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Time-dependent equation for the intensity in the diffusion limit
using a higher-order angular expansion
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The first two terms in the spherical-harmonic expansion~the P1 approximation! of the radiative transfer
equation yield the diffusion equation. This approximation applies to multiple scattering and results in a solution
for the energy density, the gradient of which is proportional to the light intensity. In this work a higher-order
spherical-harmonic expansion of the radiative transfer equation is developed. This equation applies to the
radiant intensity rather than the energy density. The equation can be decomposed into two terms: a propagator
term obtained from the determinant of the coupled equations describing the individual components of the
intensity, and a mixing matrix that describes the cross coupling between different orders of the expansion.
Using the Fourier transform, an approximation based on expanding at small wave vectorsk leads to an
equation similar to the diffusion equation. The equation is expected to predict the intensity for multiple
scattering at earlier times and shorter distances than the diffusion equation can. The notion of an equivalent
wave field is introduced.@S1063-651X~99!08506-2#

PACS number~s!: 05.60.2k, 02.90.1p
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I. INTRODUCTION

The radiative transfer equation~RTE! and the diffusion
equation~DE! to which it reduces in the case of many sc
terings provide the basis for describing many physical p
nomena.~In this paper I consider the phenomenon of unp
larized light transport.! Analytical solutions of the RTE exis
only for restricted cases, and one usually has to resor
numerical methods. One difficulty of the problem is the
mensionality of the system. Besides the position vector
time, each point in space has an associated vector descr
the direction of propagation of light at that point. Thus, wh
the diffusion equation has three spatial dimensions and
of time, the RTE has two additional dimensions.

The problem is usually to investigate the angular distrib
tion using some limiting approximation. The most comm
approximations are the uniform intensity approximatio
leading to the diffusion equation, and the forward-backw
dominant scattering approximation, leading to the tw
stream model. The DE follows from the RTE under the
sumption that after a sufficiently large number of collisio
the intensity is almost isotropic and thus provides
asymptotic approximation applicable to later times. Lar
numbers of physical systems obey the DE independent o
details of the RTE. The diffusion approximation fails fo
intermediate scattering ranges@1# that are appropriate fo
many practical applications such as shallow medical im
ing, longer-range underwater imaging, and electron trans
in small semiconductor devices. Second-order correction
time to the DE appear occasionally in the literature@2–4#,
but the validity of these corrections has been debated for
past 20 years@5–9#. A leading reason for the confusion i
this matter is the lack of a general solution of the RTE.

II. THEORY

In this paper I derive an equation analogous to the DE
includes the angular distribution of the light intensity. Su
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an equation is expected to be valid at shorter distances
earlier times than the diffusion equation as it does not
sume times or distances sufficient to form a uniform intens
distribution. The outline of the derivation is as follows. Fir
the RTE is represented using the spherical-harmonic exp
sion ~SHE! for the angular intensity with coefficients that a
time and space dependent. The resulting representation
determinant of the coefficient matrix, is a higher-order d
ferential equation similar to the DE. An expansion of t
inverse matrix using the perturbation method is then use
determine the mixing of different orders of the source. Su
mation of terms eliminates the SHE, leading to a differen
equation of orderL independent of the intermediate SHE.

We start from the time-dependent radiative transfer eq
tion for the intensityI at timet, positionr, in the directionV,

F1

c

]

]t
1V•¹1s t~r!G I ~r,t,V!

2
ss~r!

4p E I ~r,t,V8!p~r,V•V8!dV85«~r,t,V!,

~1!

where ss and sa are the scattering and absorption coef
cients,s t5ss1sa , and p(r,V•V8) is the phase function
The first term on the left-hand side of Eq.~1! describes the
time evolution of attenuated ballistic photons, the seco
term is the scattering integral, and the term on the right-h
side is the source term.

The SHE has the form@10#

I l
m~r,t !5E I ~r,t,V!Yl

m* ~V!dV, ~2a!

I ~r,t,V!5(
l 50

`

(
m52 l

m5 l
2l 11

4p
I l

m~r,t !Yl
m~V!, ~2b!
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with

p~r,V•V8!5(
l 50

`
4p

2l 11
pl~r!Pl~V•V8!. ~3!

Pl(V•V8) is the Legendre polynomial of the cosine of th
angle betweenV andV8. In this work, in order to apply the
Laplace transform, we will assume that the phase func
and the scattering and absorption coefficients are taken t
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nonlocal, or independent ofr. Using the addition theorem fo
spherical harmonics we get

p~V•V8!5(
l 50

`

(
m52 l

m5 l

plYl
m~V!Yl

m* ~V8!. ~4!

Using the identityV5(sinu cosf,sinu sinf,cosu), we ob-
tain from Eq. ~1! the equivalent set of coupled differentia
equations@11#
F1

c

]

]t
1s t2sspl G I l

m~r,t !1
1

2l 11 HA~ l 2m11!~ l 1m11!
]

]z
I l 11

m ~r,t !1A~ l 2m!~ l 1m!
]

]z
I l 21

m ~r,t !

2
1

2
A~ l 1m21!~ l 1m!F ]

]x
2 i

]

]yG I l 21
m21~r,t !1

1

2
A~ l 2m11!~ l 2m12!F ]

]x
2 i

]

]yG I l 11
m21~r,t !1

1

2
A~ l 2m21!~ l 2m!

3F ]

]x
1 i

]

]yG I l 21
m11~r,t !2

1

2
A~ l 1m11!~ l 1m12!F ]

]x
1 i

]

]yG I l 11
m11~r,t !J 5« l

m~r,t !. ~5!
of
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t
d

a
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The spherical harmonics are eigenvalues of all the terms
cept the propagation term, which couples adjacentl ’s and
m’s. Recognizing this, we expect that any approximat
based on spherical harmonics will be a good approxima
for scattering-dominated propagation, but will perfor
poorly in the ballistic regime. This conclusion is consiste
with the inefficacy of the SHE in describing transport in t
case of a strongly peaked phase function.

Using matrix notation and applying the Fourier transfo
we write

D~s,st! Î ~s,st!5 «̂~s,st ,V!, ~6a!

wherest5 iv ands5(sx ,sy ,sz)5 i (kx ,ky ,kz), bold charac-
ters represent a vector or a matrix, and the caret repres
the Fourier~or Laplace! transform; special notation will be
used for functions that are defined only in the transform
main. The indices of the matrix elements are combination
all possiblel ’s and m’s. ~An effective way of countingl ’s
and m’s will be introduced later.! The operatorD(s,st) in
Eq. ~6a! can be written as

D~s,st!5O~st!1B~s!, ~6b!

where the matrix

O~st!( l ,m),(l 8,m8)5Fst

c
1s t2s l Gd~ l ,l 8!d~m,m8! ~7!

is diagonal andB is a sparse off-diagonal matrix representi
V•¹, which is the spatial ballistic part of the propagation.

formal solution forÎ is given by

Î5D21«̂. ~8!

We invert the matrix using its determinant and the adjug
matrix. We calculate the determinants directly and we
proximate the adjugate matrix by expandingD into an infi-
x-

n

t

nts

-
of

e
-

nite matrix series. Multiplying both sides of Eq.~8! by the
determinant ofD, we obtain a differential equation forI (r,t).
In calculating the determinant we can take advantage
some properties of Eq.~5!. First, the matrixD transforms
linearly asD→ODOT under an arbitrary rotation, whereO is
a linear representation of the orthogonal group. Since
determinant of the matrixO is equal to unity, the determinan
of the matrixD is invariant under an arbitrary rotation an
hence the only terms that are functions ofs have the form
f (s2), wheres25sx

21sy
21sz

2 ; therefore, it is sufficient to cal-
culate thesz contribution and deduce the rest. Equation~5!
calculated in thez direction simplifies to

F1

c

]

]t
1s t2sspl G I l

m~r,t !

1
1

2l 11 FA~ l 2m11!~ l 1m11!
]

]z
I l 11

m ~r,t !

1A~ l 2m!~ l 1m!
]

]z
I l 21

m ~r,t !G5« l
m~r,t !. ~9!

Using the Fourier transform, Eq.~9! can be represented as
matrix operation. This matrix can be decomposed into tri
agonal block matrices by grouping elements with the sa
m, while the l values range fromumu to L, whereL is the
upper bound of the approximation.

The submatrices corresponding to a givenm value have
the form

Dm,L5Om,L1Bm,L , ~10a!

where
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Om,L53
Oumu 0 0

0 Oumu11

0 0 0

OL22 0 0

0 0 OL21 0

0 0 0 OL

4 ~10b!

and

Bm,L53
0

1

A2umu11
0

1

A2umu11
0

0 0 0

0
A~L21!22m2

2L23
0

0
A~L21!22m2

2L21
0

AL22m2

2L21

0 0
AL22m2

2L11
0

4 sz . ~10c!
n
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From Eq.~10! we find by expanding through the last colum
and row

det~Dm,L!5det~Dm,L21!OL2
L22m2

4L221
det~Dm,L22!sz

2 ,

~11!

where det(A) is the determinant ofA.
If we define

Am,L5
L22m2

4L221

1

OLOL21
, ~12!

then

det~Dm,m1n!5F (
n50

N

Cm,n~21!nsz
2nG )

l 5umu

umu1n

Ol11. ~13!

Cm,n is the sum of all products ofn Am,l terms with no two
l ’s having adjacent values and 2N<L2umu. The Cm,n are
functions ofst . The total determinant up to orderL is given
by

det~DL!5 )
m52L

L

det~Dm,L!@det~D2m,L!5det~Dm,L!#.

~14!

Taking the inverse Laplace transform and recalling thasz
2

can be replaced bysx
21sy

21sz
2 , we obtain a differential op-

erator in the space-time domain with the space part con
ing of the operator@¹2#n. Equation ~14! is a generalized
t-

diffusion operator of orderL that accounts for scattering u
to orderL ~the diffusion equation itself is first order!. The
terms on the left-hand side of the equation have the form

(
n

f n~st!¹
2nĨ ~r,st!.

The tilde here denotes the partial transform~in t but not in
r). Using separation of variables, it is possible to show tha

we expandĨ (r,V,st) in spherical harmonics, repeating th
operation¹2 will introduce derivatives only inr, not in V.
The above property reduces the problem of solving Eq.~14!
to one of solving a set of differential equations inr.

It is necessary to determine the initial conditions of t
above differential equation. This is done by writing Eq.~8!
as

det~DL!I5AdL• «̂. ~15!

whereAdL is theLth adjugate matrix ofD, AdL . The deter-
minant det(DL) and the adjugate matrixAdL have a major
distinction. While the determinant that operates onI causes it
to propagate, the adjugate matrix operates on«̂ and depends
only on local values of«̂. det(DL) is the propagator of the
equation while the adjugate matrix mixes various orders
the propagating terms. For small values ofL, direct calcula-
tion of the adjugate matrixAdL is possible; for higher orders
we introduce an approximation.

To evaluate the right-hand side of Eq.~15! we use a sec-
ond method of inverting Eq.~8!. Using the identity
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~O1B!215 (
n50

`

O21
•~2B•O21!n, ~16a!

which holds when

lim
N→`

@~B•O21!N#50 ~16b!

(O is diagonal with a trivial inverse!, combining Eqs.~8! and
~16!, we obtain the formal solution

Ĩ 5O21
•(

n50

`

~2B•O21!n
• «̃. ~17!

The operatorB was recognized earlier asV•¹. We must
examine the effect ofO21 in the space domain. The operat
O21 operating onX can be expanded using Eq.~2b! to give

x̃~r,st ,V!5(
l 50

`
2l 11

4p

1

Ol~st!
E X̃~r,st ,V8!

3 (
m52 l

l

Yl
m* ~V!Yl

m~V8!dV8. ~18!

From the addition theorem for spherical harmonics

Pl~V•V8!5
4p

2l 11 (
m52 l

l

Yl
m* ~V!Yl

m~V8!, ~19!

wherePl is the Legendre polynomial of degreel, the opera-

tor expressionO21
•X̃ can be represented in expanded fo

as

x̃~r,st ,V!5(
l 50

`
1

Ol~st!
E X̃~r,st ,V8!Pl~V•V8!dV8.

~20!

The quantity

Yl~V!5E Y~V8!Pl~V•V8!dV8 ~21a!

is, by definition, thel th term of the Laplace series expansi
@12# of the functionY,

Y~V!5(
l 50

`

Yl~V!. ~21b!

The quantityYl(V) is called thel th spherical harmonic o
the functionY(V) @13#. Using Eqs.~17!–~21!, we have ob-
tained a formal solution of the radiative transfer equation

Ĩ ~r,st ,V!5(
i 50

`

(
l50

`
1

Ol~st!
E Ai~r,st ,V8!Pl~V•V8!dV8,

~22a!

A0~r,st ,V!5 (
l50

`
1

Ol~st!
E «̃~r,st ,V8!Pl~V•V8!dV8,

~22b!
Ai 11~r,st ,V!5 (
l50

`
1

Ol~st!

3E ~2V•¹!Ai~r,st ,V8!Pl~V•V8!dV8.

~22c!

Equations~22a!–~22c! represent a recursive relation; the
appear to be an exact solution, but further examination
veals some problems. In analogy with the adjugate matrix
Eq. ~15!, Eqs. ~22a!–~22c! are composed of local higher
order spatial derivatives of the source; those terms do
propagate away from the source. The utility of Eqs.~22a!–
~22c! lies in their ability to yield an approximation for th
adjugate matrix that describes the mixing of different ord
L of the propagating terms. The propagation of the intens
is described by the determinantAdL . It is possible to solve
first for the effect of the propagatorAdL on the source and
then apply Eq.~17! or ~22! to calculate cross terms of th
propagation. This method is attractive for cases where
ordersl of the source term have the same time and spa
dependence and one solution applies to all orders of
source.

III. DISCUSSION

The first observation we make is that in the transfo
domain, in all the equations derived from the RTE, includi
the RTE itself, the transform variablest appears in the form
st /c1s t . Using the properties of the Laplace transform, w

note that ifX̃(st) is the transform ofX(t), then the inverse

transform ofX̃(st /c1s t) is cX(ct)exp(2stct). As a result,
the decay of the intensity is preceded by the exponen
factor exp(2stct). This term dominates the decay at ear
times, but is still present at later times, including when t
approximation applies. Using spherical harmonics to rep
sent both the phase function and the scattered intensity
its limitations as both functions tend to be forward peak
while the SHE is good in describing smooth functions; the
fore, some modification of the phase function and the R
can be useful. First we write

ssp~V•V8!5ssepe~V•V8!1s fd~ uV2V8u!.

With proper choice ofs f ,pe can be approximated using low
L values; Eq.~1! then becomes

F1

c

]

]t
1V•¹1~s t2s f !G I ~r,t,V!

2
sse

4pE I ~ t,V8!pe~V•V8!dV85«~r,t,V!. ~18!

The other modification is to use the reduced~direct! and
diffuse intensity@14#. Defining

F1

c

]

]t
1V•¹1s tG I r~r,t,V!5«~r,t,V! ~23a!

and
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I ~r,t,V!5I d~r,t,V!1I r~r,t,V!, ~23b!

the equation forI d(r,t,V) becomes

F1

c

]

]t
1V•¹1s tG I d~r,t,V!

2
ss

4pE I d~r,t,V8!p~V•V8!dV8

5
ss

4pE I r~r,t,V8!p~V•V8!dV8. ~24!

I r is a good approximation for early times; therefore, co
bining it with the late-time approximation has the potent
of extending the range of validity of the approximation. B
cause the virtual source in Eq.~24! is a propagating source
Eq. ~22! might give a good approximation when applied
Eq. ~24!. Considering the universality of the DE and th
derivation approach used here, which is based on sim
assumptions, the merit of the results should be judged r
tive to the DE. As a first check, we compare the result to
DE (L51) using Eq.~14! @Eq. ~A4! is exact in this case#,

F 12
1

3

1

S st

c
1s t2ssp1D S st

c
1s t2ssp0D ¹2G Ĩ ~r,st ,V!

5J̃~r,st ,V!. ~25!

J̃(r,st ,V) is given by Eq.~A5!. This is the Ishimaru@2#
version of the DE. Equation~25! can be written as

F 12
1

3

c

ss~p02p1! H 1

S st

c
1s t2ssp1D

2
1

S st

c
1s t2ssp0D J ¹2G Ĩ ~r,st ,V!5J̃~r,st ,V!.

Ignoring the first term in curly brackets, we obtain the F
rutsu approximation@5#. Using a higher-order small-k ap-
proximation, one generally does not obtain the telegra
equation. In the case where all the even and odd coeffici
of the phase function are respectively equal, Eq.~A4! leads
to the speed of propagationv5cAl /3. For l .3 the small-k
approximation leads to a nonphysical early-time solut
~see the discussion in Ref.@7#!.

Equations~13! and~14! give theLth-order approximation
using a higher-order expansion in¹2. We expect the equa
tion to be a good description for cases where the DE is
most a good description, i.e., late times, large distances,
a small-l –dominated phase function and source. The eq
tion is expected to provide a better description than the
of ‘‘snake photons’’@15#, which are early-arrived scattere
photons used to improve image details. Such an equa
however, is mathematically hard to handle. Limiting cases
large and smallk’s that include only¹2 terms are desirable
A mathematical treatment of equations of this type is d
cussed in Appendix B: the equivalent wave field. The sm
-
l
-

ar
a-
e

-

h
ts

n

l-
nd
a-
E

n,
f

-
l-

k approximation is developed in Appendix A. I have n
developed a general large-k asymptotic expansion. Such a
expansion can be obtained by keeping the two highest-o
terms in¹2 while ignoring the lower-order terms. While th
small-k approximation can be applied for late-time expa
sion whenever theLth-order approximation is justified, th
large-k expansion is justified only under limited circum
stances. Such a case is the initial rise in photon transpo
random media@1# at the point at which the diffusion approx
mation starts to break down.

Both Eqs.~15! and ~22!, which is an exact solution, an
Eq. ~A6!, which is a late-time approximation, include an e
pansion of the source in a Laplace series, which is an exp
sion of the angular part of the Legendre polynomials. T
appearance of Legendre polynomials in the solution is na
ral since the Legendre polynomials introduced in Eq.~3! are
eigenvalues of the scattering phase function. The SHE
introduced in Eq.~4! only as a convenient intermediate ste
to describe the Legendre polynomials of the relative ang
Legendre polynomials of the relative angle were reint
duced in the final solution.
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APPENDIX A: THE SMALL- k APPROXIMATION

The high order ofs in the polynomial makes the equatio
hard to deal with in most cases. A simpler approximation c
be beneficial. Consistent with the diffusion approximatio
we assume small spatial derivatives or smalls ~but not st).
We will expand the determinant keeping zeroth- and seco
order terms while keeping track of the fourth-order resid
term. Using the first two terms of the expansion insz

2 in Eq.
~13!, which we calldm,L , we get

dm,L5F11sz
2 (

l 5umu

L
l 22m2

4l 221

1

OlOl 21
G )

l 5umu

L

Ol , ~A1!

where the fourth-order residual term is

sz
4F (

l ,l5umu
u l 2lu(2

L
l 22m2

4l 221

l22m2

4l221

1

OlOl 21

1

OlOl21G
3 )

l 5umu

L

Ol .

A weak requirement for the approximation to be valid is th
uszu!uOl u or that

uszu!ust /c1s t~r!2ss~r!pl~r!u, ~A2!

which applies for distances larger than the attenuation len
or early times. The second-order approximation insz for
diL5det(DL) is obtained through a second-order expans
of the products)m52L

L dm,L ,
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diL5F12
1

3 (
l 51

L
l

OlOl 21
sz

2GO0)
l 51

L

~Ol !
2l . ~A3!

The relation between the time and space derivatives is g
by

dL512
1

3 (
l 51

L
l

OlOl 21
sz

2[12C~st!sz
2 . ~A4!

Equation~A4! is the small-gradient~k! approximation of Eq.
~15!.

We wish to expand Eq.~15! to second order insz . We
use Eq.~18! as our starting point. We multiply both sides
Eq. ~22! by a normalized second-order expansion of the
tio
s
n
r-
s

p
ht
t

e

os
im
n

-

terminant of D. This is a somewhat arbitrary step, but
introduces the correct differential equation into the exp
sion. The adjugate matrix in Eq.~15! is one order lower insz
than the determinant itself; therefore, we have to expand
~21! to first order while neglecting the second order. T
result in shorthand notation is

@12C~st!sz
2# Ĩ 5@O212O21

•B•O21#• «̃. ~A5!

Using Eq.~22! and expandingO21BO21 into spherical har-
monics and collecting terms, we can reformulate Eq.~18! as

@12C~r,st!¹
2# Ĩ ~r,st ,V!

5J̃1~r,st ,V!1~V•¹!J̃2~r,st ,V!, ~A6!
C~r,st!5
1

3 (
l 51

L
l

Fst

c
1s t~r!2ss~r!pl~r!GFst

c
1s t~r!2ss~r!pl 21~r!G , ~A6a!

J̃1~r,st ,V!5(
l 50

L
«̃ l~r,st ,V!

Fst

c
1s t~r!2ss~r!•pl~r!G , ~A6b!

J̃2~r,st ,V!5(
l 50

L
«̃ l~r,st ,V!

Fst

c
1s t~r!2ss~r!pl~r!GFst

c
1s t~r!2ss~r!pl 21~r!G , ~A6c!

«̃ l~r,st ,V!5E «̃~r,st ,V! Pl~V•V8!dV8. ~A6d!
he
a-

ical
ote
and
me
the
Equation~A6! is similar to the DE in that it includes only
second-order derivatives inr; however, it accounts for
higher-order terms of the expansion of the phase func
and applies to the intensityI rather than to the density. It
limitation is that it uses the small-gradient approximatio
which limits its validity to later times. An interesting obse
vation here is that when all the even and odd component
pl are equal we can use the solution given in Ref.@7#, which
leads to propagation of the front with speedA(2l 11)/3c,
where l is the order of the expansion. The fact that the a
parent speed of propagation is faster than the speed of lig
an artifact of the small-k approximation, which is invalid a
early times.

APPENDIX B: THE EQUIVALENT WAVE FIELD

Equation~A6! in the large-k asymptotic expansion has th
form

@12C~st!¹
2# Ĩ ~r,st ,V!5J̃~r,st ,V!, ~B1!

which, as can be shown using arguments similar to th
used above, is quite common as a second-order approx
n

,

of

-
is

e
a-

tion in many physical phenomena. We will show that t
solutionI (r,t,V) can be related to the solution of an equiv
lent wave equation

F12
1

pt
2
¹2G Ĩ w~r,pt ,V!5J̃w~r,pt ,V!. ~B2!

Such a relation is very beneficial due to the mathemat
properties of the wave equation that make it useful in rem
sensing and also relatively easy to solve in both direct
inverse problems. For the sake of simplicity, we ignore so
of the mathematical subtleties. For compactness, we omit
argumentsr andV:

C„g~pt!…5
1

pt
2

, ~B3!

Ĩ „Ag~pt!…5 Ĩ w~pt!, J̃„Ag~pt!…5J̃w~pt!. ~B4!

Using the forward and inverse Laplace transform

Ĩ w~pt!5E
0

`

I ~ t !exp@2Ag~pt!t#dt, ~B5!
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I w~ t !5
1

2p i Ec2 i`

c1 i`

Ĩ w~pt!exp~ptt !dpt, ~B6!

and performing the two integrations after reversing the or
of integration, we obtain

I w~ t !5E
0

`

I ~t!K~ t,t!dt, Jw~ t !5E
0

`

J~t!K~ t,t!dt,

~B7!

K~ t,t!5
1

2p i Ec2 i`

c1 i`

exp@2Ag~pt!t#exp~ptt !dpt .

~B8!
r

If the boundary conditions are frequency dependent, this
must be accounted for. Equations~B7! and~B8! usually rep-
resent an ill-posed problem and one must exercise cau
when using them. However, with proper care it is possible
obtain an optimal form of the kernelK(t,t) for practical use.
An inverse relation of the form

I ~ t !5E
0

`

I w~ t !K~ t,t!dt ~B9!

can also be derived.~For a discussion of the equivalent wav
field in the DE limit, see Ref.@16#.!
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