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Some properties of multifractality at solid-on-solid growth processes

A. Bershadskii
ICAR, P.O. Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel
(Received 16 November 1998

It is shown that multifractality of large deposition probabilities observed in a simple model of crystal growth
(the Das Sarma model with neglected surface diffusion, desorption, anccbopsponds to another type of
statistical distribution: multifractal Bernoulli distribution. Lognormal distribution is also discussed in this
context.[S1063-651X99)03606-5

PACS numbdps): 05.40+a, 81.15-z, 68.55-a

. INTRODUCTION for h=1 ML for positive q up to q~30. Forg>30 this
distribution transforms into a new one. Since the generalized
Simple models of crystal growth turn out to be useful for gimensions with largey are dominated by the boxes, )
understanding of some significant properties of this procesgjith |arge values of the deposition probabilly (/L) (see,
[1,2]. In the simplest situation we neglect surface diffusion.for instance[7)), it is interesting to understand what type of
desorption, and hop, but despite the strong simplification thishe probability distribution replaces lognormal distribution
growth process exhibits multifractal propertig3]. If one  for the large values of. It is observed i3] that with the
takes into account the surface diffusion, desorption, and hogcreasingh the distribution of growth probability tends to be
the properties of the multifractal distribution of the growth yniform (see, for instance, a set of dots | corresponding to
probability may be changed. However, appearance of thg— o5 ML in Fig. 1). Closeness of lognormality to homoge-
multifractality (as is shown in3]) can be related to the sim- ety can also be observed in some natural phenoriéha
plest growth process itself. This process implies such &incep, is also a function oh it is plausible that this func-
growth [1,2] that incident atoms are randomly deposited ontjon crosses over continuously between the two limiting

substrate or on the previous atoms one by one. In this wapenaviors: lognormal and the new ofsee also Discussion
columns of atoms with various heights appear without va-

cancies or overhangs. The roughness of the growing surface |\ T|FRACTAL BERNOULLI DISTRIBUTION
is characterized by a multifractal distributip8y]. Description

of this multifractality can be made as follows. Let us define
The two-dimensional substrate with a global sizes di- _
vided into boxes of sizeand deposition probability of atoms Pij=Pij /maxP;;}. (3
.

in the box (,j), P;;(l/L), is defined as ]

Ny (/L) Ny(I/L)

P”(l/L): y 206 1
N;; (1/L
2 Ny (i) 204}
whereN;;(l/L) is the number of atoms deposited inside the I
box (i,j) of sizel andN is the total number of deposited 2.02
atoms.
Partition function > 2.00
zq=; {Py (1/L)}%oc(1/L) (@ (1) 198 1
196}
and the generalized dimensiobDg, are defined as "-.,.
o,
Dq=7-(q)/(q—1). 2 1.94 1 II
Figure 1 shows the generalized dimensidhs (againstq) 1.92 s - : ;
obtained in a numerical simulation performed[8] for av- -200 -100 0 100 200
erage film thicknesh=1 monolayerML) — set Il, and for q
h=25 ML — set I. Straight lines in this figure indicate log-
normal distribution(see[4] for information about lognormal FIG. 1. Generalized dimension spedbg againsty. Data(dots

distribution and its applications and,6] for information  are taken fron{3]. Set | corresponds to average film thicknéss
about multifractality corresponding to lognormal distribu- =25 ML and set Il corresponds to=1 ML. Straight lines indicate
tion). One can see that lognormal distribution is applicablelognormal distributions.

1063-651X/99/566)/72164)/$15.00 PRE 59 7216 ©1999 The American Physical Society



PRE 59
Then
(PYy= 4

1@ —
— q
N%_:P”.

The simplest structure that can be used for fractal description

is a system for Whicrﬁj can take only two values, 0 and 1.
It follows from Eqgs.(3) and(4) that for such a systertwith
q>0)

(PH=(P) (5

BRIEF REPORTS

and fluctuations in this system can be identified as Bernoullf 70M comparing Eqs14) and(16) we obtain

fluctuationg[8]. It is clear that the Bernoulli fluctuations can
be monofractalonly.
Generalization of Eq(5) in the form of a generalized
scaling
(P)~(P)o@ (6)
can be used to describe more complewiltifractal) systems.

We use invariance of the generalized scali@gwith dimen-
sion transform 9]

P;—P} (7
to find g(qg). This invariance means that
((PM)9)~((PY))o@ ®

for all positive\. Then, it follows from Egs(6) and(8) that

(P)0) ~(P)aM0 —(P)a)s®, ©
Hence,
9(Aq)=g(N)g(q). (10
The general solution of functional equati@t0) is
g(q)=q’, 1y

wherey is a positive number. It should be noted that the casgyarnoulii

y=1 corresponds to Gauss fluctuatigd§]. We shall, how-
ever, consider the limiz— 0 (i.e., crossover to the Bernoulli
fluctuations. This crossover is nontrivial. Indeed, let us con-
sider generalized scaling

Fqm~ Felakm (12)

where

Fqm=(PH/(P™. (13

Substituting Eq.(6) into Egs.(12) and (13) and using Eg.
(11) we obtain

Y—m?
k”—mY

a(q,k,m)=

Hence,

7217
, _In(a/m)
yinoa(q,k,m)— Intkim) (14
If there is ordinary scaling
(PH~(I/L)%, (15
then
_ gq_ {m
a(g,k,m)= L=l (16)
gq_ gm _ In(q/m)
b n IN(KIM) a0

at the limit y—0. The general solution of functional equa-
tion (17) is

{q=a+cling, (18
wherea andc are some constants.
If we use the relationship
max{P;;} ~ (1/L)P~ (19
i

(see, for instancd,7]), then it follows from Egs(2), (3) and
Egs.(15), (18), and(19) that

Dy=D.+ ing
C—
(9-1)

for the multifractal Bernoulli fluctuations§.e., for the fluc-
tuations which appear at the limjt—0).

From Egs.(6), (15), and (18) we can findg(q) corre-
sponding to the multifractal Bernoulli fluctuations

(20

c
g(@)=1+~Ing, (21)
wherea=d—-D.,.

Let us find the characteristic function of the multifractal
distribution. It is known that the characteristic
function xy(\) can be represented by the following series
(see, for instancd8]):

N = g (VF 22
x=2 = (22
Then using Egs(6) and(21) we obtain from Eq(22)
(i )p
xX(\)= 1+<P>2 (23)
where
— c D\
,8— (d_—Dm)In<P> (24)

The characteristic functio(23) gives a complete description
of the multifractal Bernoulli distribution. In the limit— 0
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FIG. 2. Generalized dimensioiiy, are shown against Igy/(q
—1). Data(dotg correspond to set Il of Fig. 1 with>30. Straight 9
line |s_drawn for comparison with the multifractal Bernoulli repre- FIG. 3. Generalized dimensiors, againstq. Data (dots are
sentation(20).

taken from[16]. Set | corresponds to viscous interval of scales,

whereas set Il corresponds to convective interval of scales. Straight

the characteristic functio(23), (24) transforms into a char-
acteristic function of simple Bernoulli distributidi3].

It follows from the definition that P)<1. On the other
hand, sinceD,<D,, for g>p it follows from Eq. (20) that
O0=c. Taking also into account th&@.<d we obtain from
Eqg. (24) that 8<0. This is significant because f@>0 the

representation(23) may not correspond to a normalized pointed out in paperf9,14,15. Figure 3(adapted froni16])

lines indicate lognormal distributions.

ability.

the boxes with relatively large values of the deposition prob-

Let us also discuss briefly an analogy with turbulence.
Analogy between the growth processes and turbulence was

probability. Indeed, for this characteristic functiaP?)  shows generalized dimension spectra obtained in laboratory
=(P)p”. On the other hand, by Hier inequality one has  turbulent flows for a passive scalar dissipation rate. A set of
symbols, |, corresponds to the data obtained in so-called vis-

(PPy<(PPa)/a cous interval of scales where the molecular viscosity sup-
presses the turbulent velocity fluctuatiosee also[13));

for any integerg. Therefore whereas the set of symbols Il corresponds to the data ob-
tained in so-called convective interval of scales where the

(P)pP=(P)"(pg)#a. turbulent fluctuations are fully developed. Straight lines in-
dicate applicability of lognormal distribution. And agd(icf.
Fig. 1) one can see that for case(dorresponding to sup-
pressed turbulent velocity fluctuationge have lognormality
close to homogeneity, while for case Il lognormality takes
place only in some vicinity of the poirg=0. Forq>1 the
multifractality can be described by the multifractal Bernoulli
distribution. Indeed, Fig. 4obtained from Fig. Bshows the
data corresponding to case Il fqr>1. The straight line in-
dicates agreement between the dalats and the multifrac-
c}al Bernoulli representatio(R0).

Letting g tend to infinity in the above inequality one obtains
(PypP=1.

Since(P)<1 and I=p [in representatior(24)], then this
inequality is satisfied fo3<0 and it is not satisfiedfor
large enoughp) when B>0. Therefore the characteristic
function (23) corresponds to some real probability distribu-
tion for B<0 only [that takes place in our case, Eg4)].

A thermodynamic reason for this restriction can be relate
to interpretation oft as a specific heat in some multifractal
(virtual) thermodynamicgsee[11,12). 3.0 (
IIl. COMPARISON WITH DATA OF NUMERICAL AND

LABORATORY SIMULATIONS

D,
»n
wn

T

Figure 2(adapted fron3]) shows the generalized dimen-
sions obtained in the numerical simulati@] with h=1 ML
for g>30 (cf. Fig. 1. In this figureD is shown against
Ing/(g—1). The straight line indicates agreement between the 2.0 : |
data and the multifractal Bernoulli representati@g). D.., 0 0.5 1.0
shown in this figure, has been obtained using the so-called
singularity spectruni(«) (also calculated if3]). Thus, one ]n(q)/(q_l)
can see that there are two limiting types of growth probabil-
ity distributions: one(lognorma) corresponds to the boxes  FIG. 4. Generalized dimensiori3, against Ing)/(q—1). Data
with relatively small values of the deposition probability and (dots correspond to set Il of Fig. 3 witlj>>1. Straight line indi-
another(multifractal Bernoulli distribution corresponds to cates agreement with the multifractal Bernoulli representa@@n
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Thus, the crossover between these two limiting behaviors q
of passive scalar turbulent fluctuations seems to be similar to
the analogous crossover in the solid-on-solid growth pro- 12 N\ 5 10 15

cesses. For both these processes lognormal distribution de-
scribes relatively small local concentrations, whereas the
multifractal Bernoulli distribution describes relatively large
local concentrations.

S 1.0
IV. DISCUSSION Q

Finally, let us discuss briefly some open problems related
to the observation represented in this note.

Generally speaking, the observed crossover may turn out l
to be related to some real transition. To prove this one should
show that indeed the behavior Bf, as a function ofg is
singular at a specific poirdg., as opposed to just crossing
over continuously between the two limiting cases. It is l / 1

n g /(¢-1)

0.8 1 1
0 0.5 1.0

known that this is rather difficult to do for such smoothness
characteristics as the functiddy, is (see, for instancg17],

and _references therginin Fig. 5,We show, as an example, FIG. 5. Generalized dimensiofix, againstq (solid curve and
multifractal spectrunD, of the Henon attractor as obtained against Ing)/(q—1) (solid circle3 for the Heon attractor. Data

in a recent papdl8] with fuzzy disk counting. In this figure  taken from[18]. Straight line indicates agreement with the multi-
we show bothD, againstq (solid curvg and D, against  fractal Bernoulli representatiof®0).

Ing/(g—1) (solid circles. The straight line is drawn for com-

parison with the multifractal Bernoulli representati@20).  question one must show why this growth has elements of the
From theoretical investigatior{d9] we know that there is a Bernoulli statistics for large. This could be shown by map-
real transition from the “hyperbolic phase” to the “nonhy- ping the distribution to Bernoulli distribution, and by ex-
perbolic phase” atg=2.24 in this multifractal spectrum. plaining why this happens in terms of the deposition prob-
One can assume that the appearance of the multifractal Besbilities. These seem to be interesting problems for future
noulli distribution could be an indication of a real transition. investigations.

However, since in the considered case of the solid-on-solid

growth D is also a function oh, it is quite plausible that ACKNOWLEDGMENTS
this function simply crosses over continuously between the
two limiting cases. The author is grateful to C.H. Gibson, D. Stauffer, and

This problem could also be related to the origin of multi- K.R. Sreenivasan for discussions, and to the Machanaim
fractality (cf. [20]) at the growth processes. To discuss thisCenter(Jerusalemfor support.
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