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Crystallization and vitrification of semiflexible living polymers: A lattice model
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We study the systematics of ad-dimensional lattice model for melts of semiflexible living polymers. For
d52 and 3 our model, which includes vacancies, loops, and the possibilities of polymerization and polydis-
persity, exhibits both equilibrium crystallization and glass formation in the wake of a quench. We study these
analytically, in some limits, and via extensive Monte Carlo simulations. A continuous Ising-type transition
separates crystalline and disordered phases for thed52 square lattice. If loop formation is favored ind52,
crossover effects lead to power-law decays of polymer-length distributions over large length scales, strong
fluctuations in thermodynamic quantities, and slow relaxation. These crossover effects arise because of the
proximity of a phase with an infinite correlation length in one limit of our model. For thed53 simple cubic
lattice our model has a first-order crystallization transition. Quenches from the disordered to the ordered phase
yield glassy, metastable configurations for bothd52 and 3. We study the latter case in detail and find
logarithmically slow relaxation out of these metastable configurations, a frustration-driven glass-crystal tran-
sition, and an exotic lamellar glass. We propose a Monte Carlo analog of scanning calorimetry and use it to
study these glasses. We discuss the relevance of our work to experiments on different systems of living
polymers, earlier studies of crystallization in polymeric melts, and some theories of the glass transition in
model systems.@S1063-651X~99!07201-3#

PACS number~s!: 61.25.Hq, 64.60.Cn, 02.70.Lq
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INTRODUCTION

The crystallization and vitrification of polymer melts ha
been of considerable interest since the early work of Fl
@1# and Gibbs and DiMarzio@2#. Crystalline phases may b
seen in a variety of long-chain systems at low temperatu
@3#, such as poly~thio-11,4-phynylene! and polystyrene@4#,
as well as in some biological macromolecules with intrin
stiffness, e.g., DNA, and some synthetic polypeptides. C
tallization occurs when a polymeric melt is cooled ve
slowly; however, more often than not, a polymeric glass
an entangled gel forms given typical laboratory cooling rat
Crystallization can also occur via steric repulsion if the co
centration is increased sufficiently. The crystallization tra
sition is first order in three dimensions; we know of no e
periments on such crystallization in two dimensions. T
scope of studies of polymer solidification has been enlar
by the recognition that some systems containliving poly-
mers, i.e., polymers whose lengths fluctuate and attain
equilibrium length distribution at any given temperatureT.
The threadlike micelles that form in some water-surfact
systems@5# are an example of living polymers. Dilute sy
tems of such threadlike micelles were studied first@6#; the
dense systems@7# being investigated now have shown vi
coelastic, glassy states~e.g., in the water–cetyltrimethyl
ammonium bromide–sodium 3-hydroxynaphthalene
carboxylate system@8#!. It has been suggested recently@9#
that liquid sulfur @10# and selenium @11#, poly
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(a-methylstyrene! @12,13#, and protein filaments@14# are
also assemblies of living polymers. These living polyme
are semiflexible: It costs energy to bend them, so at lowT
they straighten, thereby favoring the formation of order
phases, but, as noted above, entangled gels or glasses
more readily. In this paper we present a systematic stud
crystallization and vitrification in the model for semiflexible
living polymers introduced by Menon, Pandit, and Barm
@15#. Some of our results on crystallization ind52 and on
glass formation ind53 have been reported briefly earlie
@15,16#. We also discuss the relation of our work with that
other groups for the crystallization of polymer mel
@1,9,17–24# and its implications for glass formation in gen
eral @25–27# and in the polymer context@2,28,29#.

The statistical mechanics of polymeric melts is a comp
problem, so most authors@9,15–24# have followed Flory@1#
and used lattice models to study it. Despite this simplific
tion and considerable theoretical effort over the past f
decades, many features of the behavior of such lattice mo
remain unclear: e.g., there is little consensus@15,18,19,22#
regarding the nature of the transition in the Flory model
d52. Numerical studies of glass formation in lattice mode
for polymeric melts have been attempted only recen
@16,28,29#. Our two main goals have been~i! to develop and
study a lattice model for melts of semiflexible, living poly
mers that is a natural extension of Flory’s model@1# for
conventional polymer melts and~ii ! to use our study to re-
solve some of the controversies surrounding the nature of
crystallization transition in Flory’s model.

In early work with Barma@15# we developed a two-
dimensional lattice model for melts of living polymers; w
have now generalized it tod53. Our model is akin to Flo-

-
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788 PRE 59GAUTAM I. MENON AND RAHUL PANDIT
ry’s @1# in that it is defined on thelinks ~not vertices as in
Refs.@9,23,24#! of a d-dimensional hypercubic lattice, build
in semiflexibility via an energy coste for right-angle bends,
and enforces the self-avoidance of chains. It generalizes
ry’s model by allowing for vacancies, controlled by a chem
cal potentialm, and scission and fusion of chains, controll
by an energy costh for open ends. Thus our model allows fo
polymerization, chain polydispersity, and ring polyme
Furthermore, as we will show, it yields an equilibriu
polymer-length distribution at anyT, i.e., we get a system o
living polymers.

Our study yields a variety of interesting results for~i! the
nature of crystallization in our model polymeric melt,~ii ! a
possible reason for the discrepancies between earlier stu
@1,17–23#, and~iii ! glass formation in our model. We begi
with a qualitative summary of these results: In our model
crystallization transition is continuous ind52 ~Ising type on
the square lattice!. In some regions of the phase diagra
correlation lengths are very large because of the proximity
the high-T, power-law phase of theF model @17,22,30#,
which obtains in one limit of our model; it leads to a powe
law decay of polymer-length distributions over intermedia
length scales~less thanLc , a crossover length that we est
mate! and near-critical behavior. The resulting slow equ
bration accounts, we believe, for the discrepancies@1,17–
19,22,23# between earlier studies ofd52 lattice models for
semiflexible polymeric melts~see Sec. V!. In d53 our
model has a first-order transition: The order parameters~see
below!, internal energy, and mean polymer size are disc
tinuous at the transition, in agreement with Flory’s theo
@1#. At low T the average chain lengtĥl &;L, the linear
size of the system; we argue, however, that, for sufficien
largeL, ^l & saturates to anL-independent constant that d
pends onT,m, etc., for bothd52 and 3. Only atT50 do we
get ^l &;L. Slow relaxation out of metastable states is co
mon ind52 and 3: If the melt is quenched rapidly from hig
to low T, disordered metastable states obtain. Ind53 they
are completely disordered@Fig. 1~a!# if the open-end costh is
large or partially orderedlamellar glasses@the disordered
stacking of ordered layers in Fig. 1~b!# for intermediateh. In
the former case~large h) relaxation is logarithmically slow
whereas in the latter~intermediateh) quenched configura
tions evolve into a lamellar glass over a timet lg
@;exp(2b/h), whereb[1/T ~Boltzmann constantkB51)#.
Furthermore, the system falls out of equilibrium as it
cooled at a finite rate and the metastable states behave
real polymeric glasses@3,4# when studied by a Monte Carl
analog of scanning calorimetry, which we have introduc
recently@16#. Order-parameter autocorrelation functions a
slowly decaying exponentials for shallow quenches, but
deeper ones these decays are too slow to obtain reliable
Most interesting of all, we find that loweringh eases the
frustration in the disordered network obtained on quench
thereby inducing an apparently continuous glass-crystal t
sition, but one that is not related to an underlying equilibriu
phase transition.

The calculations that lead to the results summarized ab
are described in the remaining part of this paper, which
organized as follows. In Sec. I we give a brief overview
the Flory @1# and related models, comment on their conn
tion with our work, and end with a description of our mod
lo-
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Sections II and III deal with the equilibrium properties of o
model ind52 and 3, respectively. Section IV is devoted
a study of glass formation in our model principally ind
53. Section V analyses our results in the light of earl
work on related models and comments on the possibility
experimental studies of our predictions.

I. MODELS

Theoretical studies of the crystallization of melts of sem
flexible polymers trace their origins to the pioneering wo
of Flory. In his model@1# self-avoiding polymer chains o
fixed length are placed on the links of a square or sim
cubic lattice.Gaucheconfigurations, i.e., right-angle bend
in the chain, cost an energye; trans configurations with no
bends cost no energy. Flory’s mean-field approximation@1#
for this model uses an ansatz for the probability that a sp
fied link is vacant after a certain number of chains have b
laid down on the lattice. This yields a first-order transitio
for all d. At low T (&e) the chains straighten and, for
dense packing, align along thex or y ~or z in d53) axes.
This approximation yields essentially complete order in
low-T phase. The transition occurs because of intramolec
interactions, parametrized bye, and self-avoidance~which is
the only way in which intermolecular interactions enter t
model!.

Despite the success of the Flory theory in predicting t

FIG. 1. Configurations of polymers in disordered glassy sta
of our model ind53 obtained from instantaneous snapshots afte
quench~see the text! in our simulations at~a! largeh (53.5 here!
and ~b! intermediateh (51.5 here!.
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PRE 59 789CRYSTALLIZATION AND VITRIFICATION O F . . .
polymer crystallization is a first-order transition, seve
doubts remained about its validity, particularly in low dime
sions. In an important paper, Gujrati and Goldstein@18# dem-
onstrated the failure of Flory’s mean-field approximation e
plicitly in the limit where a single, semiflexible, self
avoiding chain visits all sites of a square lattice~i.e., it
executes a Hamilton walk!. They did this by bounding the
number of walks with a specified density of bends and t
showed that the entropys(T).0 for temperaturesT.0.
Gujrati and Goldstein@18# noted that defect configurations o
the type shown in Fig. 2 tend to disorder the ground state
they used them in the construction of their bound. The
ergy cost for such a defect is 4e, but, once it is created, it is
free to slide in either thex or y direction ~in d52). Thus
these defects are entropically favored and they clearly red
the perfect crystalline ordering predicted by the Flory a
proximation at low temperatures.

Baumgärtner @19# and later Baumga¨rtner and Yoon@21#
used Monte Carlo simulations of lattice models for semifle
ible polymers ind52 and 3 to obtain first-order transition
in a dense system of infintely long chains~i.e., for which the
ratio of the chain lengths to the system sizeL goes to a
constant asL→`); a system with chains of finite siz
showed no transition. They used a reptation algorithm@31#
with fixed chain lengths and a fixed fraction of empty site

Saleur@22# mapped configurations of theF model @30#
onto polymer configurations on a square lattice to sugg
that, for d52, the Flory model has an infinite-orde
F-model-type transition. However, the polymer analog of
F model admits no open ends~i.e., all polymers form rings
or loops!; moreover, it allows for polydispersity~unlike the
original Flory model, which admits only open chains with
fixed number of monomers!. Vacancies~sites with no incom-
ing occupied bonds! are also excluded in theF-model map-
ping. Saleur was able to remove some of these constrain
his transfer-matrix calculation; in particular, loops could
forbidden and his technique allowed for the introduction o
small number of vacancies. However, we will prove exac
~Sec. II! that the introduction of such vacancies~which leads
to a special 7-vertex model! yields a phase with a finite cor
relation length, so it cannot be like the high-temperat
phase of theF model, which has an infinite correlatio
length.

Other simulations have concentrated on independ
monomer-state~IMS! models @9,23,24# in which site con-
figurations~truncated link configurations at vertices! attach
to form polymer chains. These models clearly describe m

FIG. 2. Schematic illustration of a defect configuration in o
two-dimensional polymer model~the H-shaped configuration o
links!. Such defects, which cost energy 4e, are entropically favored
at low T. Our multilink move~illustrated above! converts this con-
figuration of links to an aligned one. To satisfy detailed balance
reverse move is also attempted with probability exp(24be).
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of living polymers, as chain lengths are not constrained to
fixed. There are, however, important differences between
model and the IMS models. In our model the dynamic
variables are bonds placed on the links of a lattice, wher
the IMS models are site models. As a consequence, I
models admit configurations that are not present in
model. We compare their results with ours in Sec. V.

In our d-dimensional model, defined on the links of
hypercubic lattice, an occupied link represents a monom
These monomers can fuse to form polymers, which are s
avoiding ~branching is forbidden!. Straight segments of a
polymer ~trans configurations! cost no energy, but right-
angle bends~gauche configurations! cost an energye. The
energy for an open end ish and for a vacancy~a vertex
surrounded by four unoccupied links! m. We set the energy
scale by choosinge51. The vertex configurations allowed i
d52 are shown in Fig. 3 together with their energies.
most of our two-dimensional studies monomers on differ
links do not interact except via self-avoidance as in Flor
model@1#; however, in some of our studies we have includ
some interchain interaction~see below!. In d53, if we do
not have both intra- and interchain interactions, the grou
state turns out to be infinitely degenerate@20#. Thus we as-
sociate an attractive energyJ with a pair of parallel, occupied
links that are part of the same plaquette. An attractive ene
of this type is often used to approximate the attractive par
a van der Waals interaction. We will describe our Mon
Carlo procedure later, but we note here that we do not c
trol the density of monomers. It achieves an equilibriu
value that depends onh, m, andT since we use the grand
canonical ensemble rather than the fixed-chain-length
nonical ensemble used in reptation simulations@19,21,31#.

II. TWO DIMENSIONS

The T50 phase diagram of our model ind52 contains
three distinct phases separated by first-order phase bo
aries. These boundaries are~a! m5h with h<0, separating
vacancy~no links occupied! and dimer phases~with a power-
law decay of correlations@32#!; ~b! m50 with h>0, sepa-

e

FIG. 3. Vertex configurations and their energies for our tw
dimensional model. Full lines indicate occupied links and das
lines unoccupied links.
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790 PRE 59GAUTAM I. MENON AND RAHUL PANDIT
rating vacancy and ordered phases; and~c! h50 with m
>0, separating dimer and vacancy phases@33#. Figure 4
shows a schematic phase diagram ford52 in them-T plane
for h5`; the topology of this phase diagram is similar f
h@e. One might have expected a Blume-Capel-type@34#
phase diagram, but we have found no first-order transitio
the range of parameter values we study; it is possi
though, that the tricritical point occurs either at or very clo
to T50. The Ising transition that separates our ordered
disordered phases remains if monomers on next-nea
neighbor parallel links attract each other with an energyJ.

We have drawn the schematic phase diagram of Fig. 4
the basis of extensive Monte Carlo simulations principally
the regimesm,h.0, with eitherh@e or h.e with m con-
stant ~see below!. These simulations are augmented by
mapping onto theF model @30# at m5h5` and an exact
solution ~by a mapping onto a free-fermion model@35,36#!
for h5` and T52e/ ln 2; in particular, we show that ou
model has a finite correlation length for these parameter
ues if 0,m,`.

At m5h5` ~no vacancies or open ends! the configura-
tions of our model can be mapped onto those of theF model
@17,22,30#, which has a high-temperature phase with
power-law decay of correlation functions and a lo
temperature, ordered phase@all polymer links aligned in the
same (x or y) direction atT50#. We show that the high-
temperature, power-law phase is destroyed on the introd
tion of an arbitrarily small amount of vacancies and/or op
ends. However, if the density of open ends is small,
properties of this phase are manifested in strong cross
and slow-equilibration effects. If the number of open ends
strictly zero, the correlation length scales exponentially w
m. We prove this explicitly forT52e/ ln 2 and believe that
this result should hold in the high-temperature phase in g
eral. At high temperatures our model has a conventional
ordered phase. Crossover from theF-model, power-law
phase to a conventional disordered phase appears to be
erned principally by the energy cost for open endsh, when
both h and m are finite andh@m. We show that, on the
square lattice, the transition from the ordered to the dis

FIG. 4. Schematic phase diagram in them-T plane for our
model in two dimensions and withh5`. TC

F indicates the transi-
tion temperature in theF-model limit m5`. At m52 the transition
temperatureTc.1.2. The line separating the high-temperature d
ordered phase from the low-temperature ordered one indicat
continuous transition, which is of the two-dimensional Ising ty
for the region shown except atm5`, where it is of theF-model
type.
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dered phase is in thed52 Ising universality class when th
density of open ends is large. We argue that the transit
when continuous, should belong to this universality class
cept at isolated points such as theF-model limit. However,
our numerical data are not good enough to prove this c
clusively in the crossover regime.

A. Exactly solvable limits

The link configurations in our two-dimensional model c
be mapped exactly onto an 11-vertex model on a square
tice, specified by associating arrows with the bonds~and pre-
serving the directions of the arrows when vertices are
together!. If the weightswi are assigned to each allowe
vertex, the partition function

Z5Sw1
n1 , . . . ,w11

n11, ~1!

where the summation is over all topologically allowed co
figurations andni is the number of times vertexi occurs in a
configuration. One such mapping between polymers and
tex models is illustrated in Fig. 5: We choose a basic ver
configuration~vertex 1, say! and associate bonds with thos
arrows of vertices 1211 that are directed in the sense opp
site to the corresponding arrow in the basic configurati
The polymer configurations thus generated are then all
lowed if we restrict ourselves to vertices 1 and 3211 ~self-
avoidance is ensured by the elimination of vertex 2!.

If open ends, vacancies, and trivalent and tetravalent
tices are forbidden, the vertex model does not have vert
1, 2, and 9211 ~Fig. 5!, so it is a 6-vertex model. By using
the symmetries of the symmetric 8-vertex model@37#, de-
fined via vertices 128, this model can be mapped onto theF
model, solved by Lieb and Wu@30#, and conventionally de-
fined by using vertices 126. If we assign weights as show
in Fig. 5 and make the~symmetric! choice

-
a

FIG. 5. Our polymer model is equivalent to an 11-vertex mo
in two dimensions. This figure shows how configurations in the
models map onto each other. Twelve vertices are shown; howe
vertex 2 is not allowed in our model~self-avoidance!.
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w15w2[u1 , w35w4[u2 ,

w55w6[u3 , w75w8[u4 , ~2!

then the following conditions hold@36#:

Z~u1 ,u2 ;u3 ,u4!5Z~u3 ,u4 ;u1 ,u2!,

Z~u1 ,u2 ;u3 ,u4!5Z~u2 ,u1 ;u4 ,u3!, ~3!

Z~u1 ,u2 ;u3 ,u4!5Z~u2 ,u1 ;u3 ,u4!.

For theF model

u15exp~2be!, u25exp~2be!, u351, u450.
~4!

We use the symmetry properties~3! to obtain

Z~u1 ,u2 ;u3 ,u4!5Z~u3 ,u4 ;u1 ,u2!5Z~u4 ,u3 ;u1 ,u2!
~5!

and thence the equivalence of theF model and our polymer
model with no vacancies or open ends~all polymer bends
cost an energye). The F model has an infinite-order phas
transition atT5TcF5e/ ln 2 and there is a power-law deca
of correlations in its high-temperature phase, as in the lo
temperature phase of the two-dimensionalXY model. The
exponents governing this decay vary continuously withT.

If the vertex weights in the 8-vertex model satisfy

w1w21w3w45w5w61w7w8 , ~6!

the model is again solvable since it becomes the free-ferm
model of Fan and Wu@36#. We choose parameters so that t
free-fermion condition is satisfied and the tetravalent ver
is eliminated:

w15exp~2bm!, w250, w351,
~7!

w451, w5 , . . . , w85exp~2be!,

with T52e/ ln(2); this vertex model is equivalent to ou
polymer model with bends and vacancies~but no open ends!
at a fixed temperatureT52TcF . The free energy~per vertex!
in the free-fermion limit@36# is

2bF5
1

8p2E2p

p

duE
2p

p

df ln@2a22b cosu22c cosf

12d cos~u2f!12e cos~u1f!#, ~8!

with

2a5w1
21w2

21w3
21w4

2 ,

b5w1w32w2w4 ,

c5w1w42w2w3 , ~9!

d5w3w42w7w8 ,

e5w3w42w5w6 ,
-

n

x

so, given our choice of vertex weights, the free energy of
model is

2bF5
1

8p2E2p

p

duE
2p

p

df ln@y21222y cosu22y cosf

12~12x2!cos~u2f!12~12x2!cos~u1f!#,

~10!

wherex5exp(2be) andy5exp(2bm).
To analyze the long-distance behaviors of correlat

functions we find the minimum value of the argument of t
logarithm in Eq.~10!. If it vanishes the phase is massles
otherwise there is a finite correlation length. This follow
from the structure of the Grassmann representation for
correlation functions for the free-fermion model@35,40#. The
correlation length is infinite fory50 ~theF-model limit!, as
expected, but finite for any nonzero concentration of vac
cies. The result in theF-model limit is in accordance with a
result derived by Baxter at the 2TcF point @38#. We find that

j;em/e ln 2, ~11!

where j is the correlation length. Ifj@L ~which happens
when m is large!, crossover behavior results. Whereas t
exact result demonstrates the existence of a finite correla
length in the limit of no open ends and a finite concentrat
of vacancies, it tells us nothing about the behavior if a fin
concentration of open ends is present. However, we belie
on the basis of our simulations~see below! that this cross-
over behavior persists as long as the density of open end
small. In particular, our exact result differs from earlier wo
by Saleur@22#, which suggests that the Flory model with
finite concentration of vacancies continues to haveF-model-
type behavior.

B. Simulations

In our simulations we used square lattices of linear sizL
ranging from 4 to 80, with periodic boundary conditions.
most cases, we performed (53105)2(7.53105) Monte
Carlo steps~MCS! per link at each set of values ofT, h, and
m; in some cases we went up to 106 MCS. We used the
algorithm of Metropoliset al. @39# and single-link moves in
which a link update was attempted~by the removal of a bond
if one were initially present or by its addition if not forbidde
by self-avoidance!. We went through the lattice sequentiall
Every 50 MCS, we also used multilink moves in which
defect @18# of the type shown in Fig. 2 was replaced by
configuration with all links parallel or vice versa, with
probability exp(24e/kBT) in order to ensure detailed balanc
we found that such multilink moves were essential for equ
bration at lowT. Typically we discarded the first 105 MCS
before accumulating data for thermodynamic functio
~which we did every 50 MCS per link!. Convergence was
checked by tracking the energy per link every 1000 ite
tions; convergence to one part in 103 or better was attained

We computed the internal energyU, the specific heatC,
Ny and Nx , the numbers of occupied links in they and x
directions, respectively,Nlinks , the number of links occupied
in the fully ordered state, and thence the order paramete
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M5~Ny2Nx!/Nlinks ~12!

and the order-parameter susceptibility

x5
1

T

^~Ny2Nx!
2&2^~Ny2Nx!&

2

2Nlinks
. ~13!

We also obtained the mean numbers of vacanciesNv , bends
Nb , open endsNo , the normalized fourth moment or kurto
sisS45^M4&/^M2&2, andP(l ), the distribution of polymer
lengths l , as functions ofT, h, m, and L. The thermody-
namic quantities plotted in subsequent figures~except for the
distribution of polymer lengths! are normalized by the num
ber of links (52L2 in d52). At the end of this section we
discuss the effect of a small interchain, attractive interact
J between parallel monomers on next-nearest-neighbor li

We performed simulations over a range of parameter
ues, but concentrated, for definiteness, on two casesd
52: ~a! m52, h51.2 and~b! m52, h54, which lie, re-
spectively, in the regimesh.e andh@e mentioned above
The results for intermediate parameter values lie betw
these two limits.

Figures 6~a! and 6~b! @cases~a! and ~b!, respectively#
showM versusT for L56, 12, and 20. In Fig. 6~a! error bars
are comparable to the sizes of the symbols, but in Fig. 6~b!
they are greater~by a factor of 425). The transition in case
~a! is clearly continuous, but in case~b! such an identifica-
tion is problematic. Finite-size effects are more clearly v
ible in Fig. 6~a! than in Fig. 6~b!. The considerable fluctua
tions seen in case~b! are indicative of large correlation
lengths, which lead to large correlation times.

Figures 6~c! and 6~d! @cases~a! and ~b!, respectively#
showS4 versusT for L56, 12, and 20. The curves for dif
ferent values ofL cross at a single point in Fig. 6~c!, so we
identify the transition here to be a conventional, seco
order one. A finite-size-scaling analysis of our data~see be-
low! yields d52 Ising exponents. Figure 6~d! is consider-
ably different from Fig. 6~c! insofar as curves for differen
values ofL overlap, within error bars, over a finite range
T. Such overlapping normally indicates a power-law pha
in which some correlation length is infinite over a finite r
gion of parameter space. However, it can also occur if
correlation length is very large~but finite! and much greate
than L. As our free-fermion solution indicates, correlatio
lengths can be very large over a substantial region of par
eter space, leading to signatures that could suggest a po
law phase~given simulations for smallL). Our simulations
find similar effects away from the free-fermion limit: Eve
thoughh is finite, our data are consistent with large corre
tions lengths and times.

In Figs. 6~e! and 6~f! we show howNv , Nb , andNo vary
with T for cases~a! and ~b!, respectively. The vacancy con
centrationNv is small in both cases, so we have a dense m
In case~a!, the density of open endsNo is much larger than
in case~b! because the formation of ring polymers is favor
in the latter. We expect thatNv , Nb , andNo all inherit the
weak nonanalyticity of the energy density at the continuo
transition, though we have not checked this explicitly.

In Figs. 7~a! and 7~b! we plot C versusT. For case~a!
@Fig. 7~a!# its divergence atTc in the L→` limit shows up
clearly. We find the peak height increases as logL, as it
n
s.
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lt.
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should for a transition in thed52 Ising universality class. In
case~b! @Fig. 7~b!# the peak height seems to saturate a
finite value with increasingL; however, the data are ex
tremely noisy.~Recall that theF-model specific heat@30#
shows a similar peak atT5e.TcF .)

In Figs. 7~c! and 7~d! we plotx versusT @Eq. ~4!#. In case
~a! @Fig. 7~c!# asT→Tc ,x→` in the thermodynamic limit.
A finite-size scaling plot for this case~Fig. 8! yields d52
Ising exponents. In case~b! @Fig. 7~d!#, the noise in our data
prevented us from verifying Ising-type scaling at the tran
tion. This noise in the disordered phase of our model ari
because of the proximity of the high-temperature, power-l
phase in theF-model limit of our model. TheF-model ana-
log of our susceptibility is a staggered susceptibility asso
ated with the two types of vertices that appear in the grou
state.~These vertices are arranged antiferroelectrically: A
rows on succesive columns are oppositely directed.! This
staggered susceptibility is infinite in the rangeTcF22TcF
since the associated correlations decay algebraically~with an
exponent that increases from 1 atTcF to 2 at 2TcF and finally
to 3 atT5` @22,41#!.

In Fig. 9 we plot the angle-averaged correlation functi
for two links along the x direction, rxx(x,y,x8,y8)
[^rx(x,y)rx(x8,y8)&2^rx(x,y)&^rx(x8,y8)&, versus the
radial coordinater, for h51, 2, 3, and 4. This~connected!
correlation function is obtained by averaging over allx links
a fixed radial distance away from anx link at the origin and
then averaging over all possible choices of this origin. T
correlation function is short ranged for smallh but decays
more and more slowly with increasingh. Thus, as we had
anticipated earlier, the correlation length can become v
large ash increases, until it diverges in theF-model limit of
our model.

Our results for the distribution of polymer lengthsP(l )
versusl are shown in Figs. 10~a!–10~d! @case~a! in Figs.
10~a! and 10~d! and ~b! in Figs. 10~b! and 10~c!, respec-
tively# for different values ofT andL520. In case~a!, P(l )
is clearly exponential@Fig. 10~a!# in the disordered phase; i
the ordered phase the envelope ofP(l ) also decays expo
nentially, but peaks appear at values ofl commensurate
with L at sufficiently lowT because of the formation of ring
polymers that wind around the system~once or many times
since we use periodic boundary conditions!. In case~b! our
results are as follows: The exponential tail ofP(l ) seen in
case~a! occurs only at sufficiently highT @Fig. 10~b!#. At
low T and for smalll ring formation is favored~with an
even number of monomers! as there is a large energy costh
for open ends. As a consequence, polymers with an e
number of monomers are distributed differently from po
mers with an odd number of monomers@Fig. 10~c!#; in our
simulations we observe a clear distinction in the scaling
havior of polymer lengths in these two cases. We find t
the distribution for chains with an even number of monom
scales as

P~ l !;l 2q, ~14!

where the exponentq depends onT, h, andm; this power-
law form holds only ifl is smaller than a crossover leng
estimated below. For polymer chains with an odd numbe
monomers we find thatP(l ) is nearly independent ofl . A
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FIG. 6. Order parameterM versusT for d52 asT crosses the transition temperatureTc . Data are shown for three different~linear!
system sizesL56, 12, and 20 for~a! m52, h51.2, andJ50 (Tc.0.73 here! and~b! m52, h54, andJ50 (Tc is hard to pinpoint here!.
The normalized fourth momentS45^M4&/^M2&2 versusT for d52 is shown in~c! and ~d! for the same parameters as in~a! and ~b!,
respectively.Nv , No , andNb , the densities of vacancies, open ends, and bends, versusT for d52 asT crosses the transition temperatu
are shown in~e! and ~f!. The parameters in~e! and ~f! are the same as in~a! and ~b!, respectively.
a

re
f
a

f
en
qualitative interpretation of this result is that, in the limit of
small number of open ends~i.e., h→`), the formation of
open chains occurs by the breaking of rings. Since a ring
lengthl can be broken inl places and since small rings a
likely to be broken at most once~because the density o
breaks is small!, the distribution of open chains must scale
of

s

l P~ l !;l 2q11; ~15!

for the parameters of Fig. 10~c!, q.1.3. The additional
peaks atl 5L,2L, . . . , are aconsequence of our use o
periodic boundary conditions. The well-differentiated ev
and odd distributions seen at smalll begin to coalesce for
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FIG. 7. Specific heatC versusT for d52 asT crosses the transition temperature. The parameters in~a! and~b! are the same as in Figs
6~a! and 6~b!, respectively. The peak sharpens with increasingL in both cases~a! and~b!, but the data are distinctly more noisy for the latte
The susceptibilityx versusT for d52 asT crosses the transition temperature is shown in~c! and~d! for two choices of parameter values
The parameters in~c! and~d! are the same as in Figs. 6~a! and 6~b!, respectively. The peak sharpens with increasingL in cases~a!–~d!, but
the data are distinctly more noisy for~b! and ~d!.
ig.
t

g-
-
io and
FIG. 8. Finite-size-scaling plot for the susceptibility data of F
7~d! for ~linear! system sizesL56, 12, and 20. Curves for differen
values ofL collapse onto two scaling curves~one forT.Tc and the
other for T,Tc). Here we have used the two-dimensional Isin
model exponentsg57/4 and n51, which characterize, respec
tively, the divergences of the susceptibility and the correlat
length at criticality.
n

FIG. 9. Angle-averaged~see the text! correlation function
rxx(x,y,x8,y8)[^rx(x,y)rx(x8,y8)&2^rx(x,y)&^rx(x8,y8)& ver-
sus the radial coordinater, for h51, 2, 3, and 4,m52, J50, L
520, andT5Tc

F , the transition temperature of theF model. These
data indicate clearly that this correlation function decays more
more slowly as we approach theF-model limit.
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FIG. 10. The distribution of polymer lengthsP(l ) versusl for L520, T50.8, m52, h51.2, andJ50 is shown in~a!. P(l ) clearly
decays exponentially in this case. The distribution of polymer lengthsP(l ) versusl for L520 with the parameters~b! T58, m52,
h54, andJ50 and~c! T51.2, m52, h54, andJ50 is shown in~b! and~c!. Note the clear exponential decay at largeT. For very large
l , P(l ) must decay exponentially; however, for the scales studied here in~c!, it shows a power-law decay and different behaviors
chains with an even number of monomers~upper curve! and an odd number of monomers~lower curve! as explained in the text. A plot o
the mean polymer lengthl av versusT for d52 asT crosses the transition temperature for the parameters of Fig. 6~a! is given in ~d!.
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large l . In related simulations of theF model~whose poly-
mer analog has only closed loops!, we have found a similiar
power-law behavior inP(l ) @42#; in this limit it may be
possible to obtain the exponentq analytically.

We expect the power-law behavior ofP(l ) to cross over
to an exponential form~i.e., P(l );e2l /l 0) for large-
enough lattice sizes. To see this, consider a particular c
~of length l ) and a configuration of all other chains cons
tent with this chain. Ifl is large, the probability that the
chain is unbroken is an exponentially decreasing function
l . @For the purposes of establishing an upper bound forl 0 ,
the length at whichP(l ) crosses over to an exponenti
form, we can consider the chain to be extended~ignoring
bends! and disallow adjacent breaks in the chain.# The char-
acteristic length of the distribution is then found to scale
l 0;e2bh. We estimate, forT.1 andh54, that l 0.3000
in units of the lattice spacing, i.e., the crossover to expon
tial behavior inP(l ) would show up at these temperatur
on lattices withL.3000. Note that forT58 @Fig. 10~b!#,
this crossover length is.3, which is well within our finite
lattice size. Though the inclusion of bends, etc., can ren
in

f

s

n-

r-

malize l 0 , we expect that this will not alter our bound sig
nificantly.

For case~a! Fig. 10~d! shows the average polymer leng
^l & versusT for three different lattice sizes. We expect th
^l & displays a mild nonanalyticity atTc that is masked by an
analytic background term; we have not tried to extract t
nonanalytic part. However, we would like to emphasize t
this mild nonanalytic behavior is associated with the ord
ing transition described above andnot with what might be
called a strict polymerization transition, i.e., one belo
which ^l &.AL, whereA depends onT,m, etc. As far as we
can tell from our simulations on finite lattices, such str
polymerization occurs only atT50 in our model withA
51: The ground-state configuration is a stack of circu
polymer chains~looping around the lattice in one directio
since we use periodic boundary conditions!. At any finite
temperature,̂ l & becomes independent ofL for sufficiently
large system sizes~clearly this cannot be checked nume
cally at very low temperatures!. In case~b! P(l ) is very
broad, so, for system sizesL,Lc , ^l &@L; however, at any
T.0, once L.Lc , ^l & must eventually assume a
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L-independent value and, as in case~a!, strict polymerization
occurs only atT50.

We now consider the inclusion of the interpolymer attra
tion J: Since it is not a symmetry-breaking interaction w
expect the Ising-type transition forJ50 to persist for small
J.0; for largeJ this transition could disappear or perha
change its order. Our Monte Carlo simulations for 0,J/e
,0.4 coupled with finite-size scaling analysis indicate th
the two-dimensional Ising-type critical behavior persists
small finiteJ.

III. THREE DIMENSIONS

The transition in the two-dimensional case is of inter
because of the controversy regarding its behavior. Howe
the three-dimensional case is physically more interesting
three dimensions our model exhibits a first-order transition
all the regimes of parameter space that we have explored
quantities, such as the order parameter, internal energy,
P(l ), change discontinuously at this transition. This res
is in agreement with Flory’s prediction of a first-order cry
tallization transition. If the concentration of open ends
very small, we see substantial hysteresis as we cyclT
through the first-order transition; the width of this hystere
loop cannot be reduced significantly given the time scale
our simulations. Equilibration is difficult in this limit for two
reasons:~i! The breaking of chains is energetically disf
vored and~ii ! since our multilink moves conserve the num
ber of links, the simulation effectively becomes a canoni
one.

Our simulations ind53 were carried out on lattices o
linear dimensionL58 and 16, withJ50.3. ~It is necessary
to include this attractive term to obtain an ordered grou
state; otherwise one could, with no energy cost, disorder
aligned state merely by rotating one aligned plane with
spect to another.! Most of the data we give here were o
tained with m52 and h51.2. We have also studied othe
values ofm andh; we find that the first-order transition re
mains for all the parameter values we have studied. H
ever, equilibration is hampered at large values ofh. Our
simulation method was similiar to the one we used ind52
and included a defect-removal move every 20 MCS.~Note
that for J.0, the energy required to remove or to add
defect is not64e, but also depends on the configurations
neighboring links.! We found that defect removal, thoug
useful, was not as important for equilibration ind53 as in
d52. We accumulated data for thermodynamic quantit
every 10 MCS typically for (225)3104 iterations, at each
value ofT and other couplings.

As in d52 we define suitable order parameters to ch
acterize the broken-symmetry state at low temperatu
These are

Mxy5~Nx2Ny!/Nlinks ,

M yz5~Ny2Nz!/Nlinks , ~16!

Mxz5~Nx2Nz!/Nlinks ,

whereNx , Ny , andNz are the numbers of occupied links
thex, y, or z directions, respectively, andNlinks is the number
-
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of links occupied in the fully ordered state. The three as
ciated susceptibilities are obtained as ind52.

The transition is clearly first order, with the orde
parameter jump@Fig. 11~a!# typically 0.620.7. Triangles and
crosses indicate heating and cooling runs, respectively;
absence of hysteresis indicates proper equilibration.
largeh there is substantial hysteresis: In this limit the cost
open ends is very high and so closed chains predominate
our single-link updates are ineffective for equilibration. Fi
ures 11~b! and 11~c! show, respectively, the specific heat a
susceptibility of our model ind53 for L516. The peaks in
both cases sharpen rapidly with increasingL ~they should be
d functions forL5`). In Fig. 11~d! we plot the densities of
bendsNb and vacanciesNv and in Fig. 11~e! the density of
open endsNo , which are, as expected, discontinuous at
transition@in contrast with Figs. 6~e! and 6~f!#.

Figures 12~a! and 12~b! show the evolution of the poly-
mer length distributionP(l ) with T: P(l ) decays exponen
tially both above and below the transition; however, there
a sharp discontinuity in the decay length across the transi
as can be seen from the intercepts on thel axis. Figure 12~c!
shows the sharp drop in the average lengthl av at the tran-
sition. For the smaller lattice size there is an increase inl av
at the transition. Indeed, for any finiteL, l av is not a mono-
tonic function ofT: At T50, l av5L, but at low T.0 it
increases to higher values, peaking at a temperature be
the transition temperature for orientational ordering.

IV. GLASS FORMATION

In most experimental situations~when crystallization is
obtained by decreasingT), it is necessary to cool the me
slowly; otherwise the system drops rapidly out of equili
rium. The resulting state is a glass to the extent that it
only short-ranged order and typically does not evolve sign
cantly over experimental time scales. Slow heating of t
glass yields transitions to a crystal and eventually the m
which show up as exothermic and endothermic peaks,
spectively, in differential scanning calorimetry. Furthermo
temporal autocorrelations in such glassy states usually s
stretched-exponential relaxation@3,4#. Recent studies@8,13#
have also begun to explore glass~or gel! formation in sys-
tems of living polymers.

Given the ubiquity of glass formation in experiment
polymeric melts, it is natural to ask if our model can yie
such glassy behavior. We show below that it does both
quenching instantaneously from high to lowT and on cool-
ing at finite rates. The resulting vitreous states share so
properties with experimental polymeric glasses. Such beh
ior obtains in our model both ind52 andd53; we concen-
trate on the latter since it is more relevant for experimen
We have given a brief account of glass formation in o
model elsewhere@16#. We summarize these findings here
that all results pertaining to our model for living polymer
melts are available together. We also discuss the relatio
our work with that of other workers@2,26–29# in Sec. V.

When we quench our system from the disordered phas
high T to the ordered phase at a temperature.Tc/2 in d
53, we find that, ifh is small, equilibration is rapid and th
disordered state evolves to the ordered one typically o
10021000 MCS forL516. Evolution to the ordered stat
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FIG. 11. ~a! Order parameterM versusT for our three-dimensional model. The first-order nature of the crystallization transitiond
53 is clearly manifested in the jump ofM at the transition temperature (Tc.1.02). A cooling and a heating run are shown for a system
~linear! sizeL516. The parameter values arem52, h51.2, andJ50.3. ~b! Specific heat per linkC versusT for d53 and the parameter
of ~a!. The peak should be ad function, but is smeared by finite-size effects.~c! Susceptibility per linkx versusT for d53 and the
parameters of~a!. ~d! Temperature dependence of the densities of bends and vacanciesNb andNv and ~e! density of open endsNo for d
53 and the parameters of~a!.
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becomes increasingly sluggish ash is increased. For ex
ample, forh55.5, we see essentially no increase in the or
parameters (.0 before the quench! over 53105 iterations
and the resulting configurations are completely disorde
@Fig. 1~a!#.

Large values ofh (.3) suppress local rearrangemen
r

d

,

yield completely disordered glasses@Fig. 1~a!#, and logarith-
mically slow temporal evolution of, e.g.,E, especially for
our deepest quenches@103<t<23105 MCS in Fig. 13~a!#;
we have obtained similar, though more noisy, data for
vacancy concentrationNv and order parameters. At interme
diateh (1.5,h,3) we find different vitreous states, whic
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we term lamellar glasses@the one-dimensionally disordere
stacking of ordered layers of polymers shown in Fig. 1~b!#;
the quenched system evolves to such a lamellar glass
time t lg ; order parameters saturated to values between 0~the

FIG. 12. Distribution of polymer lengthsP(l ) versusl for d
53, the parameters of Fig. 11~a!, and ~a! T51.01 and ~b! T
51.02. P(l ) decays exponentially, but has subsidiary peaks
values ofl commensurate with the lattice dimension. Note that
distribution atT51.02 is much narrower than the one atT51.01,
indicating a discontinuous change inl av at this first-order transi-
tion. The mean polymer lengthl av versusT for d53 and the
parameters of Fig. 11~a! is shown in~c!. Note the sharp jump inl av
at the crystallization transition.
a

high-T value! and 1 ~the perfect crystal!. Our data for the
time evolution of the internal energyE @Fig. 13~b!# are con-
sistent with t lg;exp(2bh). After they are formed, these
lamellar glasses do not evolve substantially even if annea
for .106 MCS since a large number@at leastO(L2)# of
cooperative local updates are required to align all planes.
our glassy states yield order-parameter autocorrelation fu
tions that are slowly decaying exponentials for shallo
quenches; deeper ones yield decays that are so slow tha
cannot obtain reliable fits.

Our model has other interesting glass-related features~i!
It falls out of equilibrium not only when it is quenched, bu
also when it is cooled at a finite rate, as shown in Fig. 14~a!.
Thus we have studied it via a@16# Monte Carlo analog of
scanning calorimetry@Fig. 14~b!# and differential scanning
calorimetry, all of which are in qualitative accord with th
behavior of real polymeric glasses@4#. ~ii ! It shows a glass-
crystal transition on loweringh, presumably because thi
eases the frustration in the disordered network obtained
quenching. This transition is seemingly continuous as can
seen from Fig. 15; however, it is not related to an underly
equilibrium phase transition as we show below.

In our studies of vitrification we use simple cubic lattic
of size 163. The Monte Carlo algorithm is the same as in o
equilibrium studies~Sec. III!, so we do not conserve mono

t
e

FIG. 13. EnergyE versus timet after a quench toT5TQ for
L516 showing~a! a logarithmic decay at largeh and ~b! and a
somewhat faster decay at intermediateh. In ~b! the system eventu-
ally becomes a lamellar glass andE does not evolve over ourt
range.
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mers, vacancies, or order parameters. Nonetheless, gl
are formed as mentioned above. We present some deta
our calculations below.

For studying the quench we use a high-temperatureT
510) configuration, withh51.2, m52, and J50.3. This
yields a low density of short chains (l av;4). We quench
this initial configuration in one step toTc/2 over a range of
parameter values~we varym andh and use theTc appropri-
ate for the parameter values!. We then track the tempora
evolution of the internal energy per linkE, the order param-
eterM, and the average number of vacanciesNv . We have
checked that different initial configurations, obtained w
different sequences of random numbers or by starting aT
5` ~i.e., adding and removing links from an initially emp
lattice at random but respecting self-avoidance!, yield the
same qualitative behaviors; the data we present here are
typical run. We computeE(t), etc., (t in MCS! by averaging
over 20 measurements, separated by 10 MCS each and
tered at t. We evolve the system fort.(326)
3105 MCS.

FIG. 14. ~a! Evolution of E with temperatureT on steady cool-
ing ~circles! to T,Tc at largeh @53.5 here with annealing and
recording times~see the text! ta5t r5100# and in equilibrium~tri-
angles!. ~b! E versusT for our Monte Carlo scanning calorimetr
~see the text! after a quench toTQ50.63. We use two heating rate
indicated by triangles (ta5200 andt r5200) and circles (ta5200
and t r51000). At the slower heating rate~circles!, the glass trans-
forms more effectively into a crystal~the flat minimum in the curve
with E.20.13; for the ordered crystalE.20.2) before it melts
eventually into the disordered high-T phase.
ses
of

r a

en-

By annealing quenched configurations at differentT,Tc

we have calculated autocorrelation functions such asAx(t)
[(1/L3)( i@^rx( i ,t050)rx( i ,t05t)&2^rx( i ,t0)&2# and its
y and z analogs. We find they fit exponential forms wit
large autocorrelation times. These times increase ash is in-
creased or asT is decreased. Forh53.5 andT50.7, these
autocorrelation times are.500 MCS. Unfortunately, at
lower T or higherh, these decays are so slow that we can
get good data for meaningful fits. Thus our study leaves o
the possibility of nonexponential large-t behaviors in our
low-temperature glassy states. Note, though, that the lo
rithmic decays@e.g., Fig. 13~a!# displayed by the glasses i
our model are reminiscent of those found in disordered s
tems. Our model has no random couplings, but the diso
arises dynamically via the quench or cooling at a finite ra
as in conventional glasses. Also, the slow decrease ofNv
with t is analogous to the volume contraction obtained wh
polymeric glasses@43# are aged. This is ascribed to decrea
ing free volume in some theories@25#.

To study glass formation on steady cooling, at a rate
slow enough for equilibration, we begin with equilibrate
configurations atT51.5 and lowerT in steps of 0.005. We
divide the timet ~MCS! spent at a given set of paramete
~such asT in Fig. 14 andh in Fig. 15! into an annealing time
ta (.20021000 MCS), during which we do not collec
data, and a recording timet r (.20021000 MCS), in
which we accumulate data for averages every 10 MCS. C
ing or heating rates follow simply from the value oft[ta
1t r shown. The glasses we obtain thus are similar to th
resulting from our quenches: For smallh,1.5 our system
can be supercooled just a little before it crystallizes, but,
the intermediate range 1.5,h,3, E drops withT, though
not as sharply as in equilibrium@Fig. 2~a!# and the system
forms a lamellar glasses. For largeh.3 @Fig. 14~a!# a com-
pletely disordered configuration is formed, but with slight
larger ordered patches than for an instantaneous quench

Our Monte Carlo analog of scanning calorimetry yiel
successive glass-crystal and crystal-liquid transitions w

FIG. 15. E versus the frustration parameterh at two scanning
rates~see the text! with t r5200, butta5200 ~open circles! and 400
~filled squares!. As h is lowered from 3.5, its value when we quenc
to TQ50.63, an apparently continuous glass-crystal transition
curs andE flattens out. The value ofh at the transition depends o
the scanning rate.
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800 PRE 59GAUTAM I. MENON AND RAHUL PANDIT
we heat our glasses steadily. The scanning proceeds as
lows: We quench the system fromT510 to Tc/2, anneal it
for 63105 MCS, and then increaseT at 1026 per MCS.
Here too the intermediate-h regime yields a lamellar glass
but is not very interesting since it melts directly to the d
ordered phase. For largeh we find that, on heating, the glas
transforms into a crystal; on further heating, this crys
melts into the disordered phase. These transformations
mirrored in the behavior ofE: It drops sharply at the glass
crystal transition and then increases rapidly at the crys
melt transition @Fig. 14~b!#. The temperature range ove
which the crystal appears increases with decreasing hea
rate and for slow heating rates@circles in Fig. 14~b!#; at least
the crystal-melt transition appears to be discontinuous.
analog of an experimental differential-scanning-calorime
plot @4# can be obtained through the derivativedE/dT. As
can be seen from Fig. 14~b!, such a derivative will show both
an exotherm and a sharp overshoot, as is often seen in
idly cooled, annealed, and slowly reheated glasses@3,4#. The
exotherm arises because of relaxation out of a high fict
temperature state formed by the quench. Of course,
crystal-melt transition resembles equilibrium melting. Mo
complicated transitions occur in some of our scans: We h
seen the glass transform to a crystal that reforms into a g
at a slightly higher temperature; this glass then become
crystal that melts to the disordered phase.

The energy cost for open endsh plays a crucial role in
slowing down the kinetics in our model. By contrast, w
have checked that, for largeh, it plays a minor role in
determining the equilibriumTc . This arises because of th
large energy barrier for the removal of a link (;h, for large
h) and, along with the self-avoidance constraint, leads t
sort of frustration that results in vitrification. This frustratio
can clearly be reduced by loweringh and results in a glass
crystal transition: Specifically, we prepare glassy configu
tions by annealing quenched configurations for
3105 MCS atTc/2 and largeh (h53.5 in Fig. 15!. We then
decreaseh in steps of 531023. This gives us an apparentl
continuous transition: E decreases monotonically an
smoothly to its mean value in the crystal. However, we w
to emphasize that, in our model there is noequilibrium tran-
sition underlying this frustration-driven transition, in contra
to some scenarios for the glass transition@26#. First, this
transition is not reversible, for there is no crystal-glass tr
sition whenh increases; second, the value ofh at this tran-
sition depends on the rate at which we changeh: Scans
slower than those of Fig. 15 make the transition disapp
for the crystal is eventually stabilized.

CONCLUSION

We have presented a lattice model for the transition to
ordered state in melts of semiflexible, living polymers a
studied its statistical mechanics in two and three dimens
via Monte Carlo simulations and the analysis of exactly so
able limits. We have shown that in two dimensions stro
crossover effects arise because of the proximity to
F-model fixed line and can lead to very large correlati
lengths and slow relaxation. We have demonstrated the
istence of an Ising-type transition separating the ordered
disordered phases for the two-dimensional square lat
fol-

-

l
re

l-

ing

e
y

p-

-
e

ve
ss
a

a

-

h

t

-

r,

n

s
-
g
e

x-
nd
e.

Though the universality class of this transition might be d
ferent for continuum systems, it would be interesting to lo
experimentally for continuous transitions to crystalline ord
in two-dimensional melts of living polymers. In three dime
sions the transition is first order.

Our study shows how an interplay of semiflexibility, se
avoidance, and the energy cost for breaking chains lead
the vitrification of a melt of living polymers. Furthermore
our model is a good testing ground for theories of the gl
transition since frustration can be tuned easily. In a m
general context, our model can be thought of as a spin~or
lattice-gas! modelwithout quenched disorder that exhibits
transition to a glassy state at low temperatures@45#. Also, it
would be interesting to see whether lamellar glasses form
real polymeric melts or are merely an artifact of our latti
model.

Systems of living polymers have also been modeled
independent-monomer-state models@9,23,24#. As we have
mentioned earlier, there are some important differences
tween these and our model for living polymers. The IM
models admit states that are disallowed in our model. Th
differences are perhaps more important in two than in th
dimensions because of the relation of our model to ver
models such as theF model. This might well explain why
some IMS models@9,23# yield second- and first-order bound
aries meeting at a tricritical point@23# whereas our mode
yields an Ising-type continuous transition. In three dime
sions both our model and the IMS models@9# agree qualita-
tively insofar as both yield first-order melt-crystal transitio
at which thermodynamic functions and polymer-length d
tributions change discontinuously. To the best of our kno
edge, vitrification has not been studied in the context of IM
models.

Our model~and the IMS models! can be thought of as a
grand-canonical generalization of the Flory model, for it p
mits variable monomer densities and chain lengths gover
by an equilibrium distribution. In the models studied b
Flory and Baumga¨rtner@1,19–21# chain lengths are fixed an
cannot fluctuate; also no ring polymers are allowed. To
extent that these differences do not matter, our analysis
vides an explanation~because of slow equilibration arisin
from the proximity of theF-model critical line! for the con-
siderable controversy that has surrounded studies of
Flory and related models in two dimensions@1,15,18–20,22#.
In three dimensions our results are consistent with Flor
prediction of a first-order crystallization transition.

Most experiments are done on fixed-length polymeric s
tems without ring polymers. These are better described
the Flory model than by our model. Our results should
more directly applicable to systems of living polymers th
have been attracting attention over the past decade@6,8,10–
14#. Important issues include@13# an elucidation of the con-
ditions under which living polymeric systems form glasse
We believe our work is the first comprehensive numeri
study of this issue in a model for living polymers. We ho
our work stimulates experimental studies of glasses and
in melts of living polymers, which are just beginning to b
studied @8,13#. However, some care must be exercised
using our lattice-model results to interpret continuum expe
ments.

Perhaps the earliest theoretical study of polymeric glas
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was that of Gibbs and Di Marzio@2#. They used the configu
rational entropy calculated via Flory’s mean-field appro
mation @1# and extrapolated below the mean-field transiti
temperatureTm f to obtain a second-order glass transition
which the entropy vanished, but a finite concentration
gauche bonds remained. Their work relies on two assu
tions: ~i! that Flory’s approximation is valid, and~ii ! that
such an extrapolation is meaningful. The second assump
is especially questionable for it is not clear that this vitri
cation is associated with an underlying~thermodynamic!
continuous transition or results because of very slow kine
arising from constraints such as excluded volume, which
comes important at high densities: For example, simulati
of two-component mixtures of hard spheres have obtai
glassy behavior in assemblies of as few as 32 particles w
out the divergence of any correlation length@44#. All our
work shows that, at least for the model system of livi
polymers we study, vitrification arises because of slow kin
ics and not an underlying~equilibrium! continuous transi-
tion.

In recent Monte Carlo simulations of glasses in a tw
dimensional lattice model for a conventional polymeric me
Ray and Binder@28,29# find glassy states with nonexpone
tial decays of autocorrelation functions at lowT. However,
l-
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their model has an equilibrium transition only atT50, so it
cannot yield scanning-calorimetric plots such as ours,
does it have a simple frustration parameter that can be
ied. However, since their simulation conserves the numbe
monomers, they can obtain diffusion constants that we c
not. Our model and the spin-facilitated model of Fredricks
and Andersen@27# have interesting connections, for, in bot
relaxation at low temperatures occurs via highly coopera
moves. However, our model has the advantage that it yie
both equilibrium freezing and glass formation. Of course,
model glass formation in real polymeric melts, we shou
ideally, use a continuum description and enforce the relev
conservation laws. These conservation laws will, in gene
lead to longer equilibration times and slower relaxation th
in our model, in which no quantity is conserved.
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