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Some properties of multifractality at solid-on-solid growth processes

A. Bershadskii
ICAR, P.O. Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel

~Received 16 November 1998!

It is shown that multifractality of large deposition probabilities observed in a simple model of crystal growth
~the Das Sarma model with neglected surface diffusion, desorption, and hop! corresponds to another type of
statistical distribution: multifractal Bernoulli distribution. Lognormal distribution is also discussed in this
context.@S1063-651X~99!03606-5#

PACS number~s!: 05.40.1a, 81.15.2z, 68.55.2a
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I. INTRODUCTION

Simple models of crystal growth turn out to be useful f
understanding of some significant properties of this proc
@1,2#. In the simplest situation we neglect surface diffusio
desorption, and hop, but despite the strong simplification
growth process exhibits multifractal properties@3#. If one
takes into account the surface diffusion, desorption, and
the properties of the multifractal distribution of the grow
probability may be changed. However, appearance of
multifractality ~as is shown in@3#! can be related to the sim
plest growth process itself. This process implies such
growth @1,2# that incident atoms are randomly deposited
substrate or on the previous atoms one by one. In this
columns of atoms with various heights appear without
cancies or overhangs. The roughness of the growing sur
is characterized by a multifractal distribution@3#. Description
of this multifractality can be made as follows.

The two-dimensional substrate with a global sizeL is di-
vided into boxes of sizel and deposition probability of atom
in the box (i , j ), Pi j ( l /L), is defined as

Pi j ~ l /L !5
Ni j ~ l /L !

( Ni j ~ l /L !

5
Ni j ~ l /L !

N
,

whereNi j ( l /L) is the number of atoms deposited inside t
box (i , j ) of size l and N is the total number of deposite
atoms.

Partition function

Zq5(
i j

$Pi j ~ l /L !%q}~ l /L !t(q) ~1!

and the generalized dimensionsDq are defined as

Dq5t~q!/~q21!. ~2!

Figure 1 shows the generalized dimensionsDq ~againstq)
obtained in a numerical simulation performed in@3# for av-
erage film thicknessh51 monolayer~ML ! — set II, and for
h525 ML — set I. Straight lines in this figure indicate log
normal distribution~see@4# for information about lognorma
distribution and its applications and@5,6# for information
about multifractality corresponding to lognormal distrib
tion!. One can see that lognormal distribution is applica
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for h51 ML for positive q up to q;30. For q.30 this
distribution transforms into a new one. Since the generali
dimensions with largeq are dominated by the boxes (i , j )
with large values of the deposition probabilityPi , j ( l /L) ~see,
for instance,@7#!, it is interesting to understand what type
the probability distribution replaces lognormal distributio
for the large values ofq. It is observed in@3# that with the
increasingh the distribution of growth probability tends to b
uniform ~see, for instance, a set of dots I corresponding
h525 ML in Fig. 1!. Closeness of lognormality to homoge
neity can also be observed in some natural phenomena@4#.
SinceDq is also a function ofh it is plausible that this func-
tion crosses over continuously between the two limiti
behaviors: lognormal and the new one~see also Discussion!.

II. MULTIFRACTAL BERNOULLI DISTRIBUTION

Let us define

P̄i j 5Pi j /max
i j

$Pi j %. ~3!

FIG. 1. Generalized dimension spectraDq againstq. Data~dots!
are taken from@3#. Set I corresponds to average film thicknessh
525 ML and set II corresponds toh51 ML. Straight lines indicate
lognormal distributions.
7216 ©1999 The American Physical Society
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Then

^P̄q&5
1

N (
i j

P̄i j
q . ~4!

The simplest structure that can be used for fractal descrip
is a system for whichP̄i j can take only two values, 0 and 1
It follows from Eqs.~3! and~4! that for such a system~with
q.0)

^P̄q&5^P̄& ~5!

and fluctuations in this system can be identified as Berno
fluctuations@8#. It is clear that the Bernoulli fluctuations ca
be monofractalonly.

Generalization of Eq.~5! in the form of a generalized
scaling

^P̄q&;^P̄&g(q) ~6!

can be used to describe more complex~multifractal! systems.
We use invariance of the generalized scaling~6! with dimen-
sion transform@9#

P̄i j→ P̄i j
l ~7!

to find g(q). This invariance means that

^~ P̄l!q&;^~ P̄l!&g(q) ~8!

for all positivel. Then, it follows from Eqs.~6! and~8! that

^~ P̄!lq&;^P̄&g(lq);^P̄&g(l)g(q). ~9!

Hence,

g~lq!5g~l!g~q!. ~10!

The general solution of functional equation~10! is

g~q!5qg, ~11!

whereg is a positive number. It should be noted that the c
g51 corresponds to Gauss fluctuations@10#. We shall, how-
ever, consider the limitg→0 ~i.e., crossover to the Bernoul
fluctuations!. This crossover is nontrivial. Indeed, let us co
sider generalized scaling

Fqm;Fkm
a(q,k,m) , ~12!

where

Fqm5^P̄q&/^P̄m&. ~13!

Substituting Eq.~6! into Eqs. ~12! and ~13! and using Eq.
~11! we obtain

a~q,k,m!5
qg2mg

kg2mg
.

Hence,
n

lli

e

lim
g→0

a~q,k,m!5
ln~q/m!

ln~k/m!
. ~14!

If there is ordinary scaling

^P̄p&;~ l /L !zp, ~15!

then

a~q,k,m!5
zq2zm

zk2zm
. ~16!

From comparing Eqs.~14! and ~16! we obtain

zq2zm

zk2zm
5

ln~q/m!

ln~k/m!
~17!

at the limit g→0. The general solution of functional equa
tion ~17! is

zq5a1c ln q, ~18!

wherea andc are some constants.
If we use the relationship

max
i

$Pi j %;~ l /L !D` ~19!

~see, for instance,@7#!, then it follows from Eqs.~2!, ~3! and
Eqs.~15!, ~18!, and~19! that

Dq5D`1c
ln q

~q21!
~20!

for the multifractal Bernoulli fluctuations~i.e., for the fluc-
tuations which appear at the limitg→0).

From Eqs.~6!, ~15!, and ~18! we can findg(q) corre-
sponding to the multifractal Bernoulli fluctuations

g~q!511
c

a
ln q, ~21!

wherea5d2D` .
Let us find the characteristic function of the multifract

Bernoulli distribution. It is known that the characterist
function x(l) can be represented by the following seri
~see, for instance,@8#!:

x~l!5 (
p50

`
~ il!p

p!
^P̄p&. ~22!

Then using Eqs.~6! and ~21! we obtain from Eq.~22!

x~l!511^P̄& (
p51

`
~ il!p

p!
pb, ~23!

where

b5
c

~d2D`!
ln^P̄&. ~24!

The characteristic function~23! gives a complete descriptio
of the multifractal Bernoulli distribution. In the limitc→0
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the characteristic function~23!, ~24! transforms into a char
acteristic function of simple Bernoulli distribution@8#.

It follows from the definition that̂ P̄&<1. On the other
hand, sinceDq<Dp for q.p it follows from Eq. ~20! that
0<c. Taking also into account thatD`<d we obtain from
Eq. ~24! that b<0. This is significant because forb.0 the
representation~23! may not correspond to a normalize
probability. Indeed, for this characteristic function̂P̄p&
5^P̄&pb. On the other hand, by Ho¨lder inequality one has

^P̄p&<^P̄pq&1/q

for any integerq. Therefore

^P̄&pb<^P̄&1/q~pq!b/q.

Letting q tend to infinity in the above inequality one obtain

^P̄&pb<1.

Since ^P̄&<1 and 1<p @in representation~24!#, then this
inequality is satisfied forb<0 and it is not satisfied~for
large enoughp) when b.0. Therefore the characteristi
function ~23! corresponds to some real probability distrib
tion for b<0 only @that takes place in our case, Eq.~24!#.

A thermodynamic reason for this restriction can be rela
to interpretation ofc as a specific heat in some multifract
~virtual! thermodynamics~see@11,12#!.

III. COMPARISON WITH DATA OF NUMERICAL AND
LABORATORY SIMULATIONS

Figure 2~adapted from@3#! shows the generalized dimen
sions obtained in the numerical simulation@3# with h51 ML
for q.30 ~cf. Fig. 1!. In this figure Dq is shown against
ln q/(q21). The straight line indicates agreement between
data and the multifractal Bernoulli representation~20!. D` ,
shown in this figure, has been obtained using the so-ca
singularity spectrumf (a) ~also calculated in@3#!. Thus, one
can see that there are two limiting types of growth proba
ity distributions: one~lognormal! corresponds to the boxe
with relatively small values of the deposition probability a
another~multifractal Bernoulli distribution! corresponds to

FIG. 2. Generalized dimensionsDq are shown against ln(q)/(q
21). Data~dots! correspond to set II of Fig. 1 withq.30. Straight
line is drawn for comparison with the multifractal Bernoulli repr
sentation~20!.
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the boxes with relatively large values of the deposition pro
ability.

Let us also discuss briefly an analogy with turbulen
Analogy between the growth processes and turbulence
pointed out in papers@9,14,15#. Figure 3~adapted from@16#!
shows generalized dimension spectra obtained in labora
turbulent flows for a passive scalar dissipation rate. A se
symbols, I, corresponds to the data obtained in so-called
cous interval of scales where the molecular viscosity s
presses the turbulent velocity fluctuations~see also@13#!;
whereas the set of symbols II corresponds to the data
tained in so-called convective interval of scales where
turbulent fluctuations are fully developed. Straight lines
dicate applicability of lognormal distribution. And again~cf.
Fig. 1! one can see that for case I~corresponding to sup
pressed turbulent velocity fluctuations! we have lognormality
close to homogeneity, while for case II lognormality tak
place only in some vicinity of the pointq50. Forq.1 the
multifractality can be described by the multifractal Bernou
distribution. Indeed, Fig. 4~obtained from Fig. 3! shows the
data corresponding to case II forq.1. The straight line in-
dicates agreement between the data~dots! and the multifrac-
tal Bernoulli representation~20!.

FIG. 3. Generalized dimensionsDq againstq. Data ~dots! are
taken from @16#. Set I corresponds to viscous interval of scale
whereas set II corresponds to convective interval of scales. Stra
lines indicate lognormal distributions.

FIG. 4. Generalized dimensionsDq against ln(q)/(q21). Data
~dots! correspond to set II of Fig. 3 withq.1. Straight line indi-
cates agreement with the multifractal Bernoulli representation~20!.
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Thus, the crossover between these two limiting behav
of passive scalar turbulent fluctuations seems to be simila
the analogous crossover in the solid-on-solid growth p
cesses. For both these processes lognormal distribution
scribes relatively small local concentrations, whereas
multifractal Bernoulli distribution describes relatively larg
local concentrations.

IV. DISCUSSION

Finally, let us discuss briefly some open problems rela
to the observation represented in this note.

Generally speaking, the observed crossover may turn
to be related to some real transition. To prove this one sho
show that indeed the behavior ofDq as a function ofq is
singular at a specific pointqc , as opposed to just crossin
over continuously between the two limiting cases. It
known that this is rather difficult to do for such smoothne
characteristics as the functionDq is ~see, for instance,@17#,
and references therein!. In Fig. 5 we show, as an exampl
multifractal spectrumDq of the Hénon attractor as obtaine
in a recent paper@18# with fuzzy disk counting. In this figure
we show bothDq againstq ~solid curve! and Dq against
ln q/(q21) ~solid circles!. The straight line is drawn for com
parison with the multifractal Bernoulli representation~20!.
From theoretical investigations@19# we know that there is a
real transition from the ‘‘hyperbolic phase’’ to the ‘‘nonhy
perbolic phase’’ atq.2.24 in this multifractal spectrum
One can assume that the appearance of the multifractal
noulli distribution could be an indication of a real transitio
However, since in the considered case of the solid-on-s
growth Dq is also a function ofh, it is quite plausible that
this function simply crosses over continuously between
two limiting cases.

This problem could also be related to the origin of mu
fractality ~cf. @20#! at the growth processes. To discuss t
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question one must show why this growth has elements of
Bernoulli statistics for largeq. This could be shown by map
ping the distribution to Bernoulli distribution, and by ex
plaining why this happens in terms of the deposition pro
abilities. These seem to be interesting problems for fut
investigations.
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FIG. 5. Generalized dimensionsDq againstq ~solid curve! and
against ln(q)/(q21) ~solid circles! for the Hénon attractor. Data
taken from@18#. Straight line indicates agreement with the mul
fractal Bernoulli representation~20!.
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