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Generation of soliton oscillations in nonlinear quadratic materials
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We show analytically and numerically that the generation of long-lasting soliton oscillations in resonantx (2)

optical materials possesses a threshold for the amplitude of a fundamental wave. The persistent oscillations of
solitary waves reported by Etrichet al. @Phys. Rev. E54, 4321~1996!# are found to appear for finite values of
the wave amplitude.@S1063-651X~99!06506-X#

PACS number~s!: 42.65.Tg, 42.60.Rn, 42.65.Sf
e
n
a
p
lf-

ck

o

e
in

ei
at
he
ne
s

en
a
in

ch
ris
wo
d

on
kly

i
in
n

le

ta

of

ion-

ane
si-

d

l
nch
un-
ton
ter-
ntal
ite

ma-
il-
There have recently been a host of theoretical and exp
mental studies dealing with the mutual locking of fundame
tal and second harmonic beams in optical waveguides. M
of them have considered the existence, stability, and pro
gation of soliton excitations. In particular, nonlinear se
modulation of plane~harmonic! waves was shown@1# to lead
to modulational instability and the breakup of a wave ba
ground into chains of coupled solitons@2#. The solitons exist
due to the nonlinear coupling between the resonant harm
ics, and they were generated numerically@3# and experimen-
tally @4# from a small-intensity beam at a fundamental fr
quency. The coupled solitons were proved to be unstable
narrow domain of their existence@5# and stable otherwise
@6#. The dynamics of stable solitary waves, including th
generation and interaction, were observed to be complic
@7,8#, involving a range of persistent oscillations, unlike t
nonresonant case governed by a one-dimensional nonli
Schrödinger ~NLS! equation. Studies of these oscillation
showed@9# that the spectrum of an associated linear eig
value problem possesses discrete internal modes that c
the oscillatory excitations of the coupled solitary waves
nonlinear quadratic optical materials.

In this Brief Report we study the conditions under whi
these internal oscillations can be excited. We find surp
ingly that, for fixed wave vector mismatch between the t
harmonics, the small intensities of the fundamental wave
not support internal oscillations of solitons. This conclusi
implies that pumping of a small fundamental wave wea
coupled to the second harmonics in thex (2) optical materials
leads basically to the same dynamics as can be expected
nonresonant system, i.e., the wave background splits
solitons without persistent oscillations or nontrivial solito
interactions.

Our analysis relies on a conventional system of coup
equations,

iwz1wxx1w* v50, ~1!

isvz1vxx2Dv1
1

2
w250, ~2!

wherew andv stand for envelope functions of a fundamen
and second harmonics, respectively,D is proportional to the
wave vector mismatch between the harmonics, ands de-
PRE 591063-651X/99/59~6!/7250~4!/$15.00
ri-
-
ny
a-

-

n-

-
a

r
ed

ar

-
use

-

o

n a
to

d

l

scribes either the ratio of the wave vectors in the case
spatial solitons~when s52) or the ratio of the group-
velocity dispersions in the case of temporal solitons.

The continuous wave background is taken to be a stat
ary solution of this system,

w5Wse
iVz, v5Vse

2iVz,

where

Vs5
Ws

2

2~D12sV!

and the dependenceV5V(uWsu2,D) is given by

V5V65
1

4s
@6AD214suWsu22D#. ~3!

This stationary solution describes two branches of the pl
waves that are weakly coupled in the limit of small inten
ties, i.e., for uWsu2→0. In this limit, the branch withV
5V1 represents the fundamental wave forD.0, when
uVsu!uWsu, while that with V5V2 represents the secon
harmonics, whenuWsu!uVsu. The experiments on soliton
generation@4# involve typically the incident fundamenta
small-intensity beams, where essentially only the first bra
is excited. Since the wave background is modulationally
stable, the plane wave leads to the formation of soli
spikes. The problem at the center of our analysis is to de
mine whether the soliton spike supported by a fundame
beam displays the oscillatory dynamics for small and fin
intensitiesWs of the fundamental wave.

In the small-intensity limit, whenD.0 and V5V1

'uWsu2/2D as uWsu2→0, the underlying system~1! and ~2!
reduces to the NLS equation at the leading order approxi
tion. In order to analyze this limit and extend its applicab
ity, we assume the following scaling transformation:

w5eW~X,Z!, v5e2V~X,Z!, ~4!

where X5ex, Z5e2z, and e!1. The complex functions
W(X,Z) andV(X,Z) satisfy the coupled system,

iWZ1WXX1W* V50, ~5!
7250 ©1999 The American Physical Society
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e2~ isVZ1VXX!2DV1
1

2
W250. ~6!

The NLS equation follows from this system in negligence
the O(e2) terms. The soliton solutions have no internal~os-
cillatory! modes within the framework of the NLS equatio
However, for a perturbed NLS equation@10,11# it was re-
cently shown that a certain class of perturbations can def
the spectrum of linear excitations of solitons and lead to
appearance of an internal~oscillatory! eigenmode from the
edge of the wave continuum. It was assumed in numer
studies of the model~1! and~2! @9# that this bifurcation does
take place for the coupled solitons. But the analytic criter
for this bifurcation was not checked, and the numerical d
did not confirm its appearance. Here we recover the bifur
tion criterion by extending the underlying NLS equation in
the next-order approximation,

V5
1

2D
W21

e2

D2 F ~12s!WWXX1WX
22

s

2D
uWu2W2G

1O~e4!. ~7!

The function U5(2AD)21W(X,Z) satisfies the perturbe
NLS equation in the form

iU Z1UXX12uUu2U14m@~12s!uUu2UXX1UX
2U*

22suUu4U#1O~m2!50, ~8!

wherem5e2/D!1. Following to Pelinovskyet al. @11#, we
extend the stationary soliton solutions in the asymptotic
ries,

U5Fm~X!eiZ, Fm5F0~X!1mF1~X!1O~m2!,

whereF05sechX and

F15~s12!sechX22 sech3X.

Perturbations to the soliton solutions can be written in
form

U5@Fm~X!1„a~X!2b~X!…eilZ1„a* ~X!

1b* ~X!…e2 il* Z#eiZ,

where l is an eigenvalue anda(X) and b(X) satisfy the
linear eigenvalue problem,

L1a5lb14mdL1a,

L0b5la14mdL0b.

HereL052]X
21122 sech2X, L152]X

21126 sech2X and
the operators of the perturbative terms are given by

dL05F0F122sF0
42F0X

2 12F0F0X]X1~12s!F0
2]X

2 ,

dL153F0F1210sF0
412~12s!F0F0XX1F0X

2

12F0F0X]X1~12s!F0
2]X

2 .
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According to the bifurcation criterion derived in Ref.@11#,
the internal mode detaches from the wave continuum fom
.0 and has the oscillation frequencyl5losc512m2k2, if
the parameterk is positive, where

k5E
2`

`

dX@a0~X!dL1a0~X!1b0~X!dL0b0~X!#. ~9!

Herea0(X) and b0(X) are limiting ~nonsecular! eigenfunc-
tions for the edge of the wave continuum atl51 for the
unperturbed problem,

a05122 sech2x, b051.

Calculating the integral~9!, we find the simple result,k5
2 4

3 (11s), which is negative fors.21. Therefore, the
bifurcation of an internal mode does not occur fors.21.
Although the relaxation oscillations of solitons induced
linear dispersive wave packets are still possible for interm
diate time intervals, as in the NLS case@12#, we conclude
that the amplitude of the fundamental waveWs must exceed
a certain threshold for persistent oscillations of solitons to
supported by the existence of an internal mode. In the
mainder of this paper, we find this threshold numerically.

The solitary waves of the model~1! and~2! have the form

w5w0~x!wiVz, v5v0~x!e2iVz, ~10!

which exist for22sV,D,` @3#. We employ a rescaling
of variables

w̄5w/V, v̄5v/V, D̄5D/V, x̄5AVx, z̄5Vz,
~11!

and drop the bars. Then the system~1! and ~2! remains the
same, butV in Eq. ~10! is normalized to be 1. The function
w0(x) andv0(x) are real and single-humped for the fund
mental solitons. They can be calculated by means of
shooting method@3#. We reproduce in Fig. 1~a! the profile of
the soliton solutions ats52 andD51/2. The limit D→`
corresponds to the solitons supported solely by the fun
mental wave, whenv0(0)!w0(0). According to the results
above, this limit does not support the persistent oscillatio
of solitons. Therefore, we expect that the soliton oscillatio
may exist only for finite values of the wave speed misma
D<D thr(s),`, when the amplitudesv(0) and w(0) are
comparable.

In order to study the internal modes of the solitary wav
„w0(x),v0(x)…, we impose the linear perturbation in the for

w5@w0~x!1„wr~x!2wi~x!…eilz1„wr* ~x!

1wi* ~x!…e2 il* z#eiz,

v5@v0~x!1„v r~x!2v i~x!…eilz1„v r* ~x!

1v i* ~x!…e2 il* z#e2iz,

wherewr(x), wi(x), v r(x), andv i(x) satisfy the linear prob-
lem
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L1S wr

v r
D 5lS wi

sv i
D , L2S wi

v i
D 5lS wr

sv r
D . ~12!

Here,

L65S 2]x
2117v0~x! 2w0~x!

2w0~x! 2]x
21D12s

D .

The linear system~12! has four neutral localized eigenmod
for l50 associated to symmetries of soliton solutions a
four branches of the continuous spectrum located forulu
.1 andulu.21D/s @5#. The internal mode can exist atl
5losc, where

uloscu,minS 1,21
D

s D .

We find the internal eigenmode by solving Eq.~12! numeri-
cally and display the profile„wr(x),wi(x),v r(x),v i(x)… in
Fig. 1~b! for s52 andD51/2. In this case, the eigenvalu
losc50.9989. In Fig. 2, we present the dependence oflosc
versusD for a fixed value ofs52. It is clear that the interna
mode merges the continuous spectrum atl51 when D
→D thr51.1446. This result should be compared with t
previous numerical analysis of Etrichet al. @9#, where the
threshold on internal modes was overlooked. Revising Fi
of those authors@9#, we conclude that the internal mode do
not exist fora*2.5723, or in our notations, forD52a24
*1.1446. The internal mode disappears forD→Dstab'

FIG. 1. The solitary wave (w0 ,v0) ~a! and its internal mode~b!
for s52 andD50.5.
d

5

23.7887~Fig. 2!. This bifurcation leads to the instability o
the coupled soliton, as was shown earlier@5#.

In order to find the thresholdD thr(s) for variouss val-
ues, we solve Eq.~12! numerically forl51 and look for a
bounded eigenfunction. Generally, this limiting eigenfun
tion is secular since

lim
x→`

~wr1wi !x2 lim
x→2`

~wr1wi !x5QÞ0,

where

Q52
1

2E2`

`

dx@w0~v r1v i !1v0~wr2wi !#.

When the quantityQ vanishes, the bifurcation of a new e
genvaluel5losc,1 may occur from the edge of the con
tinuous spectrum. This criterion is satisfied in the asympto
limit of the integrable NLS equation, whenD→`,

v0→
1

2D
w0

2 , v r→
1

D
w0wr , v i→

1

D
w0wi , ~13!

and

Q→2E
2`

`

„3a0~x!1b0~x!…sech2x dx[0.

However, as we have checked above, the integrable N
limit does not support a bifurcation of an internal mod
Therefore, we are looking for the bifurcation to occur in t
non-integrable limit for a finite value ofD5D thr(s). We use
the shooting method to find the bounded eigenfunction
Eq. ~12! at l51, when Q(D,s)50. The dependence
D thr(s) is identified by this method and shown in Fig. 3. W
notice that the coupled solitons supported by the two-w
interaction at an exact resonance (D50) also have an oscil-
latory mode except for a narrow range 0.4207,s,0.5492,
whereD thr,0. The conditionD50 for the exact resonanc
can be achieved alternatively by a very large intensityWs of
the fundamental wave, whenuVsu;uWsu@1. This can be
seen from the rescaling of variables~11! by letting V→`.
Thus, the solitons supported by the large-intensity fun
mental waveWs display the persistent oscillations ifs
,0.4207 ors.0.5492. In conclusion, we have proved th
existence of a threshold on the amplitudeWs of the funda-

FIG. 2. The dependence of the internal eigenvaluelosc on D for
s52.
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mental wave to support the internal soliton’s oscillations
resonantx (2) materials. For fixed wave vector mismatchD,
small-intensity solitons do not display complicated oscil
tory dynamics, while the large-intensity solitons do excep
a narrow parameter window.

Lastly, we would like to make connections of our work
two recent results. In a similar problem of excitations
coupled solitons@13#, a resonance of perturbations of tw

FIG. 3. The boundary curveD thr of internal modes for arbitrary
s values.
v.

hy
-
n

f

branches of the continuous spectrum can result in an osc
tory destabilization of a solitary wave. However, the res
nance takes place only if the Hamiltonian of a system
sign-indefinite metrics at the continuous spectrum’s eig
functions @13#. In the problem~1! and ~2! under consider-
ation, the Hamiltonian is sign-definite for small perturbatio
as it follows from the explicit representation,

H5E
2`

`

dx„uwxu21uvxu21Duvu22 1
2 ~w2v* 1w* 2v !….

This feature implies that the solitary wave solutions may lo
their stability only through a bifurcation of an internal mod
at the origin ofl which occurs forD5Dstab(s),0 @5#. The
solitary wave solutions are stable forDstab(s),D,` @6#.
In another problem involving vector solitons in birefringe
optical fibers, a similar pattern of internal oscillations w
demonstrated@14#. In that case too, the region of existence
the internal mode does not cover the whole region of ex
tence of the vector solitons, and the internal oscillations
pear from the non-integrable limit at a special~threshold!
value of the soliton parameters.
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No. DMS-9622802.
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