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Output of a neuronal population code
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In the population coding framework, we consider how the response distributions affect output distribution.
A general theory for the output of neuronal population code is presented when the spike train is a renewal
process. Under a given condition on the response distribution, the most probable value of the output distribu-
tion is the center of input-preferred values, whereas in the other cases thempasttablevalue of the output
distribution is the center of input-preferred values or there are no most probable states. Depending on the exact
form of the response distributions, the variance of the output distributions can either enlarge or reduce the
tuning width of the tuning curve$S1063-651X99)09606-3

PACS numbeps): 87.19.La, 87.10te

How neurones unambiguously encode external inputs anthe bend direction of the leedh0]) is taken which usually
then decode them is obviously one of the fundamental andorresponds to the most probable value of the output distri-
challenging problems in theoretical neuroscience. In recerfution.
years there have been many research activities devoted to Population coding, as a postulated encode and decode
tackling the problem and a wide variety of possibly codingstrategy of the brain, is now widely accepted as a generali-
strategies have been put forwaigke, for examplg[1-3]).  zation of the rate coding assumption. However, in the litera-
One of the straightforward generalizations of the classic noture all theoretical considerations are confined to the case in

tation of coding—the assumption of rate coding—is pOpula—WhiCh the interspike interval distributions, i.e., the response

tion coding, which has been closely examined both in experidiStributions, are exponential, which is probably a good ap-

ments and in theory recently. proximation of the true response distribution in some cases

Experimentally it has been suggested that population Coa(_however, se¢15] for a general approach in terms of Fisher

ing might be employed in the generation of saccadic eyelnformauor). It is well known that neurones might fire with a

S LI considerably different response distributid—19, ranging
move_ments n pnmate[sl],_ the_d|rect|on of arm movem_ents from short-tailed to long-tailed distributions, and thus it is of
[5], visual orientation estimatiof6—8|, and sound localiza-

ion 91, | icular. in(101 th h dered Ivital importance for us to check population coding in the
tion[9]. In particular, in[10] the authors considered a neural e general setting of response distribution. To this end we

network containing four input neuronéancoding neurongs  onsider the population code with the response distribution
ten output neuroneslecoding neurongsand a few intermeu- 45 5 renewal process. We find that under a given condition
rones and successfully mimicked the biological data, progn the response distributions, the center of the preferred val-
vided that input and output neurones employed the populaues is the most probable state of the output distribution,
tion coding strategy. whereas the center is the masiprobablestate of the output
Theoretically in the framework of population coding, a distribution or the output distribution is independent of the
few issues such as the relationship between the maximumreferred values. Furthermore, an exact parameter region is
likelihood estimate and a network estimdtel], how the given in which the variance of the output distribution can
broadness of the tuning function and the correlation of afferenlarge the tuning width of the tuning curves, an issue which
ent signals affect the outputs, efd.2—-15, have been dis- has been addressed and unresolved in the literfidrd5|.
cussed. In particular, ifill] the authors have pointed out  Response distribution&uppose that at time zero an input
that if the nervous system in fact managed to implements onset, and we recom cells’ activities which are statisti-
maximum likelihood, then its performance would be uni- cally independent. For a given cell, denote the efferent inter-
formly good for all stimuli. spike intervals asT;, i=1,2,..., which are independent
The basic idea of the population code is as follows. A sefandom variables with distribution densityfhe so-called
of neurones fire at rates according to their tuning functionsOne-parameter exponential family
which usually take the largest values at their preferred val-
ues. Turning functions are encoded in the spike trains of _ , -
these neurones. Output distributions are then decoded in A exp(-Ag()g'(n), =0, @)
terms of the efferent spike trains and an acfifor example,
where \ is the parameter. The distribution of;, i

=1,... N, is termed as response distribution as well. For
*Permanent address: Universidade de Pernambuco, ICB-DCHEhe concreteness of our calculation we are first going to con-
Biofisica, C.P. 7817, Recife, PE, Brazil. sider three cases:
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g(t)=t, g(t)=In(t+1), g(t)=t? These simple response distributions of neuronal activities
are most commonly discussed in the literature. Furthermore,
discussed in more detail in the following examp(@s-(iii). ~ from example(i)—(iii) we see that it is reasonable to think of
We will also consider a slightly more general setting of theXi(X) as the firing rate.

response distribution in examplég) taking the form Suppose during time window0,T] the ith cell, i
=1, ... N, emitsr; spikes. The information, i.e., the tuning

h(n,t)exp(—g(t,\)), t=0, (2)  function;(x), is thus encoded through, i=1,... N. In
terms of data;, i=1, ... N, the neurone is able to read out

whereh,g are positive functions of,\. Hence in this paper the information, namely to recover the functiaf(x) in a

we consider the case in which the spike train of each cell i§ertain way. _ _
a renewal process. Let N;(t) be the number of emitted spikes of thé cell

Tuning function.We assume that the tuning function of during time interva[0t]. More exactly, we have
theith cell,i=1, ... N, takes the following form: PIN,(t)=r,|x]= P(T1+---+Tri>t)

—y.)2
xi(x)=Fexp(— (x 0)2(') )+b, 3) “P(Myt ATy >0,

In general, it is difficult to obtain an analytical formula for
wherex; is the preferred value of thigh cell, o is the tuning  the distribution above except for the Poisson case. However,
width, F is the mean peak firing rate, abds the basal firing we have the following asymptotic resii22].
rate. Whenx=x;, the tuning function\; takes the largest Lemma 1. When t is large, we have N;(t)
value, i.e., the cell fires with its greatest activity. In this ~N(u;(t,x),02(t,x)), where
paper we restrict ourselves to the casergfl and refer the

reader to our full paper for the general c426]. _ ot — _ to?(x)
Through the spike trains dfl cells, or equivalently the Mi(t,X)= PO (tX)= —3—
Lo . . . . Mi M (X)
response distributions, the informatidthe tuning function
Ni(x), i=1,... N] is encoded. Now we discuss how the and

information is read outdecodegl
Decoding |.We first consider the case with the response |
distribution defined by Eq1). For simplicity of notation we Hi(X)= jo th(x,t)dt, )
take b=0 for exponential and Gaussian distribution and
=1 for Pareto distribution. ) o 5
Example(i). Exponential distributiong(t) =t. This is the g (X)=f t?h(x,t)dt—uf(x), (6)
most widely used case and has been extensively discussed in 0
the literature. The gctual behavior of neurones, of_ course, i hereh(x,t) is the distribution density of; .
never_exactly d|str|bu'Fed as an exponential funct_|0n. _How- It is interesting to see the degree of accuracy of the ap-
ever, in many cases it serves as a good approximation. [ oyimation of Lemma 1 within a reasonable time period,
mean and variance are say 200 msec. 1fi23] the author has carried out some nu-
merical simulations for the response distributions of the in-
_(X):L o2(x)= 1 4) tegrate and fire model, showing that the approximation is
i Ni(x)’ : )\iz(x) strikingly good. Of course, this approximatiatrongly de-
pends on the cell’s firing rate. If it fires at a rate of 10 Hz,
with a coefficient of variatioflCV) being equal to 1. then within a time window of 200 msec only two spikes are
Example (ii). Pareto distributiong(t)=In(t+1). In this  recorded and the approximation will be certainly not true.
case the distributions have long tails and we know that they We do not yet have an exact idea on how neurones de-

are ubiquitouilG']_?_l_ Its mean and variance are code their input Signals, however we know that the maxi-
mum likelihood gives us an optimal estimdt&l] where a
) \i(X) comparison between the performance of the maximum like-
mi(X)= m oi(xX)= lihood and a network has also been carried out. More gener-
I

(OO =10 = 2] ally, from a Baysian point of view the posterior function is

Hence we require that;(x)>2 for the existence ofi;(x), obtained in the following way:

a;(x) and its CV is greater than 1. N

Example (iii ). Positive Gaussian distributiorg(t)=t. p(x)o [T pINi(T)=rix]p(x)
This is one of the cases discussed[i9,21 with mean, =1
variance

for a prior distributionp(x). We fix the prior distribution in
the following discussion by assumimyx)=const, i.e., the
noninformative prior, which gives the same results as the
maximum likelihood.

Theorem 1For the response distributions in examfile-
andCV<1. (ii ) the posterior distribution is

_ 1 2/
Mi(X)—m, Ui(X)—m,
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. (X—f1)? time window is subtle in the application of the maximum
P(X)ocexn( - —&2—) likelihood estimate, a topic which has not been fully consid-
ered in the literature.
with 2= (SN,x)/N and 62=o?/N (exponential distribu- Decoding II.It seems that the preceding section gives us
tion and positive Gaussian distribution&2=o2/(2N) the desired results: the center of the input pref_erred values is
(Pareto distribution, provided that>1). the most probable state of _the output distribution, no matter
Proof. In terms of Lemma 1, we see that the posteriorWhat the response distributions are. Hoyvevgr, as we can see
distribution is given by from the proof of Theorem 1, the posterior distribution criti-

cally depends on the difference between jx) and
N N e 2 2 Ino(xX). This fact suggests consideration of the followin
. r T,x a9 g
InP(x)c— >, In[27a;(T,x)?]¥2= >, % exam'ple-
=1 I=1 ot Example(iv). Suppose that the response distribution is
From the strong law of large numbefisesmma 2 we know

ak—1 k+1
that )\(k+1)>\kt exp(— A\ 1) ®
N _ , (A9 '
[ri—ui(T,x)]° N
& 20(T,x)? o wherek>0 andI'() is the Gamma function. The distribution
defined by Eq.(8) is simply the Gamma distribution with
Therefore, we have parametersX**1 \K). We know that its mean and variance
are
INP(x)x[In(27)—1IN—=InT
1
N N . - 2 —
Hi(X)= s, 07 (X)= TxFz o 9
—2> Inai(x)+3> Inwmi(X). 7) Ai(X) N TEA(X)
i=1 i=1

Again we see that the firing rate }§(x). In fact from the

Now we discuss different cases separately. fitting of the histogram of efferent spike trains, we know that
(i) Exponential distribution. From Eq7) we see that the Gamma distribution is more suitable as the response dis-
~ tributions than exponentialk&0) and Pareto distribution.
INnP(x)«[3In(27)—1IN—=InT+InF Typically, the response distribution equals zero at time zero
N a2 (if we ignore the refractory perioglssimilar to the Gamma
_ E(x— 0)2+ Zi=a(Xi— 1) distribution. See, for examplé19] for an excellent fit of
o2\ o? ' biological data in terms of the Gamma distribution. Mimick-
ing the proof of Theorem 1, we haJ@heorem %) is a
(i) Pareto distribution, generalization of Theorem]the following.
. ) Theorem 2For a response distribution with the properties
INP(x)[3 In(27m)=1]N=InT+InF a?(X)~N\; € (x) and ui(x)~\; }(x), we have the fol-
N a2 lowing situations.
_i_';'(x_mgw_ (i) If and only if k<1,
. o o ~ p( (X—,&)2>
(iii) Positive Gaussian distribution. The proof is similar to P(x)cexp — —%7

that of the exponential distribution.

Let us now analyze the implication of Theorem 1. Fora . N a2
set of tuning functions with their preferred valugs, i~ With #=(2i=px)/N and 5°=0/[N(1-Kk)]. The most
=1,... N, we obtain an output functiotthe posterior dis- probable state is the center of the input preferred values.

tribution) with its most probable value at the centerof (i) If k=1, the posterior distribution is independentxof
i=1,... N. Here we want to emphasize that Theorem 1 isand"fcherefore there are no most probable states.
obtained for those cells whose activities fulfill the central (i) If k>1,

limit theorem (Lemma 1. As we have pointed out earlier, 2
within a given short time window the central limit theorem is IS(X)ocexp< (x _ é‘) )
in general true for only a subset of all cells, and therefore o
Theorem 1 is valid fothis subsedf cells. Hence the safest

way to apply Theorem 1 is that we pick up the cells whichwith 2= (SN ;x)/N and 2= 0?/[N(k—1)]. The most im-
fire most intensively and in this case the results of Theorenprobable state of the posterior distribution is the center of the
1 are approximately in agreement with results in the literainput preferred values.

ture[11]. There are examples which tell us that if we do use Theorem 2 reveals an interesting critical phenomenon:
data of bursting cells, the estimate accuracy is improved=1 is the critical case with the property that the output
[24]. On the other hand, Theorem 1 also reveals anothedistribution is uniformly distributed over all possible states.
interesting phenomenon: if the time window of recording isTherefore, in this case we are not able to get a maximum
long enough, the most probable state of posterior distributiotikelihood estimatek<<1 is the case discussed in the litera-
is independent of inputs. Therefore, to find an appropriatéure [11] and the maximum likelihood estimate holds true.
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The worst case i&>1, where the center of the input pre- output variance and input varian¢tining width depends
ferred values is the most improbable state of the output disen the response distribution and the number of active neu-
tribution. rones. However, we want to emphasize that when the num-
Another interesting issue arising from Theorerti)ds  ber of active neurones is large, the parameter regiokiof
whether the tuning width of the tuning function is enlargedwhich the output variance is larger than that of input is small,
or reduced in the output distribution. If it is enlarged, thei.e., 1— 1/N<k<1.
output will have less accuracy than the input tuning function DiscussionWe found that the output distribution, in the
[9], otherwise the output will be more concentrated on itsframework of population coding, is sensitive to the concrete
most probable states. In the literature there is some discu$arm of the response distribution under the condition that it
sion on this issug9,14]. Here we find a full spectrum of is a renewal process. The most probable state of the output
behaviors: the variance of the output distribution can in-distribution is the center of the input preferred states pro-
crease, decrease, or remain the same, compared with the tunded thatk<<1. If k>1, the center of the input preferred
ing width of the tuning function and depending on the pa-states is the mostprobablestate of the output distribution.

rameterk. More exactly we have the following. The output distribution can be uniformly distributed over all
(i) If k<1—1/N, the tuning width is reduced. possible states k=1, which is the critical case.
(ii) If k=1—1/N, the tuning width and the variance re-  There are a few issues needed to be clarified here.
main the same. (i) General cases without the conditien<1 are consid-
(i) If 1>k>1-1/N, the variance is enlarged. ered in[20]. Although we confine ourselves to neuronal

Recently, attention has been focused on how a certaipopulation code, which is the motivation of our study, the
quantity of afferent signals changes after neuronal transforeonclusions in the present paper are true in the general con-
mation. In[21] the authors have observed that the outputtext of statistical inference.
variance in time domain is smaller than the input variance in (ii) Larget. Our conclusions in fact are obtained under the
time domain. We have pointed out that whether the outpuaissumption of large time behavidtssmma 1. However, as
variance in time domain is smaller or larger than the inputwe pointed out before, it characterizes the essential behaviors
variance in time domain depends on response distributionsf the decoding and encoding in the population coding
[16,17 and other factor$18]. Here again the ratio between framework[20].
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