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Output of a neuronal population code
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In the population coding framework, we consider how the response distributions affect output distribution.
A general theory for the output of neuronal population code is presented when the spike train is a renewal
process. Under a given condition on the response distribution, the most probable value of the output distribu-
tion is the center of input-preferred values, whereas in the other cases the mostimprobablevalue of the output
distribution is the center of input-preferred values or there are no most probable states. Depending on the exact
form of the response distributions, the variance of the output distributions can either enlarge or reduce the
tuning width of the tuning curves.@S1063-651X~99!09606-3#

PACS number~s!: 87.19.La, 87.10.1e
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How neurones unambiguously encode external inputs
then decode them is obviously one of the fundamental
challenging problems in theoretical neuroscience. In rec
years there have been many research activities devote
tackling the problem and a wide variety of possibly codi
strategies have been put forward~see, for example,@1–3#!.
One of the straightforward generalizations of the classic
tation of coding—the assumption of rate coding—is popu
tion coding, which has been closely examined both in exp
ments and in theory recently.

Experimentally it has been suggested that population c
ing might be employed in the generation of saccadic
movements in primates@4#, the direction of arm movement
@5#, visual orientation estimation@6–8#, and sound localiza-
tion @9#. In particular, in@10# the authors considered a neur
network containing four input neurones~encoding neurones!,
ten output neurones~decoding neurones!, and a few interneu-
rones and successfully mimicked the biological data, p
vided that input and output neurones employed the pop
tion coding strategy.

Theoretically in the framework of population coding,
few issues such as the relationship between the maxim
likelihood estimate and a network estimate@11#, how the
broadness of the tuning function and the correlation of af
ent signals affect the outputs, etc.@12–15#, have been dis-
cussed. In particular, in@11# the authors have pointed ou
that if the nervous system in fact managed to implem
maximum likelihood, then its performance would be un
formly good for all stimuli.

The basic idea of the population code is as follows. A
of neurones fire at rates according to their tuning functio
which usually take the largest values at their preferred v
ues. Turning functions are encoded in the spike trains
these neurones. Output distributions are then decode
terms of the efferent spike trains and an action~for example,
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the bend direction of the leech@10#! is taken which usually
corresponds to the most probable value of the output dis
bution.

Population coding, as a postulated encode and dec
strategy of the brain, is now widely accepted as a gener
zation of the rate coding assumption. However, in the lite
ture all theoretical considerations are confined to the cas
which the interspike interval distributions, i.e., the respon
distributions, are exponential, which is probably a good
proximation of the true response distribution in some ca
~however, see@15# for a general approach in terms of Fish
information!. It is well known that neurones might fire with
considerably different response distribution@16–19#, ranging
from short-tailed to long-tailed distributions, and thus it is
vital importance for us to check population coding in t
more general setting of response distribution. To this end
consider the population code with the response distribu
as a renewal process. We find that under a given condi
on the response distributions, the center of the preferred
ues is the most probable state of the output distributi
whereas the center is the mostimprobablestate of the output
distribution or the output distribution is independent of t
preferred values. Furthermore, an exact parameter regio
given in which the variance of the output distribution c
enlarge the tuning width of the tuning curves, an issue wh
has been addressed and unresolved in the literature@14,15#.

Response distributions.Suppose that at time zero an inp
is onset, and we recordN cells’ activities which are statisti-
cally independent. For a given cell, denote the efferent in
spike intervals asTi , i 51,2, . . . , which are independen
random variables with distribution density~the so-called
one-parameter exponential family!

l exp„2lg~ t !…g8~ t !, t>0, ~1!

where l is the parameter. The distribution ofTi , i
51, . . . ,N, is termed as response distribution as well. F
the concreteness of our calculation we are first going to c
sider three cases:
F/
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g~ t !5t, g~ t !5 ln~ t11!, g~ t !5t2,

discussed in more detail in the following examples~i!–~iii !.
We will also consider a slightly more general setting of t
response distribution in examples~iv! taking the form

h~l,t !exp„2g~ t,l!…, t>0, ~2!

whereh,g are positive functions oft,l. Hence in this paper
we consider the case in which the spike train of each ce
a renewal process.

Tuning function.We assume that the tuning function
the i th cell, i 51, . . . ,N, takes the following form:

l i~x!5F expS 2
~x2xi !

2

s2 D1b, ~3!

wherexi is the preferred value of thei th cell, s is the tuning
width, F is the mean peak firing rate, andb is the basal firing
rate. Whenx5xi , the tuning functionl i takes the larges
value, i.e., the cell fires with its greatest activity. In th
paper we restrict ourselves to the case ofs!1 and refer the
reader to our full paper for the general case@20#.

Through the spike trains ofN cells, or equivalently the
response distributions, the information@the tuning function
l i(x), i 51, . . . ,N# is encoded. Now we discuss how th
information is read out~decoded!.

Decoding I.We first consider the case with the respon
distribution defined by Eq.~1!. For simplicity of notation we
take b50 for exponential and Gaussian distribution andb
51 for Pareto distribution.

Example~i!. Exponential distribution,g(t)5t. This is the
most widely used case and has been extensively discuss
the literature. The actual behavior of neurones, of course
never exactly distributed as an exponential function. Ho
ever, in many cases it serves as a good approximation
mean and variance are

m i~x!5
1

l i~x!
, s i

2~x!5
1

l i
2~x!

~4!

with a coefficient of variation~CV! being equal to 1.
Example ~ii !. Pareto distribution,g(t)5 ln(t11). In this

case the distributions have long tails and we know that t
are ubiquitous@16,17#. Its mean and variance are

m i~x!5
1

l i~x!21
, s i

2~x!5
l i~x!

@l i~x!21#@l i~x!22#
.

Hence we require thatl i(x).2 for the existence ofm i(x),
s i(x) and its CV is greater than 1.

Example ~iii !. Positive Gaussian distribution,g(t)5t2.
This is one of the cases discussed in@19,21# with mean,
variance

m i~x!5
1

l i~x!
, s i

2~x!5
1

2l i
2~x!

,

andCV,1.
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These simple response distributions of neuronal activi
are most commonly discussed in the literature. Furtherm
from example~i!–~iii ! we see that it is reasonable to think
l i(x) as the firing rate.

Suppose during time window@0,T# the i th cell, i
51, . . . ,N, emitsr i spikes. The information, i.e., the tunin
function l i(x), is thus encoded throughr i , i 51, . . . ,N. In
terms of datar i , i 51, . . . ,N, the neurone is able to read ou
the information, namely to recover the functionl i(x) in a
certain way.

Let Ni(t) be the number of emitted spikes of thei th cell
during time interval@0,t#. More exactly, we have

P@Ni~ t !5r i ux#5P~T11¯1Tr i
.t !

2P~T11¯1Tr i 21
.t !.

In general, it is difficult to obtain an analytical formula fo
the distribution above except for the Poisson case. Howe
we have the following asymptotic result@22#.

Lemma 1. When t is large, we have Ni(t)
;N„m̄ i(t,x),s̄ i

2(t,x)…, where

m̄ i~ t,x!5
t

m i~x!
, s̄ i

2~ t,x!5
ts i

2~x!

m i
3~x!

and

m i~x!5E
0

`

th~x,t !dt, ~5!

s i
2~x!5E

0

`

t2h~x,t !dt2m i
2~x!, ~6!

whereh(x,t) is the distribution density ofT1 .
It is interesting to see the degree of accuracy of the

proximation of Lemma 1 within a reasonable time perio
say 200 msec. In@23# the author has carried out some n
merical simulations for the response distributions of the
tegrate and fire model, showing that the approximation
strikingly good. Of course, this approximationstrongly de-
pends on the cell’s firing rate. If it fires at a rate of 10 H
then within a time window of 200 msec only two spikes a
recorded and the approximation will be certainly not true

We do not yet have an exact idea on how neurones
code their input signals, however we know that the ma
mum likelihood gives us an optimal estimate@11# where a
comparison between the performance of the maximum li
lihood and a network has also been carried out. More ge
ally, from a Baysian point of view the posterior function
obtained in the following way:

p̂~x!})
i 51

N

p@Ni~T!5r ix#p~x!

for a prior distributionp(x). We fix the prior distribution in
the following discussion by assumingp(x)5const, i.e., the
noninformative prior, which gives the same results as
maximum likelihood.

Theorem 1.For the response distributions in example~i!–
~iii ! the posterior distribution is
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P̂~x!}expS 2
~x2m̂ !2

ŝ2 D
with m̂5(S i 51

N xi)/N and ŝ25s2/N ~exponential distribu-
tion and positive Gaussian distribution!, ŝ25s2/(2N)
~Pareto distribution, provided thatF@1!.

Proof. In terms of Lemma 1, we see that the poster
distribution is given by

ln P̂~x!}2(
i 51

N

ln@2ps̄ i~T,x!2#1/22(
i 51

N
@r i2m̄ i~T,x!#2

2s̄ i~T,x!2 .

From the strong law of large numbers~Lemma 1! we know
that

(
i 51

N
@r i2m̄ i~T,x!#2

2s̄ i~T,x!2 →
N

2
.

Therefore, we have

ln P̂~x!}@ 1
2 ln~2p!21#N2 ln T

22(
i 51

N

ln s i~x!13(
i 51

N

ln m i~x!. ~7!

Now we discuss different cases separately.
~i! Exponential distribution. From Eq.~7! we see that

ln P̂~x!}@ 1
2 ln~2p!21#N2 ln T1 ln F

2
N

s2 ~x2m̂ !21
( i 51

N ~xi2m̂ !2

s2 .

~ii ! Pareto distribution,

ln P̂~x!}@ 1
2 ln~2p!21#N2 ln T1 ln F

2
2N

s2 ~x2m̂ !21
2( i 51

N ~xi2m̂ !2

s2 .

~iii ! Positive Gaussian distribution. The proof is similar
that of the exponential distribution.

Let us now analyze the implication of Theorem 1. Fo
set of tuning functions with their preferred valuesxi , i
51, . . . ,N, we obtain an output function~the posterior dis-
tribution! with its most probable value at the center ofxi ,
i 51, . . . ,N. Here we want to emphasize that Theorem 1
obtained for those cells whose activities fulfill the cent
limit theorem ~Lemma 1!. As we have pointed out earlie
within a given short time window the central limit theorem
in general true for only a subset of all cells, and theref
Theorem 1 is valid forthis subsetof cells. Hence the safes
way to apply Theorem 1 is that we pick up the cells whi
fire most intensively and in this case the results of Theor
1 are approximately in agreement with results in the lite
ture @11#. There are examples which tell us that if we do u
data of bursting cells, the estimate accuracy is impro
@24#. On the other hand, Theorem 1 also reveals ano
interesting phenomenon: if the time window of recording
long enough, the most probable state of posterior distribu
is independent of inputs. Therefore, to find an appropr
r
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time window is subtle in the application of the maximu
likelihood estimate, a topic which has not been fully cons
ered in the literature.

Decoding II. It seems that the preceding section gives
the desired results: the center of the input preferred value
the most probable state of the output distribution, no ma
what the response distributions are. However, as we can
from the proof of Theorem 1, the posterior distribution cri
cally depends on the difference between 3 lnmi(x) and
2 lnsi(x). This fact suggests consideration of the followin
example.

Example~iv!. Suppose that the response distribution is

l~k11!lk tlk21 exp~2lk11t !

G~lk!
, ~8!

wherek.0 andG~ ! is the Gamma function. The distributio
defined by Eq.~8! is simply the Gamma distribution with
parameters (lk11,lk). We know that its mean and varianc
are

m i~x!5
1

l i~x!
, s i

2~x!5
1

l i
k12~x!

. ~9!

Again we see that the firing rate isl i(x). In fact from the
fitting of the histogram of efferent spike trains, we know th
the Gamma distribution is more suitable as the response
tributions than exponential (k50) and Pareto distribution
Typically, the response distribution equals zero at time z
~if we ignore the refractory periods!, similar to the Gamma
distribution. See, for example,@19# for an excellent fit of
biological data in terms of the Gamma distribution. Mimic
ing the proof of Theorem 1, we have@Theorem 2~i! is a
generalization of Theorem 1# the following.

Theorem 2.For a response distribution with the properti
s i

2(x);l i
2(k12)(x) and m i(x);l i

21(x), we have the fol-
lowing situations.

~i! If and only if k,1,

P̂~x!}expS 2
~x2m̂ !2

ŝ2 D
with m̂5(S i 51

N xi)/N and ŝ25s2/@N(12k)#. The most
probable state is the center of the input preferred values

~ii ! If k51, the posterior distribution is independent ofx
and therefore there are no most probable states.

~iii ! If k.1,

P̂~x!}expS ~x2m̂ !2

ŝ2 D
with m̂5(S i 51

N xi)/N andŝ25s2/@N(k21)#. The most im-
probable state of the posterior distribution is the center of
input preferred values.

Theorem 2 reveals an interesting critical phenomenon
k51 is the critical case with the property that the outp
distribution is uniformly distributed over all possible state
Therefore, in this case we are not able to get a maxim
likelihood estimate.k,1 is the case discussed in the liter
ture @11# and the maximum likelihood estimate holds tru
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The worst case isk.1, where the center of the input pre
ferred values is the most improbable state of the output
tribution.

Another interesting issue arising from Theorem 2~i! is
whether the tuning width of the tuning function is enlarg
or reduced in the output distribution. If it is enlarged, t
output will have less accuracy than the input tuning funct
@9#, otherwise the output will be more concentrated on
most probable states. In the literature there is some dis
sion on this issue@9,14#. Here we find a full spectrum o
behaviors: the variance of the output distribution can
crease, decrease, or remain the same, compared with the
ing width of the tuning function and depending on the p
rameterk. More exactly we have the following.

~i! If k,121/N, the tuning width is reduced.
~ii ! If k5121/N, the tuning width and the variance re

main the same.
~iii ! If 1 .k.121/N, the variance is enlarged.
Recently, attention has been focused on how a cer

quantity of afferent signals changes after neuronal trans
mation. In @21# the authors have observed that the out
variance in time domain is smaller than the input variance
time domain. We have pointed out that whether the out
variance in time domain is smaller or larger than the in
variance in time domain depends on response distribut
@16,17# and other factors@18#. Here again the ratio betwee
,
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output variance and input variance~tuning width! depends
on the response distribution and the number of active n
rones. However, we want to emphasize that when the n
ber of active neurones is large, the parameter region ofk in
which the output variance is larger than that of input is sm
i.e., 121/N,k,1.

Discussion.We found that the output distribution, in th
framework of population coding, is sensitive to the concr
form of the response distribution under the condition tha
is a renewal process. The most probable state of the ou
distribution is the center of the input preferred states p
vided thatk,1. If k.1, the center of the input preferre
states is the mostimprobablestate of the output distribution
The output distribution can be uniformly distributed over
possible states ifk51, which is the critical case.

There are a few issues needed to be clarified here.
~i! General cases without the conditions!1 are consid-

ered in @20#. Although we confine ourselves to neuron
population code, which is the motivation of our study, t
conclusions in the present paper are true in the general
text of statistical inference.

~ii ! Larget. Our conclusions in fact are obtained under t
assumption of large time behaviors~Lemma 1!. However, as
we pointed out before, it characterizes the essential behav
of the decoding and encoding in the population cod
framework@20#.
ural

ci.

-

@1# W. Gerstner, A. K. Kreiter, H. Markram, and A. V. M. Herz
Proc. Natl. Acad. Sci. USA94, 12 740~1997!.

@2# J. J. Hopfield, Nature~London! 376, 33 ~1995!.
@3# F. Rieke, D. Warland, R. de Ruyter van Steveninch, and

Bialek, Spikes: Exploring The Neural Code~MIT Press, Cam-
bridge, MA, 1997!.

@4# C. Lee, W. H. Rohrer, and D. L. Sparks, Nature~London! 332,
357 ~1988!.

@5# A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, S
ence233, 1416~1986!.

@6# C. D. Gilbert and T. N. Wiesel, Vision Res.30, 1689~1990!.
@7# R. Vogels, Biol. Cybern.64, 25 ~1990!.
@8# E. Zohary, Biol. Cybern.66, 262 ~1992!.
@9# D. C. Fitzpatrick, R. Batra, R. S. Terrence, and S. Kuwa

Nature~London! 388, 871 ~1997!.
@10# J. E. Lewis and W. B. Kristan, Jr., Nature~London! 391, 76

~1998!.
@11# H. S. Seung and H. Sompolinsky, Proc. Natl. Acad. Sci. U
.

-

,

90, 10 749~1993!.
@12# L. Abbott and P. Dayan, Neural Comput.11, 91 ~1998!.
@13# A. Pouget, K. C. Zhang, S. Deneve, and P. E. Latham, Ne

Comput.10, 373 ~1998!.
@14# R. S. Zemel, P. Dayan, and A. Pouget, Neural Comput.10, 403

~1998!.
@15# K. C. Zhang and T. Sejnowski, Neural Comput.11, 75 ~1998!.
@16# J. Feng, Phys. Rev. Lett.79, 4505~1997!.
@17# J. Feng and D. Brown, J. Phys. A31, 1239~1998!.
@18# J. Feng and D. Brown, Biol. Cybern.78, 369 ~1998!.
@19# G. L. Gerstein and B. Mandelbrot, Biophys. J.4, 41 ~1964!.
@20# J. Feng and D. Brown~unpublished!.
@21# P. Marsalek, C. Koch, and J. Maunsell, Proc. Natl. Acad. S

USA 94, 735 ~1997!.
@22# W. Feller, An Introduction to Probability Theory and Its Ap

plications ~Wiley, New York, 1966!.
@23# M. Stemmler, Network7, 687 ~1996!.
@24# J. E. Lisman, Trends Neurosci.20, 38 ~1997!.


