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Voronoi-Delaunay analysis of voids in systems of nonspherical particles
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The Voronoi network is known to be a useful tool for the structural description of voids in the packings of
spheres produced by computer simulations. In this article we extend the Voronoi-Delaunay analysis to pack-
ings of nonspherical convex objects. Main properties of the Voronoi network, which are known for systems of
spheres, are valid for systems of any convex objects. A general numerical algorithm for calculation of the
Voronoi network in three dimensions is proposed. It is based on the calculation of the trajectory of the
imaginary empty sphere of variable size, moving inside a sydi® Delaunay empty sphere method
Analysis of voids is presented for an ensemble of random straight lines and for a molecular dynamics model
of liquid crystal. The spatial distribution of voids and a simple percolation analysis are obtained. The distri-
butions of the bottleneck radii and the radii of spheres inscribed in the voids are calculated.
[S1063-651%99)05606-9

PACS numbsgs): 02.70-c, 81.05.Rm, 61.43.Gt

I. INTRODUCTION method for chemical potential calculation for dense liquids.
The Voronoi network as a tool for “a computational poro-
The structure of voids is an important factor in many simetry” was discussed recently by Medvedéa®)].
problems of physical chemistry, catalysis, and material sci- An application of the Voronoi-Delaunay approach for a
ence. It governs the permeability, fluid flow, and diffusion of broader class of particles seems to be interesting. However,
admixtures in porous and granular meflla2]. The voids in  as was remarked many times, the classical Voronoi-
atomic systemsliquids and glassesare related directly to Delaunay constructions cannot be used in the general case
solubility and other thermodynamic propert[@. Computer [11,13,20,2]. Originally the Voronoi-Delaunay tessellation
simulation is a productive way to investigate these physicals defined for a system of pointgenters of objecjsand it
phenomena. However, it needs an adequate description dbes not take into account the size and the shape of objects.
the empty space inside a model. This is the reason the known ideology and algorithms were
The known Voronoi-Delaunay approaf] used success- not applied for more complex particles. They can be used for
fully to study the structure of noncrystalline systeffs-100  systems of monosize spheres only.
is proved to be very helpful also to study the structure of Recently the problem has been solved for spheres of dif-
voids. In this way main results have been obtained for packferent radii[12,19,22. Such systems are used as models of
ings of monosize spheres, which are the simplest models fqsolydisperse powders, polyatomic materials, and alloys
granular materials, as well as for monoatomic liquids and23,24. To take into account the surface of the particles, one
glasses. should introduce actually a new geometrical construction:
The basic construction to study unoccupied volume insidénstead of the classical Voronoi polyhedron, defined for a
a packing of monosize atoms is the network of edges andenter of sphere, one should define another volume of space,
vertices of the mosaic of the Voronoi polyhedFig. 1(a)]. all points of which are closer to treurfaceof a given sphere
The Voronoi network lies in “the depth” between the atoms than to thesurfacesof the other spheres of the systems. This
[11] and plays the role of “a navigation map12] of the  region was called th&oronoi S regior{12]. It is analogous
system. This property of the Voronoi network has been apto the usual Voronoi polyhedra, but their faces and edges are
plied to different problems. The permeability and fluid flow curved [Fig. 1(b)]. The Voronoi S regions generatehe
through packings of equal spheres are studied by Bryant andoronoi S tessellatiariThe set of vertices and edges defines
co-workers[13,14 and Thompson and Fogl¢t5]. An ap-  the Voronoi S networkf the system of polydisperse spheres.
proach for modeling of the mercury porosimetry phenomena special algorithm had been created to calculateSken-
was proposed by Voloshiat al. [16]. Diffusion of a small  structions[25]. An application of this technique to study
ball under gravity was simulated as a Monte Carlo walk onthree-dimensiona(3D) Apollonian packings was made in
the Voronoi network by Richarét al. [17]. An unexpected [26]. An analysis of different polydisperse sphere packings
application of the Voronoi-Delaunay technique was made bywvas given in[12,27).
Bieshaaret al. [18] for acceleration of the particle insertion Note that there are a lot of generalizations of the Voronoi
tessellation in mathematical sciencgsainly in 2D) [28].
Here for physical applications we use a “physical” one. In

*Electronic address: luchnik@ns.kinetics.nsc.ru the terminology of the book28] the “assignment rule” for
TElectronic address: nikmed@ns.kinetics.nsc.ru a definition of theS tessellation is a condition on the closest
*Electronic address: oger@univ-rennes1.fr distance from a point of space to the surface of the objects. A
SElectronic address: troadec@univ-rennes1.fr two-dimensional illustration of such a tessellation for non-
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distance from any point of space to the surface of a convex
object is single valued. This condition is sufficient to be sure
that the Voronoi tessellation exists for any system of convex
objects. Indeed, if the closest distance from a point to an
object is single valued, following Delaun$3] one can say
that any point of unoccupied space can(becloser to one
object (in this case it is inside the Voronoi region of the
objecy, (ii) at the same distance from several objétghis
case the point lies on the common border of the Voronoi
regions of these objegtsThis statement means that the
Voronoi regions cover all the space without gaps. This cov-
ering is also without overlapping of the Voronoi regions be-
cause any point of space cannot be “closer to several ob-
jects” in the same time. Actually this simple reasoning
proves the existence of the Voronoi tessellation for any con-
vex objects.

Some definitions and notations.is convenient to use an
imaginary empty sphere of variable siZéhe Delaunay
empty sphereor simply the Delaunay spheje which had
been proposed by Delaunay [i84]. This sphere can move
and change its radius while touching the surfaces of the
neighboring objects. However, it is always empty, i.e., points
FIG. 1. Two-dimensional illustration of the Voronoi tessellation of the objects pannot be I.nSId.e the' Delaunay sphgre.

Let us consider two objects,andj. The geometric locus

for systems of monosize spher@s, polydisperse spherdb), and . . . ;
spherocylindergc). The Voronoi region of the central object is _Of points which are at the same distance from the two objects

selected by thick lines. For the system of monosize spheres, thi§ @ tWo-dimensional surfade;;(r), calledthe Voronoi sur-
Voronoi region is a polygon with straight edges. For the polydis-ff"(‘je Th? center_of the Delaun_ay SpherPT touchlng the two
perse spheres and for the spherocylinders, the edges are curved. THRJECts lies on this surfacg;;(r) is a plane if our objects are
edges of all the Voronoi regions define the Voronoi network of themonosize spheres. For spheres of different radii it is a hyper-
system. The Voronoi network lies “in the depth” between objects boloid (the Voronoi hyperboloid12,19). For straight lines

and plays the role of the navigation map of void space. Every site opne can show that it is a hyperbolic paraboloid.

the network is characterized by the value of the radiusf the The geometric locus of points which are at the same dis-
inscribed(interstitia) sphere, see large open circles. Every bond oftance from three objects is a one-dimensional g (r)

the Voronoi network is characterized by the value of its bottleneckcalledthe Voronoi channelThis channel is a straight line for
radiusry,, see small open circles. equal spheres. In the general case the Voronoi channel is a

. . - . . curved line. The Voronoi channel is the intersection of the
spherical objects can be seen in Figc)1S tessellations in .
) . . ) Voronoi surfacesE;; (r), F;(r), andF;.(r) [25]. The center
3D have some interesting geometrical properties. The math- ! | .
. ) .. of the Delaunay sphere moves along the Voronoi channel
ematical aspect of th& tessellations should be studied in ; ;
; L X : when the sphere keeps contacts with the three objects.
more detail, however, it is outside the scope of this paper. . )
Do . . w If the Delaunay sphere touches four objagisk,|, it can-
The concept of a navigation map is close to the idea of “me- -
: o . .- not be moved any more. This is a result of elementary ge-
dial axes,” which is used to describe the structure of a cavity

inside a continuous medium, or, the structure of an indi—Ometry and the convexity of the objects: four points on a

vidual domain with a given shag€9,30. As was remarked sphere define the sphere uniquely, but every convex object

Gt 30 e el i & coninous v S1oe e rssonton s ey e, e
sion” of the Voronoi network. ijkl y Sp q

In this paper we apply the Voronoi-Delaunay idea to Sys_four objects. We call i Voronoi site For monosize spheres

tems of particlegobjects of nonspherical convex shapes. It Ithliss kl:)(i)r:,:gnadss 222 ﬁ:gi??cgfn:ﬁ; gg?asne;ausniyezma%ﬁx the
opens a way to use a rigorous geometrical technique f-r[ P 9 y SP 9

studying the structure of systems of a wide class of nos_\/oronm channelCy(r) and opens three new channels

spherical particles. Here we restrict ourselves to systems St (1), Ciw(r), andCiyq(r).

straight lines and spherocylinders, which can be used as Note that one can constructaconfiguratipn where the De-
models of fibrous filter§31] and liquid crystalg32]. aunay sphere touches more than four objects at the same

In this paper we work with the Voronds constructions (7% ) SEARE, JIS SR IEE R T g
only. For simplicity we will omit the lettelS in the names, 9 q : 9

keeping in mind that we measure the distance to the surfacr@tions are called degenerated. However, a small perturbation
of an object of the objects removes the degeneracy. The probability of

finding a degenerated configuration in noncrystalline pack-
ings is negligible. We assume in this paper that our systems
arenondegenerated

The systems of convex objedfge work with convex ob- The Voronoi regionof a given object is the volume of
jects because they possess an important property: the closestace closest to the object. The faces of the Voronoi region

Il. GENERAL GEOMETRICAL REMARKS
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. . . . . ) FIG. 4. Three-dimensional illustration of the Voronoi region in
FIG. _2. Thr_ee-dlmensmn_al illustration of the Voronoi region 5 system of spherocylinders. The central spherocylinder is light.
(Voronoi S region, see textin a system of equal spheres. The 1yq faces of the region are pieces of hyperbolic paraboléinighe
spheres are arranged in the bcc-crystalline structure. The Voron‘ﬂerpendicular neighborsand planesifor the parallel neighbojs

region is a polyhedron with 14 facesight faces with six edges and  The pytt ends of the Voronoi regions are open because of the small
six faces with four edggsThe central sphere for which the poly- iz of the system.

hedron is constructed is light. The closest eight neighbors, which

are located on the corners of the cube, are colored in dark. The nei‘ble of the navigation map of unoccupied space inside a sys-
six neighborgat the cubic facgsare colored in gray. tem in the general case

i , In 3D the Voronoi network is four valenced, i.e., every
are pieces of the Voronoi surfaces; the edges are segmentsgfe is the origin of four bonds. This is easy to understand.
the Voronoi channels; the vertices are the Voronoi sites. EVyqeed any site of the Voronoi network is defined by four
ery Voron_m region is a tlle_ of t_he Voronoi tessellation. Fig- objects, but four objects define four different triplets of these
ures 2—4 illustrate Voronoi regions for 3D systems of mMono-ypiacts. These four triplets open four and only four Voronoi
size and polydisperse spheres and for a system Qfpannelgbonds at this site. This result is general for any
spherocylinders. , , nondegeneratetsee abovesystem of convex objects.

The Voronoi networkThe Voronoi network is the set of There is also a serious difference between general and
edges(bond_s) and ver_t|ces(S|te9 of the Voronoi regionsn classical Voronoi networks. It is the problem of the simple
the Voronoi tessellation. The fact that the Voronoi network ., nectedness of the network in 3D. The Voronoi network is
lies “in the depth” of unoccupied space is valid for systems ,ne connected for systems of monosize spheres. However,
of monosize spheres as well as for systems of any convex,en for polydisperse spheres this is not true in general. For
objects. It follows directly from the definition of the Voronoi example, a few small spheres have their own part of the
region: if we leave a common edge of the Voronoi regi@s  y/oronoi network if they are located inside a very narrow gap
bond of the Voronoi r_1etwor)k we will be closer to t_he SUr-  petween two big spheres of the syst&2s,19. Fortunately,
face of one of the objects. In this respect a bond is a "fair-g, ¢y specific configurations are not typical for physical mod-
way betwe?n two sites: if a probe leaves th'sul'”e It cang|s. Ysually we can ignore this theoretical possibility of the

run around” on an object. The sites are locally “the deep- gisconnection of the Voronoi network. We did not meet it in
est” points between objects. The Voronoi network plays they ;; models of Apollonian balls ifi26]. For systems of non-
spherical objects the problem has not been studied yet. How-
ever, we have found that the Voronoi network is one con-
nected for rather homogeneous systems of straight lines or
cylinders.

lll. ALGORITHM

The distance functionLet d;(r) be a distance function
generated by théth object of the system. This function is
defined aghe minimal distancérom a given pointr in the
space to the surface of the object. The pqiit) on the
surface, which corresponds to the minimal distance, is called
a metric projection ofr on the object. There is only one
metric projection of a given point on a convex object.

A remarkable property of the distance function of a con-

FIG. 3. Three-dimensional illustration of the Voronoi region VEX object is its differentiability35,36. It means that we are
(Voronoi Sregion, see textin a system of spheres of different radii. able to calculate the first order derivativesdf) with re-

The centers of spheres are arranged as in the bce-crystalline strugPect to the coordinates at any point of space outside the
ture. The “color’ of the spheres is the same as in Fig. 2. Theobject. This seems obvious for smooth objects like spheres,
Voronoi region is a 14-faced body with eight three-edged faces antiut is true also for objects with sharp edges and vertides

six eight-edged faces. The faces and edges are curved. bricks or segments of straight linesThe Voronoi surfaces
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Voronoi site, and a tabl¢DD} for the connectivity of the

sites. For metric analysis of voids we must additionally keep

the radius of the Delaunay sphere at every &itdist {R;})

and the minimal value of radius of the Delaunay sphere
\ along every bonda list{R,}). These data give us full infor-
mation to use the Voronoi network as a navigation map: the
locations of all the “deepest” points, their connectivity, and
the values of the bottleneck radii. Beside that, during the
calculation we can store the step by step positions of the
center of the Delaunay sphere. We do it to draw a picture of
the Voronoi network.

The first stepA first Voronoi site should be obtained to
FIG. 5. Calculation of the Voronoi channel by the infinitesimal :‘;rt the work. The function¥’(r) is constructed with this
displacements of the Delaunay sphere. The thick line indicates the ’
exact position of the channel. Dashed lines indicate the desired
exactness of the calculation. The small arrow perpendicular to the ()=, [di(r)—dj(r)]z, (5)
channel indicates the correction of the calculation by the gradient <]
decay of the estimation functioi. . o )

wherei,j belong to the quartet of indices of the four objects,
and the Voronoi channels are also smofittis follows from  Which are the nearest ones to the paint o
the differentiability of the distance functianThis fact is The functionW(r) is equal to zero on the Voronoi site.
very important for us because it permits us to calculate d© find it, we put an initial point inside a system, then we
Voronoi channel by the method of infinitesimal displace-moVe it to look for a minimum of¥’(r) by the procedure of
ments along the channel. gradient decay37] changing the quartet of the nearest ob-

Calculation of the Voronoi channelLet us consider the Jects when it is necessary. The procedure stops whér)
equation of the Voronoi Channéj‘ajectory of the De|aunay < 8%. The coordinates of the first Voronoi site, the numbers

sphere centgrfor the triplet of objectdi,j,k}: of objectsi,j,k,l, and the value of the first interstitial sphere
radius open the listéD}, {DA}, and{R;}.
di(r)=d;(r)=dy(r). (1) The main stepNow we can calculate new Voronoi sites

_ and define Voronoi network bonds. Starting from a known
Let v be a small shift along the channel so that the point Voronoi site we look for an adjacent site on a given Voronoi

=r+v should satisfy the equations channel. Obviously, the adjacent site is the closest one to the
known site on the Voronoi channel. This idea to choose a
di(r+v)=dj(r+v)=dy(r+v). (20 new site is not new and is used for monodigg] as well as

for polydisperse sphere systefi®]. However, in the case

of spheres it was possible to calculate coordinates of Voronoi
o — o — ] sites analytically. For nonspherical objects it is impossible.

(Vdi - W[ =(Vd;- W) =(Vde V)]s © One can obtain them only numerically. We do it by moving

This allows us to find the direction of the displacement the Delaunay sphere along the Voronoi channel.

which is actually the tangent to the Voronoi channel at the SUPPOSe that the Delaunay sphere is placed on a known
pointr. So we make a small displacement along the vector t¢/0ronoi siteD; ; ., with coordinates , defined by the quar-
get a new point’. After that the procedure can be contin- €t Of objectsi,j,k,l. Let us obtain an adjacent site on the
ued. However, because of computer-based accuracy w¢eronoi channel of the triplefi,j,k}. Using Eq.(3) we de-
should control deviation of the trajectory from the Voronoi termine a displacement to calculate the Voronoi channel.
channel after every displacement. An estimation function\t the first step the correct sign of the displacement must be

Linearization of this system with respect to Ed) gives

®(r) is calculated for this purpose: chosen. In this case a new point=ry+v must have the
same triplet of the closest objedisj,k}. The absolute value
®=(di—dj)2+(di—dk)2+(dj—dk)z, (4)  of vis rather arbitrary and should be optimal. Then we cal-

culate new coefficients of the systei®) at the pointr; and

It takes its minimal valugb =0 on the Voronoi channel. If make a new shift’ to go along the Voronoi channel as was
®> 52, then the center of our Delaunay sphere is returned odiscussed above.
the Voronoi channel by the gradient decay procedure. The The moving along the Voronoi channel is stopped when
value § characterizes a desired exactness for calculation. Fighe Delaunay sphere encounters a fourth objeckt means
ure 5 illustrates our infinitesimal displacements along thethat the center of the Delaunay sphere has reached the vicin-
Voronoi channel. The coordinates of the center of the Deity of a new Voronoi siteD; ; . . The position of this site is
launay sphere moving between three objects are calculatqatecised by the gradient decay of the functibitr) for the
step by step in this procedure. quartet{i,j,k,m}. Then we should compare the new site with

Calculation of the Voronoi networK.o know the Voronoi  all sites which have already been added to the {Bfsand
network we should have the following sets of data: a{l3t  {DA}. If the site is new, it is added to the lists. The connec-
to keep the coordinates of the Voronoi sites, a{B#A} to  tivity between the old and the new sites is marked in the
record the numbers of the objedt$,k,l, which define each table{DD}. Two adjacent Voronoi sites define a segment on
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the Voronoi channel, which is a bond of the Voronoi net- 016l
work. It means that the tabiDD} keeps the information | @ Tl 025 ol ¥ @5<020
about the connectivity of the bonds of the Voronoi network. _ [ LA
The bottleneck radius of the bond is recorded in the{Rg. " I S
A new site defines three new Voronoi chann€gy ,, 2% g I
Cijm, andC;  , which should be tested for new adjacent gom |;-5:0.08[
sites. 0.06 006

When all Voronoi channels of a starting site are traced out oot
to define bonds, we go to the next site which still has un- oo oo
traced channels. This procedure continues to obtain all site: ~ ' [
and bonds of the Voronoi network. The algorithm stops % o o2 0z o4 05 Y1 02 3 o4 s
when the last site is recorded, and no one Voronoi channel i Radius Radius
still open to obtain a bond. 06 016l

These basic steps of the algorithm are general for system il © - 026 o @ Y
of any convex objects. The peculiarities of the shape of ob- ~ | ' D=
jects are hidden in the distance functidsr). It means that % M 01z _
the main computer code is the same for all convex objects§ ! 5o
Only the subroutine for calculation of the distance function gos 008
and some parameters need to be changed for applying th*,, Lo
algorithm to a system of new objects. o4 o0t

0.02] 0.02]
IV. A TEST OF THE ALGORITHM ON PACKINGS

001 02

03 04 05 0 o1 02
OF SPHERES Radius

03 04 05

Radius

To test the algorithm we have calculated the Voronoi net- FIG. 6. Distribution of radii of the interstitial spheréthe radii
work of systems of monosize and polydisperse spheres. Twef the Delaunay empty spheres at the Voronoi $itesand of radii
disordered packings of 2000 hard spheres in a model boaf bottlenecks(the minimal values of the Delaunay sphere radius
with periodic boundary conditions were generated by thealong the Voronoi bondsry,. Top array: distribution of; (a), and
Monte Carlo relaxation. Packing fraction for both modelsdistribution ofry, (b), for the model of 2000 monosize hard spheres.
was 7=0.54. The first packing consists of uniform spheresBottom array: distribution of; (c), and distribution ofry, (d), for
of a unit diameter. For the second packing, the values of th&e model of 2000 polydisperse hard spheres.
diameter have a Gaussian distribution with an average value
equal to unit and a dispersion of 0.08. The distance function, V. A SYSTEM OF RANDOM LINES

ted by th h f dRis i
generated by the sphere of a radRig is The infinite straight lines are the simplest nonspherical

convex objects. We generated a system of 915 random lines
dr)=[r—r|-R;, (6)  crossing a box of unit volume, using uniform distribution for
their location and orientatiofFig. 7).
A straight line can be represented parametrically &9

wherer; is the position of the center of the sphere. _ -
We have compared our algorithm with the classical algo-— &+ Nt, wherea andn are 3D vectors so thdh|=1, and

rithms for spheres in which the Voronoi sites are calculated'- & The distance function generated by a line in this nota-
directly without tracing the bonds. The algorithm for uniform ton 1S
spheres was applied intensively in our previous researches,
see, e.9.[7,8]. The algorithm for polydisperse packing was
developed and applied a few years ago to the Apollonian
problem[26]. A Pentium-100 MHz computer was used to
compare the algorithms. Our numerical algorithm takes
about 67 minutes to calculate the Voronoi network for each
packing of spheres. The classical algorithms take approxi-
mately 3.2 minutes for this work. The obtained Voronoi net-
works are the same for the same packings. For the monosize /.
packing it contains 12695 sites, for the polydisperse one
12540 sites. The distributions of radii of the interstitial
spheresr; and the bottleneck radii, for our models are
shown in Fig. 6.

As we see, our numerical algorithm is approximately 20 \ R
times slower. This is due to the tracing of every Voronoi
bond, which is time consuming work. There is no reason to F|G. 7. lllustration of the 3D system of infinite random lines. A
apply this algorithm to systems of spheres. It should be useghodel of 915 lines crossing the box was creatsele text Only
only for nonspherical objects, when the analytical calculatiorsoo lines of this model are drawn to keep visibility of individual
of the Voronoi sites is impossible. lines. The edge length of the box is equal to 1.
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<ri>=0'034
<rb>=0.029

Fraction
N
o

0 002 004 006 008 01
Radius

FIG. 8. Distribution of the radii of interstitial spheres, solid
line, and of radii of bottlenecks,, dashed line, for the system of

915 random lines in the unit cubic box. Critical radijs=0.033. FIG. 10. Percolative cluster of pores in the system of 915 ran-

dom lines in the unit cubic box. A skeleton of the percolative clus-
ter of Voronoi bonds passable by a critical probe of radius 0.033 is
d(r)={r>+a?-2(r-a)—(r-n)*}*2 (7 shown. The ball inside the model box illustrates a probe of the
critical size. It can be moved along the bonds of the cluster.

Here we use free boundary conditions. The Voronoi
bonds which cross a face of the box are ended by false sitegach other. There is a critical vali®e=r{, when the pass-
at the face(These false sites and the bonds ended by therple pores join in a percolative cluster. For our system of
are not considered in the analysis belpWo calculate the |ines we have found the critical radius is 0.033. Itis the value
Voronoi network we take into account the lines inside theof the maximal size of a probe which can penetrate through
box as well as the lines in the vicinity of the bowhich are  the system. Figure 10 shows this percolative cluster on the

not drawn in the figure _ _ Voronoi network. The figure gives an impression about a
The total Voronoi network contains 31857 sitdsom  scale of the passable pores.

which 4551 are falge The distributions of,, andr; values
for our ensemble of random lines are shown in Fig. 8. The

value ofr; characterizes a size of voids in the system. It is a VI. MOLECULAR DYNAMICS MODEL

measure of a spherical probe which can be placed between OF LIQUID CRYSTAL

objects. The value of, corresponds to a bottleneck radius . .

on the way between two neighboring Voronoi sites. As an example of a physical system of nonspherical par-

Having the Voronoi network and the bottleneck radii, onelicles we use a molec_ular dynamics model of a Ii_quid crystal
can make a percolation analysis of empty space in a systefrusH2sN in the isotropic phase. The model box with 50 mol-
as it was made for systems of spheres, see, [d3,19. By  €cules af=330 Kis shown in Fig. 1139]. We have rep-
coloring the Voronoi bonds with,=R one can visualize the "esénted the molecules of the liquid crystal by spherocylin-
pores which are passable for a probe of the ra®ughe  ders(cylinders with hemispheres at the ehdEhe length of
passable pores for a large valueR#appear as isolated clus- €very spherocylinder isL=1.3 nm and the radiusp
ters. Figure 9 shows such clusters R+ 0.05 (in units of ~=0.2 nm. The spherocylinders may slightly overlap each
model box length As we take a smaller value @® the Other, because they do not take into account a flexibility of

clusters of the accessible pores become larger and connéEﬁ molecules. However, it is not essential here for our algo-
rithm.

A
) ‘.v<,“
— =

I4

a
~
€
P

FIG. 9. Voronoi bonds with bottleneck radii,=0.05 of the
system of 915 random lines in the unit cubic box. Only the skel- FIG. 11. Model of the isotropic phase of a liquid crystalTat
etons of the clusters are shown. Only these clusters are accessible+330 K obtained by molecular dynamics meth®@® molecules of
a probe of radius 0.05. C,gH25N). The molecules are represented by spherocylinders.
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0.2r .
a) — <ri>=0.23 nm
0.15f ]
c |
S
8 0.1
i
0.051
G0 0.1 0.2 0.3 0.4 0.5 O:G
Radius (nm)
0.2r
FIG. 12. The total Voronoi network of the model of a liquid b — <r,>=0.19 nm
crystal (Fig. 11). The network contains 401 sites and 802 bonds. 0-15r I
Periodic boundary conditions are used. 5
'g 0.1}
L
Let us denote , andr g the centers of the hemispheres.
The distance function generated by a spherocylinder is 0.05f
[r—r,]—p, if t<O0 o .
) 0 0.1 0.2 0.3, 0.4 0.5 0.6
d(r)=9 [r—ro,—nt|—p, if O<ts<t, (8) Radius (nm)
Ir=rg—p, if t>tq, FIG. 13. Distribution of the radii of interstitial spheres (a),

and of the bottlenecks,, (b), for the model of a liquid crystal of

where n=(rz—r,)/|rg—r,[, t=(r-n)—(r,-n), and t;  Fig. 11.
=|rg—r,|. The Voronoi surface§(r) of a pair of sphero-
cylinders with a general orientation consist of pieces of dif-
ferent second order surfacd®: hyperbolic paraboloidébe-  role of “a navigation map” of the system. It allows us to
tween two cylindric parts of the spherocylinder§j) study the void distribution in the system. The algorithm for
hyperbolic cylindergbetween cylinder and hemisphgrgii)  the calculation of the Voronoi network for packings of par-
planes(between two hemisphenesSo the Voronoi bonds ticles of arbitrary convex shapes is developed and applied to
may consist of different types of spatial curves because ofhe analysis of 3D systems of random straight lines and of a
intersection of different types of the Voronoi surfaces. How-molecular dynamics model of liquid crystal. Distributions of
ever, as was discussed above, the Voronoi channels abttleneck radii and interstitial sphere radii are calculated.
smooth. Different curves turn into each other without anyThis work expands the traditional Voronoi-Delaunay analy-
break. This nature of the Voronoi bonds was discussed bgis known for simple liquids and glasses to complex systems
Lee and Drysdal¢40] for a system of straight segments in like fibrous filters and liquid crystals.
2D. Although we have developed our algorithm for systems of

The total Voronoi network of the system is shown in Fig. convex objects, it can be adapted in some cases to systems of
12. Periodic boundary conditions are used for this modelnonconvex particles. If nonconvex particles can be formally
Voronoi bonds, which are going out from one side of thedivided in convex parts, then these parts can be considered as
model box, are connected with the sites at the opposite sidadependent convex objects.
of the box. Distributions of; andr,, radii of the model are

shown in Fig. 13. However, we used only one configuration ACKNOWLEDGMENTS
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