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Conservation law for multimoded nonlinear optical waveguide interactions
and its physical interpretation
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The swapping of power between the modes of cw waves in lossless nonlinear optical waveguides always
admit two conserved quantities, the total power and one other, which is sometimes identified as a Hamiltonian.
We show that a general formulation of this Hamiltonian is in fact the weak guidance limit for cw waves of a
more general conservation law. We make the link between this more general conservation law and the con-
servation of “wave” momentum, where wave momentum is a combination of both real momentum and
so-called pseudomomentum. This allows us to interpret the conserved Hamiltonian in physical terms.
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I. INTRODUCTION

N (B 1
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Few mode nonlinear optical waveguide devices have re- k=11 @o A

ceived considerable attention in recent years because of th

ppter)tial application as very high speed switches in cCoMMug, .o equationg, is the angular frequency of the fields, is
nications networkssee Refs[1-17], for examplg. Of con- 4 jinear propagation constant of thth mode,P,(z) is the
siderable importance in the theoretical analysis of such depower in thekth mode at waveguide positian the super-
vices are the conserved quantities of the system, as theyint asterisk denotes complex conjugd¥; is the induced
allow the dimension of the mathematical problem to be réy,gnjinear polarization due to the transverse friof the
duced, so that a few, or even a single differential equation ofqy)| electric field, and the angled brackets indicate a suitable
integration leads to a closed-form solution for the dynamicaljme average.

path of the system in its phase space. For cw interactions in |n the next section, we show directly from Maxwell's
lossless devices, conserved power is always one of the cogguations thaH is the weak guidance limit for cw waves of
stants of motion for example, and its physical interpretationa more general conservation law. In Sec. lll, we then show
in terms of the conservation of energy is obvious. In multiplethat this more general conservation law is in fact teom-
frequency interactions, the Manley-Rowe relations also proponent of the conservation law for “wave momentum” in a
vide constants of motion, whose physical interpretation is irrigid dielectric. This then allows us to answer the question of

qBr waveguides translationally invariant in thelirection. In

terms of conserved photon numbers. the proper physical interpretation bf.
Apart from conserved total power, and the Manley-Rowe
relations when they are applicable, there is always another Il. GENERAL CONSERVATION LAW

conserved quantity for cw multimode interactions in a loss-
less waveguid@18]. This constant either “just comes out of
the equations'{3—10], or is formulated as a “Hamiltonian” For our purposes, we need Maxwell's equations for an
H [11-15 (though not to be confused with the classical €lectric and magnetic fiel& and’H for charge free nonmag-
mechanics Hamiltonian of total enelgyDespite its wide- netic stationary media(e.g., optical fibers/dielectric
spread use however, the precise physical interpretation ofaveguides These are given by

this constant has never been fully investigated, though it has

been suggested to be related to stored en[atgyl_q, mo- VXE=— @ (23
mentum[16,20,21, and momentum floW18] by various au- at

thors. A primary purpose of this paper therefore, is to answer

A. General theory

definitively the question of the proper physical interpretation D
of H. In doing so, we will also show that this constant fol- VXH= ot (20)
lows from a more general conservation law derivable directly
from Maxwell's equations without recourse to coupled mode V.- D=0, (20)
formalism. For simplicity, we shall limit our analysis to the
case of an ideal Kerr law medium when third harmonic gen- V.B=0, (2d)
eration can be neglected, though the final interpretation is
believed to be completely general. where

For the case under discussion, the Hamiltonian constant
of motion can be written in the general forh8] B=uyH, (3a
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D= &+ P, (3b) B. An important special case

In a nonhomogeneous dispersion-free linear medifon
andD is the total displacement is the total magnetic flux, \yhich D=¢-€ but now €" is a function of position the
P is the total polarizationu, is the permeability of free right-hand side of Eq(6) reduces to (1/2F-E(VeY). It is
space and, is the permittivity of free spacéNote that we  the presence of this term Me- which prevents Eq(6) from
use script letters to denote theal vector field variables and being a conservation law in generélVe note in anticipation
later on we will introduce normal text letters for the field gt this point, that the requirement that the medium be homo-
variables when we rewrite them in complex form. This dif- yeneous for a “balance” law to become a conservation law
ferentiation between the real and complex forms of the fieldg 5 hallmark of something which has been dubbed pseudo-
variables is necessary because we will be dealing with nonnomentum or quasimomentum. We postpone a discussion of
linear dielectrics. pseudomomentum to Sec. IlA.
We use as our ansatz the knowledge that the differential a conservation law can still be obtained from E§) for
form of conservation laws for continuously distributéid a special, though practically important, class of nonhomoge-
the continuum limit vector quantities, such as momentum, negus media, however—namely, waveguides which are uni-
have the general form form in the z direction. For such waveguides, taeompo-
nent of Eq.(6) integrated over the infinite cross section of

4) the waveguide will yield a conservation law, even when the
effects of dispersion and nonlinearity are accounted for, as
we will now show.

where for momentum, the tensor is a momentum flux density First we breakD into linear and nonlinear parts, i.€D

plus stress tensor. =D+ PN, where P\t is the nonlinear part of the polar-

Considering Maxwell's equations, we find that the obvi- jzation density vector. Using Eq7), this allowsV - T in Eq.
ous candidates for & something)ét for our desired conser- (6) to be split into linear and nonlinear parts as follows:
vation law included(e,€X B)/ot, I(PXB)/ot and (D
X B)/at. Further investigations of each of these candidates B 1 1
reveals that it is thé(Dx B)/4t possibility which leads to ¥ 1=V 1 T3P (VE)+5E (VP — V- (EP™),
the desired conservation law as we will now show. (8)

Using the product rule to expant{ DX B)/dt and then o )
substituting from the Maxwell equatiori@a) and (2b) leads where we have also used Ed@\3b). Sutgstltutlng this result
to into Eq.(6a), taking the dot product witk and then integrat-
ing the result over the infinite cross sectidn of the wave-
guide, we get

J
E (vector current densijy+ V - (tensoy=0

%(DXB)z(VXH)XBJr(VxS)XD. (5)

J S IE
E(DtXBt)'Z_F E(le_z_ gszNL)"‘PNL' o

To get Eq.(5) looking more similar to Eq(4), we use the wadA
vector/tensor identity EQA5) from Appendix A to rewrite

the right-hand side of Eq5) in terms of divergences and +-pt.Z_Z ¢
other quantities. Additionally using E¢3a) and the Max- 2 gz 2 9z
well Egs.(2c) and(2d), results finally in the identity:

=0, €)

where the subscript represents the transverse part of the
J field, z is a unit vector in the direction, and we have used
E('DXBHV'T: 2 E(VD)— 2 D-(VE) (68  the result a- (Vb)]-z=a- db/ 9z, and for bound fieldsi.e.,
fields that go to zero at infinijythe two-dimensiona(2D)
divergence theorem gives that

JAmdAE-(V-T)=J’AmdA

whereT,, is thezz component ofT .
T=_1(E-D+H B -ED-HB ) In order to determine Ehe effects of dispersiore taNkLe
2 account of dispersion i, but neglect dispersion i
_ _ [24]), we next assume that the time dependenc€ tan be
is the negative of the Maxwell stress teng@2] and the  separated into a rapidly varying part with angular frequency

spatial part of the Minkowski energy-momentum ten28]. 4, and a slowly varying envelope functidh so that
For the standard case of a homogeneous, dispersion-free

linear medium,D=¢€"E (where €- is the constant linear E(r,t)=E(r,t)e o+ E* (r,t)el ot (11)
dielectric permittivity of the medium and the right-hand

side of Eq.(6) is identically zero, thus giving the “momen- Where

tum” conservation law of Minkowskj23]. However, in gen- .

eral, Eq.(6) does not fit the form of Eg4), and so is not a E(r,t)= LJ do € e i(@=wot (12)
conservation law but a “balance” law. 2m o ¢

1
8-(V’P)—§ P-(VE), (6b)

N[ =

T,
dz '’ (10

where
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and similar expressions also apply to all the other field quanenvelope quantities are constants in flnie terms of the

tities. modes of the unperturbediinean waveguide as follows
Replacing all fields in Eq(9) by their expanded forms [29,30:

[i.e., by Eq.(12) or its equivalentand taking a suitable time

averagq 25], we end up with the following conservation law _ . iz

for a cubic nonlinear medium: E=2, 3 (x.y) e, (163

aG T _
P 13 Ht:; ajhy(x,y)e'fiz, (16b)
where the scalars 2
n .
E,= ; ?aiezj(X.Y)e'ﬁiz, (160
T=J dA[(ng—E; Py —E,Py l
A,
+ 1 PNL E*+PNL* E 14 HZ:; ajhzj(x’y)eiﬁjzi (16d)
7P\ B, (149
wherea; is the amplitude of th¢th modal field which has a
g:f dAl (D ><Bt+Dt><B;*)~2 propagation constgrﬁj, and Wg have split theAImea(un-
A perturbedl waveguide modal fields=g;+e,z and h;
i el JE* JE zhtj+hzj2, into their transversesubscriptt) and longitudi-
+— _( E. —E*. _) , (14p  nal (subscriptz) components. Note that since we have ex-
2 dw 0z 9z panded the transverse parts of the fields in terms of the un-

perturbed modal fieldsince those fields form a complete set
and for the total transverse fieldn order for the longitudinal
L Ly . Ly . component ofE to be consistent with both this expansion
(T;»=Re{E;-Dy* +H-Bf —E,D;* —H,BJ}, (140  and Maxwell’'s equations, it is not given by an expansion in
terms of the unperturbed longitudinal modal fields, but rather
where Re denotes the real part and we have also used Eqgy the modified form shown in Eq160 [29]. Thus in Eq.
(B2) and (C4) from the appendixes to rewrite the last three (16¢), n(x,y) is the linear(unperturbel refractive index of

terms on the left-hand side of E(P). the waveguide whilst;(x,y,z) is the perturbed refractive

Note that in the linear limit for a single mode propagatingindex experienced by modei.e., Ti; depends on the power
down a uniform dielectric waveguide, EgEL3) and (14) in each of the modes through the nonlinearity.

reduce to the results found by Haus and Koge|2#]. They L~y ) 2 o
also reduce to the results found by Nelg@] and Loudon If we write nj'=n"+ nj’, wheresnj/n“<1, then the per-
et al.[28] for an electromagnetic wave propagating in a lin-turbed ~ waveguide modal displacement field,;
ear homogeneous medium. To compare with analyses that eonz(nzlﬁf)ezjzdzj—eoénjzezj, where d,;= eon?e,; is

have ignored dispersion, just sé¢"/dw=0 in Eq.(14b). the unperturbed waveguide modal displacement field. Substi-
tuting the modal expansions given in E¢&6) into the(T5,)
C. CW limit part of Eq.(148 for 7 and using the approximation intro-

For a cw wave, the field envelope quantities are constarf{uced above, we find that

in time, and so the conservation law given by E3) re-
duces to the “constant of motion” Tzf dA
A,

Ej‘, |aj|? Re{ey; - df + hy; - by — % — h b3}

T=const, (15 L
* pNL NL*

where 7 is still given by Eq.(14a. Note that this result is R P oERT Z(PNL' E*+PE)

still at this point completely general and free from approxi- s o

mations apart from the assumptions that the waveguide be ~ T(termsinén® and the longitudinal

lossless, translationally invariant, and composed of an ideal

Kerr law material. We have also assumed that electrostric- fieldse,; and d,)

tion, magnetostriction, third harmonic generation, and radia-

tion fields may be neglected.

. (17)

Rather amazingly, the expression in curly brackets in Eq.

(17) is simply a sum over modes because the mixed mode

terms that might have been expected to appear in this expres-

sion can be shown to evaluate to zero when integrated over
If we now considerP\" to be a small perturbation to the the infinite cross section of the waveguiBd].

linear waveguide, then we can expand the total figffigen We now recall that several authors have shown that

by expressions such as E@1), but where now the field [30,32,33

D. Constant of motion in terms of the linear modes
of the waveguide
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) . . . . served if the Lagrangian density is explicitly independent of

fA dAlaj|* Re{e; - dfj + hy; - by —e,5d3;—h, b} ) the material coordinates, i.e., if the medium is homogeneous.
* Extending these ideas to our matter-field system, total
=BjP;lwy, matter-plus-electromagnetic field momentum can be ex-

pected to be always conserved. Total pseudomomentum,
whereP; is the power carried by thgth mode, and so sub- however, will only be conserved if the medium is homoge-
stituting this result into Eq(17) andthentaking the weak neous, which, in the case of owrinvariant waveguide,
guidance limit by neglecting all the longitudinal fields, we means that only the component of pseudomomentum will
find that7 reduces to the Hamiltoniad of Eq. (1). We thus  pe conserved. Since the conservation law derived above only
see that the conserved Hamiltonibinis the weak guidance applies in thez direction, it follows from the above discus-
In_mt for cw waves of the more general conservation lawgjgn that pseudomomentum can be expected to play a part in
given by Eq.(13). its physical interpretation.
Since pseudomomentum is not a generally familiar con-
E. An important conceptual point cept in the optics community, and there is not complete con-

We now turn to an important Conceptua| point_ A|th0ugh sensus on its definition in the Iiterature, it is worth Saying a
in the end we have neglected the longitudinal field compofew more words about it. As its name suggests, pseudomo-
nents, they were absolutely essential determining that mentum is not a real momentum, though it has the same
(TL,) is the differencebetween the stored energies per unitdimensions and in many ways behaves as real momentum
length in the transverse and longitudinal modal fields and nodoes—for example, obeying conservation laws and
the sum. ThugT:,) cannot be interpreted as a stored energyNewtonian-like balance laws involving pseudoforces
term as some authors have ddiig,19, but rather it is a [34,35. The most familiar example of pseudomomentum is
wave momentum flow terf26]. We now turn to the deter- the “momentum” 7k carried by a phonon in a crystg36],
mination of the physical interpretation of the general conserthus indicating the general importance of the concept. The
vation law given by Eq(13), and hence to the proper physi- reader is warned, however, that there are two alternative

cal interpretation of the Hamiltonial. definitions of pseudomomentum in the literature. The one
adopted in this paper, is that pseudomomentum is a purely
. PHYSICAL INTERPRETATION material frame(Lagrangian coordinatg¢squantity as pro-

posed in Refs[27,34,35,37. Other authors however, use

We have shown to this point that a canonical form of therelative displacement as their matter field variaf88—41].

conserved “Hamiltonian” frequently used in the study of This mixes together tial frame and material fram ;
few-mode interactions in weakly guiding nonlinear €s together spatial frame a aterial tframe coor-

waveguides does in fact follow from a more general consergmates’ and so mixes together momentum and pseudomo-

vation law which we have derived from manipulations of MeNtum as defined by the convention we follow.
Maxwell's equations. These manipulations, however, leave
unanswered the question of what precisely is the proper B. Wave momentum

physicalinterpretation of the conserved quantity. Itis to this  The “momentum” associated with an electromagnetic

question that we now turn. Although the conservation lawyaye propagating in a dielectric medium is a topic which has
given by Eq.(13) was derived assuming a stationary, rigid yeceived considerable attention over the yeae, for ex-

dielectric, in order to appreciate its physical meaning, we le. th ; . .
must first consider an elastideformable¢ medium and then ample, the review papers by Robins@?] and Brevik[23],

ey . : . 2 the book by Penfield and Ha{43], and the following recent

take the limit as this elastic medium becomes rigid. articles[27,28,37—39,4 though the paper by Nelsd7]
contains all the results we shall ned€@he interested reader
is also directed to Ref28], which extends the work of Nel-

Our system comprises interacting matter and electromagson[27] to include the effects of loss, but also uses a much
netic subsystems. Many of the key ideas needed for the ursimpler model for the material medium to derive the desired
derstanding of the physical meaning of the conservation lawesults)
given by Eq.(13), however, are dealt with elegantly and In Ref.[27], Nelson first considers the interaction of an
more simply in a paper by HerrmariB4] in a general dis- electromagnetic wave with a completely general homoge-
cussion of the simpler case of an elastic medium alone. Imeous elastic dielectric, and derives from the Lagrangian per-
summary, the key results from this discussion of elastodyspective the conservation laws of momentum and pseudomo-
namics from the Lagrangian perspective are as follaiys. mentum for such a system. He then notes that for an optical
The Euler-Lagrange equations of motion may be considereftequency wave in a material medium, there is no deforma-
to be a balance law for ordinary momentufi) the time tion of the medium. In this special case, the distinction be-
derivative of the Lagrangian density leads to a balance lavween spatial and material frames vanishes. Consequently,
for energy, andiii) the space derivatives of the Lagrangian momentum(an inherently spatiaflocal or Eulerian coordi-
density leads to a balance law for so-called pseudomomemates frame quantity and pseudomomentugan inherently
tum. From these balance laws, it follows that momentummaterial frame quantijycan be added to give a new con-
conservation is a consequence of the homogeneity of spacgerved quantity which he has called “wave momentum.”
energy conservation results if the Lagrangian density is exNeglecting a magnetization term, the conservation law for
plicitly independent of time, and pseudomomentum is conwave momentum is given bj27]

A. Some general concepts
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J IV. CONCLUSIONS

5 +V-(T+o)=0, (18

DX B- D, my”-(Vy")

In this paper, we have extended the conservation law de-
rived by Haus and Kogelnik26] for a linear dielectric wave-
guide to the case of a cubically nonlinear waveguidgs.

(13) and(14)]. We have also established that this new con-
servation law has practical as well as theoretical value by
m ... 1 showing that it leads, for cw waves interacting at a single
o= X - (V) =p 2+ 5P-E]. (19 frequency, to a general form of the previously established
' conserved “Hamiltonian”H [Eq. (1)] [12,18, for multiple
mode interactions in a weakly guiding, weakly nonlinear
In these two equationg;® is the mass densityper unde- waveguide. It has been shown thdtdoes in fact follow
formed volume of the crystal,m” is the mass densitgper  from a general conservation law, and this is expected to be of
undeformed volumeassociated with the-internal coordi-  value in determining the physical basis of conserved guanti-
natey'”, the dot represents a material time derivative, Bnd ties for waves with time-varying envelopes such as temporal
is the stored energy per unit mass. THé—1 (v  solitons.
=1,2,...N—1) internal coordinatesy’ arise because More immediately, establishing thad follows from a
there are assumed to I particles per primitive unit cell. general conservation law has allowed us to call on the works
These internal coordinates are defined as displacementf Nelson and otherf27,28,37 to finally resolve the issue of
invariant coordinates so that rjordinary) momentum is as- the proper physical interpretation &f [45]. To wit, H, as
sociated with them. The link betwegn” andy” is given by  defined by Eq(1), is the conserved wave momentyordi-
y"'=Y"+y" whereY” is the value ofy™ in the natural nary momentum plus pseudomomenjuiow for cw waves
state. propagating in a uniformz invarian) waveguide in the ab-

To complete the analysis, it now only remains for us tosence of deformationThe z invariance is required for the
show that Eq(18) is in fact equivalent to Eq6b). Compar-  conservation of pseudomomentum in this direction, and the
ing the two equations, we thus see that we must show thatabsence of deformation is required so that ordinary momen-

tum and pseudomomentum may be adged.

J 1 1 Fi.nally, given. the importance oH. in detgrmining thg

_<2 mvyv.(vyV)> ~V.0==E-(VP)— =P-(VE). nonlinear evolution of a system of interacting modes in a

at 2 2 nonlinear dielectric waveguidd 2,18, and its interpretation

(20 as conserved wave momentum flow, we have thus verified
(for these types of systema comment made by Nelson that
This can be done by expanding the time and space deriva27, “ - .. wave momentum is a more important quantity in
tives of the terms on the left-hand side of this equation andvave interactions than either momentum or pseudomomen-
noting that for a stationary homogeneous medium in the abm alone.”
sence of deformatiof27]: Vy’=Vy'™; P==,q"y"", where
g” is the charge density associated with the internal coordi-

whereT is given by Eq.(7), and the tensowo is given by

Tv 0% ; Tv . ACKNOWLEDGMENT
natey'’, p°2 is a function ofy'” only, and the internal
motion equation(keeping only terms to dipole ordeis The author would like to thank Professor Colin Pask for
given bym*y”=—a(p°3)/ay""+q"E. suggesting the problem and for helpful comments regarding

This then proves that E@6b) is the conservation law for the manuscript.
wave momentunia sum of real momentum and pseudomo-
mentun) for a homogeneous nondeforming dielectric. Since
uniform dielectric waveguides are only homogeneous in the APPENDIX A: USEFUL VECTOR AND TENSOR
z direction, only thez component of this conservation law IDENTITIES
(integrated over the infinite cross section of the waveguide 1. Conventions
therefore remains a conservation law for uniform dielectric ) . -

As there are several different conventions pertaining to

waveguides, as was shown in deriving E§3) in Sec. IIB. ) )
the expression of tensor calculus in component form, e.g.,

The proper physical interpretation of the Hamiltonildn ) X
that we started the paper with is now clear. It is the COn_Refs.[26,4a, we state our conventions here to avoid reader

servedwave momentum flow or momentum flug.e., the confusion and_ collect the relevant identities consistent with
wave momentum flux density integrated over the infinite (€S€ conventions below. _
cross section of the waveguidéor cw waves in the weak For vectorsa andb and second rank tensdr, we define
guidance limit. Given this interpretation, it is clear that the [aTl=aT
first term inH, i.e., 3;B8;P;/ wy, is the linear wave momen- b
tum flow (as was shown for a single waveguide mode in

[26]), and the second part, i.e., %[ (P\"-Ef [T-a]i=Ta;, (Alb)
+PN-*.E\)dA, is the nonlinear perturbation correction to

the linear wave momentum flow. It is this nonlinear correc-

tion whiph couples energy between the linear modes of the [Va]ijzﬁzajaizai i (Alc)
waveguide. X '

i (Ala)
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from which it follows that

aT”

1
and thus (VXa)xb=V-(ab)-5V-(la:b)~(V-b)a

[V-(ab)]i=d;(aib))=(aibj) ;, (Ale) 1 21

! ! 17 + Ea-(Vb) Eb-(Va). (A5)
where[* ]; denotes théth component of the argument;
=3l X, X1=X,X;=Y, andxz=z, and the Einstein summa-
tion convention for repeated indices is used. Note that using
these conventions

APPENDIX B: FORMULA FORD t
IN A DISPERSIVE MEDIUM

In accordance with usual practice, we assume the follow-

[(a-V)bi=(a;d;)bi=a;by (A23) ing linear constitutive relation between the Fourier compo-
while nents of€ and D":
[a-(Vb)];=a;(ab))=ab; ; (A2b) D,=€"(0)E, (B1a)
and so are not identical. . det(wg)
=| € (wg) +(w—wq) P £,
2. ldentities (B1b)

Using the conventions and notations defined above, it Cahere in going from Eq(B1a) to (B1b), we have made a
be shown that first order Taylor series expansion f(w) aboutw= w.

V.(axb)=b-(Vxa)—a-(VXb), (A3a)  Thus

V(a-b)=a-(Vb)+b-(Va), (A3b) DL (r 1) = Zij“’dwpbe—i(w—won

mJo

(Vxa)xb=(b-V)a—b-(Va), (A3c) set(n) oE

~ ~ e (wg)E(r )+ =2V = gy
V.(la-b)=(a-V)b+(b-V)a— (VX b)Xa—(Vxa)Xb, o at
(A3d)
V. (ab)=(b-V)a+(V-b)a (A30) APPENDIX C: CUBIC NONLINEARITY

For an intensity dependent nonlinear systems at a single

wherel is the rank two unit tensor, EGA3d) follows from frequency, the totalrea) third-order polarization is given by

Egs. (A3b) and (A3c), and we note thatV(a-b)

=V-(la-b). PN =P =¢x¥: EEE (C1)
Now, we want to convert Eq5) from the main text into

something that looks similar to E¢4). The answer in free  from which it follows for nonresonaniossles$ electronic

space is well known andrelatively) uncontentious, so we responses for single frequency interactions, {4

can use the fact that the electromagnetic energy-momentum

tensor in matter must reduce to the electromagnetic energy- PNL= eox'®(2E-E*E+E-EE*), (C2

momentum tensor in free space to guide our analysis. This

ansatz means that we are looking for a tensor of the fornwherex®)=x{),. Thus, since

ab—(1/2)la-b, which must come from terms of the form .

(Vxa)xh. Manipulating Egs.(A3c)—(A3e), it can be <’PNL- f> _piL, £+P’\‘L*- JE ©3

shown that 9z 9z 9z’

1 . - . NL
V. (ab)— §V~(Ia-b)=(V><a)><b+(V~b)a it follows upon substituting Eq(C2) for P™-, that

o€ 19 a1
1 1 <:PNL.E>:ZE(PNL*.E_FPNL'E*)EE<Z:PNL.£>.
+ Eb-(Va)— §a~(Vb) (Ad) (Ca)
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