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Voronoi-Delaunay analysis of voids in systems of nonspherical particles

V. A. Luchnikov,1,* N. N. Medvedev,1,† L. Oger,2,‡ and J.-P. Troadec2,§
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The Voronoi network is known to be a useful tool for the structural description of voids in the packings of
spheres produced by computer simulations. In this article we extend the Voronoi-Delaunay analysis to pack-
ings of nonspherical convex objects. Main properties of the Voronoi network, which are known for systems of
spheres, are valid for systems of any convex objects. A general numerical algorithm for calculation of the
Voronoi network in three dimensions is proposed. It is based on the calculation of the trajectory of the
imaginary empty sphere of variable size, moving inside a system~the Delaunay empty sphere method!.
Analysis of voids is presented for an ensemble of random straight lines and for a molecular dynamics model
of liquid crystal. The spatial distribution of voids and a simple percolation analysis are obtained. The distri-
butions of the bottleneck radii and the radii of spheres inscribed in the voids are calculated.
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I. INTRODUCTION

The structure of voids is an important factor in ma
problems of physical chemistry, catalysis, and material
ence. It governs the permeability, fluid flow, and diffusion
admixtures in porous and granular media@1,2#. The voids in
atomic systems~liquids and glasses! are related directly to
solubility and other thermodynamic properties@3#. Computer
simulation is a productive way to investigate these phys
phenomena. However, it needs an adequate descriptio
the empty space inside a model.

The known Voronoi-Delaunay approach@4# used success
fully to study the structure of noncrystalline systems@5–10#
is proved to be very helpful also to study the structure
voids. In this way main results have been obtained for pa
ings of monosize spheres, which are the simplest models
granular materials, as well as for monoatomic liquids a
glasses.

The basic construction to study unoccupied volume ins
a packing of monosize atoms is the network of edges
vertices of the mosaic of the Voronoi polyhedra@Fig. 1~a!#.
The Voronoi network lies in ‘‘the depth’’ between the atom
@11# and plays the role of ‘‘a navigation map’’@12# of the
system. This property of the Voronoi network has been
plied to different problems. The permeability and fluid flo
through packings of equal spheres are studied by Bryant
co-workers@13,14# and Thompson and Fogler@15#. An ap-
proach for modeling of the mercury porosimetry phenome
was proposed by Voloshinet al. @16#. Diffusion of a small
ball under gravity was simulated as a Monte Carlo walk
the Voronoi network by Richardet al. @17#. An unexpected
application of the Voronoi-Delaunay technique was made
Bieshaaret al. @18# for acceleration of the particle insertio

*Electronic address: luchnik@ns.kinetics.nsc.ru
†Electronic address: nikmed@ns.kinetics.nsc.ru
‡Electronic address: oger@univ-rennes1.fr
§Electronic address: troadec@univ-rennes1.fr
PRE 591063-651X/99/59~6!/7205~8!/$15.00
i-
f

l
of

f
k-
or
d

e
d

-

nd

a

n

y

method for chemical potential calculation for dense liquid
The Voronoi network as a tool for ‘‘a computational por
simetry’’ was discussed recently by Medvedev@19#.

An application of the Voronoi-Delaunay approach for
broader class of particles seems to be interesting. Howe
as was remarked many times, the classical Voron
Delaunay constructions cannot be used in the general
@11,13,20,21#. Originally the Voronoi-Delaunay tessellatio
is defined for a system of points~centers of objects! and it
does not take into account the size and the shape of obj
This is the reason the known ideology and algorithms w
not applied for more complex particles. They can be used
systems of monosize spheres only.

Recently the problem has been solved for spheres of
ferent radii@12,19,22#. Such systems are used as models
polydisperse powders, polyatomic materials, and allo
@23,24#. To take into account the surface of the particles, o
should introduce actually a new geometrical constructi
instead of the classical Voronoi polyhedron, defined fo
center of sphere, one should define another volume of sp
all points of which are closer to thesurfaceof a given sphere
than to thesurfacesof the other spheres of the systems. Th
region was called theVoronoi S region@12#. It is analogous
to the usual Voronoi polyhedra, but their faces and edges
curved @Fig. 1~b!#. The Voronoi S regions generatethe
Voronoi S tessellation. The set of vertices and edges defin
the Voronoi S networkof the system of polydisperse sphere
A special algorithm had been created to calculate theS con-
structions @25#. An application of this technique to stud
three-dimensional~3D! Apollonian packings was made i
@26#. An analysis of different polydisperse sphere packin
was given in@12,27#.

Note that there are a lot of generalizations of the Voro
tessellation in mathematical sciences~mainly in 2D! @28#.
Here for physical applications we use a ‘‘physical’’ one.
the terminology of the book@28# the ‘‘assignment rule’’ for
a definition of theS tessellation is a condition on the close
distance from a point of space to the surface of the object
two-dimensional illustration of such a tessellation for no
7205 ©1999 The American Physical Society
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7206 PRE 59LUCHNIKOV, MEDVEDEV, OGER, AND TROADEC
spherical objects can be seen in Fig. 1~c!. S tessellations in
3D have some interesting geometrical properties. The m
ematical aspect of theS tessellations should be studied
more detail, however, it is outside the scope of this pap
The concept of a navigation map is close to the idea of ‘‘m
dial axes,’’ which is used to describe the structure of a cav
inside a continuous medium, or, the structure of an in
vidual domain with a given shape@29,30#. As was remarked
by Choi et al. @30#, the medial axis is a ‘‘continuous ver
sion’’ of the Voronoi network.

In this paper we apply the Voronoi-Delaunay idea to s
tems of particles~objects! of nonspherical convex shapes.
opens a way to use a rigorous geometrical technique
studying the structure of systems of a wide class of n
spherical particles. Here we restrict ourselves to system
straight lines and spherocylinders, which can be used
models of fibrous filters@31# and liquid crystals@32#.

In this paper we work with the VoronoiS constructions
only. For simplicity we will omit the letterS in the names,
keeping in mind that we measure the distance to the sur
of an object.

II. GENERAL GEOMETRICAL REMARKS

The systems of convex objects. We work with convex ob-
jects because they possess an important property: the cl

FIG. 1. Two-dimensional illustration of the Voronoi tessellatio
for systems of monosize spheres~a!, polydisperse spheres~b!, and
spherocylinders~c!. The Voronoi region of the central object i
selected by thick lines. For the system of monosize spheres
Voronoi region is a polygon with straight edges. For the polyd
perse spheres and for the spherocylinders, the edges are curved
edges of all the Voronoi regions define the Voronoi network of
system. The Voronoi network lies ‘‘in the depth’’ between obje
and plays the role of the navigation map of void space. Every sit
the network is characterized by the value of the radiusr i of the
inscribed~interstitial! sphere, see large open circles. Every bond
the Voronoi network is characterized by the value of its bottlen
radiusr b , see small open circles.
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distance from any point of space to the surface of a con
object is single valued. This condition is sufficient to be su
that the Voronoi tessellation exists for any system of conv
objects. Indeed, if the closest distance from a point to
object is single valued, following Delaunay@33# one can say
that any point of unoccupied space can be~i! closer to one
object ~in this case it is inside the Voronoi region of th
object!, ~ii ! at the same distance from several objects~in this
case the point lies on the common border of the Voro
regions of these objects!. This statement means that th
Voronoi regions cover all the space without gaps. This c
ering is also without overlapping of the Voronoi regions b
cause any point of space cannot be ‘‘closer to several
jects’’ in the same time. Actually this simple reasonin
proves the existence of the Voronoi tessellation for any c
vex objects.

Some definitions and notations.It is convenient to use an
imaginary empty sphere of variable size~the Delaunay
empty sphereor simply the Delaunay sphere!, which had
been proposed by Delaunay in@34#. This sphere can move
and change its radius while touching the surfaces of
neighboring objects. However, it is always empty, i.e., poi
of the objects cannot be inside the Delaunay sphere.

Let us consider two objects,i and j. The geometric locus
of points which are at the same distance from the two obje
is a two-dimensional surfaceFi j (r ), calledthe Voronoi sur-
face. The center of the Delaunay sphere touching the t
objects lies on this surface.Fi j (r ) is a plane if our objects are
monosize spheres. For spheres of different radii it is a hyp
boloid ~the Voronoi hyperboloid@12,19#!. For straight lines
one can show that it is a hyperbolic paraboloid.

The geometric locus of points which are at the same d
tance from three objects is a one-dimensional lineCi jk(r )
calledthe Voronoi channel. This channel is a straight line fo
equal spheres. In the general case the Voronoi channel
curved line. The Voronoi channel is the intersection of t
Voronoi surfaces:Fi j (r ), Fik(r ), andF jk(r ) @25#. The center
of the Delaunay sphere moves along the Voronoi chan
when the sphere keeps contacts with the three objects.

If the Delaunay sphere touches four objectsi , j ,k,l , it can-
not be moved any more. This is a result of elementary
ometry and the convexity of the objects: four points on
sphere define the sphere uniquely, but every convex ob
defines one and only one point on the Delaunay sphere.
centerDi jkl of this Delaunay sphere is equidistant from t
four objects. We call ita Voronoi site. For monosize sphere
it is known as the circumcenter ofthe Delaunay simplex.
This point ends the moving of the Delaunay sphere along
Voronoi channelCi jk(r ) and opens three new channe
Ci jl (r ), Cikl(r ), andCjkl(r ).

Note that one can construct a configuration where the
launay sphere touches more than four objects at the s
time. For example, the sphere inside the perfect octahe
configuration of equal balls touches six balls. Such confi
rations are called degenerated. However, a small perturba
of the objects removes the degeneracy. The probability
finding a degenerated configuration in noncrystalline pa
ings is negligible. We assume in this paper that our syste
arenondegenerated.

The Voronoi regionof a given object is the volume o
space closest to the object. The faces of the Voronoi reg
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are pieces of the Voronoi surfaces; the edges are segmen
the Voronoi channels; the vertices are the Voronoi sites.
ery Voronoi region is a tile of the Voronoi tessellation. Fi
ures 2–4 illustrate Voronoi regions for 3D systems of mon
size and polydisperse spheres and for a system
spherocylinders.

The Voronoi network. The Voronoi network is the set o
edges~bonds! and vertices~sites! of the Voronoi regionsin
the Voronoi tessellation. The fact that the Voronoi netwo
lies ‘‘in the depth’’ of unoccupied space is valid for system
of monosize spheres as well as for systems of any con
objects. It follows directly from the definition of the Vorono
region: if we leave a common edge of the Voronoi regions~a
bond of the Voronoi network!, we will be closer to the sur-
face of one of the objects. In this respect a bond is a ‘‘fa
way’’ between two sites: if a probe leaves this line it c
‘‘run around’’ on an object. The sites are locally ‘‘the dee
est’’ points between objects. The Voronoi network plays

FIG. 2. Three-dimensional illustration of the Voronoi regio
~Voronoi S region, see text! in a system of equal spheres. Th
spheres are arranged in the bcc-crystalline structure. The Vor
region is a polyhedron with 14 faces~eight faces with six edges an
six faces with four edges!. The central sphere for which the poly
hedron is constructed is light. The closest eight neighbors, wh
are located on the corners of the cube, are colored in dark. The
six neighbors~at the cubic faces! are colored in gray.

FIG. 3. Three-dimensional illustration of the Voronoi regio
~Voronoi Sregion, see text! in a system of spheres of different rad
The centers of spheres are arranged as in the bcc-crystalline s
ture. The ‘‘color’’ of the spheres is the same as in Fig. 2. T
Voronoi region is a 14-faced body with eight three-edged faces
six eight-edged faces. The faces and edges are curved.
of
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role of the navigation map of unoccupied space inside a s
tem in the general case.

In 3D the Voronoi network is four valenced, i.e., eve
site is the origin of four bonds. This is easy to understa
Indeed, any site of the Voronoi network is defined by fo
objects, but four objects define four different triplets of the
objects. These four triplets open four and only four Voron
channels~bonds! at this site. This result is general for an
nondegenerated~see above! system of convex objects.

There is also a serious difference between general
classical Voronoi networks. It is the problem of the simp
connectedness of the network in 3D. The Voronoi network
one connected for systems of monosize spheres. Howe
even for polydisperse spheres this is not true in general.
example, a few small spheres have their own part of
Voronoi network if they are located inside a very narrow g
between two big spheres of the system@25,19#. Fortunately,
such specific configurations are not typical for physical mo
els. Usually we can ignore this theoretical possibility of t
disconnection of the Voronoi network. We did not meet it
our models of Apollonian balls in@26#. For systems of non-
spherical objects the problem has not been studied yet. H
ever, we have found that the Voronoi network is one co
nected for rather homogeneous systems of straight line
cylinders.

III. ALGORITHM

The distance function. Let di(r ) be a distance function
generated by thei th object of the system. This function i
defined asthe minimal distancefrom a given pointr in the
space to the surface of the object. The pointp„r ) on the
surface, which corresponds to the minimal distance, is ca
a metric projection ofr on the object. There is only on
metric projection of a given pointr on a convex object.

A remarkable property of the distance function of a co
vex object is its differentiability@35,36#. It means that we are
able to calculate the first order derivatives ofd(r ) with re-
spect to the coordinates at any point of space outside
object. This seems obvious for smooth objects like sphe
but is true also for objects with sharp edges and vertices~like
bricks or segments of straight lines!. The Voronoi surfaces

oi

h
xt

uc-

d

FIG. 4. Three-dimensional illustration of the Voronoi region
a system of spherocylinders. The central spherocylinder is li
The faces of the region are pieces of hyperbolic paraboloids~for the
perpendicular neighbors! and planes~for the parallel neighbors!.
The butt ends of the Voronoi regions are open because of the s
size of the system.
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and the Voronoi channels are also smooth~this follows from
the differentiability of the distance function!. This fact is
very important for us because it permits us to calculat
Voronoi channel by the method of infinitesimal displac
ments along the channel.

Calculation of the Voronoi channel. Let us consider the
equation of the Voronoi channel~trajectory of the Delaunay
sphere center! for the triplet of objects$ i , j ,k%:

di~r !5dj~r !5dk~r !. ~1!

Let v be a small shift along the channel so that the pointr 8
5r1v should satisfy the equations

di~r1v!5dj~r1v!5dk~r1v!. ~2!

Linearization of this system with respect to Eq.~1! gives

~“di•v!ur5~“dj•v!ur5~“dk•v!ur . ~3!

This allows us to find the direction of the displacementv,
which is actually the tangent to the Voronoi channel at
point r . So we make a small displacement along the vecto
get a new pointr 8. After that the procedure can be conti
ued. However, because of computer-based accuracy
should control deviation of the trajectory from the Voron
channel after every displacement. An estimation funct
F(r ) is calculated for this purpose:

F5~di2dj !
21~di2dk!

21~dj2dk!
2. ~4!

It takes its minimal valueF50 on the Voronoi channel. If
F.d2, then the center of our Delaunay sphere is returned
the Voronoi channel by the gradient decay procedure.
valued characterizes a desired exactness for calculation.
ure 5 illustrates our infinitesimal displacements along
Voronoi channel. The coordinates of the center of the D
launay sphere moving between three objects are calcul
step by step in this procedure.

Calculation of the Voronoi network.To know the Voronoi
network we should have the following sets of data: a list$D%
to keep the coordinates of the Voronoi sites, a list$DA% to
record the numbers of the objectsi , j ,k,l , which define each

FIG. 5. Calculation of the Voronoi channel by the infinitesim
displacementsv of the Delaunay sphere. The thick line indicates t
exact position of the channel. Dashed lines indicate the des
exactness of the calculation. The small arrow perpendicular to
channel indicates the correction of the calculation by the grad
decay of the estimation functionF.
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Voronoi site, and a table$DD% for the connectivity of the
sites. For metric analysis of voids we must additionally ke
the radius of the Delaunay sphere at every site~a list $Ri%)
and the minimal value of radius of the Delaunay sph
along every bond~a list $Rb%). These data give us full infor-
mation to use the Voronoi network as a navigation map:
locations of all the ‘‘deepest’’ points, their connectivity, an
the values of the bottleneck radii. Beside that, during
calculation we can store the step by step positions of
center of the Delaunay sphere. We do it to draw a picture
the Voronoi network.

The first step. A first Voronoi site should be obtained t
start the work. The functionC(r ) is constructed with this
aim:

C~r !5(
i , j

@di~r !2dj~r !#2, ~5!

wherei , j belong to the quartet of indices of the four objec
which are the nearest ones to the pointr .

The functionC(r ) is equal to zero on the Voronoi site
To find it, we put an initial pointr inside a system, then we
move it to look for a minimum ofC(r ) by the procedure of
gradient decay@37# changing the quartet of the nearest o
jects when it is necessary. The procedure stops whenC(r )
,d2. The coordinates of the first Voronoi site, the numbe
of objectsi , j ,k,l , and the value of the first interstitial sphe
radius open the lists$D%, $DA%, and$Ri%.

The main step. Now we can calculate new Voronoi site
and define Voronoi network bonds. Starting from a know
Voronoi site we look for an adjacent site on a given Voron
channel. Obviously, the adjacent site is the closest one to
known site on the Voronoi channel. This idea to choos
new site is not new and is used for monosize@38# as well as
for polydisperse sphere systems@19#. However, in the case
of spheres it was possible to calculate coordinates of Voro
sites analytically. For nonspherical objects it is impossib
One can obtain them only numerically. We do it by movin
the Delaunay sphere along the Voronoi channel.

Suppose that the Delaunay sphere is placed on a kn
Voronoi siteDi , j ,k,l with coordinatesr0 defined by the quar-
tet of objectsi , j ,k,l . Let us obtain an adjacent site on th
Voronoi channel of the triplet$ i , j ,k%. Using Eq.~3! we de-
termine a displacementv to calculate the Voronoi channe
At the first step the correct sign of the displacement must
chosen. In this case a new pointr15r01v must have the
same triplet of the closest objects$ i , j ,k%. The absolute value
of v is rather arbitrary and should be optimal. Then we c
culate new coefficients of the system~3! at the pointr1 and
make a new shiftv8 to go along the Voronoi channel as wa
discussed above.

The moving along the Voronoi channel is stopped wh
the Delaunay sphere encounters a fourth objectm. It means
that the center of the Delaunay sphere has reached the v
ity of a new Voronoi siteDi , j ,k,m . The position of this site is
precised by the gradient decay of the functionC(r ) for the
quartet$ i , j ,k,m%. Then we should compare the new site wi
all sites which have already been added to the lists$D% and
$DA%. If the site is new, it is added to the lists. The conne
tivity between the old and the new sites is marked in
table$DD%. Two adjacent Voronoi sites define a segment
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the Voronoi channel, which is a bond of the Voronoi ne
work. It means that the table$DD% keeps the information
about the connectivity of the bonds of the Voronoi netwo
The bottleneck radius of the bond is recorded in the list$Rb%.
A new site defines three new Voronoi channelsCj ,k,m ,
Ci , j ,m , andCi ,k,m , which should be tested for new adjace
sites.

When all Voronoi channels of a starting site are traced
to define bonds, we go to the next site which still has u
traced channels. This procedure continues to obtain all s
and bonds of the Voronoi network. The algorithm sto
when the last site is recorded, and no one Voronoi chann
still open to obtain a bond.

These basic steps of the algorithm are general for syst
of any convex objects. The peculiarities of the shape of
jects are hidden in the distance functiondi(r ). It means that
the main computer code is the same for all convex obje
Only the subroutine for calculation of the distance functi
and some parameters need to be changed for applying
algorithm to a system of new objects.

IV. A TEST OF THE ALGORITHM ON PACKINGS
OF SPHERES

To test the algorithm we have calculated the Voronoi n
work of systems of monosize and polydisperse spheres.
disordered packings of 2000 hard spheres in a model
with periodic boundary conditions were generated by
Monte Carlo relaxation. Packing fraction for both mode
was h50.54. The first packing consists of uniform spher
of a unit diameter. For the second packing, the values of
diameter have a Gaussian distribution with an average v
equal to unit and a dispersion of 0.08. The distance funct
generated by the sphere of a radiusRi , is

d~r !5ur2r i u2Ri , ~6!

wherer i is the position of the center of the sphere.
We have compared our algorithm with the classical al

rithms for spheres in which the Voronoi sites are calcula
directly without tracing the bonds. The algorithm for unifor
spheres was applied intensively in our previous researc
see, e.g.,@7,8#. The algorithm for polydisperse packing wa
developed and applied a few years ago to the Apollon
problem @26#. A Pentium-100 MHz computer was used
compare the algorithms. Our numerical algorithm tak
about 67 minutes to calculate the Voronoi network for ea
packing of spheres. The classical algorithms take appr
mately 3.2 minutes for this work. The obtained Voronoi n
works are the same for the same packings. For the mono
packing it contains 12 695 sites, for the polydisperse o
12 540 sites. The distributions of radii of the interstiti
spheresr i and the bottleneck radiir b for our models are
shown in Fig. 6.

As we see, our numerical algorithm is approximately
times slower. This is due to the tracing of every Voron
bond, which is time consuming work. There is no reason
apply this algorithm to systems of spheres. It should be u
only for nonspherical objects, when the analytical calculat
of the Voronoi sites is impossible.
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V. A SYSTEM OF RANDOM LINES

The infinite straight lines are the simplest nonspheri
convex objects. We generated a system of 915 random l
crossing a box of unit volume, using uniform distribution f
their location and orientation~Fig. 7!.

A straight line can be represented parametrically asL (t)
5a1nt, wherea and n are 3D vectors so thatunu51, and
n'a. The distance function generated by a line in this no
tion is

FIG. 6. Distribution of radii of the interstitial spheres~the radii
of the Delaunay empty spheres at the Voronoi sites! r i , and of radii
of bottlenecks~the minimal values of the Delaunay sphere rad
along the Voronoi bonds!, r b . Top array: distribution ofr i ~a!, and
distribution ofr b ~b!, for the model of 2000 monosize hard sphere
Bottom array: distribution ofr i ~c!, and distribution ofr b ~d!, for
the model of 2000 polydisperse hard spheres.

FIG. 7. Illustration of the 3D system of infinite random lines.
model of 915 lines crossing the box was created~see text!. Only
300 lines of this model are drawn to keep visibility of individu
lines. The edge length of the box is equal to 1.
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d~r !5$r21a222~r•a!2~r•n!2%1/2. ~7!

Here we use free boundary conditions. The Voron
bonds which cross a face of the box are ended by false
at the face.~These false sites and the bonds ended by th
are not considered in the analysis below.! To calculate the
Voronoi network we take into account the lines inside t
box as well as the lines in the vicinity of the box~which are
not drawn in the figure!.

The total Voronoi network contains 31 857 sites~from
which 4551 are false!. The distributions ofr b and r i values
for our ensemble of random lines are shown in Fig. 8. T
value ofr i characterizes a size of voids in the system. It i
measure of a spherical probe which can be placed betw
objects. The value ofr b corresponds to a bottleneck radiu
on the way between two neighboring Voronoi sites.

Having the Voronoi network and the bottleneck radii, o
can make a percolation analysis of empty space in a sys
as it was made for systems of spheres, see, e.g.,@11,19#. By
coloring the Voronoi bonds withr b>R one can visualize the
pores which are passable for a probe of the radiusR. The
passable pores for a large value ofR appear as isolated clus
ters. Figure 9 shows such clusters forR50.05 ~in units of
model box length!. As we take a smaller value ofR, the
clusters of the accessible pores become larger and con

FIG. 8. Distribution of the radii of interstitial spheresr i , solid
line, and of radii of bottlenecksr b , dashed line, for the system o
915 random lines in the unit cubic box. Critical radiusr b

c50.033.

FIG. 9. Voronoi bonds with bottleneck radiir b>0.05 of the
system of 915 random lines in the unit cubic box. Only the sk
etons of the clusters are shown. Only these clusters are accessi
a probe of radius 0.05.
i
es
m

e
a
en

m

ect

each other. There is a critical valueR5r b
c , when the pass-

able pores join in a percolative cluster. For our system
lines we have found the critical radius is 0.033. It is the va
of the maximal size of a probe which can penetrate throu
the system. Figure 10 shows this percolative cluster on
Voronoi network. The figure gives an impression abou
scale of the passable pores.

VI. MOLECULAR DYNAMICS MODEL
OF LIQUID CRYSTAL

As an example of a physical system of nonspherical p
ticles we use a molecular dynamics model of a liquid crys
C18H25N in the isotropic phase. The model box with 50 mo
ecules atT5330 K is shown in Fig. 11@39#. We have rep-
resented the molecules of the liquid crystal by spherocy
ders~cylinders with hemispheres at the ends!. The length of
every spherocylinder isL51.3 nm and the radiusr
50.2 nm. The spherocylinders may slightly overlap ea
other, because they do not take into account a flexibility
the molecules. However, it is not essential here for our al
rithm.

-
e to

FIG. 10. Percolative cluster of pores in the system of 915 r
dom lines in the unit cubic box. A skeleton of the percolative clu
ter of Voronoi bonds passable by a critical probe of radius 0.03
shown. The ball inside the model box illustrates a probe of
critical size. It can be moved along the bonds of the cluster.

FIG. 11. Model of the isotropic phase of a liquid crystal atT
5330 K obtained by molecular dynamics method~50 molecules of
C18H25N). The molecules are represented by spherocylinders.
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Let us denotera and rb the centers of the hemisphere
The distance function generated by a spherocylinder is

d~r !5H ur2rau2r, if t,0

ur2ra2ntu2r, if 0<t<t1

ur2rbu2r, if t.t1 ,

~8!

where n5(rb2ra)/urb2rau, t5(r•n)2(ra•n), and t1
5urb2rau. The Voronoi surfacesF(r ) of a pair of sphero-
cylinders with a general orientation consist of pieces of d
ferent second order surfaces:~i! hyperbolic paraboloids~be-
tween two cylindric parts of the spherocylinders,~ii !
hyperbolic cylinders~between cylinder and hemisphere!, ~iii !
planes~between two hemispheres!. So the Voronoi bonds
may consist of different types of spatial curves because
intersection of different types of the Voronoi surfaces. Ho
ever, as was discussed above, the Voronoi channels
smooth. Different curves turn into each other without a
break. This nature of the Voronoi bonds was discussed
Lee and Drysdale@40# for a system of straight segments
2D.

The total Voronoi network of the system is shown in F
12. Periodic boundary conditions are used for this mod
Voronoi bonds, which are going out from one side of t
model box, are connected with the sites at the opposite
of the box. Distributions ofr i and r b radii of the model are
shown in Fig. 13. However, we used only one configurat
of the liquid crystal, and then the data presented are ra
preliminary.

VII. CONCLUSION

We suggest a generalization of the Voronoi-Delaun
method for the analysis of unoccupied space in system
nonspherical particles. The analysis is based on using
Voronoi network of a system. This network lies in the dep
of the unoccupied space between the particles and plays

FIG. 12. The total Voronoi network of the model of a liqu
crystal ~Fig. 11!. The network contains 401 sites and 802 bon
Periodic boundary conditions are used.
-

of
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.
l.

de

n
er

y
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role of ‘‘a navigation map’’ of the system. It allows us t
study the void distribution in the system. The algorithm f
the calculation of the Voronoi network for packings of pa
ticles of arbitrary convex shapes is developed and applie
the analysis of 3D systems of random straight lines and o
molecular dynamics model of liquid crystal. Distributions
bottleneck radii and interstitial sphere radii are calculat
This work expands the traditional Voronoi-Delaunay ana
sis known for simple liquids and glasses to complex syste
like fibrous filters and liquid crystals.

Although we have developed our algorithm for systems
convex objects, it can be adapted in some cases to system
nonconvex particles. If nonconvex particles can be forma
divided in convex parts, then these parts can be considere
independent convex objects.
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FIG. 13. Distribution of the radii of interstitial spheresr i ~a!,
and of the bottlenecksr b ~b!, for the model of a liquid crystal of
Fig. 11.
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