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“Intrinsic” profiles and capillary waves at homopolymer interfaces: A Monte Carlo study
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A popular concept that describes the structure of polymer interfaces by “intrinsic profiles” centered around
a two-dimensional surface, the “local interface position,” is tested by extensive Monte Carlo simulations of
interfaces between demixed homopolymer phases in symmetric bjAB)homopolymer blends, using the
bond fluctuation model. The simulations are done inLanL XD geometry. The interface is forced to run
parallel to theL X L planes by imposing periodic boundary conditions in these directions and fixed boundary
conditions in theD direction, with one side favoring. and the other side favorinB. Intrinsic profiles are
calculated as a function of the “coarse graining lengt’by splitting the system into columns of sif
XBXD and averaging in each column over profiles relative to the local interface position. The results are
compared to predictions of the self-consistent field theory. It is shown that the coarse graining length can be
chosen such that the interfacial width matches that of the self-consistent field profiles and that for this choice
of B the “intrinsic” profiles compare well with the theoretical predictions. Our simulation data suggest that
this “optimal” coarse graining lengtl, exhibits a dependence of the folBg=3.8ngc(1—3.1/yN), where
Wsgcr IS the interfacial widthN the chain length, ang the Flory-Huggins parameter.
[S1063-651%9905801-9

PACS numbds): 61.41+e, 68.55-a, 68.10—m

I. INTRODUCTION Hence the experimental results cannot be directly related to
the mechanical properties and a careful analysis of capillary

Polymer blendq1,2] are examples of systems that can wave effects is requirefb,6].

usually be described very well by mean field theories: Due t Despite their success in the description of general bulk
v p y y : y cfhermodynamics, mean field approaches thus apparently fail
the chain connectivity, the effective range of interactions be-

] . . to capture essential properties of polymer interfaces. How-
tween polymers, which is roughly the extension of the P prop ROy

hains. b | tor hiah lecul iah ver, the situation is not entirely hopeless. Capillary waves
chains, becomes very large for high molecular weights ang ¢ e only Goldstone bosons present in the system and one
according to the Ginzburg criterion, the critical region in

. > . - : may safely assume that they are the only fluctuations that
which critical fluctuations become important is very small as,amain important outside of the critical region. Further sim-

a result{3]. Hence, fluctuations can usually be neglected eXyplification can be achieved by neglecting the coupling of
cept in the ultimate vicinity of the critical point. long-wavelength capillary wave fluctuations to the local in-
If interfaces are present, however, there exists a type oferfacial structure. This leads to a simple picture in which the
fluctuation that survives even deep in the two-phase regionnterface is described by two ingrediefit: the local inter-
This is because the interface breaks a continuous symmetrface position, a functionh that parametrizes a two-
the translational invariance. As a consequence, longdimensional surface and is distributed according to a capil-
wavelength transversal excitations come into existencéary wave Hamiltonian#{h}; and local intrinsic profiles,
(Goldstone bosonsThe energy of these “capillary waves” which are centered around the local interface position, but do
of the local interface positiof¥] vanishes as the wavelength not depend orh otherwise, and which can be calculated
approaches infinity. These fluctuations are not taken into aowithin an appropriate mean field theory. The intrinsic pro-
count in mean field approximations. Nevertheless, theyiles characterize the interface on a certain length scale that
strongly influence all quantities that depend on transversahas yet to be specified, i.e., the coarse graining length. The
degrees of freedom. theory thus assumes that one can define a coarse graining
For example, the interfacial waves contribute to the totalength on which mean field theory provides a valid descrip-
width of the interface in a way that it diverges logarithmi- tion of the interfacial structure. If this is the case, it should be
cally with the lateral system sizgt]. In other words, the related to one of the natural length scales in the system, i.e.,
apparent width of the interface depends on the length scalée radius of gyration of the chains, the intrinsic width of the
on which the interface is studied. This important observatiorinterface, or some microscopic length such as the monomer
is not just of academic interest, but is also relevant for techsize.
nical reasons: The mechanical stability of interfaces is to a We shall quantify this picture in more detail for the spe-
great extent determined by the number of entanglements beial case of a planar interface. Neglecting bubbles and over-
tween polymers of different type, which is in turn closely hangs, the local interface position can then be parametrized
related to the interfacial width on the length scale of at mosby a single-valued functioh(x,y). Long-wavelength capil-
the radius of gyratiorRy. On the other hand, experiments lary fluctuations basically cost the free energy associated
that measure the interfacial width usually work with lateralwith the increase of interfacial area. Hence the capillary
resolutions characterized by much larger length scalesvave Hamiltonian is given b§5,7,§
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The use of a sharp cutof in the capillary Hamiltonian is
ch{h}szf dx dy{V1+(ah/ox)?1+ (dh/dy)*—1} of course not a rigorous procedure. Compared to the length
scaleB, the intrinsic width is not necessarily small and hence
it is possible that bulk fluctuations and fluctuations of the
local interface position become coupled on this small scale.
. Furthermore, higher-order terms sucH A&|? could become
whereo is the interfacial tension an@h|<1 has been as- important. Thus a test of the accuracy of the present ap-
sumed. Since it is essentially quadratichnthermal aver- proach is clearly warranted.

ages can be carried out easily. The functiohal, can be In the present paper we aim to provide a detailed test of
diagonalized by means of a Fourier transformation with rethis picture. To this end, we have performed extensive Monte
spect tox andy, resulting inHcw{h}=0/22qg?/h(q)|? and Carlo simulations of interfaces between homopolymer

~%f dx dy|Vh|2, (1)

the thermal average dn‘(ﬁ) takes the value phases in a symmetric binafAB) homopolymer mixture,
using the bond fluctuation modgl5-17. The presence of
(h(Q)|?)=1/og?. ) capillary waves at polymer interfaces has been demonstrated

experimentally [7,8] and in Monte Carlo simulations
For the local interface position, one finds a Gaussian heigHtl4,18,19. In an earlier study, we have established quantita-
distribution tively the validity of capillary wave concepts for interfaces
confined in thin films and for effectively free interfaces, i.e.,
P_(h)=1/y2ms’exp( —h?/25?), (3)  in the limit of large film thicknes® [14]. Interfacial profiles
of various quantities have also been obtained previously
with from simulations[20] and compared to mean field predic-
tions[21,14,23.
, 1 - T 1 L In two of these studiegl4,22, capillary waves on length
S :4_7rzf da([h(a)[H)=5——1In B,/ scales down to a given coarse graining lenBthwere sub-
tracted using a coarse graining procedure. However, a direct
Here 27/L and 27/B, had to be introduced as the lower and comparison between self-consistent field calculations and
upper cutoffs of the integrafdq(|h(q)|2)~ fda/q, which ~ Monte Carlo results or experiments obviously faces the prob-
diverges both fog—0 and forq—c. The large lengtiL is €M that the coarse graining length of the intrinsic profiles is

set by the system size and the small lenBghis the coarse S yet not known. In previous worll4,23 it was chosen
graining |ength mentioned above on which the interface assomeWhatad hocsuch that the measured interfacial width

sumes its “intrinsic” structure. compares well with the calculated width. The way in which
The intrinsic profiles can be calculated using one of thethis “optimal choice” of the coarse graining length depends
various sophisticated mean field approaches that have been the model parameters, i.e., on the various natural length
specifically designed to study inhomogeneous polymer sysscales in the system, was not investigated.
tems[9-12]. In our work, we use Helfand’s self-consistent = The present work therefore attempts a systematic study of
field theory, which treats the polymer chains as randonthis coarse graining length, in particular its dependence on
walks in the self-consistent field created by the surroundinghe chain length and the chain incompatibility. To this end,
polymers[9,13]. Given the intrinsic density profileg in(zZ)  we have calculated profiles as a function of the coarse grain-
of a given quantityQ, the total profilepg(x,y,z) takes the ing length and performed systematic variations of both the
form po(X,y,2) = pq,ine(z—N(x,y)) and after performing the  chain lengthN and the Flory-Huggins parametgt As we
thermal average over the capillary wave fluctuations, ongngj| see, our results can be brought into agreement with the
obtains the “apparent” profilegconvolution approximation  self.consistent field profiles when using a coarse graining

length that scales roughly likBxwgcd 1—3.1/yN], where
— (g Wscr is the width of the self-consistent field profile. This is
Por(?) fdhpQ"mr(z M Pu(h). @ one of the main results of this work. On the other hand,
intrinsic profiles are also interesting in their own right. We
shall see for the case of density profiles for contacts within
chains and between chaifontact numbejsthat the intrin-
(5) sic profiles may actually differ qualitatively from apparent

For example, the interfacial width that we define as

d(pa—ps)
wee ST

- profiles.
Our paper is organized as follows. In the next section we
in a binary(AB) blend is broadened according [t8,14] introduce the bond fluctuation model and the simulation

technique and comment briefly on the self-consistent field
calculations. In Sec. Ill we analyze the capillary wave spec-
' ©) trum of the interface and demonstrate how it can be used in
different ways to extract the interfacial tensien[22]. Sec-
For polymer interfaces, this relation was originally derivedtion IV is then devoted to the discussion of various intrinsic
by Semenov(5], who suggested that the coarse grainingprofiles and the coarse graining length. We summarize and
length is given byB= 7w, . conclude in Sec. V.

2 2 1 L
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The results are compared to self-consistent field predic-
tions within a simple Helfand-type theory. In this approach,

— the polymers are described as random walks with statistical
weight
Pir(-- )} =N ° " dr ()
r coe = eX R S R
—_ H 2b%Jo ds
L: system size B: block size . . . ) .
in an external field that is created by a monomer interaction
FIG. 1. Schematic picture of the block analysis. potential

1 - 4
II. MODEL AND TECHNICAL DETAILS
BF=— d"(XPA(")PB(")*’ E(PA+pB_Pb)2] (8

The bond fluctuation model is a refined lattice model for Po
polymer fluids that has the advantage of combining the com

putational efficiency of a lattice model V\{ith high versatility the model are the statistical segment lerigtvhich charac-
such that the actual structure of the fluid shows almost NQarizes the random walk statistics of the chain. the Flory-

signature of the structure of the underlying lattice. Polymerq_mgginS parametey, which describes the relative repulsion
are modeled as chains of effective monomers, each ocCcupy; !

ing a cubeleight sites of a simple cubic lattice, and these etween unlike monomers, and the inverse compressibility
9 9 P S =1/p,kgT k. All these parameters can in principle be deter-
monomers are connected by bonds of variable length of

. _ ined by independent bulk simulations. The statistical seg-
V5,16, 3, ory10 lattice constants. At a volume fraction 0.5 o length is related to the radius of gyration of the chains

or a monomer number density 1/16, the polymer fluid exhib-, _ . G —71/& ; .
its the characteristic properties of a dense melt, i.e., polymefqu)’éJ bv(N—1)/6. It depends weakly on the chain length; at

conformations have almost ideal Gaussian chain statisticéng :Tz(()):??)(vl\\l/)e—ﬂgdf 1((Nl); g;?{?ﬁ%?éﬂ Tg:g?;
[23]. We consider homopolymers made of two different "~ =" 7= > e :

types of monomer# andB, which interact via a symmetric \'>IT32bT SpSgt'c_ll_Jrllar'thf S;at'St;ﬁal sigme?trlzngthngakei :L‘e
potentialesa= egg= — ea= — kg T€ if they are less thar/6 ajueb=2.5%. The Flory-Hugg sga a he er depenas Ob €
lattice constants apart from each otliee., the interaction g:‘o'R?erpcer:a:rxir:r?tt;%rt]spgfrzmn?;%%&% ttr?e&ff’;gg? r;ug;_er
shell includes 54 neighbor sifesMost simulations were ! : ’ v

done using polymers of lengthl=32; the A and B ho- ordination numberZe,
mopolymers then demix a¢>e.~0.014. However, we in-

crease the chain length up k=256 in order to investigate

the chain length dependence of the coarse graining lengtiihe latter decreases with increasing chain length due to the
Bo. A well-defined interface is enforced in the canonical en-effect of the correlation holgL2,27). At fixed eN=0.96, our
semble in a thick film geometryL(xL X D), with periodic  data can be described by the lam(N)=2.12(1)
boundary conditions in the directions and walls that favor —2 976)/\/N, which is comparable to the behavior in the
Aon one side an@ on the other side. The wall interacts with gthermal systeme=0): zer(N) = 2.1— 2.8A/N [26]. Finally,

the monomers in the first two layers near the wall and thgne inverse compressibility has been estimated in an athermal
interactions were chosen large enough that the walls are Weé‘ystem from the entropy densisy £ =4.1[28]. The detailed

ted by their favorite phas¢24] (e.g., for N=32 ande  jhgependent knowledge of the system parameters allows us

=0.03, we choose,,=0.1kgT). These boundary conditions to compare the simulational results the self-consistent field
ensure that the interface is on average located in the middlgy|culations without adjustable parameter.

of the film. The film thickness =64 or 128 is large
enough compared to (L=128) that the capillary wave fluc-
tuations are limited by the system size rather than by the film
thicknesg 14] and that the interactions of the interface with  This section shall be concerned with the analysis of the
the walls are negligible. Hence the interface is basically freepure capillary wave spectrum, not bothering yet with intrin-
We equilibrate and sample the system using a combinatiosic profiles and coarse graining lengths. A somewhat similar
of local monomer movegl5), slithering snake move®5],  study has already been presented earlier fyLdk hence we
and particle exchange moves. The autocorrelation time in thehall be brief for the most part. Our analysis is needed here
simulations will be discussed in Sec. Ill. to put our later results into context. In addition, we shall also
In order to analyze the interfacial fluctuations and intrin-discuss how the capillary waves can be exploited in different
sic profiles, we split the system into columns of block sizeways to extract the interfacial tension.
BxB and heightD (see Fig. 1 and determine the Gibbs The effect of capillary waves on the apparent profiles of
dividing surfaceh(x,y) in each columri14]. This is done by the order parametan(z) =[pa(z) — pg(2)1/p(2) is demon-
counting the number oA monomersn, and of B monomers  strated in Fig. 2 for different system sizés One clearly
ng in the column and defining=N,D/(N,+ Ng). Profiles  recognizes how the interface broadens with increasing
of various quantities are then taken relative to this positionNote that the relaxation time of the capillary waves also
The block sizeB was varied to allow for a systematic analy- grows with the system size and becomes very large since the
sis. forces that drive the capillary waves back are very small for

with the monomer bulk density, . The basic parameters of

X=2Zqfi€. (€)

Ill. CAPILLARY WAVES
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long wavelengths. It is crucial to ensure that the total lengt
of the simulation run is longer than the time scale that gov
erns the dynamics of the slowest capillary mode. In order t
check this, we have calculated for each configuration thé
Fourier moded 18] of the local interface position function
h(x,y) in one directionh;=h(q;) with g;=(i,0)2x/L. The

slowest Fourier mode is the lowest mode withl. Thus the

quantity of interest is the decay timeof the corresponding

autocorrelation function

hh

It is shown in Fig. 3 for the lateral dimensidi= 128 as a

_ (hu(1)ha(0)) —(hy)?

10 20

int

parameter m(z) =[ pa(2)

(hy?)=(hy)?

cexp —t/7).

(10

731

longer than the autocorrelation timefor small €, but gets
close tor for e=0.1. Hence the results for largehave to be
interpreted with some caution.

From the capillary wave spectrum, one can now calculate
the interfacial tension following three different strategies:
direct inspection oh? as a function of (1)? [Fig. 4a] and
use of Eq.(2), (b) determination of the widtls of the local
height distribution functiorP| (h) [Fig. 4(b)] and use of Eq.
(3), and(c) calculation of the apparent interfacial widih
as a function of system side[Fig. 4(c)] and use of Eq(6).

Alternatively to(c), one can also simulate a singleery
large system sizé., perform the block analysis described in
Sec. Il, and studwyg as a function of the block sizZB. This
is shown in Fig. 4d). For very smallB, local concentration
fluctuations become important and the description by(Bq.
no longer applies. At large enou@h however, one observes
a nice logarithmic dependence, from which only the last
point atB=L deviates slightly. The latter can be understood
from the fact that the number of capillary modes contributing
to the broadening ofig atB=L is reduced by 2 compared to
that in a larger systemL(>B), due to the constraint of pe-
riodic boundary conditionf14].

h The interfacial tensions obtained with these three different

methods are compared with each other and with the theoret-

dcal predictions in Fig. 5. The agreement is very good for

mall values of the Flory-Huggins parameter x<<0.4 or
€<0.07. At larger incompatibilities, the data scatter very
much due to the fact that the order of magnitude of the re-
laxation timer (Fig. 3 gets close to the total length of the
simulation runs (% 10° Monte Carlo steps In the same
regime, the values of the interfacial tensions derived accord-
ing to (a), (b), and(c) differ systematically from each other:
Those obtained byb) are lowest, followed bya) and (c).

We cannot exclude that the strategias-(c) yield truly dif-
ferent values for the interfacial tension at high incompatibil-
ity x. Much longer runs would be needed to settle the ques-
tion whether the deviations are systematic or due to the

function of e. The length of the simulation runs was gener- protracted long correlation times. Systematic deviations are
ally between 10 and 16 Monte Carlo steps. This is much also found close to the critical demixing point,yat0.15 or

6

10

10

10

3

10

-2

10

€

"
1

10

€<0.03. Here critical fluctuations come into play and the
capillary wave description of Eq.l) does not apply any
longer on the length scales of the simulation. For compari-
son, Fig. 5 also shows values of the interfacial tension that
have been calculated earlier by some of us using histogram
reweighting technique$20]. Within the statistical error,
these independent data agree well with the ones obtained
here. The agreement with the theoretical prediction of the
self-consistent field calculation is also quite good, especially
when the interfacial tension is determined accordingojo

IV. INTRINSIC PROFILES

A. Density profiles and local compressibility

We now turn to the discussion of interfacial profiles. As
already emphasized in the Introduction, these generally de-

FIG. 3. Autocorrelation timer of the slowest capillary wave Pend strongly on the choice of the coarse graining length or

mode in units of Monte Carlo steps as a functioneofor chain

block sizeB. However, some properties of the interface can

lengthN=32. Four Monte Carlo steps correspond to one local hopalso be discussed independently of the coarse graining
ping attempt per monomer, three slithering snake trials per chairlength: In the approximatio4), capillary waves do not af-
and 0.1 canonical particle exchange moves.

fect the total excess of quantities. This holds in particular for
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FIG. 4. lllustration of different strategies to extract the interfacial tensidinom the capillary wave spectrum. The chain lengtiNis
=32, the film thicknesgc) D =64 and(a), (b), and(d) D =128, the system siZe= 128 except inc), ande varies as indicated. Lengths are
given in units of the lattice constar(® Double logarithmic plot of the amplitude;2 of theith Fourier mode in units of 17 vs 142. The
inset shows the whole spectrum for 0.03. The capillary wave regime sets irLdt = 10.7 (arrow). The theoretical prediction in this regime
is {|hj|?)=[L/27i 120~ (dashed line, insgt(b) Distribution P(h) of the local interface position at block siB=8. Lines are fits to a
Gaussian distributioR (h) «<exp(—h?2s?). The theoretical prediction &= 1/(27a)In(L/B). (c) Apparent interfacial widttw? as a function
of system sizd.. Lines are fits to the theoretical predictiwf:wﬁ]tﬁ 1/(40)In(L/B). (d) Apparent interfacial widttw? as a function of
block sizeB. Arrows show the self-consistent field predictiogcr.

the total density=p,+ pg: Hence the total mass reduction monomer interactions [Fig. 7(a)] and chain lengths! [Fig.
in the interfacial area should not depend on the coarse grairy(b)]_

ing Iength' N ) i In order to further quantify this finding, we plot the depth
To illustrate this, Fig. 6 shows the total density profiles j¢ o dip in the density profiles at block si&=8 as a
obtained from coarse graining over blocks of different SIZ& ction of € in Fig. 8 and compare it with the theoretical

B=8 or B=L=128. The profiles broaden for largBr, but o - B L

the depth of the density dip decreases in turn and the tord)rediction for¢=1.9 andf=4.1. The block siz&=8 was
area remains constant. Also shown is the prediction of thé'sed because thF_“ overe_lll shape of the profiles 1S best fitted by
self-consistent field theory for different values of the inversel€ theory for this chmcécf. Sec. IVB and Fig. . The
compressibilityZ. The bulk compressibility of the melt has theoretical prediction for=1.9 agrees extremely well with
been determined in earlier work, leading to=4.1 [28]. the simulation data; even the deviations from the straight line
However, Fig. 6 indicates that the theoretical profiles calcu#&t Smalle are reproduced quantitatively. In contrast, the pre-
lated with this value are not compatible with the simulationdiction for £=4.1 does not fit the data at all.

data. Good agreement is reached wjth1.9, i.e., assuming Hence it appears that the local density variations at the
a “local compressibility” at the interface that is more than interface are governed by a local compressibility that differs
twice as high as in the bulk. Interestingly, this valueof significantly from the overall compressibility of the melt.
seems to lead to a good description of the simulation datdhe reason for this unexpected finding is not clear. Previous
independent of the Flory-Huggins parameteand the chain  simulation studies of local bulk density fluctuations in a

lengthN. This is demonstrated in Fig. 7 for a wide range of similar system have rather suggested that the compressibility
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FIG. 5. Interfacial tensiom in units of the(lattice constant?
as a function of the Flory-Huggins paramejgras obtained with 1.00 &2
the different methods illustrated in Fig. 4. Also shown are indepen-
dent values from Miler et al. [20], measured from bulk simula-
tions with histogram reweighting techniques. The solid line shows
the self-consistent field prediction and the dashed line the strong o 0.98
segregation limitrgg = pb+/x/6. ,\i‘ ’

N
should slightly increase on short length scal@8]. This <
guestion will clearly need to be investigated further in future
studies. 0.96

B. Intrinsic width and “coarse graining length”

Next we consider the density profilea(z) of a single 0.94 . : : : .
component that is much more fundamentally affected by the =30 -20 -10 g 10 20 30
capillary waves. As explained in Sec. I, it is used to locate
the interface position and to define the interfacial width FIG. 7. Total density profiles for block siZ2=8 (a) at chain

[Eq. (5)]. Figure 4d) shows the interfacial width as a func- lengthN= 32 for differente and(b) at fixedeN=0.96 for different
tion of block sizeB for variouse and fixed chain lengtiN N. Lines show the predictions of the self-consistent field theory
=32, also indicating the predictions of the self-consistentusing{=1.9.

1.05 T - T field theory. For all values o, the theoretical prediction and
the simulation results agree best with each other if the block
sizeB is choserB= 8. This is demonstrated even more con-
vincingly in Fig. 9, which compares the interfacial width for
block sizeB=8 and B=L=128 with the self-consistent
field results {=1.9 and{=4.1) over a wide range of the

1.00 €

& 0.95 Flory-Huggins parametey. Except very close to the critical
~ point, the quantitative agreement f&=28 is very good.
= Note that the theoretical curves for the interfacial width do

0.90

not depend very strongly on the inverse compressibiity
The most notable compressibility effect is observed when
plotting w in units of wgg=b/\6y. In an incompressible
blend,w/wgg, should approach one smoothly from above as
x increases. In a compressible system, it first decreases,
. . reaches a minimum, and then rises again. This is found con-

0.85

0.80 L
-20 -10 0 10 20 sistently both in the simulations and in the self-consistent
z field calculations forZ=1.9.
FIG. 6. Total density profile(z) in units of p, vs zin units of We turn to the discussion of the optimal choice of the

the lattice constant as measured at block &ze8 (open squargs  block size B, which is the coarse graining length for the
andB=L=128 (filled circles. Lines show the self-consistent field intrinsic profiles mentioned in the Introduction. As discussed
prediction for the compressibility parametér=4.1 (dashedl and  there, it should be related to some natural length scale of the
£=1.9 (solid). The parameters afé=32 ande=0.1. system, i.e., some microscopic length such as the monomer
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profiles obtained at block sizB=8 [Fig. 7(a)], compared to the (@) Xe
self-consistent field prediction faf=1.9 (solid line) and {=4.1
(short dashed line The arrow indicates the critical demixing value 8.0
of € ° ®B=128
. OB= 8
. — SCFT (¢(=1.9)
size or statistical segment length, the intrinsic width, or the 25 s oo SCRT@E=41)]

radius of gyration of the chains. In the first case, it should be
independent of botle andN. In the second case, it should
depend ore. So far, we have seen no indication of such aW/Wgg 29 |
dependence; however, the interfacial width varies so little
with € in the range considered by (Big. 9 that we cannot
draw any conclusions from this observation. In the last case

15 E

it should scale likeyN with the chain length\.
In order to test the different possibilities, we have per- ST

formed simulations for chain lengtitsof up to 256, keeping T
either e constant €=0.03) oreN constant €N=0.96). The 00 01 oz 03 04 05 06 07 08
resulting interfacial width is shown as a function of block (b) X=22Zy¢
size and compared with the self-consistent field prediction in o _ . )
Fig. 10. One finds that the optimal block siBg now differs FIG. 9. Interfacial widthw in (a) absolute unitglattice constant
for the different parameters and depends on the chain leng@nd (b) units of wsg = b/\/6x at block sizeB=8 (open squargs
N andB=L =128 (filled circles vs the Flory-Huggins parametg.

.The results are summarized in Fig. 11. At fixet\ Lines show the theoretical prediction of the self-consistent field
—0.96, i.e., at constantN, the optimal block siz@, scales theory atl=1.9(solid), {=4.1 (short dashexl and the strong seg-

: . : . _ regation limitwgg, (long dashel Arrow indicates critical demix-
like Boo- YN 1/\y [Fig. 11(a), insef. This rules out the pos ing valuey.
sibility that B, should be related to some microscopic length

scale and establishes a relationship of the foBp  the producteN remains constant, collapse onto this single
=Ryf(xN)=wscd (xN). (Note that wscrxRy/\YN[1  master curve. Hence our simulational results suggest that the
—alyN+---]17 Y2 with a~2.5[30,31.) At fixed e=0.03, coarse graining length is a multiple of the intrinsic width
i.e., at constanf, the optimal block sizéB, first increases subjected to strong chain end corrections of ordeyNL/

with N, but levels off faster than/N at the largest chain Note that the pronounced chain end effects are rather unex-
length N=256 [Fig. 11(a)]. The data seem to approach a pected because we have used the self-consistent field result
constant in the strong segregation lilNt—o. This long in Eq. 11, which already includes a correction of a similar
chain length behavior becomes even clearer when plottinfprm.

By /Wscr as a function I¥N [Fig. 11(b)]. The data can be Upon increasing the incompatibility at fixed chain length,

described satisfactorily by the function the interfacial widthwgce decreases and the chain end cor-
. rection factor toB, increases. Therefore, the actual value of
Bo=3.8Wscd 1-3.1(xN) 7] (1) the optimal block sizé for chain lengthN =32 has a maxi-

mum aty~0.2 and varies very little§~7) in the range of
and all three data sets, those for variable chain leMgtit ~ x considered in the previous sectionge[0.1, 0.§. This
fixed incompatibilitye (circles, those for variable incompat- explains why such good results were obtained with constant
ibility at fixed chain length(asteriskg and those where the block sizeB=8.
chain length and incompatibility have been varied such that Hence we have shown that our simulation data can be
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FIG. 10. Squared apparent interfacial widifi as a function of
block sizeB in absolute unitglattice constanisfor different chain . .
lengths anda) eN=0.96=const and(b) e=0.03=const. Arrows OO.O 0.1 0.2
indicate the self-consistent field predictions. They are used to rea (b) 1/XN

off the optimal block sizeB.

FIG. 11. Optimal block siz8, for different chain lengthsl and
analyzed consistently within the concepts that we have des for eN=0.96=const (open squargs e=0.03=const (filled
veloped in the Introduction, i.e., assuming the existence ofircles, and N=32=const (asterisk§ (a) in absolute units as a
intrinsic profiles that can be obtained from mean field theoryfunction of chain lengttN [inset in(a)], in units ofR, as a function
and are broadened by capillary waves. of 1IN, and(b) in uqits ofwgcras a function of ¥N. Also shown

in (a) is the slopes, i.e., VN and in (b) a fit of the data toB
=3.8Wsc{1—3.1/xN).
C. Intrinsic profiles of other quantities
In this section we shall discuss selected profiles of othethe intrinsic shape, i.e., at constant absolute value of the ra-
quantities and relate them to self-consistent field predictiongdius of gyration or end-to-end vector, and chain compression
We restrict ourselves to chain lendth=32 and calculate the towards the interface. The self-consistent field theory for
intrinsic profiles by coarse graining over blocks of block sizeGaussian chains can handle only chain compression since the
B=8 for a broad range of incompatibilities. X, Y, andz directions are decoupled in random walks., the
Figure 12 shows profiles of the relative density of chainx andy componentRZ,, andRZ,, are not affected by the
ends. They enrich at the interface for entropic reasons. Thigresence of the interfagdn our simulations, both effects are
in turn creates a depletion zone at a distance of a radius gfresent, yet chain compression is by far dominBfig.
gyration from the center of the interface. The height of thel3(@)]. Thez component of the end-to-end vector is reduced
peak is slightly underestimated by the theory, yet the overalfo almost 30% at the interface. The profilesRier are very
agreement is still good. well reproduced by the self-consistent field calculations,
Next we consider the orientational properties of chainseven in details such as the slight overshoot at distances from
Polymers generally tend to orient themselves parallel to surthe interface of about two radii of gyration. The agreement is
faces and interfaces. Two different factors are involved imot quite as good when looking separately at the orientation
this behavior: reorientation of chains without distortion of of chains that are in their minority phase. Close to the inter-
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FIG. 12. Normalized density of chain engdg(z) vs zin units of
the lattice constant for chain length= 32 and different. Profiles ®:=003
were taken at block sizB=8.

face, RZ,, and R, are then found to increase by up to 2
50%, which indicates that chain reorientation takes place and 2,
that the chains are even somewhat stretched parallel to the 5
interface. Deep in the bulk, the total dimensions of minority =
chains are reduced compared to those of majority chains *
[Fig. 13b); cf. Ref.[32]].

Another quantity of interest is the bond orientational pa-
rameterq, that characterizes the orientation of single bonds,

minority »o”  majority

12— ((12)+(12))/2 . . .
:< 2« )i>+< y>) , (12 %35 20 -1‘;0 0 10 20 30
(1%

b

. FIG. 13. x/y componentd(filled symbols and z components
wherel are the bond vectors. The bond orientational param¢open symbolsof the squared end-to-end vect@®Z,,;) in units of
eter is positive for perpendicular orientation and negative fothe bulk valueb?(N—1)/3 as a function of the distanaeof the
parallel orientation. Figure 14 shows profilesayf for vari- midpoint from the center of the interfad@n units of the lattice
ous values of the monomer interaction strengthLike  constantfor (a) all chains andb) A chains only. The parameters
whole chains, single segments also orient parallel to the inare N=32, block sizeB=8, ande as indicated. Lines show the
terface, but to a much lesser ext¢@0]. Segment orienta- Predictions of the self-consistent field theory.
tions are not accessible to self-consistent field studies of
Gaussian chains since random walks do not have wellaverage bond length ig(1)?=2.62. Thus one is led to sus-
defined tangent vectors. In order to calculate them, one hgsect that the wormlike chain model does not describe the
to resort to a different chain model, e.g., the wormlike chainchains of the bond fluctuation model any better than the
model that describes chains as strings of fixed contour lengtGaussian chain model. Note that the wormlike chain model
with a conformational weight functional governed by a bend-reduces to the Gaussian chain model in the ligit 0 [34].
ing rigidity » [33,34). The latter is related to the statistical However, by taking account of the detailed chain architec-
segment length vib=27a, where a is the monomer ture in the mean field framework better agreement could be
length. In the case of the bond fluctuation model, subsequemichieved 22].
bonds are essentially uncorrelated except for the fact that Finally, we shall examine the profiles of the average con-
they cannot fold back onto themselves. Heficea or »  tact number density for contacts between monomers of dif-
~1/2 seems like a reasonable guess for the effective bendirfgrent chains\;,,, and between monomers of the same chain
stiffness. Bond orientational profiles have been calculatedN;,,,. One of the fundamental assumptions of the mean field
earlier within the wormlike chain model far=0.1 and vari- theory is that they should behave lik®, wherep is the total
ous values ofp [21]. At =0.5, the minimum ofg, at the  density of monomers ana is the number of polymer chains
center of the interface takes the valgg=—0.025, i.e., it involved in a contact, hencllye* p? and Nj,.<p. Every
underestimates the simulations by a factor of 2. Better agreadeviation from this “trivial” dependence thus also indicates
ment for alle is reached withy=1.2. However, such a high a deviation from mean field theory. Note that the ratio
bending stiffness would imply that the monomer length isN;,/p in the bulk phases is the effective coordination num-
unreasonably smalg=1.97, which is smaller than smallest ber z. that we have used throughout this paper to calculate
possible bond length 2 in the bond fluctuation model. Thethe Flory-Huggins parametegr from the interaction strength
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as indicated. Lines show the predictions of the self-consistent fiel
theory for a wormlike chain model with chain stiffnegs-1.2 (see
the text for an explanation

i

2.3 T T T

Nself,neighbors(_')/ p2) _

€ [Eq. (9)]. The profiles oNie(2)/p(2)? andNiya(2)/ p(2)

are shown for varioug in Fig. 15. According to the mean

field assumption mentioned above, these quantities should  __

constant. In the simulations, they have a rather comple: %_

structure. Generally, the chains rearrange in the vicinity of ar = 2.1 .
Z(/)

30

interface as to increase the number of intrachain contacts i
the expense of the interchain contacts. Right at the center ¢
the interface, however, the trend is opposite: The relative
number of interchain contacts has a maximum and the nurr
ber of intrachain contacts decreases. This is presumab
caused in part by the enrichment of chain ends at the intel
face. Furthermore, an additional entropic effect comes intt ' 5™ """ %%~ -10
play very close to a sharp interface: Two monomers of the

;Soaorgel fctr;:ié; a:rr]:tlo?::’;elg irﬁotﬂtea?rtnr?]r: di(;?gr\]/(iac?itrﬁ?y 2¥aasﬁ:1)rsped FIG. 15. Profiles of(a)_ normalized numb_er of interchain con-

) “tacts Niye(2)/p(2)? vs z in units of the lattice constant an(h)

interface, the loop can only extend into a half space that i) ; -
S . ormalized number of self-contadis(z)/p(2z) vs z for different
entropically much less favorable than if the full space were o)/ p(2)

. - ¢ €. The inset in(b) shows the number of contacts with direct neigh-
available like further away from the interface. Thus the nUM+,45 a10ng the chain. The parameters Mre32 andB=8.

ber of intrachain contacts is reduced at the interface. We note

that this fine structure of contact number profiles has notonsistent field calculations indicates that this length scale
been observed in previous studies of interfacial structuregxhibits a dependence of the fornBo=3.8wgcH 1
that did not separate intrinsic profiles from capillary waves—3.1/yN). In the long chain length limit this behavior is in
[20]. Hence this is the example of a case where intrinsiqqualitative agreement with the suggestion of Semefiy
profiles differ qualitatively from their capillary wave broad- B= 7w; however, we find pronounced chain end corrections.
ened counterpart. Otherwise, the capillary broadening doeg/e have to note that our raw simulation data do not inevi-

e

10 20 30

Nol

not affect the qualitative shape of the profiles. tably lend themselves to such an interpretation. Nothing in
the curves shown in Fig. 10 indicates that there should be
V. CONCLUSIONS anything special about the self-consistent field widtyr or

about the coarse graining lengdfor whichwg=wgcg. The

In this paper we have presented extensive Monte Carlgapillary wave description seems to be valid down to length
simulations of homopolymer interfaces and analyzed thenscales much smaller than that, down to block sizes of about
within the framework of a theory4] that conceives the in- B~4. It is conceivable that the interface on these length
terface as a two-dimensional surface embedded in space asdales can still be described by intrinsic profiles, which
decorated by intrinsic profiles that can be obtained by meawould then have nothing to do with the self-consistent field
field theory. We have shown that our results are compatibl@rediction. On the other hand, the local interfacial structure
with such a picture. The intrinsic profiles are in good agreewill presumably not decouple from the fluctuations of the
ment with those obtained from the self-consistent fieldinterfacial position on length scales smaller than the exten-
theory on the length scale of a coarse graining lelgthirhe  sion of the chains and something analogous to the convolu-
comparison between Monte Carlo simulation and selftion approximation is rather unlikely to be valid. This point
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