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Delay-time statistics for diffuse waves
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We formulate a theory for the statistics of the dynamics of a classical wave propagating in random media by
analyzing the frequency derivative of the phase under the assumption of a Gaussian process. We calculate
frequency correlations and probability distribution functions of dynamical quantities, as well the first non-
GaussianC2 correction. In A. Z. Genack, P. Sebbah, M. Stoytchev, and B. A. van Tiggelen, Phys. Rev. Lett.
82, 715 ~1999!, microwave measurements have been performed to which this theory applies.
@S1063-651X~99!04506-7#
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I. SCOPE

Fluctuations in wave propagation in disordered media
extensively treated in standard references@2,3#. Perhaps the
best known feature is the apparently Gaussian statistic
the complex wave field, with real and imaginary parts
independent variables. This results in the familiar Rayle
statisticsP(I );exp(2I/^I&) of the intensityI . The Gaussian
process is a natural consequence of the central limit theo
if one assumes that the complex field results from a cohe
superposition of many independent wave trajectories.

Modern speckle theory, founded in the 1980s and s
developing rapidly, changes this simple picture considera
@3,4#. New features in speckle statistics have been obse
such as short- and long-range intensity correlations, e.g
frequency@5# or time @6#, the memory effect@7#, universal
fluctuations@8,9#, and non-Rayleigh statistics@10# for the
intensity, many of these explained in terms of non-Gauss
field statistics. An old tool from nuclear physics, rando
matrix theory ~RMT!, has been successfully introduced
this field and seems to capture many ‘‘universal’’ aspe
@11#. Only recently, RMT has solved the fundamental pro
lem of the statistical properties of the so-called phase de
times—which for classical waves are the derivatives of
phase shifts of theS matrix with respect to frequenc
df/dv—at least for chaotic billiards where Dyson circul
ensembles are known to apply@12,13#. The applicability of
the Dyson RMT in disordered systems has been estimate
hold for energies small compared to the Thouless ene
@14#. Pioneering work by Dorokhov@15# and Mello, Pereyra,
and Kumar @16# extended RMT to disordered wires. Th
extension of DMPK theory towards dynamical problems
under active investigation@17,18#.

The popularity of the phase derivativedf/dv stems from
its interpretation as a time delay in scattering@19#. This
quantity describes the dynamics of a very narrow-band w
packet. In homogeneous media it relates directly to the gr
velocity vG @20# whereas in random media its ensemble a
erage is inversely proportional the transport velocityvE fig-
uring in the diffusion constant of the average intensity@22#.
PRE 591063-651X/99/59~6!/7166~7!/$15.00
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Unlike vE , however,df/dv can be considered for arbitrar
realizations. The restriction to narrow-band wave packets
troduces sometimes apparently interpretational proble
such as negative group velocities or negative delay tim
that have been extensively studied in literature@21#.

The phase delay time relates directly to a fundamen
dynamic quantity in condensed matter, namely the numbe
states per frequency intervaldv inside the scattering me
dium N(v) @23#,

1

p (
a,b

2M

I ab

dfab

dv
5N~v!, ~1!

whereAI abexp(ifab)[tab is the complex transition amplitud
from modea to b. Unlike the summation in the Landaue
formula for conductance, the summation runs over theM
channels in both reflection and transmission. Equation~1! is
a manifestation of Friedel’s theorem@24#, originally devised
for screening problems in the solid state, though with eleg
applications to many scattering problems@25–27#, including
ones in RMT@28#. Alt’shuler and Shklovskii@14# demon-
strated the central role of the statistics ofN(v) in the under-
standing of the relation between level repulsion—describ
as a concept in RMT—and universal conductance fluct
tions, a basic element in modern speckle theory, a rela
confirmed numerically@17#. It is crucial that the density of
states in an open~scattering! medium is ill-defined due to the
finite ~Thouless! width of the levels. As shown in Ref.@23#,
the left-hand side of Eq.~1! is well-defined and proportiona
to the integral*dr ucv(r )u2 over the sample, which is—
within the original Friedel argument—recognized as t
‘‘stored charge.’’ For light it equals the stored electroma
netic energy@27#.

Though not free from controversy, Eq.~1! calls for the
interpretation ofWab[I abdfab /dv as the weighted delay
time for a transition from channela to b @29#, to be distin-
guished from the ‘‘proper’’ delay times defined as the eige
values of the Wigner-Smith matrixQ52 iS* •]S/]v, and
its trace TrQ5(a,bWab5pN(v), called the Heisenberg
7166 ©1999 The American Physical Society
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PRE 59 7167DELAY-TIME STATISTICS FOR DIFFUSE WAVES
time tH . The channel averagetH/2M is associated withthe
Wigner-Smith phase delay timetW . Finally, one could call
dfab /dv the single channel delay time for a transition fro
channela to b, irrespectivethe transition probabilityI ab .

The intention of this work is to formulate a statistic
theory for the dynamical matrix elementsdfab /dv andWab
for diffuse waves, using concepts developed for the st
cross sectionI ab @4#. This theory can be applied equally we
to phenomena involving phase variations with other va
ables. The choice of frequency is stimulated by microwa
experiments@1,30#. We shall adopt the ‘‘C1 approximation,’’
which is known to work best for the static ‘‘one chann
in–one channel out’’ matrix elementI ab ~provided the con-
ductanceg5M l /L@1), but which as far as we know ha
not been worked out for dynamic quantities such
dfab /dv andWab . The summation(bWab equals thediag-
onal elementQaa of the Wigner-Smith matrix and may, like
the total transmission(bTab from channela, be subject to
C2 correlations@5#. It is known that even a Gaussian proce
contains phase correlations between speckle spots@31#. The
last section of this work will address the first results forC2
frequency correlations in the dynamic matrix elementWab .
As yet, we have not been able to formulate a non-Gaus
theory for dfab /dv. We note, however, that experimen
have shown this quantity to be highly Gaussian@1#.

II. GAUSSIAN APPROXIMATION

The C1 approximation is equivalent to the assumption
a circular complex Gaussian process@2# of the complex set
tab . A circular process forK complex field amplitudes
Ei(b)5tab( i )Ei

in(a) requires that̂ Ei&50 and that^Ei Ej&
50. The indexi here labelsK different frequencies for a
given channel transitionab. The joint distribution is given
by

P~E1 ,...,EK!5
1

pK detC
expS 2 (

i , j 51

K

ĒiCi j
21Ej D , ~2!

where Ci j 5^EiĒj& is the Hermitian variance matrix. W
shall normalizê EjĒj&51 for all j , assuminĝ I j&51 to be
independent ofj . For small frequency differencev12v2
5v, we can make the expansionC12511 iav1bv2

1O(v3), wherea and b can be calculated from diffusion
theory @4,32#, which involves the diffusion constantD,
sample lengthL, absorption lengthLa , and transport veloc-
ity vE . The latter contains the Wigner delay time of th
scattering objects@22# and thus forms the crucial link be
tween microdynamics and macrodynamics.

Probability distributions can be derived forK52 using a
change of variablesEj5Aj exp(ifj). As v→0, the stochastic
variables can be chosen asI 5A2, f8[dfab /dv, R
[d ln Aab/dv, andfab . Integrating out the phase shiftfab
yields for the joint distribution,

P~ I ,f8,R!5
I

pQa2
exp~2I !

3expF2
I

Qa2
~f82a!22

I

Qa2
R2G . ~3!
ic

-
e

s

s

an

fThe distribution functionally depends on a single parame
Q[22b/a221.0, which is shown in Fig. 1 as a functio
of absorptionL/La . From the diffusion formula forC(V) in
transmission used in Ref.@4#, it follows that

Q5
X222 sinh2 X1 ~ 1

2 ! X sinh 2X

~X coshX2sinhX!2
, ~4!

with X5L/La .
In the absence of absorption, the mean delay time^f8&

5a equals the diffuse traversal timeL2/6D for waves in
transmission, and 4L/3vE in reflection. In Fig. 1 we see how
^f8& decays as absorption comes in. Measuring^f8& in re-
flection and transmission would give access to both trans
mean free pathl 53D/vE and transport velocityvE .

Even in the Gaussian approximation,I andf8 are corre-
lated observables. For constant intensityI the delay time is
normally distributed with spreadDf8/^f8&5AQ/2I . This
has been confirmed experimentally@1#. The phase in dark
points becomes ill-defined@31#, which causes strong fluctua
tions inf8 at low intensities. Upon integration overI andR
one finds

PS f̂8[
f8

^f8&
D 5

1

2

Q

@Q1~f̂821!2#3/2
. ~5!

This algebraic law agrees with experimental data for mic
waves in transmission@1# oversevenorders of magnitude. It
has the property that̂(f8)2&5`, though any finite fre-
quency gridDv transforms this divergence into a finite valu
2 ln Dv. From Eq. ~3!, we find for the distribution of the
dynamic matrix elementWab ,

FIG. 1. Several parameters which appear in the statistics of
delay time are shown as functions of the absorptionL/La in trans-
mission through a thick slab of lengthL. Dashed vertical lines
estimate their values in the experiments of Refs.@1# and @30#. The
function F1(0) denotes the short range ‘‘C1’’ contribution to
^W2&2^W&2; (1/g)F2(0) is the non-Gaussian ‘‘C2’’ contribution
observed in Ref.@1#. Q is the dimensionless parameter determini
the probability distribution of the quantitiesW andf8; the average
delay time^fv8 & has been normalized to the diffuse traversal tim
L2/6D. The relation (Dfn)2;^fn& for the cumulative phase a
frequencyn is given by Eq.~15!.
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PS Ŵ[
W

^W&
D 5

1

AQ11
expS 22uŴu

u~Ŵ!1AQ11
D . ~6!

The Heaviside functionu(x) vanishes forx,0 and equals 1
for x.0. The averagê W&5^I &^f8&;L/2MvE both in
transmission and reflection. Like the intensityI , W has an
exponential distribution but unlikeI it can take negative val
ues. Though less probable, the existence of negative ‘
lay’’ times is an interesting feature that is also observed
experiments@1# and is allowed by scattering theory@19#. By
Eq. ~3! these are most probable in ‘‘dark spots.’’ In tran
mission from a thick slab without absorptionQ52/5 and
s
ha
ou
e-
n

positive values forW are 12 times more probable than neg
tive values. In reflection@22#, Q'(3L/7l )2@1, implying
nearly equal probabilities for positive and negativeWab .

III. GAUSSIAN THEORY
FOR FREQUENCY CORRELATIONS

Correlation functions at two close frequencies provide
sensitive test of the validity of the Gaussian approximation
the experiment. Frequency correlations offab8 andWab can
be obtained from Eq.~2! with K54 at the frequenciesn
6v/26V/2 in the limit v→0. The correlation matrix we
need to study is
e-
on
on for
C~v,V!5S 1 C~v! C~V! C~V1v!

C̄~v! 1 C~V2v! C~V!

C̄~V! C̄~V2v! 1 C~v!

C̄~V1v! C̄~V! C̄~v! 1

D . ~7!

For v50 this matrix contains a doubly degenerated eigenvaluel1,250 and two eigenvaluesl3,4(V)5262uC(V)u. For v
→0 one gets

l1,2~V!

v2
[j1,2~V!5

Qa2

2
1

1

2

uC8~V!2 iaC~V!u2

12uC~V!u2
6

1

2

uz~V!u

12uC~V!u2
, ~8!

with z(V)[C̄9(V)@12uC(V)u2#2a2C̄(V)12iaC̄8(V)1C(V)C̄8(V)2. The corresponding four eigenfunctions can be d
rived straightforwardly, among which the first two will be required to orderv, as customary in second-order perturbati
theory. A careful analysis forv→0 in the subspace spanned by the first two eigenvectors shows that the joint distributi
the four complex fields can be transformed into

P~A1 ,A3 ,A18 ,A38 ,f1 ,f3 ,f18 ,f38!5
1

p4

A1
2A3

2

j1j2l3l4
exp2

1

4j1
uA182m̄2A11 iA1f181~A381m2A31 iA3f38!exp~ if132 ir!u2

3exp2
1

4j2
uA182m̄1A11 iA1f182~A381m1A31 iA3f38!exp~ if132 ir!u2

3exp2
1

l3
uA11A3 exp~ if131 i t!u23exp2

1

l4
uA12A3 exp~ if131 i t!u2, ~9!
on

that
ns,
wherer(V) andt(V) are the complex phases ofz(V) and
C(V),

m6~V![
g1~V!6g2~V!exp@ ir~V!#

12uC~V!u2
, ~10!

and g1(V)[C(V)C8̄(V)1 ia, g2(V)[ iaC(V)2C8(V).
Equation~9! implies many correlations between amplitude
phase, and phase derivatives, only two of which we s
discuss. We remark that it is straightforward to integrate
the amplitude derivativesA1,38 .
,
ll
t

A. Id f/dv frequency correlation

The calculation of the normalized frequency correlati
function of Wab[I abdfab /dv involves straightforward in-
tegrations of Eq.~9! that can all be done analytically,

^Ŵab~n2V/2!Ŵab~n1V/2!&c

5
1

2a2
@ uC8~V!u22ReC~V!C̄9~V!#

[F1~V!. ~11!

This result can be obtained more easily using a method
will be introduced later to calculate long-range correlatio
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using the Gaussian rules to evaluate a correlation involv
four fields.

The variance (DŴab)
25F1(0) has been plotted in Fig. 1

as a function of absorption and in transmission. Without
sorption, the diffusion approximation forC(V) in transmis-
sion @4# predictsF1(0)56/5. For largeV one can show tha

F1(V)→ ( 1
2 ) exp2(A2VL2/D).
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B. df/dv frequency correlation

The derivation of the frequency correlation function f
the single channel delay timefab8 (n) involves more work.
After analytically integrating out the amplitude derivative
A1,38 , an integral over the phase shiftf13 remains that must
be done numerically. Equation~9! finally yields
K df

dv
~n2V/2!ab

df

dv
~n1V/2!abL [ K df

dv
~v!L 2

@11Cf~V!#

5
1

4p2~12uCu2!
E

22p

2p

df~2p2ufu!F22 Re~ze2 if!H0~Rf!

1
H2~Rf!~ Im2 g11Im2 g2eif!22 Img1 Im g2H1~Rf!

12Rf
2 G , ~12!
ue
e
-

ld

lay
for
een
whereRf[ReC(V)eif. We have introduced the function
H0(x)5arctan@A(11x)/(12x)#/A12x2, H152H01x,
andH252xH011.

As V→0, Eq.~12! predicts a logarithmic divergence, no
encountered in intensity correlation functions. For large f
quency shifts, we find that

Cf~V!5uC~V!u2 ~ uCu!1!, ~13!

i.e., Cf becomes identical to theC1 intensity correlation
function which decays exponentially. In Ref.@1# the correla-
tion function ~12! has been compared to experiment, in
regime where the intensity is known to be subject to la
non-Gaussian fluctuations. The excellent agreement betw
Eqs.~5! and~12! and experimental data seems to exclude
existence of non-Gaussian~long-range! correlations in the
single channel phase delay timedfab /dv. At present we
have no easy explanation for this phenomenon. In Fig. 2
show the correlation functionCf(V) for different absorption
lengths.

The V integral of the phase-delay correlationCf(V) is
required for the varianceDfn of the cumulativephase. The
latter is defined as

fab~n![E
n0

n

dv
dfab

dv
~v! ~14!

with respect to some reference frequencyn0 . The short-
range frequency correlation ofdf/dv ensures that to a goo
approximationf(v) is Gaussian distributed with a varianc
proportional to its average@30#. The relation Df(v)2

5K^f(v)& has been verified experimentally for several fr
quencies@30#, whereK was seen to be more or less indepe
dent of frequency. It is easy to show that

K5 K df

dv L E
2`

`

dVCf~V!. ~15!
-

e
en
e

e

-
-

K is shown in Fig. 1 as a function of absorption. The val
K'1.0 nearL/La'5 coincides with the experimental valu
reported in Ref.@30#. Without absorption we find the some
what larger valueK51.61.

IV. NON-GAUSSIAN FREQUENCY CORRELATIONS
IN I Df/Dv

Consider the frequency correlation function of four fie
and introduce

D~n,v,V!

[^En2V/22v/2En2V/21v/2* En1V/21v/2En1V/22v/2* &

2^En2V/22v/2En2V/21v/2* En1V/22v/2En1V/21v/2* &.

~16!

FIG. 2. Correlation function with frequency of the phase de
time df/dv, on the basis of Gaussian theory. Different values
the absorptionL/La have been considered. The frequency has b
scaled with the ensemble average delay time.
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The following identity is straightforward to prove:

^Wn2V/2Wn1V/2&5 lim
v→0

D~n,v,V!

2v2
. ~17!

In the GaussianC1 approximation, one decouples all fie
averages into the two-field averageC(V)[^En2VEn1V* &.
Some algebra then confirms Eq.~11!. We will use Eq.~17! to
find the first non-Gaussian correction to this correlation fu
tion, to be referred to asF2(V).

The standard recipe for calculating four-field correlato
in the C2 approximation has been described by Berkov
and Feng@4#. We will follow their analysis and notation
with the technical difference that we will deal with fou
~rather than two! different frequencies. The mechanism r
sponsible for the non-Gaussian correlation is an exchang
momenta among the four fields, as described by the fo
point Hikami box H(q1 ,q2 ,q3 ,q5) ~Fig. 3!. Such an event
makes different wave trajectories correlated and would
excluded by Gaussian statistics. The correct expression
the vertexH was given by Nieuwenhuizen and Van Rossu
@33#,

H~q1 ,q2 ,q3 ,q5!52NH~q1•q21q3•q4!. ~18!

HereNH5l 5/(48pk5). If we denote the four-field correla
tion by C2(Dn i) we have, in wave number space,

C2~$qi%,$Dn i%!523C1~q1 ,Dn1!C2~q2 ,Dn2!

3H~q1 ,q2 ,q3 ,q5!C3~q3 ,Dn3!

3C4~q4 ,Dn4!. ~19!

For the object in Fig. 3 one has$Dn i%5$v1V,v
2V,v,v%. The Fourier transform of this object gives th
correlations in real space, and finally correlations in tra
mission or reflection. Following Ref.@4# for transmission
through a slab with lengthL and surfaceA@L2, this proce-
dure leads to

FIG. 3. Non-Gaussian ‘‘C2’’ correlation of four complex fields
@actually the second term in Eq.~16!#, whose frequencies have bee
indicated on the right. The channelsa and a8 are two incident
channels;b andb8 are outgoing channels. In the present paper
assumea5a8 andb5b8. The Hikami boxH formally locates the
position where momentum exchange occurs between the four fi
giving non-Gaussian correlations.Ci denotes the two field cor
relator ^EE* &, the labels indicating specific frequency differen
(V1v, v2V, v, v, respectively!. The mirror image of this dia-
gram is not shown but contributes equally. The convention is
fields E propagate to the right and their complex conjugatesE* to
the left.
-

s
s

of
r-

e
or

-

C2
trans~$Dn i%!52S 2p

k D 4S l

4p D 4 NH

A4 E d3r

3E d2r1•••d2r4C2~$ri%,$zi%,r;$Dn i%!.

~20!

In this equationr denotes the position of the Hikami verte
in the medium, and$zi%5$l ,l ,L2l ,L2l % denote ap-
proximate entrance and exit depths of the four waves in
slab. Equation~20! can be transformed into

C2
trans~$Dn i%!5u^Tab&u2

2

g
@ I ~b1 ,b2 ,b3 ,b4!

1I ~b3 ,b3 ,b1 ,b2!#, ~21!

with b i[A2 iDn iL
2/D1(L/La)2 and

I ~b1 ,b2 ,b3 ,b4![
b1b2

sinhb1•••sinhb4

3E
0

1

dx coshb1~12x!coshb2~12x!

3sinhb3x sinhb4x. ~22!

We have also introduced the average one-channel trans
sion coefficient̂ Tab&5(3p/Ak2)l /L and the dimensionles
conductanceg5(Ak2/3p)l /L. The normalizedC2 fre-
quency correlation functionF2(V) for Wab in transmission
can now be obtained from Eq.~17!,

e

s,

t

FIG. 4. Normalized correlations functions with frequency of t
weighted phase delay timeIdf/dv in transmission~solid lines!,
evaluated for negligible absorption (L/La50). The frequency dif-
ferenceV on the horizontal axis has been scaled with the ensem
averaged delay time.F1(V) denotes the GaussianC1 approxima-
tion; (1/g) F2(V) equals the non-GaussianC2 correction. For com-
parison, we have also shown theC1 andC2 frequency correlation
^I (n2

1
2 V)I (n1

1
2 V)& for the intensity~dashed lines!, as calculated

in Ref. @4#.
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F2~V!

5 lim
v→0

C2
trans~V,2V,v,2v!2C2

trans~V1v,v2V,v,v!

v2
.

~23!

The limit can be carried out analytically. What remains is
integral of the kind~22! that is easily done numerically.

The special caseV50 with no absorption (La5`) can
be handled analytically. The result is

^Ŵab
2 &5

11

5
1

64

35g
1OS 1

g2D . ~24!

This can be compared to the similar expression for^ Î ab
2 &

5214/3g. It can be inferred that delay-time fluctuation
cause the fluctuations inW to exceed those ones inI , in both
the C1 andC2 approximations. In Fig. 1 we showF2(0) as
a function of absorption. We notice thatF2 is more sensitive
to absorption thanF1 .

In Fig. 4 we show several frequency correlation functio
for Ŵab ~solid lines! in transmission of a slab without ab
sorption. In contrast to the correlation function off8, no
singularity is encountered atV50. Also shown~dashed! are
the correlation functions of the intensityI ab . These correla-
tion functions are similar, but the correlation ofI abfab8 ex-
ceeds that ofI ab at small frequency differences, whereas
becomes smaller at large frequencies differences. TheF2
an

d

w

ys
n

s

t

correlation function decays as 1/AV^f8&, quite similar to
the long-range correlation function of the intensity@5#. In
Ref. @1# this non-Gaussian theory was shown to agree w
microwave measurements.

V. CONCLUSIONS AND PROSPECTS

In conclusion, we have presented a theory for the statis
of the phase delay time of diffusing waves starting from
joint Gaussian distribution for complex fields. The sensitiv
of phase to parameters other than frequency~e.g., space,
time, or magnetic field! may be a useful application of thi
theory. We have also presented a non-Gaussian extensio
the statistics ofIdf/dv, i.e., the intensity weighted dela
time. The overall conclusion is that the delay time exhib
large mesoscopic fluctuations. Multichannel correlations,
statistics of N(v), and a comparison to random matr
theory are logical continuations of this work. We consid
the frequency derivative of the phase, which equals
single channel delay time in the narrow band limit, to be t
basic statistical dynamical variable. It is a great challenge
study the statistics of arbitrary wave packets.
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