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Starting from a metaequilibrium stata the Vlasov limi), the time scale of the fluctuations exhibited by
systems of one-dimensional charged particles is computed. This study is given both for plasma and gravita-
tional systems. The use of the multiple water-bag model allows an analytical treatment for both collective and
individual modes. These results are compared with those obtained by numerical simulatibi®adyf sys-
tems. Finally, it is numerically shown that collective effects are responsible for the long time scale of phase-
space holes structurds$1063-651X98)10612-9

PACS numbg(s): 45.05:+x, 52.25.Gj, 95.10.Ce, 98.16z

I. INTRODUCTION a first step, the water-bag model is adopted hereafter: in
such a model8] the distribution function is constant by
The evolution of plasma or gravitational systems is usu-steps between two contours defined by a funcaorgx,t),
ally divided into two parts. In a first step, collective effects where the subscript refers, respectively, to uppét-) and
drive the system toward a metaequilibrium stéteat is, an lower (—) values of the contour.
equilibrium in the Vlasov limit; and in a second step, the ~ Consequently, plasma and gravitational systems exhibit
collisional effects slowly thermalize the distribution func- very different behavior and indeed analytical treatment. The
tion. This scenario has been used by many authors to exp|aﬁrpmpari50n of the results is interesting but not ObViOUS, since
the relaxation of objects like galaxies for which the evolutionin the plasma homogeneous infinite case, we deal with a
is driven by the sole collective effects—the universe beingcontinuous spectrum of wave numbeesach with a reso-
too young to be affected by collisional effects. After the hance frequendywhile, in the gravitational case, we have a
model of violent relaxation proposed by Lynden-BEll,  discrete spectrum of eigenfrequencies.
many researchers have studied this first step both from a The paper is organized as follows. After this introduction,
theoretical and numerical point of view; see, for example,Sec. Il is devoted to the analytical treatment allowed by the
Gurzadyan[2], Miller [3], Reidl [4], Yamashiro[5], and multiple water-bagMWB) model both for the plasma and
more recently Tsuchiyg6]. the gravitational case. Section Il gives numerical results for
The aim of this paper is to look at the evolution of the the plasma and Sec. IV for the gravitational case. In Sec. V
system after this first time for both plasma and gravitatingthe stability of structures initially dug out in the phase-space
systems. Then the distribution function is a metaequilibrium distribution of the gravitational casgoles is numerically
It can be noticed that the first step of evolution involving Studied. Section VI gives our conclusions.
only collective effects does not allow the system to reach
exac_tly_ a metaequilibrium state. Eulerian _simulations_ of Il. MULTIPLE WATER-BAG MODEL—
gravitating systemE?] have. shown the formation of ho_Ies in LINEARIZED EQUATION AROUND EQUILIBRIUM
phase space, which remains unchanged for the entire simu-
lation time and prevents the system from reaching com- In order to obtain analytical results, we will limit this
pletely such a metaequilibrium. Moreover, in the plasmawork to a one-dimensional system and a very simple distri-
case, these holes are responsible for the stopping of the Lahution function. The simplest distribution functidifx,v,t)
dau damping. It will be seen hereafter that these structuresne can think of is the one that has a single valua a
are strong enough to resist individual effects. delimited area of the space phase. This model, called water
All distributions that depend only on the energy are solu-bag, has been introduced [B8] by De Pack. He, and after
tions of the Vlasov equation. To compute the time scale andhim many authors, noticed that, with this simple model, ana-
the frequency spectrum of the fluctuations, we need to solvlytical treatment can be performé€]. An extension of this
the Vlasov equation linearized around this metaequilibriummodel is the multiple water bag, which presents several areas
Here, a fundamental difference appears between plasma aofl constant value, each delimited by a “bag.” The MWB
gravitating systems. While this problem is easily solved by anodel can be obtained by the discretization of a continuous
double Fourier-Laplace transform x andt (the Landau distribution function. Nevertheless it introduces discontinui-
treatmenkin the homogeneous plasma case, the gravitationdles and the connection of the physical properties of the con-
problem implies a treatment of the inhomogeneous equilibtinuous distribution function and the discretized one deserves
ria, which, strangely, has not been addressed very mucla careful treatmeritl0].
Then, in order to perform an analytical treatméait least in Here, to describe the metaequilibrium, we will take a
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MWB, function of the energy alonésee Fig. 1. Then each whereE;(x,t) is the sum of the partial fieldgq;(x,t) cre-
bag is delimited by two contours, symmetric with respect toated by the particles of bag

thex (space axis, with, on the two contours of baga given
energye; . The velocity of a particle moving on the border of
bag numbei is = a;(x) with

Azl FIG. 1. (8) MWB model, (b) cutoff of (a)
along the O O axis.

El:zi Eli ’ (8)

gi=3maf(x)+me(x), (1)  and

whereg(X) is the potential created by all the bags at paint IEy;

Equation (1) depends on the square of the velocity, ox - AmCA i —vio). ©)
this is the reason for the symmetry with respecktdaet us
call x; the value for which the bag closébecause of the In addition we will constrain the perturbed fiel}; to be
absence of neutralizing species, the bags always close in tlegjual to zero ak= *x,;. It means that the points x¢; are
one-dimensional gravitational cas€&or this value, we have held fixed. ObviouslyE;;=0 for |x|>X,;.
a;(Xs;) =0, that is, Calculating the difference between E@6) and(7), and

with the help of Eq(9), we find, after integrating oR,

&i=Ma(Xs;)- 2
JEy;
Now, let us perturb the MWB equilibrium. If we keep in o —4nGAa(vitoi-). (10
mind the picture of the particle following the borders of the
ith bag, its two velocitie¥/; (x,t) obey the equations Substitutingv;, +v;_ by Egs.(9) and(10) into the result
of Eq. (6) plus (7), we obtain, after a Fourier transform @n
A Vi, for each bag,
i Vi T © .
a—a;——Eqi(0,%X) + 0?Eq(0,X) = — 0] Ey(0,%),
whereV, =a;+v; for the upper border in the phase-space 2 '
. . (11
plane, andv; =—a;+v; for the lower border.
The fieldE reads wherewi is the Jeans frequency associated with the ibag
2
reads
E=Ey+Ey, @ “
wi(x)=87TGAiai(x)=47TGni(x). (12

wherekE, is the field created by the unperturbed MWB equi-
librium and E; is the correction at first order for the per-
turbed one. In the plasma caSg=0 and in the gravitational
case it is given by the Poisson law

Equation(11) provides for each bag an equation connecting
E; to E;, while Eq. (8) will give the dispersion relation.

kr
dz‘))((x) =—47GY, A23(x), (5) (k)

|

|

|

where the summation involves all the bags not yet closed at |
point x [see Fig. 1b)]. !
|

|

|

The linearization of Eq(3) gives for the two perturbed 1= == e
velocities of bag '

0 ' K

w
i+ i(a- =E © G &
gt gx ivit b | |
[ [
v _ J . . .. .
i-_ —(a;_ )=E;, (7) FIG. 2. Dielectric coefficient function of the frequency for a

ot ax B double water-bag distribution function.
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FIG. 3. Time evolution of a double water bag withh 5 =1000 andL=10\r . The velocity distribution function and the representation
in phase space are given.

For example, in the usual homogeneous plasma eafe), 2.
=a;, and we can now take the Fourier transformxaf Eq. > % =1, (14
(11) to obtain T 0 =k

which can be deduced from the general formulas. In the

_ w[ZJi gravitational case, the eigenvaluesof Eg. (11) are found
Eyi= K2a2 Es. 13 with the constrain€;( +x4;) =0.
1

It can be noticed that, if the velocity perturbation of the
bags is taken independent of the tifpghen =0 is a so-
The plasma frequencwp. replaces the Jeans frequency, ution of Eq. (11). This marginal mode corresponds to a
with, formally, 3= — »;, because of the change of sign in translation at a constant velocity of the bags. The argument
the Poisson Iaw And, indeed, Eq®) and (13) give the reads as follows. Deriving twice with respecta(1), one
dispersion relation obtains

t= 0.0 t= 10.0 t= 20.0
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11 KAy = 0.628
2.0x10° 1 F ]
15x10t - 3
1.0x10M E- =
5.0x1010F =
oE T ] FIG. 5. Frequency spectrum of
] 1 2 the pi(t), for (a) the fundamental
(a) CO/C% wave number, (b) the second
6.0x1010 kA, = 1.257 wave number, andc) the third
5'0x1010 wave number, created by the par-
4'0x1010 ticles of the double water bag with
3'0x1010 NA\p=2000 andL=10\p. The
' 10 samples are taken fromyt=0 to
2.0x10 .
10 0pt=400, every 0.1. The single
1.0x10 0 . arrow gives the frequency excited
0 1 o by the Landau pole, while the
(b) w0/, doubled arrow gives the frequency
10 KA, = 1.885 excited by the second pole. For
5'0"1010 ' (b) and (c) the Landau pole is at
4.0x10 frequencies higher thaneg, * .
3.0x10'0
2.0x1010
1.0x1010
0
o 1 2
(c) @/ @,
d{ d d?¢ dl d o,
ax aid_xai)‘l‘ﬁ:(). (15) ai gyl @ g Eui | = ~ @) Ea (17)
Supposing the entire system moves at velogitshe field ~ which is indeed Eq(11) with @=0. Consequentlyw=0
E(x,t) reads, at=At, corresponds to a translation of the entire system at constant
velocity.

On the other hand, the period of rotati®rof a particle of

E(x,At)=E(x—vAt,00=E(x,0)— dEO(X)UAt (16) energy e, in the potential¢ of the unperturbed multiple
dx water bag is given by

where the second term of the right-hand side is the perturbed

field E, defined by Eq(4). Now, taking Egs(5) and(8) into TZZ\EJXAL , (18)
account Eq(15) becomes 0 Vea/m—a(X)
Virial
10000
5000 | '
|
0 i
(a) 0 400 800 FIG. 6. Virial function of time
Virial for (@) the plasma andb) the
1.05 gravitational case.
1.00 “ 'l
0.95
0 300 600

(b)
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FIG. 7. Gravitational case:
Metaequilibrium single water bag
with  N=5000 particles. Time
evolution of, respectively, the
overall distribution(first column,
the N/2 particles of initial low en-
ergy (second column and the
N/2 particles of initial high energy
(third column.

wherex, is the position of the particle when its velocity is the relative positions of the particles. Each one experiences a
equal to zero. uniform acceleration as long as it does not cross its neigh-

As already mentioned, the restriction to a one-bors, then it experiences a new field and a new accelerated
dimensional(1D) system allows us to obtain the relatively motion. The program calculates the time at which crossings
simple system of equations as given by E@.and (11).  between two particles take place and keeps the position order
Another interesting point is, still for a 1D system, the exis-relation between them. To have more precision, refél 1g.
tence of an exact code. As 1D particles are infinite planélhe crucial property of this code is to be exact and have no
sheets, each creates a field that is a constant. Consequengiyor introduced, except the round-off errors due to the finite
the total field is a piecewise constant and depends only onumber of bits treated by the computer.
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Mean Field

FIG. 8. (a) Time evolution and
(b) time frequency spectrum of
the averaged gravitational field
(around the mean vallietaken
each 0.23885 fromx=0 to x
=2.3885 for the water-bag case
containing N=10000 particles.
The field is sampled fromh=0 to
t=2000 each 0.05. Irfb) the ar-
rows indicate the collective
modes, while the gray area gives
the range occupied by the indi-
vidual modes.

Consequently, this code will take into account all the ef-wherew, is the plasma frequency ang the thermal veloc-
fects, the individual as well as the collective ones. Moreoverity.
it will give precisely the individual modes. In the simple one bag case the dispersion relgamich
has been recovered by the previous calculation, se¢18y.
lll. PLASMA CASE reads
In the plasma case, the space translation invaridneg wi= wf,+ k2a?, (20)
the homogeneous character of the metaequilibifit&]) al-

lows us to push the analytical treatment much further. Th§here+ a are the velocities delimiting the border of the bag.
well-known Ela35|cz;1111‘|rst-orderl theory in the graininess pa-hjs relation shows that collective fluctuations will not hap-
rameterg [g=(nAp) ", wheren s the density andp isthe  nen in this case because the excited waves correspond to a
Debye length of t_he system uses both a Laplace transform 'nphase velocity 2+ wﬁ/kz) 12 |arger thana and no particles
time and a Fourier transform in space to calculate the flucy o o o velocity larger thea. This important difference be-

tuat:?g f|e|d.fThe :]reatment IS ach!eved SUppOSj{'ng_twir:”defvveen a water bag and a Maxwellian distribution concerning
pendence of each wave numblerin agreement wi € the level of excitation of smalk spectrum of the charge

property of the Viasov e.qua.ltion linearized around an imcinif[edensity has been studied and checked by numerical simula-

thmogeneous r(;wert]aequmbrlum. ;I'he result showi an]OIIeCt'Vﬁon in [13]. In order to exhibit some collective fluctuations
ehavior around the resonance req99”0m< - These e must consider at least two bags. In this case the disper-

resonances are given by the dispersion relation, which rea on relation is given by Eq14) for i = 1,2. Figure 2, which

for the Maxwellian distribution functiokin the limit of small gives thee function of w/k, indicates that the collective con-

K) tribution is given by particles with velocities in the range
[a,,a,], that is, particles that belong to the outer bay
2= w2+ 3k2V2 (19 - i
W=y ' phase spage The role and the importance of this second
Mean Field
0.08 E
0.04 =
0.02 ) .
0.00 ’ ! Mif FIG. 9. (a) Time evolution and
_0'02 il f (b) time frequency spectra of the
K E averaged  gravitational field
-0.04 3
—0.06E 3 (around the mean valuetaken
0 500 1000 1500 2000 each 0.2586 fromx=0 to X
(a) t =2.586 for the double water-bag
¢ FT of the field case containingN=10000 par-

ticles. The field is sampled from
t=0 to t=2000 each 0.05. Iiib)

the arrows indicate the collective
modes, while the gray area gives
the range of the individual modes.
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t= 15.0
\

FIG. 10. Time evolution in
phase space of a water bag con-
taining N=5000 particles, in
which a hole is createdb initio,
for almost 130 rotations of the
system.

pole are clearly exhibited by the double water bag, but simitime w,t proportional tonip in the one-dimensional case,
lar results can be obtained with two electron plasmas at vergnd that the overall distribution will thermalize at tingt
different temperatures or with a mixture of electrons, posi-proportional to \p)? [16]. On the other hand, test particles
tive and negative ions. . _ can relax in time f\p)w, ' (see[17)); these results have
The level of excitation of a wave is proportional t0 1 peen numerically confirmed in the case of the water bag. In

—vglvg, Wherevg is the group velocity andg is the e gouble water-bag case, an undamped pole exists, with a
phasc_a V(_alocn)[l4]. This expression computed for th? Secondphase velocity located in the outer bag. Consequently, in the
pole(inside the water baghows that this level function &f regular fluctuations theory, an infinite level of excitation is

goes to a maximum. The length of the system will be chose resent at this frequency. Of course, neglected phenomena
in order to have a fundamental wave number not too far fro . L oo
. : L second order in graininess factor, for exampldl bring a
this maximum. Fortunately, this will give rather small sys- "~~~ .~ . . :
g)nlte limit, but we should observe a quick destruction of a

tems, which deemphasizes the role of the Landau pol . - X . :
(which as a matter of fact is not excited, but also not dampe eam of particles located initially at this velocity. Turning to
numerical simulation, we first observe that the global distri-

by the multiple water bag allowing a better study of the . e ) ,
second pole. Moreover, the computational effort will not bePution function indeed does not change during the time of

too heavy and more attention can be paid to the graininesy’dernAp~1000(see Fig. 3 On the other hand, we show in
parameter value. Fig. 4 the evolution of six beams of particles that belong to

Figure 3 shows the snapshots of the evolution of the disthe distribution but that are labeled in order to follow their

tribution function taken at,t=0, 250, 500, 1000 for a sys- motions; in order to have better insight, the number of par-
tem with lengthL equal to 1@, and containing 1000 par- ticles is now ofnkp=2000. Two of them represent the par-

ticles (ions and electronsby Debye length; this corresponds ticles at the border of the inner bag, two the particles at the
to a grain. It must be noticed that Balegdb] has proved border of the outer bag, and two are formed with these par-
that no global evolution due to graininess can take place aicles that excite the fluctuations supported by the poles. It is
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KTOC.
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0.335 1 "‘
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FIG. 11. (a) Total kinetic en-
ergy K1, function of time for the
system representedh) frequency
spectrum ofK 1., (c) kinetic en-
ergy Ktestfunction of time for the

0.0 0.2 0.4 0.8 0.8 1.0

(b) © test particles filling initially the
K hole, and(d) frequency spectrum
0.06 = - of Kyest. In (b) and(d) the arrow

indicates the collective modes,
while the gray area gives the
o.03j H range of the individual modes cal-
culated for the complete equilib-
rium water bagwith no holes.

0 300 600

clear from Fig. 4 that these two beams are quidkdyound ticles in the tail. This indicates the nonphysical character of
wpt=40) affected by these collective fluctuations. Let usboth distributions that have too slow a decrease iof the
point out that we are at the limit of validity of the usual first velocity distribution and that have no particles of high veloc-
order ing theory since the regular collisional tei(first order ity at all, but presents a sharp cutoff.
in g) exhibits singularities for the two beams with velocities  Nevertheless, in the latter case, it is an excellent model
equal to the phase velocity of the second fdeleown in Fig.  that allows analytical treatment, as can be seen in Sec. Il and
4). Indeed in time now much shorter than is numerically confirmed in the next section. Finally, the
N\pw,* (20-4Qs,* while n\p=2000) we see a strong double water-bag model is a good approximation of a two
destruction of these two beams while the others are mucklectronic population plasma having two different
less affected. temperatures—the Landau pole of the low-temperature
The density Fourier transform on both space and timgpopulation exciting the particles that belong to the high-
variables given in Figs. (8), 5(b), and %c) shows that the temperature population.
collective fluctuations are mostly supported by the largest
wavelength allowed by the periodic systefthat is, k
=2mx/L). The other modes obtained with larger wavelengths
are indeed present but less excifsge, for example, Figs. The change of sign in the interaction gives very different
5(b) and Hc), which give the casek=4wn/L and k  dynamical properties between plasma and gravitational sys-
=6m/L, respectively. Figure %a) shows that, in fact, the tems; for example, the virial presents very large and periodic
Landau pole is excited at a very low level. It is initially oscillations in the gravitational case while, in the plasma, it
excited and remains for the duration of the simulation bedooks like a noise/see Figs. @) and Gb)]. Actually, the
cause it exhibits no dumpind.3]. absence of neutralizing species is the point that prevents us
The rapid destruction of a perturbed equilibrium system infrom adopting a similar analytical treatment for both sys-
the Vlasov limit has also been observed in the case of &&ms. Moreover, the neutralizing background is needed to
Lorentzian velocity distribution function for which the en- treat the Jeans instability, which requires an infinite medium
ergy diverges on smak because of a large number of par- [18].

IV. GRAVITATIONAL CASE
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% ) *"Jr FIG. 12. Time evolution in
. 28 S A Pl phase space of a population of
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bag represented in Fig. 7 and ini-
tially localized in the same area as
the hole of Fig. 10.
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The lack of spatial homogeneity prevents the indepen- The numerically simulated system contaMarticles of
dence between the different wave numbers and imposes equal massm uniformly distributed inside the phase-space
proper mode analysis. As already mentioned, the calculus afontour of energy; with the phase-space density. The
such modes is easily done when we restrict consideration taormalization is such that the total maseN equals 1 and
the one-dimensional multiple water-bag distribution func-¢, and the maximum energy equals 1. With this normaliza-

tion. Nevertheless, even in that case, the determination of thgyn and taking 4G =1, the square of the Jeans frequency
modes become more and more difficult as the number of 2 4-fined ax=0 is equal to 3/16 for the single water bag

bagsN increases sinchl coupled equations must be solved. _2° .
Systems(11),(8) have been numerically solved for the anjiASE\/er 1;/8 (_2‘/5/;1) for the double water bag with
four first modes both for the single water bag and a doublé'2/A1=1 ande;=24/2.

water bag. In that latter case we have two independent pa- Figure 7 shows thg snapshots of the_ev.olut.ion of a single
rametersA, /A, ande,/s, whereA, is the height of bag water bag for, respectively, the overall distribution, the popu-

and &; is the energy of the border of bag(the bags are !aFi_on of initially high—energy partic!es, and the population of
numbered from outside to insifleA shoot method, coupled initially low-energy particles. The first column shows that no
with a Runge-Kutta scheme of ordef 9], gives for the first 9lobal change happens and the water-bag character of the
collective modes, which are alternatively even and odd, redistribution is conserved for the duration of the simulation.
spectively;w=0, w=0.7, w=1.1, w=1.5 for the single wa- On the other hand, the two last columns show that the two

ter bag andw=0, w=0.8, w=1.2, w=1.7 for the double populations mix but keep a strong cohesion. This process is

water bag withA,=A; ande,=¢4/2. For values ofw large
enough, the Jeans frequeney does not play any role and
the solutions are those of a string with fixed end points.
As already mentioned, the first mode=0 is a marginal
mode corresponding to an overall translation of the bags.

very far from the idea of a smooth diffusion. Indeed, the
Fourier transform(FT) of the field given in Fig. 8 exhibits
the collective and individual modd@cluding the harmon-
ics) theoretically determined before and the biggest mode is
Ithe first collective mode ab=0.7. In order to have better

our numerical experiments, the initial conditions are chosemstatistics and to have both even and odd contributions, the

such that the total impulsion is zero and, consequently, th
mode will not be excited.

ifield is collected for 10 positions equally spaced out from O
to X5, and the averaged value taken around the mean value is

On the other hand, the period of rotation of the particles ingiven in Fig. 8.

the field of the unperturbed metaequilibrium gives the indi

The same kind of diagnostic can be obtained with the

vidual particular modes. The oscillation frequencies varydouble water bag and Fig. 9 gives the time Fourier transform

from w=0.43 at the center ta=0.39 at the border for the
single water bag and fror=0.49 tow=0.42 in the double
water-bag case.

of the field collected under the same conditions as for the
single water bag. Also, in that case, collective and individual
modes, including the harmonics of the individual excitations
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FIG. 13. Time evolution in
phase space of a water bag con-
taining N=5000 particles, in
which two symmetric holes are
createdab initio, for almost 130
rotations of the system.

are present and dominated by the first collective mode at the system. The hole is still present at the end of the simu-
~0.8. lation and it resists the differential rotation of the particles
For these two distribution functions, the single and doublehat are localized at its border. In order to have a better
water bag, the numerical results indicate that collectivensight into the behavior of this hole, it is initially filled with
modes are highly excited by the grainy character of the dis-test particles” that experience the field of the other but do

tribution function describing the systems. not contribute to the field. Figures (&), 11(b), 11(c), and
11(d) give, respectively, the kinetic energy of the particles of
V. STABILITY OF HOLES IN PHASE SPACE the systems, its Fourier transform, the kinetic energy of the

test particles and its Fourier transform. The excited modes,
Numerical simulations of systems outside equilibriumFig. 11(d), are the individual modes, indicating that the holes

show that they do not relax toward an equilibrium: they de-rotate at the same velocity as the particles. Moreover, these
velop arms that carry the excess kinetic energy and g#oles triggered the collective mode, as can be seen in Fig.
around an empty zone of phase space. This process, whidi(b).
seems to be systematic, creates holes in phase space thatTo show the long time scale of the hole, we go back to the
remain for the duration of the simulation and prevent thecomplete water-bag equilibrium and follow the particles
system from reaching a complete metaequilibrium. Neverwhich are initially localized in the area of the previous hole.
theless, taking a time average allows one to obtain a distriThese particles are just “labeled” and have the same physi-
bution of the alone enerdy’]. Moreover, numerical simula- cal properties as the others. Figure 12 shows that the differ-
tions reveal that the number of holes and their positions arential rotation between particles of low and high energy
closely related to the initial shape of the distribution func-stretches the area occupied by these labeled particles. Nev-

tion. ertheless, the presence of another effect can be detected be-
In order to study the behavior of this structure, a hole iscause the stretching is not complete.
createdab initio in the water-bag equilibriurf20]. Figure 10 Finally, we study numerically the behavior of symmetric

shows the evolution of the hole for nearly 130 rotations ofstructures. Starting from a symmetric distribution function,
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the Eulerian simulationgfor which the Vlasov equation is theory of plasma assumes a neutral medium that is, most of
directly integrategishow the formation of an even number of the time, a uniform motionless background. The infinite
symmetric holes(two in the simulation given by Mineau gravitational system also needs a neutralizing background,
[7]). In our case, the particle description of the system breakput this system is unstable under Jeans instability and clus-
the Liouville invariant and the holes may even disappearters into subsystems, the dimension of which is of the order
The stability of two symmetric holes initially dug in the of the Jeans lengtf21]. Here, the model studied is not infi-
single water bag is numerically studied. Figure 13 shows th@jte and does not need such an unphysical background.
evolution of test particles initial[y localized in these holes. It N-body numerical simulations confirm pretty well the the-
reveals that the symmetry rapidly breaks: one of the holeg gtica) results and show that the gravitational system pre-

hE.E‘ents very strong collective behavior that in a certain sense is
nstronger than in the plasma case.
9€ These collective effects triggered by the grainy nature of
our system explain the very strange behavior of a labeled
population, a fact already mentioned in Luwel and Severne
[20]. Moreover, numerical simulations show that holes are
This paper gives both analytical and numerical ap-structures that certainly play an important role in one-
proaches of the determination of collective modes in thedimensional systems, a fact already noticed in the plasma
gravitational and plasma systems. These approaches are passe. With an initial hole, the water bag almost keeps its
sible because of the restriction to 1D systems and to thehape for a time large compared to the time necessary to
multiple water-bag model. It must be pointed out that thedestroy the same area filled with particles.

bag. Then, as already mentioned, their periods of rotatio
given by the patrticles of its border, change and rapidly mer
to form a single hole.

VI. CONCLUSION
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