PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999
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We formulate a theory for the statistics of the dynamics of a classical wave propagating in random media by
analyzing the frequency derivative of the phase under the assumption of a Gaussian process. We calculate
frequency correlations and probability distribution functions of dynamical quantities, as well the first non-
GaussiarC, correction. In A. Z. Genack, P. Sebbah, M. Stoytchev, and B. A. van Tiggelen, Phys. Rev. Lett.
82, 715(1999, microwave measurements have been performed to which this theory applies.
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I. SCOPE Unlike v, howeverd¢/dw can be considered for arbitrary
realizations. The restriction to narrow-band wave packets in-
Fluctuations in wave propagation in disordered media aréroduces sometimes apparently interpretational problems,
extensively treated in standard referenf28]. Perhaps the such as negative group velocities or negative delay times,
best known feature is the apparently Gaussian statistics dhat have been extensively studied in literati2&].
the complex wave field, with real and imaginary parts as The phase delay time relates directly to a fundamental
independent variables. This results in the familiar Rayleigrdynamic quantity in condensed matter, namely the number of
statisticsP (1) ~exp(—1/1)) of the intensityl. The Gaussian states per frequency intervak inside the scattering me-
process is a natural consequence of the central limit theoregium N(w) [23],
if one assumes that the complex field results from a coherent
superposition of many independent wave trajectories. M depap
Modern speckle theory, founded in the 1980s and still - 2 lab—— do N(w), (0]
developing rapidly, changes this simple picture considerably @
[3,4]. New features in speckle statistics have been observed
such as short- and long-range intensity correlations, e.g., Where\/_exp(¢ab) t.p is the complex transition amplitude
frequency[5] or time [6], the memory effecf7], universal from modea to b. Unlike the summation in the Landauer
fluctuations[8,9], and non-Rayleigh statistidsl0] for the  formula for conductance, the summation runs over Khe
intensity, many of these explained in terms of non-Gaussiaghannels in both reflection and transmission. Equations
field statistics. An old tool from nuclear physics, randoma manifestation of Friedel's theoref4], originally devised
matrix theory (RMT), has been successfully introduced in for screening problems in the solid state, though with elegant
this field and seems to capture many “universal” aspectsapplications to many scattering problef@26—27, including
[11]. Only recently, RMT has solved the fundamental prob-ones in RMT[28]. Alt'shuler and Shklovskii[14] demon-
lem of the statistical properties of the so-called phase delagtrated the central role of the statisticsNfw) in the under-
times—uwhich for classical waves are the derivatives of thestanding of the relation between level repulsion—described
phase shifts of theS matrix with respect to frequency as a concept in RMT—and universal conductance fluctua-
d¢/dw—at least for chaotic billiards where Dyson circular tions, a basic element in modern speckle theory, a relation
ensembles are known to apdly2,13. The applicability of  confirmed numerical)f17]. It is crucial that the density of
the Dyson RMT in disordered systems has been estimated &iates in an opefscattering medium is ill-defined due to the
hold for energies small compared to the Thouless energfinite (Thoules$ width of the levels. As shown in Ref23],
[14]. Pioneering work by Dorokhop 5] and Mello, Pereyra, the left-hand side of Eq1) is well-defined and proportional
and Kumar[16] extended RMT to disordered wires. The to the integralfdr|,(r)|?> over the sample, which is—
extension of DMPK theory towards dynamical problems iswithin the original Friedel argument—recognized as the

under active investigatiofi.7,18|. “stored charge.” For light it equals the stored electromag-
The popularity of the phase derivatided/dw stems from  netic energy27].
its interpretation as a time delay in scatteriftf]. This Though not free from controversy, E@l) calls for the

quantity describes the dynamics of a very narrow-band wavterpretation ofW,,=1,,d¢.,/dw as the weighted delay
packet. In homogeneous media it relates directly to the groupime for a transition from channel to b [29], to be distin-
velocity v [20] whereas in random media its ensemble av-guished from the “proper” delay times defined as the eigen-
erage is inversely proportional the transport veloeigyfig-  values of the Wigner-Smith matriQ=—iS* - 9S/dw, and
uring in the diffusion constant of the average inten$g]. its trace TIQ=2X, \W,,=7N(w), called the Heisenberg

1063-651X/99/566)/71667)/$15.00 PRE 59 7166 ©1999 The American Physical Society



PRE 59 DELAY-TIME STATISTICS FOR DIFFUSE WAVES 7167

time 7y . The channel averags,/2M is associated witlhe 20
Wigner-Smith phase delay timsy, . Finally, one could call
d¢,,/dw the single channel delay time for a transition from [
channela to b, irrespectivethe transition probability . 1.5
The intention of this work is to formulate a statistical
theory for the dynamical matrix elemerdg,,/dw andW,,
for diffuse waves, using concepts developed for the static
cross sectiom,y, [4]. This theory can be applied equally well
to phenomena involving phase variations with other vari-
ables. The choice of frequency is stimulated by microwave
experiment$1,30]. We shall adopt the C; approximation,” os|
which is known to work best for the static “one channel
in—one channel out” matrix elemenj, (provided the con-
ductanceg=M//L>1), but which as far as we know has ;
not been worked out for dynamic quantites such as %%, ", " 5
d¢,p/dw andW,,. The summatior® ,\W,,, equals theliag- ABSORPTION L/Lq
onal elementQ,, of the Wigner-Smith matrix and may, like
the total transmissioxT,;, from channela, be subject to
C, correlatlons[S]. Itis k_nown that even a Gaussian ProceSSmission through a thick slab of length. Dashed vertical lines
contains phase correlations between speckle §8as The  qgtimate their values in the experiments of REf3.and[30]. The
last section of this work will address the first results @ fynction F,(0) denotes the short rangeC:” contribution to
frequency correlations in the dynamiC matrix elengb. <W2>—<W>2‘ (1/g)|:2(0) is the non-GaussianCz” contribution
As yet, we have not been able to formulate a non-Gaussiagbserved in Ref[1]. Q is the dimensionless parameter determining
theory for d¢,,/dw. We note, however, that experiments the probability distribution of the quantitiéd’ and ¢'; the average

1.0

(8¢,)%/<8,5

<¢',>/(L>/6D)

FIG. 1. Several parameters which appear in the statistics of the
delay time are shown as functions of the absorptidh, in trans-

have shown this quantity to be highly Gaussjan delay time{¢.) has been normalized to the diffuse traversal time
L2/6D. The relation QA ¢,)2~(¢,) for the cumulative phase at
Il. GAUSSIAN APPROXIMATION frequencyv is given by Eq.(15).

The C, approximation is equivalent to the assumption of The gistribution functionally depends on a single parameter
a circular complex Gaussian procd®$ of the complex set Q= —2b/a?—1>0, which is shown in Fig. 1 as a function
tap. A circular process forK complex field amplitudes of apsorptioni/L,. From the diffusion formula fo€(Q) in
Ei(b) =tan(i)E{"(a) requires thatE;)=0 and thaE;E;)  transmission used in Ref4], it follows that
=0. The indexi here labelsK different frequencies for a
given channel transitiomb. The joint distribution is given X?—2 sint? X+ (%) X sinh 2X

= , 4
by Q (X coshX —sinhX)? @

1 A _
P(Ey,...Ex)=————=exg — 2 EC;'Ej|, (2  with X=L/L,.
7" detC hi=1 In the absence of absorption, the mean delay t{ié)
= . . . . =a equals the diffuse traversal time?/6D for waves in
where C;j=(EE)) is the Hermitian variance matrix. We ynsmission, andl4/3v in reflection. In Fig. 1 we see how
shall normalize(E;E;j)=1 for all j, assumingl;)=1to be  (4') decays as absorption comes in. Measufigd) in re-
independent off. For small frequency difference;—w,  flection and transmission would give access to both transport
=w, we can make the expansio€;,=1+iaw+bw®  mean free path’=3D/vg and transport velocity g .
+O(w3), wherea and b can be calculated from diffusion Even in the Gaussian approximatidnand ¢’ are corre-
theory [4,32], which involves the diffusion constarlD,  |ated observables. For constant intensitihe delay time is
sample length., absorption length.,, and transport veloc-  normally distributed with spread ¢’'/(¢’)=\/Q/2I. This
ity ve. The latter contains the Wigner delay time of the has been confirmed experimentally]. The phase in dark
scattering object$22] and thus forms the crucial link be- points becomes ill-definef@1], which causes strong fluctua-

tween microdynamics and macrodynamics. . tions in¢’ at low intensities. Upon integration oveandR
Probability distributions can be derived ffr=2 using a  gne finds

change of variableg;=A; exp{¢;). As w— 0, the stochastic

variables can be chosen ds=A? ¢'=d¢,p/do, R R &' 1 Q
=dInA,,/dw, and ¢,,,. Integrating out the phase shidt,, Pl ¢'= ~|=3 ~ . 5)
yields for the joint distribution, (")) 2[Q+(¢'—1)2]*?

This algebraic law agrees with experimental data for micro-
2exq —1) waves in transmissiofl] over severorders of magnitude. It
ma has the property that(¢')?)=%, though any finite fre-

quency gridA w transforms this divergence into a finite value
Xexr{— I_(¢r_a)2_ I_Rz . (3 ~InAw. From Eq.(3), we find for the distribution of the
Qa? Qa? dynamic matrix elemenV,,,

P(l,¢".R)=
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( W 1 _ 2|\7V| positive values folV are 12 times more probable than nega-

Pl W= _): exp _ . () tive values. In reflectiorf22], Q~(3L/7/)?>1, implying
(W) VQ+1 O(W)++V0Q+1 nearly equal probabilities for positive and negatiig, .

The Heaviside functio(x) vanishes: fox<0 and equal_s 1 IIl. GAUSSIAN THEORY

for x>0. The average(_W>=<_I><¢ )~L/2Muve both in FOR FREQUENCY CORRELATIONS

transmission and reflection. Like the intensityW has an _ _

exponential distribution but unlikkit can take negative val- Correlation functions at two close frequencies provide a

ues. Though less probable, the existence of negative “desensitive test of the validity of the Gaussian approximation in
lay” times is an interesting feature that is also observed irthe experiment. Frequency correlationsdsff, andW,;, can
experimentg1] and is allowed by scattering theor$9]. By  be obtained from Eq(2) with K=4 at the frequencies

Eq. (3) these are most probable in “dark spots.” In trans- = w/2*+ /2 in the limit «—0. The correlation matrix we
mission from a thick slab without absorptid@=2/5 and need to study is

1 C(w) C(Q) C(Q+w)
C(w) 1 CQ-w) C(Q)
Clo)= =) Co-o 1 Clw) @
C(Q+w) C(Q) C(w) 1

For w=0 this matrix contains a doubly degenerated eigenvalye=0 and two eigenvalues; 4Q)=2+2|C(Q)|. For
—0 one gets

NAQ) Qa? 1[C'(Q)—iaC(Q))? 1 |2Q)]
T =5 0= - + = ,
o AT T T 2 lce

®

with z(Q)=C"(Q)[1—|C(Q)|?]—a%C(Q)+2iaC’ () +C(Q)C'(Q)?. The corresponding four eigenfunctions can be de-
rived straightforwardly, among which the first two will be required to orderas customary in second-order perturbation
theory. A careful analysis fab— 0 in the subspace spanned by the first two eigenvectors shows that the joint distribution for
the four complex fields can be transformed into

1 AAS 1o, = . o
P(Al,Aa,A1,A3,¢1,¢3,¢1,¢3):_4§§TGXP_E|A1_M7A1+'A1¢i+(A3+M7A3+'A3¢é)exm¢13_|P)|2
at §162N 3N 1

1 — . , , ) , . .
Xexp— 4_§2|A1_M+A1+'A1¢1_(A3+M+A3+|A3¢3)9XF(| $13—ip)|?

1 1
X exp— )\—3|A1+A3 exp(i piztiT)|> X exp— )\—4|A1—A3 explipiztin)|? 9
|
wherep() and 7({}) are the complex phases pf()) and A. Id ¢/dw frequency correlation
c@, The calculation of the normalized frequency correlation
function of W ,=1,,d¢,,/dw involves straightforward in-
tegrations of Eq(9) that can all be done analytically,
. y1(Q) = y,(Q)exdip(Q)] - -
()= , 10 Wop(v—QI2)W,p(v+Q/2
n=(Q) 1—|C(Q)|2 (10 < abl( ) Wan( )>c
1 —
=E[|C’(Q)I2—ReC(Q)C”(Q)]
and y,(Q)=C(Q)C'(Q)+ia, y,(Q)=iaC(Q2)—C'(Q). =F,(Q). (12)

Equation(9) implies many correlations between amplitudes,

phase, and phase derivatives, only two of which we shall

discuss. We remark that it is straightforward to integrate outrhis result can be obtained more easily using a method that
the amplitude derivatives ;. will be introduced later to calculate long-range correlations,
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using the Gaussian rules to evaluate a correlation involving B. d¢/dw frequency correlation
four fields.

The variance 4 W,;)2=F,(0) has been plotted in Fig. 1 The derivation of the frequency correlation function for
as a function of absorption and in transmission. Without abthe single channel delay timé;,(»v) involves more work.
sorption, the diffusion approximation f@((Q) in transmis-  After analytically integrating out the amplitude derivatives
sion[4] predictsF,(0)=6/5. For largeQ) one can show that Aj 3, an integral over the phase shift; remains that must

F1(Q)— (3) exp—(y2QLZD). be done numerically. Equatia®) finally yields
|
d d d 2
%(V—Q/Z)abd—z(v+ﬂ/2)ab>E<£(w)> [1+C4(Q)]

27 .
dp(2m—|¢|)| —2 Re(ze ') Ho(Ry)

:4772(1—|C|2)J—2w

N Hz(R¢)(|m2 y1+1m? y,€'%) =2 Imy; Im y, H1(Ry)

: (12)
2
1-R?

whereR,=ReC(Q)e'?. We have introduced the functions K is shown in Fig. 1 as a function of absorption. The value

Ho(x)=arctah(1+x)/(1-x)1/V1-x?,  H;=2Ho+X, K=~1.0 nearL/L,~5 coincides with the experimental value

and H,=2xHy+ 1. reported in Ref[30]. Without absorption we find the some-
As Q—0, Eq.(12) predicts a logarithmic divergence, not what larger valueK=1.61.

encountered in intensity correlation functions. For large fre-

guency shifts, we find that

IV. NON-GAUSSIAN FREQUENCY CORRELATIONS

CH)=|CO)2 (|C|<1), (13) IN Iph/De

Consider the frequency correlation function of four field
i.e., C, becomes identical to th€,; intensity correlation and introduce
function which decays exponentially. In R¢L] the correla-
tion function (12) has been compared to experiment, in a ( Q)
regime where the intensity is known to be subject to large”" '’
non-Gaussian quctuatlons_. The excellent agreement between =(E,_ /- w2E*_ ajos wEvs 02+ 02X 0jo— wfo)
Egs.(5) and(12) and experimental data seems to exclude the
existence of non-Gaussiaffong-range correlations in the —(Ev—ai2- wi2E s 2+ wi2Evt 0r2- 0B+ 024 wi2) -
single channel phase delay tinge),,/dw. At present we (16)
have no easy explanation for this phenomenon. In Fig. 2 we
show the correlation functio@ ,({2) for different absorption
lengths.

The () integral of the phase-delay correlati@)({2) is

required for the varianca ¢, of the cumulativephase. The
latter is defined as

[=]

v dé,
parin)= [ 00 2 w) 14

|
N

with respect to some reference frequengy. The short-
range frequency correlation dip/dw ensures that to a good
approximationg(w) is Gaussian distributed with a variance
proportional to its averagd30]. The relation A ¢(w)?
=K(¢(w)) has been verified experimentally for several fre- _, ! ! ! | |
quencieg30], whereK was seen to be more or less indepen- 0 2 * qecps © 8 10

dent of frequency. It is easy to show that

P06 < $'(v-0/2) P w+0/2) > / <¢>2

=3

FIG. 2. Correlation function with frequency of the phase delay
dg\ [ time d¢/dw, on the basis of Gaussian theory. Different values for
K= < _> f dQC¢(Q). (15) the absorptiorL/L, have been considered. The frequency has been

do/ J-= scaled with the ensemble average delay time.
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The following identity is straightforward to prove:

Al(v,w,Q))

2w?

17

(W, —02W, 1+ a2 = lim
w—0

In the GaussialC,; approximation, one decouples all field
averages into the two-field averagqQ)=(E, oE%, ).
Some algebra then confirms Eq1). We will use Eq(17) to
find the first non-Gaussian correction to this correlation func-
tion, to be referred to aB,(().

The standard recipe for calculating four-field correlators
in the C, approximation has been described by Berkovits
and Feng[4]. We will follow their analysis and notation, I
with the technical difference that we will deal with four gl . . . e N —
(rather than twp different frequencies. The mechanism re- 0 LN d¢/dw2> 3
sponsible for the non-Gaussian correlation is an exchange of
momenta among the four fields, as described by the four- FIG. 4. Normalized correlations functions with frequency of the
point Hikami boxH(q;,0,,03,05) (Fig. 3). Such an event weighted phase delay timiel ¢/dw in transmission(solid lines,
makes different wave trajectories correlated and would bevaluated for negligible absorptioh{L,=0). The frequency dif-
excluded by Gaussian statistics. The correct expression fderence() on the horizontal axis has been scaled with the ensemble
the vertexH was given by Nieuwenhuizen and Van Rossumaveraged delay time=,({}) denotes the Gaussiad, approxima-
[33], tion; (1/9) F,(Q) equals the non-Gaussi&y correction. For com-

parison, we have also shown tflg andC, frequency correlation
H(0y,0,03,05) = — Ny(01 - O+ 03+ Ga).- (18 (I(v—3Q)1(v+3Q)) for the intensity(dashed lineks as calculated
in Ref. [4].
HereNy=/"5/(487k%). If we denote the four-field correla-
tion by C,(Av;) we have, in wave number space,

0.5

tran 27T N / 4NH 3
C, s({AV,}):Z(T E) Tf d°r
Co({a} {A V) = 2% Cy(ay, A v1)Cal G A wy) A

XH(q1,02,03,05)C3(ds, Avz) Xf d?p;- - -d2p,Co({p}.{z}.r:{A ).
XC JAvy). 19
4(Us,Avy) (19 (20)

For the object in Fig. 3 one hagAv}={w+Q,0
—Q,w,0}. The Fourier transform of this object gives the In this equatiorr denotes the position of the Hikami vertex
correlations in real space, and finally correlations in transin the medium, and{z}={/,/,L—/,L—/} denote ap-
mission or reflection. Following Ref4] for transmission proximate entrance and exit depths of the four waves in the
through a slab with length and surfaced>L?, this proce- slab. Equatior(20) can be transformed into
dure leads to

2
Co"{Av}) = |<Tab>|2§[| (B1.82.83,B4)
+I(B31ﬂ31B11B2)]! (21)

with Bi=\—iAv,L?/D+(L/L,)? and

D€ nIE e v

B1B2
sinhB;- - -sinhB,

1(B1,B2:B3,B4)=

FIG. 3. Non-Gaussian C,"” correlation of four complex fields

[actually the second term in E(L6)], whose frequencies have been 1

indicated on the right. The channedsand a’ are two incident XJ dxcostB;(1—x)coshBy(1—x)
channelsp andb’ are outgoing channels. In the present paper we 0

assumea=a’' andb=Db’. The Hikami boxH formally locates the X sinhB3x sinhB,x. (22)

position where momentum exchange occurs between the four fields,

giving non-Gaussian correlation§; denotes the two field cor- ) )
relator (EE*), the labels indicating specific frequency difference W& have also introduced the average one-channel transmis-
(Q+w, ©—Q, o, o, respectively. The mirror image of this dia- Sion coefficien{T,,) = (37/Ak?) //L and the dimensionless
gram is not shown but contributes equally. The convention is thagonductanceg= (Ak?/3w)//L. The normalizedC, fre-
fields E propagate to the right and their complex conjugdi&sto  quency correlation functiofr () for W,y in transmission

the left. can now be obtained from EqL7),
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F.(Q) correlation function decays as\i2(¢'), quite similar to
the long-range correlation function of the intensf. In
CI 0, - Q,0,— ©)— CIP 0+ w,0—Q,0,0) Ref. [1] this non-Gaussian theory was shown to agree with
= lim > . microwave measurements.
w—0 w
(23) V. CONCLUSIONS AND PROSPECTS
The limit can be carried out analytically. What remains is an  |n conclusion, we have presented a theory for the statistics
integral of the kind(22) that is easily done numerically. of the phase delay time of diffusing waves starting from a
The special cas€ =0 with no absorptionl(,==) can  joint Gaussian distribution for complex fields. The sensitivity
be handled analytically. The result is of phase to parameters other than frequefey., space,
time, or magnetic fieldmay be a useful application of this
<W2 )= 1_1+ ﬂ+o - (24) theory. We have also presented a non-Gaussian extension for
a5 359 9?2 the statistics ofld ¢/dw, i.e., the intensity weighted delay

time. The overall conclusion is that the delay time exhibits
This can be compared to the similar expression <f}jb> large mesoscopic fluctuations. Multichannel correlations, the
=2+4/3y. It can be inferred that delay-time fluctuations Statistics of N(w), and a comparison to random matrix
cause the fluctuations WV to exceed those onesiinin botn  theory are logical continuations of this work. We consider
the C, andC, approximations. In Fig. 1 we shof,(0) as the frequency derivative of the phase, which equals the
a function of absorption. We notice thag is more sensitive ~Single channel delay time in the narrow band limit, to be the
to absorption tharf . basic statlst|cal _dynamlca_l variable. It is a great challenge to

In Fig. 4 we show several frequency correlation functionsStudy the statistics of arbitrary wave packets.

for W,y (solid line9 in transmission of a slab without ab-
sorption. In contrast to the correlation function ¢f, no
singularity is encountered & =0. Also shown(dashedi are We thank Freeric Faure, Roger Maynard, Ad Lagendijk,
the correlation functions of the intensity,. These correla- and Gabriel Cwilich for discussions. This work was sup-
tion functions are similar, but the correlation kf,¢,, €x-  ported by the Groupement de Recherches POAN and the
ceeds that of ;, at small frequency differences, whereas it National Science Foundation under Grant Nos. DMR
becomes smaller at large frequencies differences. Fhe 9632789 and INT9512975.
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