entangled gels or glasses form
seen in a variety of long-chain systems at low temperaturesiore readily. In this paper we present a systematic study of
[3], such as polfthio-11,4-phynylengand polystyrend4],  crystallization and vitrification in the model for semiflexible,
as well as in some biological macromolecules with intrinsicliving polymers introduced by Menon, Pandit, and Barma
stiffness, e.g., DNA, and some synthetic polypeptides. Crysf15]. Some of our results on crystallization ih=2 and on
tallization occurs when a polymeric melt is cooled veryglass formation ind=3 have been reported briefly earlier
slowly; however, more often than not, a polymeric glass o15,16. We also discuss the relation of our work with that of
an entangled gel forms given typical laboratory cooling ratesother groups for the crystallization of polymer melts
Crystallization can also occur via steric repulsion if the con{1,9,17—24 and its implications for glass formation in gen-
centration is increased sufficiently. The crystallization tran-eral[25—27 and in the polymer contex®,28,29.
sition is first order in three dimensions; we know of no ex- The statistical mechanics of polymeric melts is a complex
periments on such crystallization in two dimensions. Theproblem, so most authof9,15—24 have followed Flory[1]
scope of studies of polymer solidification has been enlargednd used lattice models to study it. Despite this simplifica-
by the recognition that some systems contéwng poly-  tion and considerable theoretical effort over the past four
mers, i.e., polymers whose lengths fluctuate and attain adecades, many features of the behavior of such lattice models
equilibrium length distribution at any given temperatdre remain unclear: e.g., there is little consen$is,18,19,22
The threadlike micelles that form in some water-surfactantegarding the nature of the transition in the Flory model in
systemg 5] are an example of living polymers. Dilute sys- d=2. Numerical studies of glass formation in lattice models
tems of such threadlike micelles were studied figd the  for polymeric melts have been attempted only recently
dense systemf7] being investigated now have shown vis- [16,28,29. Our two main goals have beén to develop and
coelastic, glassy state®.g., in the water—cetyltrimethyl- study a lattice model for melts of semiflexible, living poly-
ammonium  bromide—sodium  3-hydroxynaphthalene-2-mers that is a natural extension of Flory's modi&] for
carboxylate systerfi8]). It has been suggested recenit®]  conventional polymer melts an@) to use our study to re-
that liquid sulfur [10] and selenium [11], poly solve some of the controversies surrounding the nature of the
crystallization transition in Flory’s model.
In early work with Barma[15] we developed a two-
*Also at Jawaharlal Nehru Centre for Advanced Scientific Re-dimensional lattice model for melts of living polymers; we
search, Bangalore, India. have now generalized it td=3. Our model is akin to Flo-
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ry’s [1] in that it is defined on thdinks (not vertices as in
Refs.[9,23,24) of ad-dimensional hypercubic lattice, builds

in semiflexibility via an energy cost for right-angle bends,
and enforces the self-avoidance of chains. It generalizes Flo-
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Furthermore, as we will show, it yields an equilibrium PNEINT S
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polymer-length distribution at any, i.e., we get a system of
living polymers.

Our study yields a variety of interesting results forthe
nature of crystallization in our model polymeric mefi,) a g
possible reason for the discrepancies between earlier studies @ )
[1,17-23, and(iii) glass formation in our model. We begin
with a qualitative summary of these results: In our model the
crystallization transition is continuous @~ 2 (Ising type on
the square lattige In some regions of the phase diagram
correlation lengths are very large because of the proximity of
the highT, power-law phase of thé& model [17,22,3Q,
which obtains in one limit of our model; it leads to a power-
law decay of polymer-length distributions over intermediate
length scalegless tharL ., a crossover length that we esti-
mate and near-critical behavior. The resulting slow equili-
bration accounts, we believe, for the discrepan¢ed7—
19,22,23 between earlier studies of=2 lattice models for
semiflexible polymeric meltdsee Sec. ¥ In d=3 our
model has a first-order transition: The order paramdisse
below), internal energy, and mean polymer size are discon-

tinuous at the transition, in agreement with Flory's theory g, 1. Configurations of polymers in disordered glassy states
[1]. At low T the average chain lengtfy’)~L, the linear  of our model ind=3 obtained from instantaneous snapshots after a
size of the system; we argue, however, that, for sufficienthguench(see the teytin our simulations ata) largeh (=3.5 herg
largeL, (/) saturates to ah-independent constant that de- and (b) intermediateh (=1.5 here.

pends orT, «, etc., for bothd=2 and 3. Only alf =0 do we

get(/)~L. Slow relaxation out of metastable states is com-Sections Il and Il deal with the equilibrium properties of our
mon ind=2 and 3: If the melt is quenched rapidly from high model ind=2 and 3, respectively. Section IV is devoted to
to low T, disordered metastable states obtaindta3 they  a study of glass formation in our model principally ¢
are completely disorderdéig. 1(a)] if the open-end codtis ~ =3. Section V analyses our results in the light of earlier
large or partially orderedamellar glasses[the disordered work on related models and comments on the possibility of
stacking of ordered layers in Fig(d)] for intermediateh. In experimental studies of our predictions.

the former casélarge h) relaxation is logarithmically slow

(b)

vyhereas in the' lattefintermediateh) quenched configura— |. MODELS
tions evolve into a lamellar glass over a timgg
[~exp(28/h), where B=1/T (Boltzmann constankg=1)]. Theoretical studies of the crystallization of melts of semi-

Furthermore, the system falls out of equilibrium as it isflexible polymers trace their origins to the pioneering work
cooled at a finite rate and the metastable states behave liki Flory. In his model[1] self-avoiding polymer chains of
real polymeric glassds,4] when studied by a Monte Carlo fixed length are placed on the links of a square or simple
analog of scanning calorimetry, which we have introducedcubic lattice. Gaucheconfigurations, i.e., right-angle bends
recently[16]. Order-parameter autocorrelation functions arein the chain, cost an energy trans configurations with no
slowly decaying exponentials for shallow quenches, but fobends cost no energy. Flory’s mean-field approximatibin
deeper ones these decays are too slow to obtain reliable fit@r this model uses an ansatz for the probability that a speci-
Most interesting of all, we find that lowering eases the fied link is vacant after a certain number of chains have been
frustration in the disordered network obtained on quenchinglaid down on the lattice. This yields a first-order transition
thereby inducing an apparently continuous glass-crystal trarfor all d. At low T (<e¢) the chains straighten and, for a
sition, but one that is not related to an underlying equilibriumdense packing, align along theor y (or z in d=3) axes.
phase transition. This approximation yields essentially complete order in the
The calculations that lead to the results summarized aboview-T phase. The transition occurs because of intramolecular
are described in the remaining part of this paper, which isnteractions, parametrized ey and self-avoidanc@vhich is
organized as follows. In Sec. | we give a brief overview ofthe only way in which intermolecular interactions enter the
the Flory[1] and related models, comment on their connec-mode).
tion with our work, and end with a description of our model.  Despite the success of the Flory theory in predicting that
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FIG. 2. Schematic illustration of a defect configuration in our
two-dimensional polymer modelthe H-shaped configuration of c h h
links). Such defects, which cost energy,4are entropically favored
at low T. Our multilink move(illustrated aboveconverts this con- - o
figuration of links to an aligned one. To satisfy detailed balance the |
reverse move is also attempted with probability exgge).

polymer crystallization is a first-order transition, several
doubts remained about its validity, particularly in low dimen-
sions. In an important paper, Gujrati and Golds{di@] dem-
onstrated the failure of Flory’s mean-field approximation ex-  FIG. 3. Vertex configurations and their energies for our two-
plicitly in the limit where a single, semiflexible, self- dimensional model. Full lines indicate occupied links and dashed
avoiding chain visits all sites of a square lattifiee., it  lines unoccupied links.
executes a Hamilton walk They did this by bounding the
number of walks with a specified density of bends and thusf living polymers, as chain lengths are not constrained to be
showed that the entropg(T)>0 for temperaturesT>0. fixed. There are, however, important differences between our
Gujrati and Goldsteifi18] noted that defect configurations of model and the IMS models. In our model the dynamical
the type shown in Fig. 2 tend to disorder the ground state andariables are bonds placed on the links of a lattice, whereas
they used them in the construction of their bound. The enthe IMS models are site models. As a consequence, IMS
ergy cost for such a defect iss4but, once it is created, it is models admit configurations that are not present in our
free to slide in either thex or y direction (in d=2). Thus model. We compare their results with ours in Sec. V.
these defects are entropically favored and they clearly reduce In our d-dimensional model, defined on the links of a
the perfect crystalline ordering predicted by the Flory ap-hypercubic lattice, an occupied link represents a monomer.
proximation at low temperatures. These monomers can fuse to form polymers, which are self-
Baumgatner [19] and later Baumgé#ner and Yoon[21]  avoiding (branching is forbidden Straight segments of a
used Monte Carlo simulations of lattice models for semiflex-polymer (trans configurationscost no energy, but right-
ible polymers ind=2 and 3 to obtain first-order transitions angle bendg€gauche configurationscost an energy. The
in a dense system of infintely long chaifi®., for which the  energy for an open end is and for a vacancya vertex
ratio of the chain lengths to the system sizegoes to a surrounded by four unoccupied linka. We set the energy
constant asL—=); a system with chains of finite size scale by choosing=1. The vertex configurations allowed in
showed no transition. They used a reptation algorifidfi d=2 are shown in Fig. 3 together with their energies. In
with fixed chain lengths and a fixed fraction of empty sites.most of our two-dimensional studies monomers on different
Saleur[22] mapped configurations of the model [30]  links do not interact except via self-avoidance as in Flory’s
onto polymer configurations on a square lattice to suggesnodel[1]; however, in some of our studies we have included
that, for d=2, the Flory model has an infinite-order, some interchain interactio(see below In d=3, if we do
F-model-type transition. However, the polymer analog of thenot have both intra- and interchain interactions, the ground
F model admits no open endse., all polymers form rings state turns out to be infinitely degenerd®®]. Thus we as-
or loopg; moreover, it allows for polydispersitjunlike the  sociate an attractive enerdywith a pair of parallel, occupied
original Flory model, which admits only open chains with alinks that are part of the same plaquette. An attractive energy
fixed number of monomeysVacanciegsites with no incom-  of this type is often used to approximate the attractive part of
ing occupied bondsare also excluded in thE-model map- a van der Waals interaction. We will describe our Monte
ping. Saleur was able to remove some of these constraints @arlo procedure later, but we note here that we do not con-
his transfer-matrix calculation; in particular, loops could betrol the density of monomers. It achieves an equilibrium
forbidden and his technique allowed for the introduction of avalue that depends om w«, and T since we use the grand-
small number of vacancies. However, we will prove exactlycanonical ensemble rather than the fixed-chain-length ca-
(Sec. 1)) that the introduction of such vacanci@ehich leads nonical ensemble used in reptation simulatih8,21,31.
to a special 7-vertex modeyields a phase with a finite cor-
relation length, so it cannot be like the high-temperature
phase of theF model, which has an infinite correlation
length. The T=0 phase diagram of our model d+ 2 contains
Other simulations have concentrated on independenthree distinct phases separated by first-order phase bound-
monomer-statgIMS) models[9,23,24 in which site con- aries. These boundaries a& w=h with h<0, separating
figurations (truncated link configurations at vertigeattach ~ vacancy(no links occupiegland dimer phasesvith a power-
to form polymer chains. These models clearly describe melteaw decay of correlationf32]); (b) w=0 with h=0, sepa-

Il. TWO DIMENSIONS
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FIG. 4. Schematic phase diagram in theT plane for our * * { { { 4
model in two dimensions and with=cc. T£ indicates the transi-

tion temperature in thE-model limit u=0o0. At u=2 the transition y] ® ® (10 an 02

temperaturel .=1.2. The line separating the high-temperature dis-

ordered phase from the low-temperature ordered one indicates a I ! | |
continuous transition, which is of the two-dimensional Ising type 3 T t +
for the region shown except at=, where it is of theF-model | } l ’

type.

FIG. 5. Our polymer model is equivalent to an 11-vertex model
in two dimensions. This figure shows how configurations in these
models map onto each other. Twelve vertices are shown; however,
vertex 2 is not allowed in our modéself-avoidance

rating vacancy and ordered phases; a0dh=0 with u
=0, separating dimer and vacancy pha$&3]. Figure 4
shows a schematic phase diagramder2 in the u-T plane
for h=00; the topology of this phase diagram is similar for o ) . )
h>e. One might have expected a Blume-Capel-tjfé] dered phase is in th@=2 Ising universality class when the

phase diagram, but we have found no first-order transition iiff€nsity of open ends is large. We argue that the transition,

the range of parameter values we study; it is possibIeWhe” continuous, should belong to this universality class ex-

though, that the tricritical point occurs either at or very close€Pt @t isolated points such as thenodel limit. However,
ur numerical data are not good enough to prove this con-

to T=0. The Ising transition that separates our ordered and{" ! . )
disordered phases remains if monomers on next-nearefUSively in the crossover regime.
neighbor parallel links attract each other with an enetgy

We have drawn the schematic phase diagram of Fig. 4 on A. Exactly solvable limits

the basis of extensive Monte Carlo simulations principally in The link confiqurations in our two-dimensional model can
the regimesu,h>0, with eitherh>¢e or h=¢€ with x con- © configurations in our two ensio odetca

stant (see below. These simulations are augmented by aggemsper)gge?ngCt;éggé?agg 1;;::)?::})\;/ irt]pwot?}?al 88 a squraer_e la-
mapping onto thec model[30] at u=h=c and an exact  SP y 9 (e p

sauon (o & mapping onto a feeermion modds,26) 55710 M dreeions of e arove when vetees e
for h=0 and T=2¢/In2; in particular, we show that our 9 : 9 ! 9

model has a finite correlation length for these parameter Val\_/ertex, the parfition function
ues if O< <o, —3 N1

At u=h=0o (no vacancies or open endke configura- Z=IWih W @
tions of our model can be mapped onto those offihmodel
[17,22,3Q, which has a high-temperature phase with awhere the summation is over all topologically allowed con-
power-law decay of correlation functions and a low- figurations and; is the number of times vertexoccurs in a
temperature, ordered phalsal polymer links aligned in the configuration. One such mapping between polymers and ver-
same & or y) direction atT=0]. We show that the high- tex models is illustrated in Fig. 5: We choose a basic vertex
temperature, power-law phase is destroyed on the introdusonfiguration(vertex 1, say and associate bonds with those
tion of an arbitrarily small amount of vacancies and/or operarrows of vertices + 11 that are directed in the sense oppo-
ends. However, if the density of open ends is small, thesite to the corresponding arrow in the basic configuration.
properties of this phase are manifested in strong crossovdihe polymer configurations thus generated are then all al-
and slow-equilibration effects. If the number of open ends idowed if we restrict ourselves to vertices 1 ane B1 (self-
strictly zero, the correlation length scales exponentially withavoidance is ensured by the elimination of vertgx 2
. We prove this explicitly forT=2¢/In 2 and believe that If open ends, vacancies, and trivalent and tetravalent ver-
this result should hold in the high-temperature phase in gertices are forbidden, the vertex model does not have vertices
eral. At high temperatures our model has a conventional dist, 2, and 9-11 (Fig. 5), so it is a 6-vertex model. By using
ordered phase. Crossover from thlfemodel, power-law the symmetries of the symmetric 8-vertex moge¥], de-
phase to a conventional disordered phase appears to be gdined via vertices 18, this model can be mapped onto the
erned principally by the energy cost for open etgsvhen  model, solved by Lieb and WEBO], and conventionally de-
both h and u are finite andh>u. We show that, on the fined by using vertices 1 6. If we assign weights as shown
square lattice, the transition from the ordered to the disorin Fig. 5 and make thésymmetrig choice
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W1=Wy=Uq, W3=W,1=Uy,

Ws=Wg=Uz, W;=Wg=Uy, 2
then the following conditions holf36]:
Z(Ug,Uz;Uz,Ug) =Z(U3,U4;U71,U3),
Z(Ug,Uz;U3,Ug) =Z(Up,Uz;Ug,U3), 3
Z(Ug,Up;Uz,Ug) =Z(Uz,U7;U3,Ug).

For theF model

u;=exp —Be), U,=exp(—Be), Uz=1, u,=0.
4)
We use the symmetry properti€3) to obtain
Z(Ul7U2iU3’U4):Z(Us,U4;U1,U2):Z(U4,U3JU1,Uz)( |
5

and thence the equivalence of themodel and our polymer
model with no vacancies or open en@sl polymer bends
cost an energy). The F model has an infinite-order phase
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S0, given our choice of vertex weights, the free energy of our
model is

1 T T
— BF= FJ def d¢|n[y2+2—2ycose—2ycos¢
e - -

+2(1—x%)cog 0— @) +2(1—x?)cog O+ ¢)],
(10

wherex=exp(—Be) andy=exp(—Bw).

To analyze the long-distance behaviors of correlation
functions we find the minimum value of the argument of the
logarithm in Eq.(10). If it vanishes the phase is massless;
otherwise there is a finite correlation length. This follows
from the structure of the Grassmann representation for the
correlation functions for the free-fermion mod8b,4Q. The
correlation length is infinite foy=0 (the F-model limit), as
expected, but finite for any nonzero concentration of vacan-
cies. The result in th&-model limit is in accordance with a
result derived by Baxter at thel2g point[38]. We find that

é—we,u/eln 2, (11)

transition atT=T.z= e/In2 and there is a power-law decay Where ¢ is the correlation length. I1€>L (which happens
of correlations in its high-temperature phase, as in the lowhen « is large, crossover behavior results. Whereas this

temperature phase of the two-dimensioXaf model. The
exponents governing this decay vary continuously With
If the vertex weights in the 8-vertex model satisfy

W1W2+ W3W4=W5W6+W7W8 f (6)

exact result demonstrates the existence of a finite correlation
length in the limit of no open ends and a finite concentration
of vacancies, it tells us nothing about the behavior if a finite
concentration of open ends is present. However, we believe,
on the basis of our simulatiorisee below that this cross-
over behavior persists as long as the density of open ends is

the model is again solvable since it becomes the free-fermioamall. In particular, our exact result differs from earlier work
model of Fan and W{B6]. We choose parameters so that theby Saleur[22], which suggests that the Flory model with a
free-fermion condition is satisfied and the tetravalent verteXinite concentration of vacancies continues to hewaodel-

is eliminated:
wi=exp(—Bu), Ww,=0, wz=1,

(7)

W4:1,

Ws, ..., Wg=exp —fBe),

with T=2€/In(2); this vertex model is equivalent to our

polymer model with bends and vacancibsit no open ends
at a fixed temperaturé= 2T .. The free energyper vertex
in the free-fermion limif36] is

1 T T
—B]-'z—zf def d¢ In[2a—2b cosf—2c cos¢
8m) = -
+2d cog 6— ¢)+2ecoq 0+ ¢)], (8
with
2a=W3+w5+w5+w;,
b=wiw3—W,wy,
C=WW,4—WoWg, 9
d=w3w,—Ww,Wwg,

e=W3W,— WgWg,

type behavior.

B. Simulations

In our simulations we used square lattices of linear kize
ranging from 4 to 80, with periodic boundary conditions. In
most cases, we performed X3.0°)—(7.5x10°) Monte
Carlo stepgMCS) per link at each set of values @f h, and
w; in some cases we went up to®10ICS. We used the
algorithm of Metropoliset al. [39] and single-link moves in
which a link update was attemptéoly the removal of a bond
if one were initially present or by its addition if not forbidden
by self-avoidance We went through the lattice sequentially.
Every 50 MCS, we also used multilink moves in which a
defect[18] of the type shown in Fig. 2 was replaced by a
configuration with all links parallel or vice versa, with a
probability exp-4e/kgT) in order to ensure detailed balance;
we found that such multilink moves were essential for equili-
bration at lowT. Typically we discarded the first $0OMCS
before accumulating data for thermodynamic functions
(which we did every 50 MCS per link Convergence was
checked by tracking the energy per link every 1000 itera-
tions; convergence to one part in®16r better was attained.

We computed the internal enerdy;, the specific heaC,

N, and Ny, the numbers of occupied links in theand x
directions, respectivelinks, the number of links occupied
in the fully ordered state, and thence the order parameter
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M = (Ny—N,)/Njinks (120  should for a transition in thé=2 Ising universality class. In
case(b) [Fig. 7(b)] the peak height seems to saturate at a
and the order-parameter susceptibility finite value with increasind-; however, the data are ex-

tremely noisy.(Recall that theF-model specific heaf30]
shows a similar peak &t=e>T.)

In Figs. 7c) and 7d) we ploty versusT [Eqg.(4)]. In case
(@) [Fig. 7(c)] asT—T.,x— in the thermodynamic limit.
We also obtained the mean numbers of vacandigsbends A finite-size scaling plot for this casgig. 8 yields d=2
N,, open end$\,, the normalized fourth moment or kurto- Ising exponents. In cage) [Fig. 7(d)], the noise in our data
sisS,=(M*)/(M?)2, andP(/), the distribution of polymer prevented us from verifying Ising-type scaling at the transi-
lengths/, as functions ofT, h, u, andL. The thermody- tion. This noise in the disordered phase of our model arises
namic quantities plotted in subsequent figuiescept for the ~ because of the proximity of the high-temperature, power-law
distribution of polymer lengthsare normalized by the num- phase in thé=-model limit of our model. Thé=-model ana-
ber of links (=2L% in d=2). At the end of this section we log of our susceptibility is a staggered susceptibility associ-
discuss the effect of a small interchain, attractive interactiorfted with the two types of vertices that appear in the ground
J between parallel monomers on next-nearest-neighbor link$tate.(These vertices are arranged antiferroelectrically: Ar-

We performed simulations over a range of parameter valfows on succesive columns are oppositely diregtdhis
ues, but concentrated, for definiteness, on two cased in staggered susceptibility is infinite in the ranggr—2T.¢
=2: (a8 u=2, h=1.2 and(b) »=2, h=4, which lie, re- since the associated correlations decay algebraitaitp an
spectively, in the regimeb=¢e andh> e mentioned above. €xponent that increases from 1Tat to 2 at 2T and finally
The results for intermediate parameter values lie betweelp 3 atT=o [22,41]).
these two limits. In Fig. 9 we plot the angle-averaged correlation function

Figures €a) and @b) [cases(a) and (b), respectively ~for two links along the x direction, py(xy,x",y’)
showM versusT for L=6, 12, and 20. In Fig. @) error bars  =(px(X,Y) px(X",y")) = {px(X,¥)){px(X",y")), versus the
are comparable to the sizes of the symbols, but in Filg) 6 radial coordinater, for h=1, 2, 3, and 4. Thigconnected
they are greatefby a factor of 4-5). The transition in case correlation function is obtained by averaging ovendihks
(a) is clearly continuous, but in cagb) such an identifica- & fixed radial distance away from arlink at the origin and
tion is problematic. Finite-size effects are more clearly vis-then averaging over all possible choices of this origin. This
ible in Fig. 6a) than in Fig. &b). The considerable fluctua- correlation function is short ranged for smallbut decays
tions seen in caséb) are indicative of large correlation more and more slowly with increasirty Thus, as we had
lengths, which lead to large correlation times. anticipated earlier, the correlation length can become very

Figures 6c) and Gd) [cases(a) and (b), respectively large ash increases, until it diverges in temodel limit of
showS, versusT for L=6, 12, and 20. The curves for dif- our model.
ferent values oL cross at a single point in Fig(®, so we Our results for the distribution of polymer lengtRg/")
identify the transition here to be a conventional, secondversus/ are shown in Figs. 18)-10(d) [case(a) in Figs.
order one. A finite-size-scaling analysis of our détee be- 10(@) and 1@d) and (b) in Figs. 1@b) and 1Qc), respec-
low) yields d=2 Ising exponents. Figure(® is consider- tively] for different values off andL = 20. In cas€a), P(/)
ably different from Fig. €c) insofar as curves for different is clearly exponentiglFig. 10@)] in the disordered phase; in
values ofL overlap, within error bars, over a finite range of the ordered phase the envelopeR(f”) also decays expo-
T. Such overlapping normally indicates a power-law phasepentially, but peaks appear at values 46fcommensurate
in which some correlation length is infinite over a finite re- with L at sufficiently lowT because of the formation of ring
gion of parameter space. However, it can also occur if thgpolymers that wind around the systgonce or many times
correlation length is very largéut finite) and much greater since we use periodic boundary conditipris case(b) our
than L. As our free-fermion solution indicates, correlation results are as follows: The exponential tailPf/) seen in
lengths can be very large over a substantial region of parantase(a) occurs only at sufficiently higir [Fig. 10b)]. At
eter space, leading to signatures that could suggest a powdew T and for small/ ring formation is favoredwith an
law phase(given simulations for small). Our simulations even number of monomeras there is a large energy cdst
find similar effects away from the free-fermion limit: Even for open ends. As a consequence, polymers with an even
thoughh is finite, our data are consistent with large correla-number of monomers are distributed differently from poly-
tions lengths and times. mers with an odd number of monomdisg. 10(c)]; in our

In Figs. 6e) and Gf) we show howN,, N, andN,vary  simulations we observe a clear distinction in the scaling be-
with T for caseda) and (b), respectively. The vacancy con- havior of polymer lengths in these two cases. We find that
centrationN, is small in both cases, so we have a dense meltthe distribution for chains with an even number of monomers
In case(a), the density of open ends, is much larger than scales as
in case(b) because the formation of ring polymers is favored

X= E <(Ny_ Nx)2>_<(Ny_Nx)>2

13
T 2Njinks a3

in the latter. We expect thad,, N,, andN, all inherit the P(/)~/"7, (14
weak nonanalyticity of the energy density at the continuous
transition, though we have not checked this explicitly. where the exponentt depends o, h, and w; this power-

In Figs. 1a) and 7b) we plot C versusT. For case(a) law form holds only if/ is smaller than a crossover length
[Fig. 7(a@)] its divergence af; in the L—« limit shows up  estimated below. For polymer chains with an odd number of
clearly. We find the peak height increases asllpgs it monomers we find tha®(/) is nearly independent of. A
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FIG. 6. Order parametdvl versusT for d=2 asT crosses the transition temperatifg. Data are shown for three differefitnear
system sizek =6, 12, and 20 fofa) u=2, h=1.2, andJ=0 (T.=0.73 her¢and(b) u=2, h=4,andJ=0 (T, is hard to pinpoint hepe
The normalized fourth momer8,=(M*)/(M?)2 versusT for d=2 is shown in(c) and (d) for the same parameters as @ and (b),
respectivelyN,, Ny, andN,, the densities of vacancies, open ends, and bends, VEfeusi=2 asT crosses the transition temperature
are shown ine) and(f). The parameters ife) and (f) are the same as i@ and (b), respectively.

qualitative interpretation of this result is that, in the limit of a P~/ (15)
small number of open ends.e., h—x), the formation of

open chains occurs by the breaking of rings. Since a ring ofor the parameters of Fig. 1€), 9=1.3. The additional
length/" can be broken i’ places and since small rings are peaks at/=L,2L, ..., are aconsequence of our use of
likely to be broken at most oncéecause the density of periodic boundary conditions. The well-differentiated even
breaks is smal| the distribution of open chains must scale asand odd distributions seen at smallbegin to coalesce for
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FIG. 8. Finite-size-scaling plot for the susceptibility data of Fig.
7(d) for (linean system size& =6, 12, and 20. Curves for different FIG. 9. Angle-averagedsee the tejt correlation function
values ofL collapse onto two scaling curvésne forT>T.and the  p,, (X, Y, X", ¥ ) ={(px(X,¥) px(X",¥")) = {px (X, ¥) Y px(X",¥")) ver-
other for T<T.). Here we have used the two-dimensional Ising- sus the radial coordinate for h=1, 2, 3, and 4u=2, J=0, L
model exponentsy=7/4 and v=1, which characterize, respec- =20, andT:TE, the transition temperature of tffemodel. These
tively, the divergences of the susceptibility and the correlationdata indicate clearly that this correlation function decays more and
length at criticality. more slowly as we approach tkemodel limit.



PRE 59 CRYSTALLIZATION AND VITRIFICATION OF. .. 795
. . . 10" ;
107 @ T=08 | T-12
§ 10—2 ' ‘A‘ b § 10_2 [ AAAA R ]
@ (© e, T,
p'=2 AAA u=20 “‘A“A:%‘%A
=12 e h=4.0 i
i =0 . J=0 “
10 | L L I 10_3 L AA,
0 10 20 30 40 50 10" 10°
! 1
= r r T N T T
A xXL=6
‘o T=80 18 r . eL=12 ]
-1 -
10 ¢ . 1 R alL=20
A A
'y 14 L -
¢ s 4 ‘
v
. e o0 9 9 ° . .
10" . ] ..
'y A
(b) 10 - (@) *s _
p=20 " n=20 ‘.,
h=4.0 . h=1.2 LI .
= a = e [ )
= 10 15 20 6 D XXX XXX
, 0.5 0.6 0.7 0.8 0.9
T

FIG. 10. The distribution of polymer lengtt®/") versus/ for L=20, T=0.8, u=2, h=1.2, and]J=0 is shown in(a). P(/) clearly
decays exponentially in this case. The distribution of polymer lengs) versus/ for L=20 with the parameterh) T=8, u=2,
h=4, andJ=0 and(c) T=1.2, u=2, h=4, andJ=0 is shown in(b) and(c). Note the clear exponential decay at lafgd-or very large
/', P(/) must decay exponentially; however, for the scales studied hef®,iit shows a power-law decay and different behaviors for
chains with an even number of monoméupper curvg and an odd number of monomeftewer curveg as explained in the text. A plot of
the mean polymer length,, versusT for d=2 asT crosses the transition temperature for the parameters of fpis6given in(d).

large /. In related simulations of thE model (whose poly-

mer analog has only closed logpse have found a similiar
power-law behavior inP(/) [42]; in this limit it may be

possible to obtain the exponetitanalytically.

malize 7/, we expect that this will not alter our bound sig-
nificantly.

For casga) Fig. 10d) shows the average polymer length
(/) versusT for three different lattice sizes. We expect that
We expect the power-law behavior B{/) to cross over (/) displays a mild nonanalyticity &, that is masked by an
to an exponential form(i.e., P(/)~e 7o) for large- analytic background term; we have not tried to extract this
enough lattice sizes. To see this, consider a particular chaimonanalytic part. However, we would like to emphasize that
(of length/) and a configuration of all other chains consis- this mild nonanalytic behavior is associated with the order-

tent with this chain. If/ is large, the probability that the ing transition described above amét with what might be
chain is unbroken is an exponentially decreasing function otalled a strict polymerization transition, i.e., one below
/. [For the purposes of establishing an upper bound’fgr ~ which (/)=AL, whereA depends of, ., etc. As far as we
the length at whichP(/) crosses over to an exponential can tell from our simulations on finite lattices, such strict
form, we can consider the chain to be extendigghoring  polymerization occurs only at=0 in our model withA
bends$ and disallow adjacent breaks in the chaifihe char- =1: The ground-state configuration is a stack of circular
acteristic length of the distribution is then found to scale agpolymer chainglooping around the lattice in one direction
/o~€%P". We estimate, foT=1 andh=4, that/,=3000 since we use periodic boundary conditipnét any finite

in units of the lattice spacing, i.e., the crossover to exponentemperature{/) becomes independent affor sufficiently
tial behavior inP(/") would show up at these temperatureslarge system size&learly this cannot be checked numeri-
on lattices withL>3000. Note that folT=8 [Fig. 10b)], cally at very low temperaturgsin case(b) P(/) is very
this crossover length is=3, which is well within our finite  broad, so, for system sizés<L., (/)>L; however, at any
lattice size. Though the inclusion of bends, etc., can renorT>0, once L>L., (/) must eventually assume an
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L-independent value and, as in cdag strict polymerization  of links occupied in the fully ordered state. The three asso-
occurs only afT=0. ciated susceptibilities are obtained agdin 2.

We now consider the inclusion of the interpolymer attrac- The transition is clearly first order, with the order-
tion J: Since it is not a symmetry-breaking interaction we parameter jumpFig. 11(a)] typically 0.6—0.7. Triangles and
expect the Ising-type transition fdr=0 to persist for small crosses indicate heating and cooling runs, respectively; the
J>0; for largeJ this transition could disappear or perhapsabsence of hysteresis indicates proper equilibration. For
change its order. Our Monte Carlo simulations fox@d'e  largeh there is substantial hysteresis: In this limit the cost of
< 0.4 coupled with finite-size scaling analysis indicate thatopen ends is very high and so closed chains predominate and
the two-dimensional Ising-type critical behavior persists forour single-link updates are ineffective for equilibration. Fig-
small finite J. ures 11b) and 1Xc) show, respectively, the specific heat and

susceptibility of our model id=3 for L=16. The peaks in
IIl. THREE DIMENSIONS both cases sharpen rapidly with increasinghey shog_ld be
6 functions forL=). In Fig. 11(d) we plot the densities of

The transition in the two-dimensional case is of interestoendsN, and vacancie$l, and in Fig. 11e) the density of
because of the controversy regarding its behavior. Howevegpen end$\,, which are, as expected, discontinuous at the
the three-dimensional case is physically more interesting. Ifransition[in contrast with Figs. @) and Gf)].
three dimensions our model exhibits a first-order transition in - Figures 12a) and 12Zb) show the evolution of the poly-
all the regimes of parameter space that we have explored. Ather length distributiorP(/) with T: P(/) decays exponen-
quantities, such as the order parameter, internal energy, amidlly both above and below the transition; however, there is
P(/), change discontinuously at this transition. This resulta sharp discontinuity in the decay length across the transition
is in agreement with Flory’s prediction of a first-order crys- as can be seen from the intercepts onAhaxis. Figure 1£)
tallization transition. If the concentration of open ends isshows the sharp drop in the average lengtp at the tran-
very small, we see substantial hysteresis as we cycle sition. For the smaller lattice size there is an increasé.in
through the first-order transition; the width of this hysteresisat the transition. Indeed, for any finite / » 1S NOt @ mono-
loop cannot be reduced significantly given the time scale ofonic function of T: At T=0, /,,=L, but at lowT>0 it
our simulations. Equilibration is difficult in this limit for two increases to h|gher values, peaking at a temperature below

reasons:(i) The breaking of chains is energetically disfa- the transition temperature for orientational ordering.
vored and(ii) since our multilink moves conserve the num-

ber of links, the simulation effectively becomes a canonical
one. IV. GLASS FORMATION

~ Our simulations ind=3 were carried out on lattices of |3 st experimental situationsvhen crystallization is
linear dimensiorL. =8 and 16, with)=0.3. (It is necessary gptained by decreasing), it is necessary to cool the melt

to include this attractive term to obtain an ordered groun lowly; otherwise the system drops rapidly out of equilib-
state; otherwise one could, with no energy cost, disorder thg,m “The resulting state is a glass to the extent that it has
aligned state merely by rotating one aligned plane with rég 1y short-ranged order and typically does not evolve signifi-
spect to another.Most of the data we give here were ob- cany over experimental time scales. Slow heating of this
tained withu=2 andh=1.2. We have also studied other 4555 yields transitions to a crystal and eventually the mel,
values ofu andh; we find that the first-order transition re- \yhich show up as exothermic and endothermic peaks, re-
mains for all the parameter values we have studied. Howgpectively, in differential scanning calorimetry. Furthermore,
ever, equilibration is hampered at large valueshofOur  temporal autocorrelations in such glassy states usually show

simulation method was similiar to the one we usedlin2  stretched-exponential relaxatig8,4]. Recent studie§s, 13
and included a defect-removal move every 20 MQ$ote  haye also begun to explore glags gel formation in sys-
that for J>0, the energy required to remove or to add atems of living polymers.

defect is nott 4e, but also depends on the configurations of  Gijven the ubiquity of glass formation in experimental
neighboring links. We found that defect removal, though polymeric melts, it is natural to ask if our model can yield
useful, was not as important for equilibrationds=3 as in  gch glassy behavior. We show below that it does both on
d=2. We accumulated data for thermodynamic quantitiegyuenching instantaneously from high to IGwand on cool-
every 10 MCS typically for (2-5)x 10" iterations, at each ing at finite rates. The resulting vitreous states share some
value of T and other couplings. properties with experimental polymeric glasses. Such behav-
As in d=2 we define suitable order parameters to Char'ior obtains in our model both id=2 andd:B; we concen-
acterize the broken-symmetry state at low temperaturegrate on the latter since it is more relevant for experiments.
These are We have given a brief account of glass formation in our
model elsewhergl6]. We summarize these findings here so
Myy= (Nx=Ny)/Njins, that all results pertaining to our model for living polymeric
melts are available together. We also discuss the relation of
My,=(Ny=Nz)/Njinks, (16)  our work with that of other workerg2,26—29 in Sec. V.
When we quench our system from the disordered phase at
My,= (Ny—N,)/Njinks » high T to the ordered phase at a temperatar& /2 in d
=3, we find that, ifh is small, equilibration is rapid and the
whereN,, Ny, andN, are the numbers of occupied links in disordered state evolves to the ordered one typically over
thex, y, or zdirections, respectively, and;,s is the number 100-1000 MCS forL=16. Evolution to the ordered state
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FIG. 11. (a) Order parameteM versusT for our three-dimensional model. The first-order nature of the crystallization transitidn in
=3 is clearly manifested in the jump ™ at the transition temperaturd@ {=1.02). A cooling and a heating run are shown for a system of
(linean sizeL=16. The parameter values gre=2, h=1.2, andJ=0.3. (b) Specific heat per linlkC versusT for d=3 and the parameters
of (a). The peak should be & function, but is smeared by finite-size effects) Susceptibility per linky versusT for d=3 and the
parameters ofa). (d) Temperature dependence of the densities of bends and vachhceexl N, and (e) density of open endsl, for d
=3 and the parameters ¢d).

becomes increasingly sluggish &sis increased. For ex- vyield completely disordered glassgsg. 1(a)], and logarith-

ample, forh=5.5, we see essentially no increase in the ordemically slow temporal evolution of, e.gE, especially for

parameters £0 before the quenghover 5x 10° iterations  our deepest quenchgs®®<t<2x10° MCS in Fig. 13a)];

and the resulting configurations are completely disorderesve have obtained similar, though more noisy, data for the

[Fig. 1(@)]. vacancy concentratioN,, and order parameters. At interme-
Large values ofh (>3) suppress local rearrangements,diateh (1.5<h<3) we find different vitreous states, which
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L =16 showing(a) a logarithmic decay at largke and (b) and a
somewhat faster decay at intermedihtén (b) the system eventu-
ally becomes a lamellar glass afddoes not evolve over our
range.

high-T value and 1 (the perfect crystal Our data for the
time evolution of the internal enerdy [Fig. 13b)] are con-
sistent with 7,,~exp(28h). After they are formed, these
lamellar glasses do not evolve substantially even if annealed
for =10° MCS since a large numbdat leastO(L?)] of
cooperative local updates are required to align all planes. All
our glassy states yield order-parameter autocorrelation func-
tions that are slowly decaying exponentials for shallow
quenches; deeper ones yield decays that are so slow that we
cannot obtain reliable fits.

Our model has other interesting glass-related featuiges.
It falls out of equilibrium not only when it is quenched, but
also when it is cooled at a finite rate, as shown in Figall4
Thus we have studied it via [d6] Monte Carlo analog of
scanning calorimetryFig. 14b)] and differential scanning
calorimetry, all of which are in qualitative accord with the
behavior of real polymeric glassg4]. (ii) It shows a glass-
crystal transition on lowerind), presumably because this
eases the frustration in the disordered network obtained on
guenching. This transition is seemingly continuous as can be
seen from Fig. 15; however, it is not related to an underlying

we term lamellar glassgshe one-dimensionally disordered equilibrium phase transition as we show below.
stacking of ordered layers of polymers shown in Fig)l
the quenched system evolves to such a lamellar glass in @f size 16. The Monte Carlo algorithm is the same as in our
time 7,4 ; order parameters saturated to values betwegined

In our studies of vitrification we use simple cubic lattices

equilibrium studiegSec. Ill), so we do not conserve mono-
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| to To=0.63, an apparently continuous glass-crystal transition oc-
curs andk flattens out. The value df at the transition depends on
the scanning rate.
w

By annealing quenched configurations at differést T,
we have calculated autocorrelation functions such4a@)
. = (UL3) =i {px(i to=0)py(i,to=1)) —(px(i 1))?] and its
y and z analogs. We find they fit exponential forms with
L=16,h=35u=20,J=03,T,=063 (b) large autocorrelation times. These times increask iasin-
-0.2 ! ! : * creased or a3 is decreased. Fdi=3.5 andT=0.7, these
0.6 0.8 Lo 1.2 14 autocorrelation times are=500 MCS. Unfortunately, at
T lower T or higherh, these decays are so slow that we cannot
FIG. 14. () Evolution of E with temperaturel on steady cool- get good data for meaningful fits. Thus our study leaves open
ing (circles to T<T, at largeh [=3.5 here with annealing and the possibility of nonexponential largebehaviors in our
recording timegsee the tejtt,=t,=100] and in equilibrium(tri- low-temperature glassy states. Note, though, that the loga-
angles. (b) E versusT for our Monte Carlo scanning calorimetry rithmic decayge.g., Fig. 18a)] displayed by the glasses in
(see the tejtafter a quench t@o=0.63. We use two heating rates our model are reminiscent of those found in disordered sys-
indicated by trianglestf=200 andt,=200) and circlestz=200 tems. Our model has no random couplings, but the disorder
andt,=1000). At the slower heating rateircles, the glass trans-  arises dynamically via the quench or cooling at a finite rate,
forms more effectively into a crystéhe flat minimum in the curve 35 in conventional glasses. Also, the slow decreashl of
with E=—0.13; for the ordered crystd&i=—0.2) before it melts \yjth t is analogous to the volume contraction obtained when
eventually into the disordered highphase. polymeric glassep43] are aged. This is ascribed to decreas-

mers, vacancies, or order parameters. Nonetheless, glasdgg free volume in some theorig¢25]. _
are formed as mentioned above. We present some details of 10 Study glass formation on steady cooling, at a rate not
our calculations below. slow enough for equilibration, we begin with equilibrated
For Studying the quench we use a high_temperatu're ( Conﬁgurations aff=1.5 and lowerT in StepS of 0.005. We
=10) configuration, withh=1.2, u=2, andJ=0.3. This divide the timet (MCS) spent at a given set of parameters
yields a low density of short chaing’{,~4). We quench (such asT in Fig. 14 anch in Fig. 19 into an annealing time
this initial configuration in one step t6./2 over a range of t; (=200-1000 MCS), during which we do not collect
parameter valuegve varyu andh and use thd, appropri- data, and a recording timé¢, (=200-1000 MCS), in
ate for the parameter valyesNe then track the temporal which we accumulate data for averages every 10 MCS. Cool-
evolution of the internal energy per lirkk, the order param- ing or heating rates follow simply from the value bEt,
eterM, and the average number of vacandies. We have  +t, shown. The glasses we obtain thus are similar to those
checked that different initial configurations, obtained withresulting from our quenches: For smal 1.5 our system
different sequences of random numbers or by startingj at can be supercooled just a little before it crystallizes, but, in
=oo (i.e., adding and removing links from an initially empty the intermediate range k<3, E drops withT, though
lattice at random but respecting self-avoidanageld the not as sharply as in equilibriuffFig. 2(@)] and the system
same qualitative behaviors; the data we present here are foifarms a lamellar glasses. For large-3 [Fig. 14a)] a com-
typical run. We computé&(t), etc., ¢ in MCS) by averaging pletely disordered configuration is formed, but with slightly
over 20 measurements, separated by 10 MCS each and cdarger ordered patches than for an instantaneous quench.
tered at t. We evolve the system fort=(3—6) Our Monte Carlo analog of scanning calorimetry yields
X10° MCS. successive glass-crystal and crystal-liquid transitions when
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we heat our glasses steadily. The scanning proceeds as fdhough the universality class of this transition might be dif-
lows: We quench the system frofm=10 to T./2, anneal it ferent for continuum systems, it would be interesting to look
for 6x10° MCS, and then increas€ at 10 ° per MCS.  experimentally for continuous transitions to crystalline order
Here too the intermediate-regime yields a lamellar glass, in two-dimensional melts of living polymers. In three dimen-
but is not very interesting since it melts directly to the dis-sjons the transition is first order.

ordered phase. For largewe find that, on heating, the glass  Our study shows how an interplay of semiflexibility, self-
transforms into a crystal; on further heating, this crystalayojdance, and the energy cost for breaking chains leads to
melts into the disordered phase. These transformations afge vitrification of a melt of living polymers. Furthermore,
mirrored in the behavior oE: It drops sharply at the glass- oyr model is a good testing ground for theories of the glass
crystal transition and then increases rapidly at the crystalgansition since frustration can be tuned easily. In a more
melt transition[Fig. 14b)]. The temperature range over eneral context, our model can be thought of as a épin
which the crystal appears increases with decreasing heati ttice-ga3 modélwithoutquenched disorder that exhibits a
rate and for slow heat_ir_lg ratgsircles in Fig. .:L‘Q'b)];.at least transition to a glassy state at low temperatyds. Also, it

the crystal-melt transition appears to be discontinuous. Thg,, 4 pe interesting to see whether lamellar glasses form in

analog of an experimental differential-scanning-calorimetryreal olymeric melts or are merely an artifact of our lattice
plot [4] can be obtained through the derivatig€&/dT. As modgl. y y

can be seen from Fig. 1), such a derivati\_/e will show bqth Systems of living polymers have also been modeled by
an exotherm and a sharp overshoot, as is often seen in raPidependent-monomer-state modé®s23,24. As we have

idly cooled, f?‘””ea'ed' and slowly reheated glaéserg. Th_e . _mentioned earlier, there are some important differences be-
exotherm arises because of relaxation out of a high fictiver, oan these and our model for living polymers. The IMS
temperature state formed by the quench. Of course, thgqqe|s admit states that are disallowed in our model. These

crysta!—melt transi.ti.on resemb_les equilibrium melting. More jitterences are perhaps more important in two than in three
complicated transitions occur in some of our scans: We havaimensions because of the relation of our model to vertex

seen the glass transform to a crystal that reforms into a glaﬁodels such as thE model. This might well explain why

at a slightly higher temperature; this glass then becomes &, o jus model§9,23] yield second- and first-order bound-
crystal that melts to the disordered phase. . . aries meeting at a tricritical poi23] whereas our model
The energy cost for open entisplays a crucial role in ;o145 an Ising-type continuous transition. In three dimen-
slowing down the kinetics in our model. BY contrast,_ We sions both our model and the IMS modéedy agree qualita-
have checked that, for large, it plays a minor role in ey insofar as both yield first-order melt-crystal transitions
determining the gqumbrlurﬂ'c. This arises because of the 4t \vhich thermodynamic functions and polymer-length dis-
large energy barrier for the removal of a link @, for large  ihytions change discontinuously. To the best of our knowl-

h) and, along with the self-avoidance constraint, leads 10 @qge, vitrification has not been studied in the context of IMS
sort of frustration that results in vitrification. This frustration models.

can clearly be reduced by lowerifigand results in a glass- Our model(and the IMS modelscan be thought of as a
crystal transition: Specifically, we prepare glassy configurayang.canonical generalization of the Flory model, for it per-
tions by annealing quenched configurations for  6mits yariable monomer densities and chain lengths governed
X 10° MCS atT/2 and largen (h=3.5 in Fig. 13.Wethen  py an equilibrium distribution. In the models studied by
decreasen in steps of 5<10" °. This gives us an apparently Fory and Baumganer[1,19—-2] chain lengths are fixed and
continuous transition: E decreases monotonically and cannot fluctuate; also no ring polymers are allowed. To the
smoothly to its mean value in the crystal. However, we Wishgyient that these differences do not matter, our analysis pro-
to emphasize that, in our model there isequilibriumtran-  yides an explanatiobecause of slow equilibration arising
sition underlying this frustration-driven tr_ansmon,_ in con_trastfrom the proximity of theF-model critical ling for the con-

to some scenarios for the glass transiti@6]. First, this  gjgerable controversy that has surrounded studies of the

transition is not reversible, for there is no crystal-glass trangory and related models in two dimensidisl5,18—20,2R
sition whenh increases; second, the valuefoat this tran- | three dimensions our results are consistent with Flory’s

sition depends on the rate at which we chargeScans  prediction of a first-order crystallization transition.
slower than those of Fig. 15 make the transition disappear, pjost experiments are done on fixed-length polymeric sys-

for the crystal is eventually stabilized. tems without ring polymers. These are better described by
the Flory model than by our model. Our results should be
CONCLUSION more directly applicable to systems of living polymers that

have been attracting attention over the past de¢a@10-

We have presented a lattice model for the transition to ari4]. Important issues includel3] an elucidation of the con-
ordered state in melts of semiflexible, living polymers andditions under which living polymeric systems form glasses.
studied its statistical mechanics in two and three dimensiong/e believe our work is the first comprehensive numerical
via Monte Carlo simulations and the analysis of exactly solv-study of this issue in a model for living polymers. We hope
able limits. We have shown that in two dimensions strongour work stimulates experimental studies of glasses and gels
crossover effects arise because of the proximity to thén melts of living polymers, which are just beginning to be
F-model fixed line and can lead to very large correlationstudied[8,13]. However, some care must be exercised in
lengths and slow relaxation. We have demonstrated the exising our lattice-model results to interpret continuum experi-
istence of an Ising-type transition separating the ordered anchents.
disordered phases for the two-dimensional square lattice. Perhaps the earliest theoretical study of polymeric glasses
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was that of Gibbs and Di Marzi2]. They used the configu- their model has an equilibrium transition only B£ 0, so it
rational entropy calculated via Flory’s mean-field approxi-cannot yield scanning-calorimetric plots such as ours, nor
mation[1] and extrapolated below the mean-field transitiondoes it have a simple frustration parameter that can be var-
temperaturerl ,,; to obtain a second-order glass transition atied. However, since their simulation conserves the number of
which the entropy vanished, but a finite concentration ofmonomers, they can obtain diffusion constants that we can-
gauche bonds remained. Their work relies on two assumpmot. Our model and the spin-facilitated model of Fredricksen
tions: (i) that Flory’s approximation is valid, an¢li) that and Andersef27] have interesting connections, for, in both,
such an extrapolation is meaningful. The second assumptiorelaxation at low temperatures occurs via highly cooperative
is especially questionable for it is not clear that this vitrifi- moves. However, our model has the advantage that it yields
cation is associated with an underlyinthermodynamig  both equilibrium freezing and glass formation. Of course, to
continuous transition or results because of very slow kineticenodel glass formation in real polymeric melts, we should,
arising from constraints such as excluded volume, which beideally, use a continuum description and enforce the relevant
comes important at high densities: For example, simulationsonservation laws. These conservation laws will, in general,
of two-component mixtures of hard spheres have obtainetkad to longer equilibration times and slower relaxation than
glassy behavior in assemblies of as few as 32 particles within our model, in which no quantity is conserved.

out the divergence of any correlation lendéd]. All our
work shows that, at least for the model system of living
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