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Droplet spreading on heterogeneous substrates using molecular dynamics
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Using molecular dynamics, it is shown that the equilibrium contact angle of a sessile drop placed on a
heterogeneous substrate follows Cassie’s [[Bigcuss. Faraday So67, 5041(1952]. The dynamics of the
associated spreading is analyzed with the molecular kinetic theory. We show that the corresponding molecular
parameters vary highly nonlinearly with the relative concentration of the heterogeneities. A model to explain
this behavior is proposed. It is predicted that small quantities of wettable heterogeneities on a nonwettable
substrate will change the spreading dynamics drastidéi$¥063-651X99)06101-2

PACS numbes): 68.10.Cr, 61.20.Ja, 68.10.Gw

I. INTRODUCTION It is therefore interesting to use molecular dynaniMd®)
to study the spreading of sessile drops on well defined mi-

Manv of the associated technological brocesses have be%‘roscopically heterogeneous substrates. This work comple-
base):j on the well known Youn eg uatic?n This equation de. ents a previous analysis developed for lattice gas models in
X . Ing equ: - 1Nis €q two dimensiong9]. Moreover, in[10] we already showed

scribes how a surface liquid, in coexistence with its vapor

hasev. will equilibrate on a solid wall. according to the that MD techniques can be used to describe wetting on uni-
gquatio’n a ' 9 form substrates. This allowed us in particular to validate one

of these dynamical theori¢6—8| at the microscopical scale.

Spreading and wetting are very active research subject
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where they;; denote the different surface tensions character- | o4 ;g now present the liquid drop and the solid at the
12Ing the three pairs of media gr@l IS the_contact angle,_ atomistic scale. For all the atoms considered, we apply a
defined as usual. As already pointed out in several pUb“Caétandard Lennard-Jones interaction of the form
tions[1-3], the problem with this equation is that it refers to
perfectly flat and homogeneous substrates. Such cases do not o\ o
exist in practice. There is therefore a need to study the va- Uij(r)=4e <?> —<?
lidity of this equation with realistic substrates. It is known
that Young's equation may be replaced by Cassie’s[#\if  wherer denotes the distance between any pairs of atoms
macroscopical, chemical heterogeneities are present: andj, o is the characteristic radius of the atoms, arid the
strength of the associated potential. The paramedgrand
YLv €0s 0=C(yyw— nwat (1 =) (rww— rwe, (2 D;; are, for simplicity, chosen constant for each species and
. ) refer thus to the fluid/fluid(ff), fluid/solid (fs), and solid/
wherec represents the concentration of the spegi@nd 1 iy (sg interactions. For computational convenience, the
—c is the concentration of the speciBsThis relation refers i ¢ the Lennard-Jones potentials are cut off a&2.5 in
to equilibrium properties of wall tensions. It is certainly cor- reduced units. This means that we take into account only
rect for macroscopic heterogeneities for which the additi"ityshort-range interactions. To mimic as much as possible the
of the associated free energies should hold but is questions, nerimental conditions, we consider here chainlike mol-
ablg for microscopic heter.qge'neities. _Moreover, it is not cules instead of overl3; simple single atoms. This choice
obvious that such an equilibrium can indeed be observefhq,ceg considerably the evaporation into vacuum and there-
since, due to the metastable configurations, the time needggq jmproves the efficiency of the simulation. In practice,
to reach equilibrium can be very large. It is, however, ex-, o incorporate a confining potential
pected, on an experimental and also on a numerical [&sis
that if the heterogeneities are not too important, a drop put Uconf(r)=r° (4)
on a substrate should spread from its initial configuration to
reach its equilibrium shape. Many experimental works havdor adjoining atoms belonging to a given chain. The power 6
addressed this problem in the pés#]. It is, however, very is chosen here for computational convenience. The solid is
difficult to have good control of the size and distribution of modeled by two layers of atoms. These atoms interact via the
heterogeneities. Whether or not Cassie’s law remains valitiennard-Jones potential wit@;;=35 andD;;=5. We as-
for microscopic heterogeneities is still an open questioncribe to them a heavy massgiz=50m;q,iq SO as to have a
Moreover, the dynamic process of spreading is also a veryime scale comparable to the liquid. Each layer of atoms is
interesting problem in itself. Several theories have been pranitially fixed on a fc¢100) lattice and these atoms are then
posed(see[6-8] for an overview, but all these models as- allowed to vibrate around their initial positions with a har-
sume perfectly flat and homogeneous substrates. monic restoring potential.
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FIG. 1. Side view of a drop. The open circles are liquid atoms, the filled circles mark the average position of the interface.

The temperature of the system is maintained by rescalingpcate the extremity of the layer as the distance where the
the velocities of the atoms. We first equilibrate indepen-density falls below a cutoff value of 0.5 times the liquid
dently the drop of liquid and the solid. Once we have andensity. To check the consistency of the method, different
equilibrated drop(constant energy we move it into the vi- layer thicknesses and cutoff values were considered and
cinity of the solid and then we maintain the temperature ofthese gave almost identical results. A typical snapshot of the
the solid only. This procedure is used to mimic the thermalobserved drops is given in Fig. (see alsq10]). Using a
exchange between the liquid and the thermalized solid, as iaircular fit based on the extremities of the layers, we then can
a real experiment. The time stef is measured in units of measure the contact angleof the drop versus time. This is
r=\Jem/o? and its typical value is given byt=0.005r, of  also necessary to determine the corresponding value at equi-
the order of 5< 107 1° s, with e and o defined as before. The librium.
trajectories of the atoms are then computed solving the asso- Let us first compare the effect of the shape of the patches
ciated Newton equations witlc4=D¢=1.0. The system of the different species on the results. For that we have con-
size we consider in this paper is 25 600 atoms for the liquidsidered with the same surface concentrationAoaind B,

(1600 16-atom chainsand 40 000 atoms to represent the regular distributiongsquares of X1 to 7X7 atomsg, and

wall. The interaction between the liquid and the solid itself israndom distributions in the two solid layers. The correspond-
modulated by the constan® andD. To mimic the exis- ing contact angle relaxations in time do not exhibit any sig-
tence of two species in the substrate, we have consideretificant differences as observed in Fig. 2. These results
Ci=D=0.5 for some solid atoms an@;=D=0.3 for  show, in agreement with the results presented ed@igthat

the others. That is to say, the substrate is constituted by oriée geometry of microscopic patches seems not to play a
speciesA, which interacts strongly with the liquid, and an- significant role in determining the equilibrium contact angle.
other speciesB, which interacts weakly. Previous studies Presumably the patches are small enough so that the energy
[10] have shown that the interactions of 0.5 and 0.3 lead to

equilibrium contact angles of, respectively, 52° and 119°. % L
The relative concentrations & and B are, respectively¢
and 1-c. Intuitively, we may expect that the larger the con- 160
centration ofB, the larger the contact angle. Several configu-
rations for the distribution of these species may of course be 1404
considered: either regularly distributed or, closer to real ex-
periments, randomly distributed. Both cases will be devel-g 120
oped below.

¢=0.7535, random distribution
¢=0.755, regular distribution
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To compute the associated contact angle, we proceed ¢

follows. First, we subdivide the liquid droplet into several "
horizontal layers of arbitrary thickness. The constraint on the o 100
number of layers is provided by the need to maximize the

number of layers while ensuring that each layer contains

enough molecules to give a uniform density. For each layer, FIG. 2. Contact angle relaxation of drops in contact with a het-

we locate its center by symmetry and compute the density oérogeneous solidcE 0.755), with a random distributiofr+) and
particles as a function of the distance to the center. We thewith square patche).
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0 100 200 300 400 500 600 700 800 900 FIG. 4. Equilibrium contact angle as a function of the relative
Time concentration ofA. The solid line represents Cassie’s law. The cor-

relation coefficient of the straight line fit is 0.9994.
FIG. 3. Contact angle versus time. The fitted curves correspond

to the MKT. From bottom to top, we have the following concentra-
tion of A: 1.0, 0.995, 0.98, 0.875, 0.755, 0.595, 0.245, 0.02, an
0.0.

uced units. Since we do not change the site dems#yd
he other parameters imare independent of the interactions
between the solid and the liquitd,should be the same in all
the experiments. The best fit galee=0.21+0.06[10]. The
hjiifferential equations were solved numerically using a
ourth-order Runge-Kutta algorithii3]. The difference be-
tween the numerical data and the theoretical curve was then
inimized with a downhill simplex methoffL3]. The nu-
erical fitted curves are also shown in Fig. 3. The associated
equilibrium angles versus the concentratiorAdadre given in
Fig. 4.

To estimate the errors on the parameters, we have applied
the bootstrap methdd 3] using an estimated error of 2.5° on
the measurement of the individual angles. Because, at longer
times, the contact angles of our MD drops fluctuates more or
r{ess around a mean value, we conclude that the true equilib-
rium values are reached. As can be seen, the agreement with
Cassie’s law(shown as the straight lineés quite remarkable
for these microscopic heterogeneities.

The associated prefactag resulting from every fit can

o Yiv o then also be plotted versus the concentratiod.oThe cor-
v=2K"\ Sln”{an 7 (cosg"—cos )|, (5)  responding data are given in Fig. 5. The prefactors on pure
B substratesiz anda, are the values at, respectivetys= 0 and

where K° is the frequency of molecular displacement atl-

equilibrium,\ is the average length of these displacements,

is the number of adsorption sites per unit of adea,s the 33 - - T -
Boltzmann constant, and is the absolute temperature. No
external forces are present in the simulation and the shape a 1"";'—( 1
the spreading drop will approximate a spherical £a3). If
we assume no evaporation and a constant volume, which is 251
indeed observed within the simulations, the following rela-
tionship can be deriveflLO]:

required to cross them is comparablekib

Let us now present our results for regular patches. T
contact angle relaxations in time for different concentration
of A andB are given in Fig. 3. To extract from these data the
associated equilibrium angles, we need to fit them usin
some theoretical model. It has been showr 1] that the
molecular kinetic theoryMKT) can be applied very well for
the pure case€i=D;=0.3 and 0.5. Moreover, the param-
eters within the MKT can be linked to the molecular prop-
erties of the liquid and the solid. It is therefore meaningful to
fit these data according to an effective MKT. Within this
approach, Blake and Hayngkl] assumed the driving force
for the wetting line to be the out of balance surface tensio
force y,y (coséP—cos#). Using Eyring's activated rate
theory for transport in liquids gave the final relationship be-
tween 6 and the velocity of the wetting line as

L3¢

Prefactor a,,
8
T

T
L

IR 36 (3V\¥®  (1—cos#)?
v=—=——|— 3, (6)
at gt \ w | (2—3cos#+cos 6)

1,0 4

whereV is the drop volume an® is the base radius. These
equations are a linked set of partial differential equations s , . .
with two adjustable parameters: the prefacer2K°\ and 0 2 o4 o8 o8 1o
b= vy,/2nkgT. The prefactor is a measure for the intrinsic
velocity of the solid/liquid system. To keep the results as FIG. 5. Prefactomg from fitting the MKT versus the relative
general as possible, we calculated all the parameters in reencentration ofA. The solid line represents E(B).

non-wettable Relative concentration of A wettable
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The prefactoag varies highly nonlinearly with the rela- seen between the contact angle relaxation on substrates with
tive concentrations of the two species present at the sulrandom and regular patches, with fixed relative concentra-
strate. The effective prefactéwith dimensions of velocity tion.
for the mixed substrates seems to be constant wheglose Taking a closer look at the equations, it is expected that a
to 1. Only as the relative concentration Afapproaches 0 small quantity of heterogeneities of nonwettable species on a
does the effect oB on the effective prefactor become sig- wettable surfacéc close to 1 will not change the dynamic
nificant. This behavior suggests that the effective dynamicparameters significantly; only the driving force of spreading
of spreading on heterogeneous substrates is determined kil be changed according to Cassie’s ldlinear with the
the slowest processag) occurring at the contact line. It is concentration On the other hand, a small quantity of wet-
only when the concentration of the rate determining specietable species on a nonwettable surfacemall can drasti-
becomes small that the effective prefactor takes an intermesally increase the dissipation at the contact lismallerags).

diate value.
Sincea=2K°\ and in all the simulation th’s are equal,
we can describe the behavior afj; in terms ofK 2. In the

Since the dissipation at the contact line is the rate determin-
ing factor within this approach, small wettable heterogene-
ities can significantly decrease the rate of spreading. This

original model of Blake and Haynd41], K° could be seen property can be related to the observation that the jump fre-
as the inverse of the time required to jump from one site tajuency of water on hydrophobic substrates can be orders of
another, including the residence time. On heterogeneous suBagnitudes larger than on hydrophobic substrgités

strates with two constituents, four kinds of jumps may exist,
namely,A-A, B-B, A-B, andB-A. It can be expected that a
jump from one surface species to another is characterized by In conclusion, we have been able to show the validity of
different asymmetric energy barriers and thus we may expe%

different and asvmmetric iump frequencies. The avera assie’s law for molecular heterogeneities using MD simu-
) . . y Jump frequencies. 1 /C1a9¢ tions. Moreover, we have shown that, provided the sizes of
jump time is then the sum of all the individual jump times

IV. CONCLUSIONS

respectively multiplied by the probability of their occur-
rence. If we assume that the probability of jumps from on
surface species to another can be approximatedc(dy
—c), we then find

1 c 1-c

W0 T 0 T o
Ket Kan Kgp

c(l-c)
Ka-s

c(1-c¢)
Kg.a

()

If the wettabilities of A andB are very different, withA the
most wettable species, so th&f ;<K3 ,, and if, to a first
approximation, it can also be expected tmﬁ_B is of the
order ofK_,, this equation leads to

1-c

1 c¢(2—-c¢)
=—+ .
ag

Aeff an

8

In Fig. 5 this equation is represented by the full line. The
errors are calculated as before. It is clear that the propos

model fits the data very well.
In the general cas&$ ; andK$ , should be treated as

e

the heterogeneities are of molecular scale, their geometry
does not change the equilibrium contact angle. The dynamics
of the MD drops spreading on heterogeneous substrates can
be described by the molecular kinetic theory. The effective
kinetic parameters resulting from these fits change nonlin-
early with the relative concentration of the heterogeneities.
In the model proposed for the effective kinetic parameters,
we assume different frequencies at the contact line: frequen-
cies related to the movement of liquid molecules on patches
that are locally pure and the frequencies related to the cross-
ing of boundaries between the different species. This simple
model represents the experimental behavior very well. It is
shown that small quantities of wettable heterogeneities can
decrease the jump frequency of wetting drastically.

To our knowledge, no experimental results on the effect
of heterogeneities on contact angle relaxation have been pub-
lished. However, intuitively, it can be understood that het-
erogeneities must influence the dynamics to a large extent.

e hope these MD studies are a step towards a better under-
standing of the dynamics of spreading on heterogeneous and
rough substrates.

fitting parameters. Moreover, it should be clear that the prob-
ability of jumps across a given boundary depends on the
geometry of the heterogeneities. However, if the heterogene-
ities are of microscopic size and they are not ordered in some This research was supported by the European Community
special geometrie.qg., stripes we expectc(1—c) to be a  through Grant No. CHRX-CT94-0448 and by the Ministe
good approximation. As explained before, no differences aréle la Rgion Wallonne.

ACKNOWLEDGMENTS

[1] J. De Conincket al, Commun. Math. Physl21, 401 (1989.
[2] A. W. Adamson Physical Chemistry of Surfac€g/iley, New
York, 1990.

[3] A. W. Neumanret al, Applied Surface Thermodynamics Sur-

factant SeriegDekker, New York, 199§ Vol. 63.
[4] A. B. D. Cassie, Discuss. Faraday S6, 5041(1952.
[5] P. Colletet al, Phys. Rev. Lett79, 3704(1997.

[6] P. G. de Gennes, Rev. Mod. Ph¥s, 827 (1985.
[7] T. D. Blake, inWettability, edited by J. C. BergDekker, New
York, 1993, p. 251.
[8] M. de Ruijter, J. De Coninck, and G. Oshanin, Langnftarbe
published.
[9] D. Urbanet al, Phys. Rev. Lett76, 4388(1996.
[10] T. D. Blakeet al,, Langmuirl3, 2164(1997).



750 ADAO, de RUIJTER, VOUEAND De CONINCK PRE 59

[11] T. D. Blake and J. M. Haynes, J. Colloid Interface 36, 421 Scientific Computing2nd ed.(Cambridge University Press,
(1969. Cambridge, 1992
[12] Y. D. Shikhmurzaev, Fluid Dyn. Red43, 45 (1994. [14] A. M. Cazabatet al, Phys. Rev. Lett71, 2433 (1993; A.

[13] W. H. Prosset al, Numerical Recipes in Fortran, The Art of Paterson, Adv. Phy1, 337 (1996.



