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Time-dependent equation for the intensity in the diffusion limit
using a higher-order angular expansion
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The first two terms in the spherical-harmonic expangithe P, approximation of the radiative transfer
equation yield the diffusion equation. This approximation applies to multiple scattering and results in a solution
for the energy density, the gradient of which is proportional to the light intensity. In this work a higher-order
spherical-harmonic expansion of the radiative transfer equation is developed. This equation applies to the
radiant intensity rather than the energy density. The equation can be decomposed into two terms: a propagator
term obtained from the determinant of the coupled equations describing the individual components of the
intensity, and a mixing matrix that describes the cross coupling between different orders of the expansion.
Using the Fourier transform, an approximation based on expanding at small wave Jedtads to an
equation similar to the diffusion equation. The equation is expected to predict the intensity for multiple
scattering at earlier times and shorter distances than the diffusion equation can. The notion of an equivalent
wave field is introduced.S1063-651X99)08506-2

PACS numbdrs): 05.60—k, 02.90+p

[. INTRODUCTION an equation is expected to be valid at shorter distances and
earlier times than the diffusion equation as it does not as-
The radiative transfer equatiofRTE) and the diffusion sume times or distances sufficient to form a uniform intensity
equation(DE) to which it reduces in the case of many scat-distribution. The outline of the derivation is as follows. First
terings provide the basis for describing many physical phethe RTE is represented using the spherical-harmonic expan-
nomena.(In this paper | consider the phenomenon of unpo-sion (SHE) for the angular intensity with coefficients that are
larized light transport.Analytical solutions of the RTE exist time and space dependent. The resulting representation, the
only for restricted cases, and one usually has to resort tdeterminant of the coefficient matrix, is a higher-order dif-
numerical methods. One difficulty of the problem is the di-ferential equation similar to the DE. An expansion of the
mensionality of the system. Besides the position vector anéhverse matrix using the perturbation method is then used to
time, each point in space has an associated vector describinigtermine the mixing of different orders of the source. Sum-
the direction of propagation of light at that point. Thus, while mation of terms eliminates the SHE, leading to a differential
the diffusion equation has three spatial dimensions and onequation of ordet independent of the intermediate SHE.
of time, the RTE has two additional dimensions. We start from the time-dependent radiative transfer equa-
The problem is usually to investigate the angular distribu-tion for the intensityl at timet, positionr, in the directionQ2,
tion using some limiting approximation. The most common
approximations are the uniform intensity approximation,
leading to the diffusion equation, and the forward-backward
dominant scattering approximation, leading to the two-
stream model. The DE follows from the RTE under the as- oy(r) , , ,
sumption that after a sufficiently large number of collisions T an J 1(r,t,Q)p(r,Q-Q)dQ'=¢&(r,1,Q),
the intensity is almost isotropic and thus provides an
asymptotic approximation applicable to later times. Large D
numbers of physical systems obey the DE independent of the
details of the RTE. The diffusion approximation fails for Where os and o, are the scattering and absorption coeffi-
intermediate scattering rangés] that are appropriate for Cients,oi=os+o,, andp(r,Q2-Q') is the phase function.
many practical applications such as shallow medical imagd he first term on the left-hand side of E{) describes the
ing, |0nger-range underwater imaging, and electron transpoﬂme evolution of attenuated ballistic photons, the second
in small semiconductor devices. Second-order corrections ifem is the scattering integral, and the term on the right-hand
time to the DE appear occasionally in the literat{ipe-4], ~ Side is the source term.
but the validity of these corrections has been debated for the The SHE has the forrfiL0]
past 20 year$5—9|. A leading reason for the confusion in

14
Z Q- Vo)

g I(r,t,Q)

thi tter is the lack of | soluti f the RTE. *
is matter is the lack of a general solution of the I{“(r,t)zf H(rLQ)Y™ (2)dQ. (2a)
Il. THEORY
o m=l
In this paper | derive an equation analogous to the DE that 1(r,t, Q)= 2 E 2l+1 IM(r,H)Y™(Q) (2b)
includes the angular distribution of the light intensity. Such n bty A ’
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with nonlocal, or independent of Using the addition theorem for
. spherical harmonics we get
4
P(r-Q)=2 s p(NP(Q-Q). () - \
=0 PIQ-0)=2 > pY(@QYT(Q). @
P, (- Q') is the Legendre polynomial of the cosine of the
angle betweerf2 andQ’'. In this work, in order to apply the Using the identityQ2= (sin # cos¢,sin §sin ¢,cosé), we ob-
Laplace transform, we will assume that the phase functiontain from Eg.(1) the equivalent set of coupled differential
and the scattering and absorption coefficients are taken to lEguationd11]

190 1 0 J
R I CGURE s \/(I—m+1)(l+m+1)5I|m+1(r,t)+ (I=m)(+m) — 17, (rt)
1 ] d 1 [ 9 9 1
—E\/(I+m— 1)(|+m)m—iE}|,"1‘11(r,t)+§¢(|—m+ 1)(|—m+2)m—iw I[‘]r_ll(r,t)+E\/(I—m—l)(l—m)
m+1 1 f(? : J m+1 _.m
X| o+ Y ||_1(r,t)—§¢(|+m+1)(|+m+2)m+|—y 1Mt {=eM(rt). (5)

The spherical harmonics are eigenvalues of all the terms exaite matrix series. Multiplying both sides of E) by the
cept the propagation term, which couples adjadéntand  determinant oD, we obtain a differential equation for,t).
m’s. Recognizing this, we expect that any approximationin calculating the determinant we can take advantage of
based on spherical harmonics will be a good approximatiogome properties of Eq5). First, the matrixD transforms
for scattering-dominated propagation, but will perform |inearly asb— ODO' under an arbitrary rotation, whe€is
poorly in the ballistic regime. This conclusion is consistenty |inear representation of the orthogonal group. Since the
with the inefficacy of the SHE in describing transport in the yeterminant of the matri® is equal to unity, the determinant
case of a strongly peaked phase function. of the matrixD is invariant under an arbitrary rotation and

US|_ng matrix notation and applying the Fourier transformpance the only terms that are functionssofiave the form
we write f(s?), wheres’=s;+s/+s7 ; therefore, it is sufficient to cal-

- N culate thes, contribution and deduce the rest. Equati

D(s,;s)l(s;st)=&(s,s,€2), (63 calculated in the direction simplifies to fuaten

wheres;=iw ands=(sy,Sy,s,) =i(ky,ky,k;), bold charac-

ters represent a vector or a matrix, and the caret represents
the Fourier(or Laplace transform; special notation will be
used for functions that are defined only in the transform do-
main. The indices of the matrix elements are combinations of
all possiblel’s andm’s. (An effective way of countind’s 4
and m's will be introduced latej. The operatorD(s,s;) in 21+1
Eqg. (6a) can be written as

19
= T o osp

m
c ot I| (rrt)

d
Va—=m+1)(I+m+1) E|{“+1(r,t)

J
+ (I—m)(l+m)5l{“_1(r,t) =g|(r,t). 9

D(s,s1)=0(sy) +B(s), (6b)

where the matrix

Using the Fourier transform, E¢) can be represented as a
matrix operation. This matrix can be decomposed into tridi-
agonal block matrices by grouping elements with the same
m, while thel values range fromim| to L, whereL is the

is diagonal andB is a sparse off-diagonal matrix representingupper bound of the approximation.

Q- V, which is the spatial ballistic part of the propagation. A The submatrices corresponding to a givarvalue have

formal solution forl is given by the form

O(s)a.my,1,mn= o(L1")ys(m,m")  (7)

St
_+(Tt_0-|
Cc

=D le. (8)
Dm,L: Om,L+ Bm,L ) (10a
We invert the matrix using its determinant and the adjugate
matrix. We calculate the determinants directly and we ap-
proximate the adjugate matrix by expandibginto an infi-  where
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Om O O
0  Ojm+1
@) 0 0 0 10b
m,L ™ OL—2 0 0 ( )
OLfl
I 0 0 0 O
and
- 1 -
Vv2|m|+1
1
V2|m|+1
0 0 0
BmL= \/fz__z S (100
m 0 (L=1)"—m 0 z
2L-3
(L—1)*-m? 0 L?—m?
2L-1 2L-1
0 0 VLo m® 0
i 2L+1 i

From Eq.(10) we find by expanding through the last column diffusion operator of ordek that accounts for scattering up

and row

2_m2

_ 2
de(Dy, )=de(Dp, -1)O — mde(Dm,L72)Sz ,

(13)

where detf) is the determinant oA.

If we define
A LP-m?1 12
mt 4L2-1 0.0 4’
then
N [m|+n

delDpymn)=| 2 Crn(—1)"S;" ll}m O+1. (13

Cn.n is the sum of all products of A, terms with no two
I's having adjacent values andNZL—|m|. The C,, , are
functions ofs,. The total determinant up to ordkris given

by
L
detD,)= [ de(Dy,)[delD p )=delDp,)].
_ (14

Taking the inverse Laplace transform and recalling ﬁﬁat
can be replaced byt +s;+s2, we obtain a differential op-

to orderL (the diffusion equation itself is first orderThe
terms on the left-hand side of the equation have the form

; f(s)V2I(r,s).

The tilde here denotes the partial transfarmt but not in
r). Using separation of variables, it is possible to show that if

we expandi (r,Q,s;) in spherical harmonics, repeating the
operationV? will introduce derivatives only irr, not in €.
The above property reduces the problem of solving (E4)
to one of solving a set of differential equationsrin

It is necessary to determine the initial conditions of the
above differential equation. This is done by writing E§)
as

de(D,)I=Ad, -&. (15)
whereAd, is thelLth adjugate matrix oD, Ad, . The deter-
minant detD,) and the adjugate matriRd, have a major
distinction. While the determinant that operated @auses it

to propagate, the adjugate matrix operates amd depends

only on local values of. det(D,) is the propagator of the
equation while the adjugate matrix mixes various orders of
the propagating terms. For small valueslofdirect calcula-
tion of the adjugate matriAd, is possible; for higher orders
we introduce an approximation.

erator in the space-time domain with the space part consist- To evaluate the right-hand side of Ed5) we use a sec-

ing of the operatof V?]". Equation(14) is a generalized

ond method of inverting Eq8). Using the identity
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0

- 1
(O+B)'=2 O7H(~B-O0°)" (163  A(ns.®)=2 57
n=0 A=0 s
which holds when Xf (—Q-V)A(r,s,Q )P, (Q-Q)dQ".
lim[(B-O }H)N]=0 (16b)

(220

N—c

(O'is diagonal with a trivial inverse combining Eqs(8) and Equations(229—(220 represent a recursive relation; they
(16), we obtain the formal solution appear to be an exact solution, but further examination re-

veals some problems. In analogy with the adjugate matrix in

_ * Eqg. (15), Egs. (229—(22¢0 are composed of local higher-
=01 2 (—-B-O"HN.E. (17) order spatial derivatives of the source; those terms do not

n=0 propagate away from the source. The utility of E(&2a—

(229 lies in their ability to yield an approximation for the
adjugate matrix that describes the mixing of different orders
L of the propagating terms. The propagation of the intensity

is described by the determinaAd, . It is possible to solve

o141 first for the effect of the propagatdkd, on the source and

X(r,5,Q)= 2 f X(r,s,9Q") then apply Eq.(17) or (22) to calculate cross terms of the
4w Oy(sy) propagation. This method is attractive for cases where all
| orders| of the source term have the same time and spatial

The operatorB was recognized earlier 2&-V. We must
examine the effect D! in the space domain. The operator
1 operating onX can be expanded using E@b) to give

« E Y Q) YT(Q)dQ . (18) dependence and one solution applies to all orders of the
m=—1 source.
From the addition theorem for spherical harmonics lIl. DISCUSSION

, ) The first observation we make is that in the transform
P(Q- Q)= 5— 2| 1. E Y™ (@)YNQ'), (19  domain, in all the equations derived from the RTE, including
the RTE itself, the transform variabs appears in the form

whereP, is the Legendre polynomial of degréethe opera- si/c+oy. Using the properties of the Laplace transform, we

tor expressior0~? .X can be represented in expanded formnote that |fX(st) is the transform ofX(t), then the inverse
as transform ofX(sI/c+ o) is cX(ct)exp(—aict). As a result,
the decay of the intensity is preceded by the exponential
~ o1 ~ factor expt-oict). This term dominates the decay at early
(1S ,ﬂ)=Z,O WJ X(r,s,Q)P(Q-Q2)dQ’. times, but is still present at later times, including when this
(20) approximation applies. Using spherical harmonics to repre-
sent both the phase function and the scattered intensity has
The quantity its limitations as both functions tend to be forward peaked
while the SHE is good in describing smooth functions; there-

, , , fore, some modification of the phase function and the RTE
Y'(Q):f Y(Q)P(Q-Q)d (213 can be useful. First we write
is, by definition, thdth term of the Laplace series expansion op(Q- Q) =0,p(Q- Q)+ 0:6(]Q2—Q')).

[12] of the functiony,
With proper choice ofr;,p. can be approximated using low

- L values; Eq(1) then becomes
Y(Q):ZO Y\(Q). (21b)
a Jd
] ) ) ] ——=+Q-V+(o;—0ay) [I1(r,t,Q)
The quantityY,(Q) is called thelth spherical harmonic of [C dt
the functionY(Q) [13]. Using Eqs.(17)—(21), we have ob- o
tained a formal solution of the radiative transfer equation — 4_: 1(t,Q)pa(Q-Q)dQ =&(r,t,Q). 1)
(r,s,Q)= E E J'Ai(r,st,ﬂ’)Px(Q.Q’)dQ’, The other modification is to use the reducetirect and
=0x=0 0 diffuse intensity[14]. Defining
(229
J
=1 L —+ Q- V4o |l,(nt,Q)=¢(r,t,Q) (233
Ao(r,s,Q)= >, f (1,5, Q" )P, (Q-Q)dQ’, c it
x=0 Ox(st)

(22b) and



7182 MEIR GERSHENSON PRE 59

1(r,t,Q)=14(r,t,Q)+1,(r,t,Q), (23p  k approximation is developed in Appendix A. | have not
developed a general largeasymptotic expansion. Such an
the equation foit 4(r,t,2) becomes expansion can be obtained by keeping the two highest-order
terms inV? while ignoring the lower-order terms. While the
}£+Q-V+o 4(r,t,Q) smallk approximation can be applied for late-time expan-
c dt e sion whenever thé th-order approximation is justified, the

o largek expansion is justified only under limited circum-
__SJ l4(r,t,Q)p(Q-Q')dQ’ stances. Such a case is the initial rise in photon transport in
Am random medi§1] at the point at which the diffusion approxi-
o mation starts to break down.
= _Sf 1(r,t,Q")p(Q-Q)dQ’. (24) Both Egs.(15) and(22), which is an exact solution, and
4m Eq. (A6), which is a late-time approximation, include an ex-
pansion of the source in a Laplace series, which is an expan-
sion of the angular part of the Legendre polynomials. The
appearance of Legendre polynomials in the solution is natu-

I, is a good approximation for early times; therefore, com-
bining it with the late-time approximation has the potential

of extending the range of validity of the approximation. Be- ral since the Legendre polynomials introduced in E3y.are

cause the _wrtua! source in E(@4) 'S & propagating source, eigenvalues of the scattering phase function. The SHE was
Eq. (22) might give a good approximation when applied to .

Eq. (24). Considering the universality of the DE and the introduced in Eq(4) only as a convenient intermediate step

derivation approach used here, which is based on simil to describe the Legendre polynomials of the relative angle.

r ) ; ;
assumptions, the merit of the results should be judged reI%ﬁg:g?;ethzoﬁ/:;@giig; the relative angle were reintro-
tive to the DE. As a first check, we compare the result to the '

DE (L=1) using Eq.(14) [Eqg. (A4) is exact in this cade
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version of the DE. Equatiof25) can be written as
a ®9 The high order ok in the polynomial makes the equation

1 C 1 hard to deal with in most cases. A simpler approximation can
1- 3 (Po—p0) | |5 be beneficial. Consistent with the diffusion approximation,
stbo M1 ——I—a’t—a'spl) we assume small spatial derivatives or snsalbut notsy).
¢ We will expand the determinant keeping zeroth- and second-
1 _ 5 order terms while keeping track of the fourth-order residual
V2| I(r,s,Q)=E(r,5,Q). term. Using the first two terms of the expansiorsjnin Eq.
%Jrgt_aspo) (13), which we calld,, _, we get
Lo2-m?2 1 -
Ignoring the first term in curly brackets, we obtain the Fu- Ay =| 1+82 ; H O, (A1
rutsu approximatiorf5]. Using a higher-order smaki-ap- ' 15Tm] 412—1 O101-1 1= [m|

proximation, one generally does not obtain the telegraph
equation. In the case where all the even and odd coefficientd
of the phase function are respectively equal, &dt) leads

here the fourth-order residual term is

. Lo2-mAa-m? 1 1
to the speed of propagatian=c/1/3. For|>3 the smallk st 2
approximation leads to a nonphysical early-time solution |||’fi|£]|2 412—1 4\?—1 00,1 0,0y 1

(see the discussion in R4f7]).

Equationg13) and(14) give thelLth-order approximation L
using a higher-order expansion W. We expect the equa- X H 0.
tion to be a good description for cases where the DE is al- =lm
most a good description, i.e., late times, large distances, and\yeak requirement for the approximation to be valid is that
a smallt—dominated phase function and source. The equg—sz|<|ol| or that
tion is expected to provide a better description than the D
of “snake photons”[15], which are early-arrived scattered [s,|<|si/c+ o (r)—og(r)py(r)], (A2)
photons used to improve image details. Such an equation,
however, is mathematically hard to handle. Limiting cases ofvhich applies for distances larger than the attenuation length
large and smalk’s that include onlyV? terms are desirable. or early times. The second-order approximationsinfor
A mathematical treatment of equations of this type is dis-di, =det(D,) is obtained through a second-order expansion
cussed in Appendix B: the equivalent wave field. The small-of the productsﬂhq:_,_dm,,_,
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L terminant of D. This is a somewhat arbitrary step, but it
OoH (op?. (A3) introduces the correct differential equation into the expan-
=1 sion. The adjugate matrix in E@L5) is one order lower irs,
The relation between the time and space derivatives is givelia" the determinant itself; therefore, we have to expand Eq.
by (22 to first order while _neg_lectmg the second order. The
result in shorthand notation is

1 I
1—52 S.

di, =
- =100, *

L
dL=1—52 | s?=1-P(s)s2. (Ad) [1-W¥(s)s?]I=[01-0"1.B-O1].5. (A5)
3100,

_ _ _ o Using Eq.(22) and expanding@®*BO™* into spherical har-
(qu)Jat|on(A4) is the small-gradientk) approximation of Eq.  monics and collecting terms, we can reformulate @@ as
15).

We wish to expand Eq15) to second order irs,. We [1—\If(r,st)V2]T(r,st Q)
use Eq.(18) as our starting point. We multiply both sides of _ _
Eqg. (22) by a normalized second-order expansion of the de- =E.1(r,5,Q0)+(Q-V)E,(r,5,Q), (A6)
1o |
V(rs)=3 2 1o < , (A62)
I=1
S Han=odnpn) g‘+ot<r>—as<r)p|l<r>}
. B (r S:,Q)
Eirs. @)= — , (ABb)
=0 | St
g+at<r>—as<r>-p|<r>}
~ S (r,s;,9Q)
:z(r,st,n)=|20 s : 5 , (ABC)
St =adnpr) g+ot<r>—as<r>p|l<r)}
E,(r,st,ﬂ)zfz(r,st,ﬂ) P(Q-Q)dQ'. (A6d)

Equation(A6) is similar to the DE in that it includes only tion in many physical phenomena. We will show that the
second-order derivatives im; however, it accounts for solutionl(r,t,{2) can be related to the solution of an equiva-
higher-order terms of the expansion of the phase functiofent wave equation

and applies to the intensity rather than to the density. Its
limitation is that it uses the small-gradient approximation,
which limits its validity to later times. An interesting obser-
vation here is that when all the even and odd components of

py are equal we can use the solution given in Ref, which g0, 5 rejation is very beneficial due to the mathematical
leads to propagation of the front with speg@2l+1)/3c,  yroperties of the wave equation that make it useful in remote

wherel is the order of the expansion. The fact that the apsensing and also relatively easy to solve in both direct and
parent speed of propagation is faster than the speed of light {§yerse problems. For the sake of simplicity, we ignore some

an artifact of the smak approximation, which is invalid at 4f the mathematical subtleties. For compactness, we omit the

1 ~
1__szllw(ript-ﬂ):Ew(rapt-ﬂ)- (B2)

t

early times. arguments and Q:
) 1
APPENDIX B: THE EQUIVALENT WAVE FIELD W (g(py)= =, (B3)
Equation(A6) in the largek asymptotic expansion has the Pt
form - - - -
LNI(P)=1w(P), ENG(P))=Ew(p). (B4
[1-W(s)V2]I(r,5,2)=E(r,5,), (B1)  Using the forward and inverse Laplace transform
which, as can be shown using arguments similar to those 1 (pt)=fml(t)exp[— 9(potldt, (B5)
used above, is quite common as a second-order approxima- v 0
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If the boundary conditions are frequency dependent, this fact
must be accounted for. Equatiotid7) and(B8) usually rep-
resent an ill-posed problem and one must exercise caution

and performing the two integrations after reversing the orde¥Vhen using them. However, with proper care it is possible to

of integration, we obtain

|W<t>=fxl<r>K<t,r>dT, Ew<t>=me<T>K<t,r>dT,
0 0
87)

1 ct+io
K(t1)= 5| e~ Vatpo lexsiptia.

(B8)

obtain an optimal form of the kern#l(t, 7) for practical use.
An inverse relation of the form

|(t)=j0w|w(t)K(t,T)dT (B9)

can also be derivedFor a discussion of the equivalent wave
field in the DE limit, see Refl16].)
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