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Superconfiguration accounting approach versus average-atom model
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Statistical methods of describing and simulating complex ionized plasmas requires the development of
reliable and computationally tractable models. In that spirit, we propose the screened-hydrogenic average atom,
augmented with corrections resulting from fluctuations of the occupation probabilities around the mean-field
equilibrium, as an approximation to calculate the grand potential and related statistical properties. Our main
objective is to check the validity of this approach by comparing its predictions with those given by the
superconfiguration accounting method. The latter is well-suited to this purpose. In effect, this method makes it
possible to go beyond the mean-field model by using nonperturbative, analytic, and systematic techniques.
Besides, it allows us to establish the relationship between the detailed configuration accounting and the
average-atom methods. To our knowledge, this is the first time that the superconfiguration description has been
used in this context. Finally, this study is also the occasion for presenting a powerful technique from analytic
number theory to calculate superconfiguration averaged quanffi&863-651X%99)04106-9

PACS numbd(s): 52.25.Kn, 52.25.Jm, 05.30.Fk

I. INTRODUCTION duced by(i) finding a specific functional-integral representa-
tion of the grand-canonical partition function of the system
The properties of hot dense matter are important in astroof interest and(ii) expanding the functional integral by
physics and in laboratory-plasma physics where equations dheans of the saddle-point method. As far as the DFT is
state, photoabsorption, and transport coefficients are requiré@ncerned, it has permitted us to find an exact expression of
to perform accurate numerical simulatioft§. Their calcu- the exchange-correlation term to the grand potential. From
lation depends on the electronic structure of the atoms corfur point of view, the formulation of the AAM and the DFT
stituting the plasma, regardless of thermodynamic condil the same theoretical framework is one of the most inter-
tions. For plasmas in local thermodynamic equilibriumeSt'ng ar_1d_frU|tfuI feature_s (_)f the funct|0nal-|nte_gral method.
(LTE), the only thermodynamic state considered in this pa-".“.je?d’ it Is worth mentioning that.the evaluapon of a spe-
per, methods of varying degrees of complexity have beer(flflc integral representatiofwith or without path integralof

used to extend pioneering works based on the Thomas-Ferr%ipartition function delivers mainly mean-field results for the
b 9 many-particle systems. Consequently, in spite of their use-

approach[2—-8] and the screened-hydrogenic average-ato : y
model [9]. This goal has been achieved by using two kindr;?ulness, the accuracy of DFT and AAM is not better under

tood than that of screened-hydrogenic AAM.
of models: the average-atom modalAM ) [10-1§ and the S S ydrogen

X ) In this paper, the mean-field results are revisited and com-
density-functional theoryDFT) [17-22. In the AAM, elec-  areq to calculations done in the framework of the super

trons are ass_umed to occupy single-particle levels accorqingonfiguration accountingSCA) approach[26]. Restricting

to Fermi statistics. They are moving in an average effectivgyneself to the screened-hydrogenic AAM for the sake of sim-
pOtential which is consistent with the Sing|e-particle WaVepncity [27], one shows that the AAM accuracy becomes
functions. In the DFT, electron density has the dominanippen to constructive criticism and basic notions deduced
role. The grand potential at finite temperature of a fermionfrom it can be examined. The SCA method has its origin in
system embedded in an external potential is a unique funche supertransition arragSTA) model [28—33. In recent
tional of the electron density. Since the exact expression ofears, the STA method has extensively been used to interpret
this functional is unknown, one must resort to additional asbound-bound and bound-free spectra of LTE plasmas. To
sumptions concerning electron density, kinetic energy, andummarize, the entire spectrum is divided into STA’s i.e.,
exchange-correlation effects, which lead to the local-densitybetween pairs of superconfigurations where each supercon-
functional approximation. The resulting tractable set of wavefiguration is a particular set of near-lying configurations.
equations, which must be solved self-consistently to deterEach STA spectrum is represented by a Gaussian constructed
mine the electron density, is referred to generically as thédrom array moments—total intensity, average energy, and
Kohn and Sham equations. For an atomic system at finitgariance—that are analytically calculated. The fine details of
temperature, the profound similarity between the Kohn andhe spectrum are gradually evidenced by a convergence pro-
Sham equations and the average-atom equations can be ecedure obtained by splitting each STA into a number of
phasized by expressing both models in terms of functionasmaller STA’s until the desired spectral resolution is
integrals[23]. This extends the formulation of the screened-reached. By doing so, the brute-force summation over the
hydrogenic AAM, which has been shown to stand on theindividual lines one by one is avoided. Needless to say, an
saddle-point evaluation of an integral representation of thenormous number of configurations are needed to character-
partition function[24,25. The AAM and the DFT are de- ize a plasma at equilibrium and a detailed account method
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(or DCA for detailed configuration accounting still today  culated by imposing the average neutrality of the ion c&ll.
computationally impractical. In fact, the essential reason igP,), Z*, andF () are, successively, the ion change num-
that it would consume an outrageous amount of computeper, the shell mean occupancies, the average ionization, and
time. The central achievement of STA theory is precisely ahe Fermi-Dirac functior F (7)=[5dx x¥/(1+€*~ ")]; u

way to overcome this difficulty to some extent. Since thegpeys the equationsy= Bu)

AAM can be proven to originate from the saddle-point

evaluation of an integral representation of the grand- - Kmax E10)

canonical partition functiorZg [25], and since the SCA N+Z*=2Z, E Pi= =—((9—) \
evaluation ofZg converges to a complete DCA evaluation =1 Kl pr

(starting from the AAM for instandeit is tempting to com- A [ om| 32 2.2
pare both methods. In summary, SCA offers the opportunity Z_*:47r—<—2) Fuo 7).

to go beyond the given limit of a nonintegrable mean-field pN'\ Bh

model by using nonperturbative, analytic methods. More-
over, SCA is intended to bridge the gap between an intrac® 1S the molar mass of the elemenf,the Avogadro number,

table discrete description of matter, the DCA method, and &" the electron mass, artdthe Planck constant. The thermo-
questionable continuous one, the AAM. Furthermore, a techdynamic limit is assumed, hence the use of the mass density
nique, known as the circle method in analytic number theory® inStéad of the volume/ of the system. For completeness,
[33], is utilized in the SCA approach, to lighten and improve We recall that the electron densily, the atomic particle
the calculation of the statistical sums of interest. densityN,, and the ion-sphere radii satisfy the relations

The paper is organized as follows. The formulation of the(4/3)7RiN,=1, N,= pATA, andZ* =N,/N,. Throughout
screened-hydrogenic AAM within the framework of the in- this paper, the shell degeneracies are assumed to be integer,
tegral representation of a partition function is reproduced irf0 that no pressure-ionization phenomenon is taken into ac-
Sec. Il, along with the required background and notations. Irfount by reducing theril4]; the thermodynamic variables,
Sec. Ill, the SCA method is considered: useful formulas ar&ept constant when partial derivatives are performed, will
derived to obtain analytic expressions for the plasma statig?ot be mentioned each time. FinallyP;) is used subse-
tical averages, such as, e.g., atomic-shell mean occupanciégiently to depict a configuratio@, which justifies the nota-
ionization-distribution parameterémean, variance, skew- tion E[(P;)]=Ec. For examplg27], within the framework
ness, and kurtosisor integer ion-stage fractions. Section |V of the Mayer's modelin atomic unitg,
is devoted to numerical applications and Sec. V summarizes
results.

Kmax

+%ij2:1 PPV, (2.3

Kmax
I

E[(P)]= 2>, P

=1

ii
Ei— >
Il. SCREENED-HYDROGENIC AVERAGE-ATOM MODEL .
s¢ OGENIC GE-ATOMMO where E;=—22/(2n?) and V;;=(Zoy;)/n?. The screening

Different methods exist to study the statistical propertiesconstants §;;) are configuration-independent. By contrast,

of highly charged LTE one-component ion plasmas at givenn the screened-hydrogenic mod&8HM),
temperaturel and mass density. The screened-hydrogenic

. ) . K 2
atom model has the benefits of being easily usable, reason- T Z

ably accurate, and fast enough to be implemented into an EL(PD]=— ;1 ﬁpi’

atomic-physics package of a hydrodynamic code. Moreover, ' (2.4)
it is well-defined and thermodynamically consistd26]. K max '
The grand-canonical partition functiadg of bound elec- Zi=Z+a;— E oiP;,

trons is the starting point of all relevant developments =

whereZ;=7+ ai—E;(;“fxoiij. (oij) is a set of screening
Ze=e A2=> D.e AlEckNcl, (2.1  parameters independent of the electronic configuration and
¢ (a;) are SHM-specific constants.
The usual and proper way to analyze the thermodynamic
Q, Ec, N¢, andD. are the grand potential, the energy, the properties of equilibrium systems is to resort to a partition
total electron number, and the statistical weight of an elecfunction(hereZg). Zs is of fundamental importance to make
tronic configuratiorC, respectively. Introducing the shell oc- apparent the thermodynamic consistency of the formalism
cupation number R;) and the shell degeneracieB;}, Nc  and to calculate the statistical avera@eof any physical
=EiK=’“foi andDC=Hinf’(,2ii); (gi‘) is the standard binomial quantity O which depends explicitly on the electronic con-
coefficient: @ii) —D,!/[PI(D;—P))!]. The shell indes de- f'guration
pends on the shell quantum numbers=n or n/, wheren 1 — BlEcm aNg]
and / are principal and orbital quantum numbers, respec- O=Z% DcOce Pme#7cl, (2.9
tively. u is the chemical potential anglthe inverse tempera-
ture (8= 1/kgT, kg is the Boltzmann constantwhereas the Unfortunately, the exact value @ is unknown in the ma-
sumZXc covers the set of all configurations constructed fromjyity of cases and a brute-force computation of the discrete
the finite numberDKmax of bound shells. Sax¢c denotes gym .. is difficult to achieve due to the large number of
Egll_o---Egi‘_o---Ep:max . The chemical potentigh is cal-  configurations. Furthermore, a closed form is rarely possible

max_
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to write down wherE is a nonlinear function of ;). This  are then estimated without handling complicated perturba-
nonlinearity reflects the many-body effects and explains whytion strategy. Using the grand potential defined in Exj1),

the standard textbook factorization df;, which is well-  the final result simply reads

suited for ideal Fermi gas, does not directly apply here. A

solution is to find an integral representationZgf. In short, 0= Qef— 0+ Ti{In(AS%)]

>c is replaced by an integral at the expense of introducing 2B '

auxiliary variables. Its factorization thus becomes possible,

Z can be evaluated by using the saddle-point technique, and Kmax 1 Kmax

one finds that the saddle point is identical to the AAM. QO=E[(P))]-u >, PX+= 2> Di(f’Infl+g’Ing?),

At this stage, it is worthwhile noting that the integral rep- =1 Bi= 59
resentation o¥ ¢ is not unique. As a consequence, it is clear (2.9
that the AAM and the corrections to the mean-field equations _ 0,0
are not independent of the approximation retained to calcu- (AS)y= 3y + BVAT,
late a.parti_cular inte_gral. This aspect yviII be illustrated bywhere[Eq. 2.7]
choosing, first, a universal representation and, then, another
one which depends o . J92E

For the sake of simplicity and generality, we can take the g’=1-12, A?=D;fog’, Vﬂ = pap|
forthcoming integral representation which holds for any ex- IRD)
pression ofE-. Only the main results are given in the plain (2.10
text. Algebraic intermediate calculations are detailed in Ap- . . ) )
pendix A. Equation (2.9_) requires some explanatlon. The_ effective

Starting from Eq.(2.1), Zg can be written as follows grand potentlanef.f glvesogn approximate expression fqr the
[25,34): true grand potentiaf). )” is the usual expression obtained

for an ideal Fermi gas. The second term represents the first

correction t0Q° due to mutual electrostatic interactions,
ZG:j [dUle PV, symbolized here by\(§}). The saddle-point method allows
for the definition of an average atom, whose shell popula-
tions satisfy Fermi-Dirac equatior(.7). Interactions seem

dXmaxx dKmaxgy ; - .
[dU]=——%—. to have disappeared and the original many-particle problem
(27r) max is finally reduced to a one-body problem. This fact is well-
_ (2.6) known [11,15,39 and very powerful for practical reasons.
Uj=Xx;, Uj+KmaX= o, J=1,... Knax Yet, one must be careful not to pursue the analogy with the
ideal Fermi gas too far, because the average atom is not
Kmax constituted of noninteracting electrons. Interactions are still
S(U)=E[(x)]- >, iwXj/B—D;jIn[1+e '“i*7]/B. present through the self-consistency of E2.7), since the
=1 one-electron energie&&) (s?zﬁE/aPil(p?)) incorporate a

. O .
Since we are dealing with the partition function of a systemnonlinear €;) dependence. Moreover, there is the danger of

at thermodynamic equilibrium, the saddle-point method cadnisinterpreting quantities such as} Qr.(PiO)' They have
be used to estimat&g in Eq. (2.6). After a few manipula- N0 other physical meaning than defining a mean field, or
tions, one finds that the coupled nonlinear Fermi-Dirac equagffective field, from whichZg can be estimated?;’ is not

tions equal to the mean occupatiéh= —aQ/ﬁMi|#i=M. This re-
e . mark applies  to E°=E[(P))] as wel: E°+#E

PY=D;f?, e?zﬁ —u, fP=1(1+ef%), (27  =[a(BQ)/IB]+uN. Therefore, great care is required when

I1(PY) using average-atom quantities in place of strict average-

thermodynamic quantities.

which define the fractional occupation®Y) of the bound As mentioned above, the notion of AAM depends on the
orbitals of the screened-hydrogenic average-atom model, aRPproximation strategy to calculat;. The integral repre-
identical to the saddle-point equation sentation is not unique and many AAM’s can be defined

[15,23. As an illustration, in the framework of Mayer's

4S o 28 model, Zg can be written a§24,25 Zg=(Zg(x)])(x) »
dU; (o) ) ) where
Py

The second-order Taylor expansion terfd$§] have to be

calculated to incorporate the average-atom model with cor-

rections resulting from fluctuations of the occupation prob- =J dea»({---}e‘(l’z)xTBVX/ J dKman g~ (12X AVX
abilities around the mean-field description of statistical equi-

librium (or FAA for fluctuations around average atprhey Kimax

carg be expressgd in terms_ of the average-atom populations ZiGnd[(Xi)]: H (1+ePe)P,

(Py) only. The first corrections to the average-atom model j=1
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_ In general,S; is chosen to be close to the problem and suf-
e= Ej_ij/Z_M+|2k VikXk - (21D ficiently simple to make possible tH&— So)s, calculation.
Sy depends on several parameters that are adjusted to mini-

Z can be interpreted as followsZI9 (x;)] is the partition ~ Mize the right-hand side of Eq2.15. The geometrical in-
function of a noninteracting-electron gas in an external fielderpretation of Eq(2.14) comes from the convexity of the
(x,) that has to be averaged over its Gaussian distributiorfXPonential function and is invoked as the Peierls-Jensen
Surprisingly, both Eq(2.9) and Eq.(2.10 are recovered by [37] or Gibbs-Bogoliuboj42] inequality.
applying the saddle-point technique to this specific expres- AS an illustration, Eq(2.19 is applied to Mayer’s model.
sion. One can easily find counterexamiag]. Of course, if L€t us choose the partition function of an ideal Fermi gas,
the exact expression of a given multidimensional integralvhere the one-electron energies)(are variational quanti-
were known, and if the complete saddle-point expansiori'€S
around the average-atom solution could be done, the impor-
tant physical question regarding the validity of this expan- 7. = E
sion could be answered. Indeed, the choice of performing a Go P
saddle-point expansion is closely connected with this lack of
any explicit small perturbation parameter. The recurrent andUsing Eqg.(2.15), it is then a simple task to find the opti-
problematic accuracy of such an expansion does not precludaized (;) and define an associated AAM. Equati@?) is
the use of the saddle-point method. Intuitively, one expectstill valid by Changinga?:ﬁE/&P”(P_o) into
this technique to bring accurate low-order approximations '
when thermal equilibrium is very stable around the mean-
field description of statistical equilibrium. A similar situation 8?: Ept+ >, PErka'
typically occurs in hot dense plasma physics where many- K’
electron ions are considered: the AAM is recognized to be ) o
well-matched, evidencing that the saddle point has very larg Spite of the apparent similarity, both AAM2.7) and
second derivatives along the direction of steepest descent. [§-17 are in essence different: this fact is corroborated by
guided by the physics of the problem and choose a formulaional AAM can be considered the best fit for the thermody:-
tion which includes the relevant physical contributigns]. ~ namic potential). One cannot infer, however, that this so-
Like the saddle-point method, the mean-field notion itself islution is best fitted to quantities other th&h such as the
subject to severe limitations requiring additional clarifica-€valuation of Eq.(2.5. This consideration applies to the
tion. SHM too: one finds that the one-electron energies match
The AAM does not stem exclusively from the saddle-Neither Eq.(2.7) nor the rather intuitive quantity
point method. Indeed, one can throw new light on this model
by formulating it in the framework of a variational principle
[37-41l. Let us imagine that an integral representatio gf
[Eq. (2.1)] has been found,

e Blex—mPy| (2.16

k k

e

5kk/
1— D—k) . (2.17)

aEeff

TP | o
G

(2.18

€j

where  E*f(P)]=—3(Z%2n2) P, and Z=Z
Ze:f [dx]e™#S™, (212 -3, 0P (1= S D). Finally, first corrections to the
variational AAM cannot be implemented easily. This is the
where[dx] is an integration measure a®a function that main drawback of this formalism because one has to change
depends explicitly on the dummy variabte Suppose we o in order to improve the calculation dd in Eg. (2.15.
have another S say Sy, that is easier to work with. Then, This makes it difficult to build a systematic variational ap-

Eq. (2.12 may be written as proach that could lead to a convergent perturbation expan-
sion for the grand potentig#3].
Zg= e—ﬁﬂo<e—ﬁ(3—so>>30, In summary, the AAM can be viewed using two strategies

in order to evaluate the grand-canonical partition funcégn
(2.1): a saddle-point method or a variational principle. Yet,
e’mO:f [dx]e A%, (2.13 for mathematical convenience and central processing unit
(CPU) considerations, the domain of validity of the AAM
remains questionable, as well as the opportunity to go be-
<{-,,}>80:emof [dx]{,__}e—ﬁso(x)_ yond this mean-field approadthe independent-electron de-
scription augmented with second-order corrections associ-
ated with fluctuations of occupation probabilities around the

Now, suppose thab and S, are real, the inequality average mean-field equilibriumiThese considerations led us
_f () to adopt an alternative approach using the SCA. This method
(e7)=e (2.14 makes possible the calculationof ; the SCA is an analytic
technique, which inherently converges to the solution with-
may be used to get out any recourse to stochastic methidd]. Consequently,

the SCA provides a powerful and systematic tool for getting

Q=Qo+(S- S0>So' (2.19 answers to certain classes of otherwise unsolvable many-
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particle problems, such as those involving the screenedwhere(g) stands for the set of shell degeneracibg)( From
hydrogenic LTE average-atom model. here on, this notation is generalized tg'{)=(D;— &
—8is— ). The only approximation lies in the Taylor ex-
pansion ofE. truncated after the linear terms. This proce-
dure is known to be open to criticism when average-atom
Let us introduce the required theoretical background. Theitomic data are used as reference. Yet, it becomes less and

leading notations, commonly used by Bar-Shal@nal. |ess questionable as the SC partitioning of the configuration
[26,28 or Blenskiet al. [44—-44, have been used whenever space reaches DCA. In practice, the main drawback of this
possible. A supershett is a set of ordinary atomic subshells method is that it takes into account only configurations

IIl. SUPERCONFIGURATION ACCOUNTING

se o. A superconfiguratiofSC) E of a Q electron ion, de-

fined by its supershell occupation numb€s, is a group of

ordinary configuration€ symbolically written as the prod-
uct over supershells:

=] o, (3.1

; Qo=

whose contribution is estimated to be the most signifieant

priori. SCA provides a test of this approximation, since it

can easily include all contributions and contains a systematic
convergence procedure in its roots. Here, this formalism is
applied to calculate standard-textbook thermodynamic quan-
tities such as average and variance of ionization and ion
populations. The results can thus be compared to AAM re-
sults, as well as to indirect computations starting with the

In other words, the SC is constructed by simply dispatchingrand potential).

theQ,, electrons occupying supershelbmong the subshells
in all possible ways subject to the constraifif_,Ps
=Qq UQU:EYUHSSPS Y, means {Z; ,Ps=Q,}.
One should mention that each partition @fis an ordinary
configurationC: C=I1"s=III1,_,s"s. The main role is
transferred from subshells to supershellss, in the same

In quantum field theory, it is well known that the con-
nected Green functions are generated by the logarithm of the
partition function in the presence of a source tdiB]. A
similar phenomenon occurs here with Indeed, Eq.2.5
can be rewritten as follows: Zo=e A0

=3 Dee PlEc#NcAOcl and O=d0q/dN|,. The cen-

way the concept of SC supersedes the trivial notion of contered momen(0—6)“ of ordern can be obtained by iter-

figuration. This fact can be exploited to rewrite Eg.1) in
terms of SC only: Zg=2zUz, Ug=2c.=Uc. Uc
=Dce PlEc 1Rl and Uz are, respectively, the partition
functions of configuratioN: of SC E. Note that the total
number of electromM of configurationC has been replaced
by Q, since Nc=Q by definition. The SC notion clearly
bridges a gap between the integer-charge stagend the
configuration C partitions: Zg=ZqUq, Ug=Z2ccqUc
=2z .Uz, WhereUy, is the partition function of ions with
Q electrons.

As first pointed out by Bar-Shalowt al. [28], a SC con-

tains ordinary configurations lying sufficiently near in energy

ating the derivation with respect to. As an example, for
fixed p, B, and i, we have the identity47,48 [Eq. (2.2)]

(\ B)k

Q(u+N)=Q(u)— 1/3)21 (NS, (3.6
where (N = —d*Q/aNNo/ B4 1= — ¥ QlauX|,18* 7 is
the kth cumulant and is related_to the momeNt& with m
<k. For instance,(NY).=Z-Z*, (N?). =05, (N,

—(z* - z*)3 and(N*) .= (Z* - z*)4 305, Generally,

by construction. As a result, we can take advantage of théN¥). is not equal to thekth centered momentN— N)K.

dramatic simplification obJ 5 occurring in the noninteracting
limit, where E is linear with respect toH,;). Consequently,

Uz~e PAE= Y H ( (3.2)
CeE
where
= - JE
XS:e Bleg —m) 8?2(?? (33)
(P5)
and
AEz=E[(PZ)]-PT&%. (3.9

Equation(3.2) can be more compactly written by introducing
the partition functiorUQU(g) of a supershelbr,

Uz~e PEz]] Uq (9)

D,
‘ (3.5

(N1, is the expectatlorIN which, according to Eqg(2.2), is
related to the average ionization, afidf), is the variance of
ionization. When normalized to the standard deviation of
ionization oz« , the quantitiesrz«=—(N%) /o, and kz«
=<N4>C/U§* denote the skewness and the kurtdsisflat-
ness, respectively{49]. A characteristic feature of the nor-
mal (or Gaussiapdistribution is that cumulants higher than
the third are zero. ThugN)., with 3<k, gives a measure

of any deviation from the normal distribution. The kurtosis is
the most common indicator of this trend. With respect to the
normal distribution, flat curves have a negative kurtosis and
sharp curves a positive one. These distributions are termed
leptokurtic and platykurtic, respectively. Cumulants beyond
the kurtosis are rarely considered for practical reasons. A
similar strategy is adopted in this paper: only the skewness
and the kurtosis are of great interest in terms of enhancing
any deviation of the ionization distribution with respect to
the normal distribution.

Let us consider the one-parameter family of probability
density qa:e—lxl“), where a>0. Since the mean value is
zero, the centered moments are identical to the moments. It
is then a straightforward calculation to show that the vari-
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tation into the summation, leading toUq(Q)

leptokurtic plawykurtic —z . i X
distribution | distribution 3 tion in the complex plane around a circle centered-a0.

1 =(12i7)$(dZ 22 Y 1(1+2X)Ps. ¢ denotes an integra-
4 This expression is the starting point to calculate various av-
3 erages, such as powers of shell occupation number in the
! E hole or particle languag26,44—48, that are needed to get
T the ionization-distribution moments.

First, let us prove Eq942) and (43) of Ref.[28]:

normal distribution

Q
2.0 4.0 ,6'0 80 100 UQ(g):nZanUQn(g)/Qa Xn:_ES: Ds(_xs)na
(3.8

- a=4 (k(4)<0)

with Ug(g)=1. Such identities are readily obtained by ap-
plying the Cauchy formula t&J5(g), since

o=1 (x(1)>0)
a=2 (k(2)=0)

a9

UQ(g):(llQ!)(?_ZQ (3.9

IT (1+2X)Ps

S

0

A similar recursion formula can be found—in conjunction

with the notion of a generating function—in the single-
particle ideal-gas mod¢R8] and in the computation of the
* partition number of an integgsee Eq.(B19) and Appendix

B for more detail$ Indeed,Uq(g) andy, are generated by

IS
=)
=)
=)
x
=3
—_
=)
=]

-6.0 -4.0

FIG. 1. (a) Behavior of the kurtosis«(a) of the distribution

I ,(x)= /[ 2T (1/a)]e~ ™" (normalized to unityas a function ofv.
(b) Plots of a leptokurtic ¢=1), normal(or Gaussiang=2), and

F(z) andG(z), respectively:

platykurtic (a#=4) distributions. QE:O UQ(g)zQ= 1;[ (1+ ZXS)DSE s(z)=F(z) (3.10

ance o(«) and the kurtosisk(a) are given byo?(a)
=I'(3la)/T (1) and x(a)=TI(5/a)l(1/a)/T?(3/la)—3, and
whereT'(z)=[3du ¥ 'e"Y. One can check the equalities

k(2)=0 anddk/da(2)=—-1; sox(2+¢&) ~ —e and the

@ ®) ) e 2 xn2'=-2 Ds/ (1+2X)=G(2). (31
sign of k(@) changes towarda=2 (see Fig. L

Any cumulant may be calculated in the SCA language byg, Q>0
using an operator techniqi26]. Yet, the computation of the ’
kth centered moments of ionization rapidly becomes pains- dz s(z)
taking with increasing, like the successive derivations of Uq(9)= % i 7L (3.12
the effective grand potenti&)®™ in Eq. (2.9) with respect to
the chemical potentigk. This is especially true when one is and, by performing an integration by parts,
compelled to replace, for numerical reasons, the electron
counting by the hole counting in the statistical sums involv- 1 dz 1 z ds(z)
ing supershells with a large number of bound electdidg. Ug(g)= a ¢ ain ZQ+1(S(Z) iz ) (z). (3.13
We propose to calculate such superconfiguration-averaged
guantities with a technique widely used in analytic numberg,;
theory. This formalism is based on the notion of integral
representation in the complex plane and is entirely equiva- z ds(2)
lent to the aforementioned operator technique. However, the 2 F=§ DS_ES Ds/ (1+zXy) (.14
physical significance of the relevant quantities we are deal-
ing with are often clearer with this new viewpoint. Some-
how, this reminds us of the situation of the path integral
versus the more conventional operator formalism in quantum z ds(2) o
field theory. We can see how this method works by comput- R _=é(z)z 2 xnZ": (3.19
ing the following statistical sum that appears again and again s(z) dz n=1
in the SCA approach:
consequently,
D
UQ(9)=§ (Pz XSPS, 3.7 1 dz 1 ~ Aag
Ug(g)= o} 3E 21 1P (DG(2)= Q" (3.19

whereY stands for=,P;=Q. Algebraic analysis is simpli-
fied by introducing the Kronecker-symbol integral represenwhere
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.~ . Ug, (9)
annZl xnUq-n(9) (3.17 P,P,=(DD;/Z¢)| 2 Uz l_U—(g)
= 2 o
- x| 1—-—2 11, (3.24
F(z)é(z)=QZl"anQ. (3.18 Vo, (@)

Conversely ¢i=o0j=0),
In the same spirit, the relationship betwee(g) and

Uo(g"), namely U (g) Ugq (d)

=(DiD;/Zg)| 2 Uz| 1- -
Uqg(9)=Uq(g")+ X Ug_1(g") (3.19 = Uqg (9) Ugq (9)
[Eq. (45) of Ref.[26]], simply comes from the following 4 UQU(g”) (3.25
identity: Uq,(9) ’
Ug(9)=(1/2im) fﬁ(dz/zQ“)(Hzxr) if i+#] and
— ) UQU(gl)
<[] (@+2xPs e, (3.20 P{=(DfZe)| 2 Uz| 1-(2-1D)) Ug (@
It is then straightforward to infer the expressions of +(1-1/D ) Ug, (g") (3.26
Uqg(g™ ) [26]. Finally, a simple factorization inside the in- q,(9) :
tegral representation of a statistical sum leads from the elec-
tron counting(no stay to the hole countingwith stay: otherwise. In order to go rapidly from the electron to hole
language, the modified statistical sums of a supershell, such
(H X )UQ* as UQU(g') or UQg(g”), are normalized by the unaltered
UQU(Q)-
(3.2 The fractionFq of ion with Q electrons, or charge stage
Ugse(g)=(1/2i7) 3§ (dﬂzQ*“)H (1+2%)Ps, (2—Q), is then easily computed sincE;=Uq/Zg. The
S

SCA method givesFo=2=_qUz/Zg, Whereas within the

where Q* = G.— O, Go=3.D.. andX.=1X, [Eq. (5) of frameworki2 of2 the AAM  Fo~e~ Q- N)2/(2(rz*)/
Ref.[44]]. The integralS rep?essentationsis ver)s/ useful becausz’e (@7NWE724), Of course, the skewness. and the
the average of a polynomial in the shell-occupation number urtosis xz« , esymated W|Fh|n the same theoretical model,
i thus obtained by simply deriving under the integral symbolc@n e used to improve this guess and go beyond the Gauss-
$ with respect to the ternx, of interest, which is formally 1&n assumption. The SCA method can provide an indication
equivalent to using a chemical potentia] for each subshell concerning the statistical weigl¥c of any particular con-
i. In the case where many subshells are involved, one mugguratlong If C belongs to the superconfiguratiah, Fc
be careful when some of them belong to the same supersheﬂ‘Hs(p )X M,Uq (9) [Eq. (3.5]. If no selected super-
In summary, any standard-textbook formula of 'ntereSt,conflguratlon contain€, one can infer thafc is negligible.
which is valid for noninteracting Fermi gas, can be applied to
calculate various averages, such as powers of shell occupa-
tion number, in the hole or the particle languagé,44—48.

As a result, we find the following explicit formulas for the ~ As an illustration, we begin by comparing the average
average ionization and the variance of ionization comingonization and the ionization variance values obtained from

IV. NUMERICAL APPLICATIONS

from the averages involving®) and (P;P; ) different methodgEq. (3.22]. The first is well known and
consists in using the AAM only, with or without FAA cor-
— e e rective termgEq. (2.7)]. The second one is an explicit cal-
=Z- ~ Pi, O—Z*:ij§=:1 PiPj=PiPj, (322  cylation of Z* and oi* with the SCA technique. All the
' results are drawn in Fig. 2. The SHM7] has been em-
where ployed with the finite-temperature conventithl18. We re-
strict ourselves to the nonrelativistic regime; moreover, plas-
1 UQU‘(g‘) mas effects on the electron structure are neglected.
P,=D;| 1 —2 Us——|. (3.23 Calculations have been made withY’ subshells ranging
Z6E T Uq,(9) from 1s to 59. A LTE germanium plasma g

=0.05307 gcm®) has been considered, since a series of
If the subshells andj do not belong to the same supershell experiments were carried out on this elemé&ti] to explore
(oi# 0j), then Ge photoabsorption properties at temperatures wherdithe
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FIG. 2. Average ionization and ionization variance of a LTE
germanium plasmap(=0.053 07 g cm®) calculated by using an
average-atom model—AAM, an average-atom model and FAA
correction—AAM+FAA, and a direct SCA computation—SCA.

Electron temperature (eV)

FIG. 3. Relative errors of th®-shell occupation-numbers, with
respect to the reference SCA values of a LTE germanium plasma

p=0.05307 gcm?). Two average-atom model calculations are

shell is almost _filled. The temperature domain ranges fro_"ionsidered: with (AAMFAA) or without (AAM ) FAA correction.
10 to 250 eV, in order to sweep the conditions where this

shell progressively empties with increasing temperature. Sur- ) ) o
prisingly, the agreement upcz_f‘ is good, even when thi been used to check direct SCA calculations. As for ioniza-
shell is almost filled or empty. Conversely, things change &0 A is allowed to vary in a small range centered on zero.
little bit for o5,. The main point is the close agreementA Chebyshev approximation of2(x++\) has been con-

: ; ; tructed forh e[ —0.05«,0.05«], with a moderately large
between the mean-field method with FAA correction and the® : J J ;
SCA. As far as the bare AAM is concerned, the situationPumber of polynomial¢here 32. A power of 2 is preferen-
progressively deteriorates when the shell becomes filled tially chosen in order to use a fast cosine transform for cal-
(near 20 eV or empty(around 200 e the AAM tends then culating the collocation-point coefficients of the Chebyshev
to overestimate the fluctuations aroudd. The adequacy ap%ommzt(l;;?l[/%l].z The prg;u_smn engoun_lt_ﬁred fhﬁli'“)'
gets better at higher temperature due to the progressive emfy-~ “# @n M- Was quIte IMpressive. This well-known

: - ; roperty of the Chebyshev approximating polynomial
tiness of thel shell. We have performed similar calculations 52,5 is used to estimate higher derivative)/du¥. By

doing so, higher centered moments of ionizat{on cumu-
jeants can be obtained by alleviating direct calculations,

In other words, the simple AAM calculations give very good Wh'Ch. generglly_ become more and more tedious W'th n-

values for the grand potential and the average ionization; §€aSingk- This is a convenient way to get around this dif-

reasonably good estimation of the variance of ionization idiculty and to tacklgO—0O)", especially wherO[ (P;)] is a

found too, especially where the model is not guaranteed t@onpolynomial function of ;).

yield accurate results, i.e., when a shell is completely empty As an illustration(Fig. 4), the skewnesssg«) and the

or full. kurtosis (kz+) of the ionization distribution have been com-
Same conclusions can be drawn as far as the shelputed by using the Chebyshev approximating-polynomial

occupation numbers are considered. For clarity and for théechnique and by keeping the same thermodynamic condi-

aforementioned reasons, only the relative errorsMeshell  tions for the germanium plasma of interest. The correspond-

occupation numbers are presented in Fig. 3. The SCA coming third (,u;*) and fourth (u‘zl*) centered moments have

putations serve as a reference; the FAA inclusion constitute§een added too. As expectqﬂ"z* is minimum when thewvi
again the key parameter to be dis_cussed and significa.nt efhell is closed or empty and is maximum when it is half-
fects can be noted. Clearly, the mismatch between a S'mplﬁopulated(near 100 eV. In this region, many ions of differ-

AAM and a SCA calfc%e(l)}iqn is m(r)]dir?te. rl]g ;‘J‘Z ehxe}{nRIe, 8ent charged stage contribute to the partition function and the
maximum amount o 0ls reached for t SNell. AS ionization distribution is relatively symmetring* is thus

expected, this occurs when thMeshell is empty, or, in other i .
words, when the occupation numbers become quite smal[elat'vely small. Yet, when we appfg’aCh the emptiness of the
The FAA correction is efficient everywhere: as a result, the! Shell from below in temperaturg,,. decreases down to a

maximum relative error does not exceed 3% for the chosefinimum and then increases with a change of sign. When
range of electron temperatures. M« IS positive, this indicate that we are above teshell

Finally, let us comment on E(3.6). This formula has emptiness in temperature, or equivalently below the closure

influence of the FAA correction to match with the SCA com-
putation, which is intended to be considered as the referenc
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FIG. 4. Third (u5.) gnd fourth cent_ere_d momentﬁz*),_ skew- (S (Sl Mg [Ne]  [0]  [C] Bel [Hel
ness €z+), a_nd kurtosis kz«) of the |0n|}§tlon dlstrl_butlon of a Charged stage
LTE germanium plasmap(=0.053 07 g cm*) as function of tem-

perature. All quantities are found by deriving the grand poteflial
with respect to the chemical potentigh. The Chebyshev

approximating-polynomial - techniqug51] is used for SCA  gpained with the SCA method. For instand&le] denotes the

calculations—SCA. By contrast, explicit derivation 6 in Eq. neonlike ion stage. The skewness«) at 160 and 260 eV is nega-
(2.9 are performed as far as average-atom data are concernedsye and positive, respectively.

AAM [25,41] (Appendix A).

FIG. 5. Charged-stage distribution of LTE germanium plasma
(p=0.05307 g cm®) at two electron temperatures: 160 and 260 eV

be related to the notion of a partition used in analytic number
of the L shell: x5, begins to decrease and changes sigrfh€ory. This new viewpoint extends the original operator
when, as above, the dominant principal slieéireL-shell is technique and almost offers a clearer insight into the physical
half-populated. Differences between AAM and SCA areS|gn|f|ﬁar;]ce of the ?uantlfues being dealt with. thcond,
: : i ough the superconfiguration accounting approach is unre-
quite mode_rate. Let us now give an Insight mto the Skgwnesgtedgto the sagdle-poigt method, it has bgenpShown that both
?;gerlju:Ao:/llsaﬁgr\éegA ﬁ; E1:|rsitn grlg\ggii' ta?thd;zgrﬁggrcffstﬁ:téchniques yield similar results for the grand potential, the
lant Sl int pth g d : h average ionization, and the variance of ionization. It has been
gumg ant, e_sp_eculi 3;] IIrI]'O Ie cdon5| eret rlg_gl(:n fW”ere hown that higher-order centered moments of the ionization
ominant principal Shell 1S closed or émply. FIrst of all, €X- giqyin ition can be calculated within the framework of the
cept in this region, the ionization distribution presents a hig verage-atom model. The robustness of the average-atom
degree of normal-distribution c.ha'ract'er. O.bv!ous'ly, aroungy, o gel keeps constant, except, perhaps, towards a principal-
200 eV, the pealfedne.s_s of the |pn|zat|on d|str|put|on 'S.fa'rlyshell closurgor emptinesk in which case mean-field results
proqouncec{xz* is positivg and its asymmetry IS cha.ngmg.. deteriorate progressively with increasing order of the cen-
sz IS negative b.e'OW 200 eV and positive a_bove. Th's_ fact i ered moment. To sum up, the average-atom model calcula-
\k/)vetll-knowhr)l and 'dene t?kthe_ large |8nl|\7at|on-[(3jot§n;t_|lill 9aPtions remain competitive with respect to the superconfigura-
.eween[ g]— an .[ al-like ions and[ .e]— an [ ]". € tion accounting results in a widespread range of temperatures
ions. As an illustration, we have plotted in Fig. 5 the ioniza- 4 densities for the considered matter model
tion distribution calculated with the SCA method for two The LTE case has been criticized in the pres.ent document
:jen;pgr?turesl:( 160 andt 2128 e\\//._ Clearl){[,_ th% lonization ;- ¢1re works, the first step consists of extending the su-
IStribution skewness at ev IS negative because !onﬁerconfiguration formalism to tackle non-LTE plasmas with-
with ionization degrees higher than the neonlike |on|zat|onOut reference to the ionization temperature nofi6A—5g
stage([Fl-like ions, [O]-I|ke_ ions, .. ..) are playing a minor Then, it would offer the possibility to study the worth of the
role due to the af.ore_me'ntlon_ed .|on|.zat|on-potent|al gap. O creened-hydrogenic average-atom model, in such a thermo-
the contrary, the ionization-distribution skewness at 260 e dynamic situatio59,60}, as well as Busquét’s model. Sec-
l{i positive due, now, to the dominant statistical weights Ofond, the important question of density effects within the su-
ese ions. perconfiguration formalism might be addressed in the
context of a thorough and rigorous statistical treatment of
ions in LTE or non-LTE plasmas.
In this paper, the screened-hydrogenic average-atom ACKNOWLEDGMENTS
model has been compared to the systematic, analytic, and
nonperturbative superconfiguration accounting method. First, The author wishes to acknowledge Dr. L. Beayal Pro-

a powerful method has been presented for calculatindessor D. Gogny for their comments and helpful suggestions
superconfiguration-averaged quantities. It has been proven tmncerning the final part of this work.

V. CONCLUSION
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APPENDIX A

Equation(2.6) is found from Eq(2.1) by introducing aux-
iliary variables §;) and by using the Fourier integral repre-
sentation of the Dirac distributiof84]:

-

Equation(2.6) naturally comes from straightforward elemen-
tary algebra.w' is the line vector transposed from the
Kmacdimensional column vecto®» whose components are
the dummy variablesd;). Equation(2.6) is valid for any
expression of the configuration enerBy.. Let us calculate
5S/&Ui|(uj) and aZS/anan|(Uk), respectively. The former
quantity leads to the AAM2.7) equations and the latter to
the FAA correction(2.9). To this end, the original variables
(x;) and (w;) are preferred to the compact notatids; ), and
one finds that

K max

e~ BEL(x) ] +io X T [1+e toxt7]Px,
k=1

(A1)

deaxX deaxw
( 277-) Kmax

S JE }
(7Xj_(9Xj ij B,
(A2)
a_wj:_ixj/3+iDj/{ﬁ[1+exp(iw,-—77)]},
?s  PE iy ’s 5
axoxe  axoxe I oxdwg 10/ B,
(A3)
S
Jwjdwy

= oD H{BlL+expiw;— n)[[1+exp—(iw;— 7)1}

dj is the Kronecker symbol. Equatid@.7) is deduced from
the stationary conditio@S/9x;=dS/dw;=0. Consequently,
it is easy to establish Eq2.9) by following the successive
steps[Eq. (2.10]

dKma K magy

0
7 ~ *ES[(Ui)]f
c~e (27T)Kmax

Xe—(l/Z)EJ-,k(ijV?kxk-f—ij?ﬁjkwk—2ixj6jkwk), (A4)
e~ ASLUD)] o o
ZG% R e deaxxe_(l/Z)Ej,ka(ﬁvjk+‘Sjk/Aj)Xk’
max
H 21TAJ-0
j=1

(A5)
e BSIUD]
‘e~ Jde(ASd)’ (A6)

through which formula 3/detd)=exd — 3 TrIn(A)] and the
well-known Gaussian identity

J[(2m) Kmavde(A)]e(UZ)bTA’lb: [dKmax e (1/2xTAx—bTx
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have been employefl5,37. b is a K,,-dimensional line
vector andA a K o, X Kmaxcdimensional definite positive ma-
trix. It is instructive to compare these results with the con-
tinuous version of Eq(2.1),

ZG~e‘ﬁ“°J deaxAPe—(l/Z)APTAAP’

(A7)

found by replacing the original discrete summation with a
Kmacdimensional integral, using the Stirling formula to ap-
proximate the binomial coefficients, and by developing the
action around its minimum up to second ord&b,61,63.
Then,

0

Trin(A) Trin(AS®)
28 28

The difference matters in the calculation of the thermody-
namical potential but also in quantities reached by deriving
Q with respect to relevant parametégsor ), because £°)

are not constant. They depend on the thermodynamical con-
ditions through Pio). In summary, great care is required
when using such developments. One really needs another
viewpoint to grasp their meaning and to compare to. This is
precisely the role assigned to the SCA technique.

SinceN®™ depends on. andp, it is possible to reach any
kth derivative with respect to both thermodynamical vari-
ables[(dQ/au¥), 4 or (*Q13BY), 1. The key points are
3, " A 9PV gu=pBAY and 3" AS 9P 9= — ADe) [Egs.

(2.9 and(2.10] [25,41. This allows us to solve the appar-
ent paradox of computing kth centered moment of ioniza-
tion from the average-atom populationBiOQ only [34]. At

first sight, (Pio) is naively understood to give only an ap-
proximate value forZ*. Yet, the self-consistency of the
average-atom equations, that is to say the dependence of the
one-electron parametersioo on (P?), leads to a nontrivial
dependence ofF(io) (and hence of2®™) on the thermody-
namical parameterg and u.

Although well-adapted to get the cumulants of the ioniza-
tion distribution, the quantity) is not efficient enough to
study the properties of the energy distribution. It is therefore
better to consider the quantifgF, whereF is the free en-

ergy (F=Q+ uN). More precisely, ankth cumulant of the
energy distribution can be found from*“(B8F)/dB~.

Conversely, the electron pressuRe can be estimated
without any derivative with respect to density sinée
=—QYN,, or equivalently,P=—Q"pAJA. Here, Q" is
the sum of two terms: () and the free-electron component
Qe [61] {Q = —2Z* Fyi ) [3BF 1 m) 1}

Q~0%+ (A8)

APPENDIX B

The integral representation of the Kronecker symbol
(or the circle method33]) is well-suited to standard combi-
natorial issues with constraints. For instance, it can be used
to count the numbeN_,,n of N-electron configuration€
constructed fromK,,, shells with degeneraciedD(). By
definition, N o is equal to
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type,fi_ﬁ;j‘_oao(dtIZi m)e'®, the optimum valué, of a to

choose is the associated saddle pdufd] (df/dt|ao=0).

h K o , . At this occasion, an approximate value of this type of inte-
wi ereY denot§52k=1Pk—N. An.unr.estrlcted summatlop is tgral can be deduced:f'_"fio (dt/2i m) eV~ e (@)
provided by using the forthcoming integral representation o T %

the Kronecker symbol: V2m(df/dt )|7xo-
_ Such tricks are clearly powerful but there are situations
1 (imtao N for which direct computations ought to be preferred. We
5ON_'_ dte™, (BZ) . . L (m)
2T ) —imtag have in mind numbersS,,(Q) (originally called N;™ by

Oreget al. [26]),
whereN and « are integer and real, respectively. A closed

NcontN:E 1:2 Soy » (B1)
Cu C

form for N, can then be derived: 2 M N2
- Q= 2 X 22 L (B7)
K Nm-1=0 Np_2=0 ni=

imtag dt max l_eft(DkJrl)
Ncomsz —eN]] o (B3

Simtag2i T k=1 whereQ=0 andm=2. These numbers were computed and

tabulated using Bernoulli functions. Yet, simple algebra

or shows that
1 dz fmax 1 — 7Okt "1 Q+k [Q+m—1
Nconﬂ\':m % N1 k1:[1 1—7 . (B4) Sm(Q)zkE[l K =( m—1 ) (B8)

¢ denotes an integration in the complex plane around a circl&@his relation is proven by induction an, wherebyQ is held
of radiuse™ “o(z=e™") centered in zero. The last expressionfixed. The result forn=2 is trivial sinceSz(Q)=ESlzol
is just the Cauchy formula\lcommz(1/N!)(dN/dzN)[Hi2‘iX —(9f1). By noting that >2),
X (122 D)/(1-2) o].

As an example, witm/" subshells from & to 5g, when Q
N=7 we can construct 101126 configurations, when S'm(Q):n 2—0 Sm-1(Nm-1), (B9)
=13, 1.12x10’ configurations, whenN=26, 2.96<10° m
configurations, and finally, whed=79, 1.05< 10'° configu-  we have
rations. It gives a simple illustration of the impressive num-

bers of configurations typically encountered when a brute- Q Nyp_1+M—2
force summation of a partition function is performed. Sm(Q)= > ( m—2 ) (B10)
m-—1—

The total numbeN,; of all possible configuration€y,
where Ne[0ON+], and the total numbeNf(");kf of one-  The identity
electron transitions can be found in the same spirit:

Q
n+ +p+1
< 2 ( pp):(prl ) (B11)
Niot= NZO Neontt n=0
is then used to get EqB8), which ends the demonstration

imtag dt 1—etNTT1) Kmax 1 _ g t(Dk+D) by induction.
- Cimra2im 1-€0 iy 1-e U Identity (B11) can be shown as follow$3]. Let us note
that
(BS)
2 2 n+p
For a transitiork;—K;, both shellsk; andk; are discarded D (I+xX)PT = xP Y ( )+ (B12)
when the former is empty or the latter is full: n=0 =0\ P
Nkiﬁkf_J‘iﬂ-Jrao ﬂl_eﬂNﬁl) Since forx#0
= — -
tot _|w+a02|77 1-¢e § p+n_(l+X)Q+p+l—(l+X)p
Kmax 1 _ @= (D18~ diek,) =, (1+x)P 0= X . (B13y
X
e 1_e*t (BG)

the coefficient of x? originates from expansion of (1
+x)Q*P*1 only, which yields Eq(B11).

Sn(Q) numbers are much more than a mathematical cu-
sity. The original expression can be slightly modify to
tain the following formula:

A numerical evaluation of these integrals is to be per-
formed with caution. This originates from the oscillatory .
L : 0
character of the arguments: in practice the results appear {bb
. .. . 0
depend onay due to numerical uncertainties. Mathemati-
cally, it should not be the case. This freedom with respect to n n n n
ag can be used to evaluate the aforementioned integrals with pm=2> > > > Sov» (B14)
the saddle-point method. Since all integrals are of the same 0n=0 dn-1>0y  02>03 d1>0;
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wherep(n) and y denote the number of partitions ofand

n—={,q;, respectively. In other wordg(n) is equal to the 10T T T A
number of ways a positive integarcan be represented as a a2

sum of positive integers without regard to order and with na 3

restrictions[33,64,69. As an examplep(5)=7 because the 5o i 3
partitions of 5 are 5, 41, 3+2, 3+1+1, 2+2+1, 2+1 3!

+1+1, and I+1+1+1+1. It may appear tempting to in- Y

sert the integral representation of the Kronecker symbol tc \
get a tractable formula fop(n). However, the fact thady,
takes its values into the sdgy_;,qx_1+1,...n—1n}
prevents any factorization, and consequently, any closed e
pression of practical interest fan(n).

Indeed, the generating function p{n) is known[33] to F

be the infinite product;_,(1—2z) 1. With the convention T
p(0)=1, we thus have

R )

o -_r (")
60 + HR'

Relative errors (%)

)
1
1
A}
1
)
1
L )
S
w0 L

0 T 1
-

20

> pmz"=] (1-z71, (B19) \——\_ e ]
n=0 n=1 0 e bl o

where p(n)=1/(2im)$(dz/z"* H)II_,(1-Z) 1. The ra-

dius of the integration circle should be chosen lower to unity FIG. 6. Relative errorg.(n)=|1—p.(n)/p(n)| and ryg(n)
(ap>0). This way of thinking can be extended further by =|1—pgr(n)/p(n)|. p(n) is the number of partitions af. p..(n)

considering alsal(n) and o(n), which are the number of andpygr(n) are two asymptotic analytic expressionspgh).
divisors and the sum of the divisors of respectively:

p(n)=(1/n)$(dz/2i 7) (12"t HYF(2)G(z). Or, F(2)G(2)
* * =37 _oa,2", with a,=1 and a,=2;_;o(k)p(n—K).
zl d(n)Zangl 2"(1-2"), (B16)  Hence,p(n)=a,/n.

The partitionsp(n) are thus exactly obtained within
. steps. The CPU time is drastically reduced and no more in-
- tegration in the complex plane is required. Hepén) is
nzl a(n)z":nzl nz'/(1-2"). (B17)  calculated in the same way the partition function is computed
in the STA and SCA models because the recursion formulas
are analogous to the recursion formu(d®), (43), and(45)
of Ref.[28]. p(n) and a(n) play the role ofUq and x,,

©

Similar integrations in the complex plane allow one to
calculated(n) ando(n). But a much more powerful method

A . e n respectively[see Eq.(3.8)]. Finally, note that one can go
Cin be bu'I,E'_F'rSt' letus mtrodueféz)—l'[n:l(_l—_z ), thus further by eliminatinga(n) to find a closed recursion for-
2h-10(n)z"=—[2z/s(z)]ds(z)/dz. By multiplying both mula for p(n), namely

sides bys(z) and identifying term by term the coefficients of ’ '
the null polynomials(z)=,_,0(n)z"+2z[ds(z)/dz], Euler
found the recursion relation

p(n)=> (-1« !

k=1

k(3k—1)
Pin-—%—
with the conventiorp(m)=0 for m<<0.
As an illustration, we have drawn in Fig. 6 the relative
where the sum is limited to positive arguments with the congrrors

_ _ _ r(N=[1=p.(n)/p(n)| and  ryr(n)=[1
vention o(0)=n. The integers differ by the numbers —pur(n)/p(n)| as a function ofn, for ne{1,...,1000.
1,3,2,5,3,7,4,9,5,11,6. .

o(n)=c(n—1)+o(n—2)—c(n—5)—oc(n—7) k(3k+1)

ol
+o(n—=12)+o(n—15—0c(n—22)— o(n—26) 2

Feoe, (B18)

. The polynomial s(z) and the

p.(n) and pyr(n) are both asymptotic approximations of
generating functions gb(n) ando(n) lead[65] to a recur-

p(n), especially valid for large values of
sion formula forp(n):
. . px(n):ew(2n/3)1/2/(4n31/2)
p(n)=— 2>, a(k)p(n—k). (B19)
Nk=1 p(n) ~ pur(N)
n—oo
This equation is obtained as follows. Let us defiRréz) d
and G(z) the generating functions ofp(n) and =

= [ew(2/3)1’2(n—1/24)1’2/(n_ 1/24Y2) (27212,
a(n):=,_,p(n)z"=1/s(z) =F(2) and X,_,o(n)z" n
=—[z/s(z)]ds(z)/dz=G(z). By integrating by parts, (B20)
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The last approximatioffestablished by Hardy and Ramanu- smoother and very rapid. It could be interesting to look for a
jan[48,64—-68) is more precise thap.,, which appears as a similar approximation for the superconfiguration averages,
limit case[67]. In Fig. 6, we can see that the convergencelike the statistical suntd5(g) in Eq. (3.8) to avoid the sums

towards zero of .. (n) is slow|[r.(1000)~2%] and rather
noisy below 20. Conversely, the convergencergfn) is

with alternate sign. Unfortunately, we fail to propose such an
approximation, if it really exists.
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