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Superconfiguration accounting approach versus average-atom model
in local-thermodynamic-equilibrium highly ionized plasmas

G. Faussurier
Commissariat a` l’Energie Atomique, 91680 Bruye`res-le-Chaˆtel, Boı̂te Postale 12, France

~Received 10 August 1998!

Statistical methods of describing and simulating complex ionized plasmas requires the development of
reliable and computationally tractable models. In that spirit, we propose the screened-hydrogenic average atom,
augmented with corrections resulting from fluctuations of the occupation probabilities around the mean-field
equilibrium, as an approximation to calculate the grand potential and related statistical properties. Our main
objective is to check the validity of this approach by comparing its predictions with those given by the
superconfiguration accounting method. The latter is well-suited to this purpose. In effect, this method makes it
possible to go beyond the mean-field model by using nonperturbative, analytic, and systematic techniques.
Besides, it allows us to establish the relationship between the detailed configuration accounting and the
average-atom methods. To our knowledge, this is the first time that the superconfiguration description has been
used in this context. Finally, this study is also the occasion for presenting a powerful technique from analytic
number theory to calculate superconfiguration averaged quantities.@S1063-651X~99!04106-9#

PACS number~s!: 52.25.Kn, 52.25.Jm, 05.30.Fk
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I. INTRODUCTION

The properties of hot dense matter are important in as
physics and in laboratory-plasma physics where equation
state, photoabsorption, and transport coefficients are requ
to perform accurate numerical simulations@1#. Their calcu-
lation depends on the electronic structure of the atoms c
stituting the plasma, regardless of thermodynamic con
tions. For plasmas in local thermodynamic equilibriu
~LTE!, the only thermodynamic state considered in this
per, methods of varying degrees of complexity have b
used to extend pioneering works based on the Thomas-F
approach@2–8# and the screened-hydrogenic average-at
model @9#. This goal has been achieved by using two kin
of models: the average-atom model~AAM ! @10–16# and the
density-functional theory~DFT! @17–22#. In the AAM, elec-
trons are assumed to occupy single-particle levels accor
to Fermi statistics. They are moving in an average effec
potential which is consistent with the single-particle wa
functions. In the DFT, electron density has the domin
role. The grand potential at finite temperature of a ferm
system embedded in an external potential is a unique fu
tional of the electron density. Since the exact expression
this functional is unknown, one must resort to additional
sumptions concerning electron density, kinetic energy,
exchange-correlation effects, which lead to the local-dens
functional approximation. The resulting tractable set of wa
equations, which must be solved self-consistently to de
mine the electron density, is referred to generically as
Kohn and Sham equations. For an atomic system at fi
temperature, the profound similarity between the Kohn a
Sham equations and the average-atom equations can be
phasized by expressing both models in terms of functio
integrals@23#. This extends the formulation of the screene
hydrogenic AAM, which has been shown to stand on
saddle-point evaluation of an integral representation of
partition function@24,25#. The AAM and the DFT are de
PRE 591063-651X/99/59~6!/7096~14!/$15.00
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duced by~i! finding a specific functional-integral represent
tion of the grand-canonical partition function of the syste
of interest and~ii ! expanding the functional integral b
means of the saddle-point method. As far as the DFT
concerned, it has permitted us to find an exact expressio
the exchange-correlation term to the grand potential. Fr
our point of view, the formulation of the AAM and the DFT
in the same theoretical framework is one of the most int
esting and fruitful features of the functional-integral metho
Indeed, it is worth mentioning that the evaluation of a sp
cific integral representation~with or without path integral! of
a partition function delivers mainly mean-field results for t
many-particle systems. Consequently, in spite of their u
fulness, the accuracy of DFT and AAM is not better und
stood than that of screened-hydrogenic AAM.

In this paper, the mean-field results are revisited and co
pared to calculations done in the framework of the su
configuration accounting~SCA! approach@26#. Restricting
oneself to the screened-hydrogenic AAM for the sake of s
plicity @27#, one shows that the AAM accuracy becom
open to constructive criticism and basic notions dedu
from it can be examined. The SCA method has its origin
the supertransition array~STA! model @28–32#. In recent
years, the STA method has extensively been used to inter
bound-bound and bound-free spectra of LTE plasmas.
summarize, the entire spectrum is divided into STA’s i.
between pairs of superconfigurations where each super
figuration is a particular set of near-lying configuration
Each STA spectrum is represented by a Gaussian constru
from array moments—total intensity, average energy, a
variance—that are analytically calculated. The fine details
the spectrum are gradually evidenced by a convergence
cedure obtained by splitting each STA into a number
smaller STA’s until the desired spectral resolution
reached. By doing so, the brute-force summation over
individual lines one by one is avoided. Needless to say,
enormous number of configurations are needed to chara
ize a plasma at equilibrium and a detailed account met
7096 ©1999 The American Physical Society
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PRE 59 7097SUPERCONFIGURATION ACCOUNTING APPROACH . . .
~or DCA for detailed configuration accounting! is still today
computationally impractical. In fact, the essential reason
that it would consume an outrageous amount of comp
time. The central achievement of STA theory is precisel
way to overcome this difficulty to some extent. Since t
AAM can be proven to originate from the saddle-po
evaluation of an integral representation of the gra
canonical partition functionZG @25#, and since the SCA
evaluation ofZG converges to a complete DCA evaluatio
~starting from the AAM for instance!, it is tempting to com-
pare both methods. In summary, SCA offers the opportu
to go beyond the given limit of a nonintegrable mean-fie
model by using nonperturbative, analytic methods. Mo
over, SCA is intended to bridge the gap between an intr
table discrete description of matter, the DCA method, an
questionable continuous one, the AAM. Furthermore, a te
nique, known as the circle method in analytic number the
@33#, is utilized in the SCA approach, to lighten and impro
the calculation of the statistical sums of interest.

The paper is organized as follows. The formulation of t
screened-hydrogenic AAM within the framework of the i
tegral representation of a partition function is reproduced
Sec. II, along with the required background and notations
Sec. III, the SCA method is considered: useful formulas
derived to obtain analytic expressions for the plasma sta
tical averages, such as, e.g., atomic-shell mean occupan
ionization-distribution parameters~mean, variance, skew
ness, and kurtosis!, or integer ion-stage fractions. Section I
is devoted to numerical applications and Sec. V summar
results.

II. SCREENED-HYDROGENIC AVERAGE-ATOM MODEL

Different methods exist to study the statistical propert
of highly charged LTE one-component ion plasmas at giv
temperatureT and mass densityr. The screened-hydrogeni
atom model has the benefits of being easily usable, rea
ably accurate, and fast enough to be implemented into
atomic-physics package of a hydrodynamic code. Moreo
it is well-defined and thermodynamically consistent@25#.
The grand-canonical partition functionZG of bound elec-
trons is the starting point of all relevant developments

ZG5e2bV5(
C
DCe2b@EC2mNC#. ~2.1!

V, EC , NC , andDC are the grand potential, the energy, t
total electron number, and the statistical weight of an el
tronic configurationC, respectively. Introducing the shell oc
cupation number (Pi) and the shell degeneracies (Di), NC

5( i 51
KmaxPi andDC5P i 51

Kmax(Pi

Di); (Pi

Di) is the standard binomia

coefficient: (Pi

Di)5Di !/ @Pi !(Di2Pi)! #. The shell indexi de-

pends on the shell quantum numbers:i 5n or nl , wheren
and l are principal and orbital quantum numbers, resp
tively. m is the chemical potential andb the inverse tempera
ture ~b51/kBT, kB is the Boltzmann constant!, whereas the
sum(C covers the set of all configurations constructed fro
the finite numberKmax of bound shells. So(C denotes

(P150

D1
¯(Pi 50

Di
¯(

P

DKmax . The chemical potentialm is cal-

Kmax50
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culated by imposing the average neutrality of the ion cell.Z,
(Pi), Z* , andFa(h) are, successively, the ion change nu
ber, the shell mean occupancies, the average ionization,
the Fermi-Dirac function@Fa(h)5*0

`dx xa/(11ex2h)#; m
obeys the equations (h5bm)

N̄1Z* 5Z, (
i 51

Kmax

P̄i5N̄52S ]V

]m D
r,T

,

~2.2!

Z* 54p
A

rN S 2m

bh2D 3/2

F1/2~h!.

A is the molar mass of the element,N the Avogadro number,
m the electron mass, andh the Planck constant. The thermo
dynamic limit is assumed, hence the use of the mass den
r instead of the volumeV of the system. For completenes
we recall that the electron densityNe , the atomic particle
densityNa , and the ion-sphere radiusR0 satisfy the relations
(4/3)pR0

3Na51, Na5rN/A, andZ* 5Ne /Na . Throughout
this paper, the shell degeneracies are assumed to be int
so that no pressure-ionization phenomenon is taken into
count by reducing them@14#; the thermodynamic variables
kept constant when partial derivatives are performed, w
not be mentioned each time. Finally, (Pi) is used subse-
quently to depict a configurationC, which justifies the nota-
tion E@(Pi)#5EC . For example@27#, within the framework
of the Mayer’s model~in atomic units!,

E@~Pi !#5 (
i 51

Kmax

Pi S Ei2
Vii

2 D1 1
2 (

i , j 51

Kmax

Pi PjVi j , ~2.3!

where Ei52Z2/(2ni
2) and Vi j 5(Zs i j )/ni

2. The screening
constants (s i j ) are configuration-independent. By contra
in the screened-hydrogenic model~SHM!,

E@~Pi !#52 (
i 51

Kmax Zi
2

2ni
2 Pi ,

~2.4!

Zi5Z1a i2 (
j 51

Kmax

s i j Pj ,

where Zi5Z1a i2( j 51
KmaxsijPj . (s i j ) is a set of screening

parameters independent of the electronic configuration
(a i) are SHM-specific constants.

The usual and proper way to analyze the thermodyna
properties of equilibrium systems is to resort to a partiti
function~hereZG!. ZG is of fundamental importance to mak
apparent the thermodynamic consistency of the formal
and to calculate the statistical averageŌ of any physical
quantity O which depends explicitly on the electronic co
figuration

Ō5
1

ZG
(
C
DCOCe2b@EC2mNC#. ~2.5!

Unfortunately, the exact value ofZG is unknown in the ma-
jority of cases and a brute-force computation of the discr
sum (C is difficult to achieve due to the large number
configurations. Furthermore, a closed form is rarely poss
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7098 PRE 59G. FAUSSURIER
to write down whenEC is a nonlinear function of (Pi). This
nonlinearity reflects the many-body effects and explains w
the standard textbook factorization ofZG , which is well-
suited for ideal Fermi gas, does not directly apply here
solution is to find an integral representation ofZG . In short,
(C is replaced by an integral at the expense of introduc
auxiliary variables. Its factorization thus becomes possi
ZG can be evaluated by using the saddle-point technique,
one finds that the saddle point is identical to the AAM.

At this stage, it is worthwhile noting that the integral re
resentation ofZG is not unique. As a consequence, it is cle
that the AAM and the corrections to the mean-field equati
are not independent of the approximation retained to ca
late a particular integral. This aspect will be illustrated
choosing, first, a universal representation and, then, ano
one which depends onEC .

For the sake of simplicity and generality, we can take
forthcoming integral representation which holds for any e
pression ofEC . Only the main results are given in the pla
text. Algebraic intermediate calculations are detailed in A
pendix A.

Starting from Eq.~2.1!, ZG can be written as follows
@25,34#:

ZG5E @dU#e2bS~U !,

@dU#5
dKmaxxdKmaxv

~2p!Kmax
,

~2.6!
U j5xj , U j 1Kmax

5v j , j 51, . . . ,Kmax,

S~U !5E@~xi !#2 (
j 51

Kmax

iv j xj /b2D j ln@11e2 iv j 1h#/b.

Since we are dealing with the partition function of a syst
at thermodynamic equilibrium, the saddle-point method c
be used to estimateZG in Eq. ~2.6!. After a few manipula-
tions, one finds that the coupled nonlinear Fermi-Dirac eq
tions

Pj
05D j f j

0, ej
05

]E

]Pj
U

~P
i
0!

2m, f j
051/~11ebej

0
!, ~2.7!

which define the fractional occupations (Pi
0) of the bound

orbitals of the screened-hydrogenic average-atom model
identical to the saddle-point equation

]S

]U j
U

~U
i
0!

50. ~2.8!

The second-order Taylor expansion terms@15# have to be
calculated to incorporate the average-atom model with c
rections resulting from fluctuations of the occupation pro
abilities around the mean-field description of statistical eq
librium ~or FAA for fluctuations around average atom!. They
can be expressed in terms of the average-atom popula
(Pi

0) only. The first corrections to the average-atom mo
y
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are then estimated without handling complicated pertur
tion strategy. Using the grand potential defined in Eq.~2.1!,
the final result simply reads

V'Veff5V01
Tr@ ln~DS0!#

2b
,

V05E@~Pi
0!#2m (

i 51

Kmax

Pi
01

1

b (
i 51

Kmax

Di~ f i
0 ln f i

01gi
0 ln gi

0!,

~2.9!

~DS0! i j 5d i j 1bVi j
0 L i

0,

where@Eq. ~2.7!#

gi
0512 f i

0, L i
05Di f i

0gi
0, Vi j

0 5
]2E

]Pi]Pj
U

~P
k
0!

.

~2.10!

Equation ~2.9! requires some explanation. The effectiv
grand potentialVeff gives an approximate expression for th
true grand potentialV. V0 is the usual expression obtaine
for an ideal Fermi gas. The second term represents the
correction to V0 due to mutual electrostatic interaction
symbolized here by (Vi j

0 ). The saddle-point method allow
for the definition of an average atom, whose shell popu
tions satisfy Fermi-Dirac equations~2.7!. Interactions seem
to have disappeared and the original many-particle prob
is finally reduced to a one-body problem. This fact is we
known @11,15,35# and very powerful for practical reason
Yet, one must be careful not to pursue the analogy with
ideal Fermi gas too far, because the average atom is
constituted of noninteracting electrons. Interactions are
present through the self-consistency of Eq.~2.7!, since the
one-electron energies (« i

0) (« i
05]E/]Pi u(P

j
0)) incorporate a

nonlinear (Pi
0) dependence. Moreover, there is the dange

misinterpreting quantities such as (« i
0) or (Pi

0). They have
no other physical meaning than defining a mean field,
effective field, from whichZG can be estimated.Pi

0 is not

equal to the mean occupationP̄i52]V/]m i um i5m . This re-

mark applies to E05E@(Pi
0)# as well: E0ÞĒ

5@](bV)/]b#1mN̄. Therefore, great care is required whe
using average-atom quantities in place of strict avera
thermodynamic quantities.

As mentioned above, the notion of AAM depends on t
approximation strategy to calculateZG . The integral repre-
sentation is not unique and many AAM’s can be defin
@15,23#. As an illustration, in the framework of Mayer’
model, ZG can be written as@24,25# ZG5^ZG

ind@(xi)#& (xi )
,

where

^$¯%&~xi !

5E dKmaxx$¯%e2~1/2!xTbVxY E dKmaxxe2~1/2!xTbVx,

ZG
ind@~xi !#5 )

j 51

Kmax

~11e2bej !D j ,
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ej5Ej2Vj j /22m1 i(
k

Vjkxk . ~2.11!

ZG can be interpreted as follows:ZG
ind@(xi)# is the partition

function of a noninteracting-electron gas in an external fi
(xi) that has to be averaged over its Gaussian distribut
Surprisingly, both Eq.~2.9! and Eq.~2.10! are recovered by
applying the saddle-point technique to this specific expr
sion. One can easily find counterexamples@36#. Of course, if
the exact expression of a given multidimensional integ
were known, and if the complete saddle-point expans
around the average-atom solution could be done, the im
tant physical question regarding the validity of this expa
sion could be answered. Indeed, the choice of performin
saddle-point expansion is closely connected with this lack
any explicit small perturbation parameter. The recurrent
problematic accuracy of such an expansion does not prec
the use of the saddle-point method. Intuitively, one expe
this technique to bring accurate low-order approximatio
when thermal equilibrium is very stable around the me
field description of statistical equilibrium. A similar situatio
typically occurs in hot dense plasma physics where ma
electron ions are considered: the AAM is recognized to
well-matched, evidencing that the saddle point has very la
second derivatives along the direction of steepest descen
the absence of a formal expansion parameter, one mus
guided by the physics of the problem and choose a form
tion which includes the relevant physical contributions@15#.
Like the saddle-point method, the mean-field notion itsel
subject to severe limitations requiring additional clarific
tion.

The AAM does not stem exclusively from the sadd
point method. Indeed, one can throw new light on this mo
by formulating it in the framework of a variational principl
@37–41#. Let us imagine that an integral representation ofZG
@Eq. ~2.1!# has been found,

ZG5E @dx#e2bS~x!, ~2.12!

where@dx# is an integration measure andS a function that
depends explicitly on the dummy variablex. Suppose we
have another ‘‘S,’’ say S0 , that is easier to work with. Then
Eq. ~2.12! may be written as

ZG5e2bV0^e2b~S2S0!&S0
,

e2bV05E @dx#e2bS0~x!, ~2.13!

^$¯%&S0
5ebV0E @dx#$¯%e2bS0~x!.

Now, suppose thatS andS0 are real, the inequality

^e2 f&>e2^ f & ~2.14!

may be used to get

V<V01^S2S0&S0
. ~2.15!
d
n.
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In general,S0 is chosen to be close to the problem and s
ficiently simple to make possible the^S2S0&S0

calculation.

S0 depends on several parameters that are adjusted to m
mize the right-hand side of Eq.~2.15!. The geometrical in-
terpretation of Eq.~2.14! comes from the convexity of the
exponential function and is invoked as the Peierls-Jen
@37# or Gibbs-Bogoliubov@42# inequality.

As an illustration, Eq.~2.15! is applied to Mayer’s model.
Let us choose the partition function of an ideal Fermi g
where the one-electron energies (« i) are variational quanti-
ties

ZG0
5(

~Pk!
F)

k
S Dk

Pk
De2b~«k2m!PkG . ~2.16!

Using Eq. ~2.15!, it is then a simple task to find the opt
mized (« i) and define an associated AAM. Equation~2.7! is
still valid by changing« j

05]E/]Pj u(P
i
0) into

« j
05Ek1(

k8
Pk8

0 Vkk8S 12
dkk8
Dk

D . ~2.17!

In spite of the apparent similarity, both AAM~2.7! and
~2.17! are in essence different: this fact is corroborated
the various expressions of one-electron energies. The va
tional AAM can be considered the best fit for the thermod
namic potentialV. One cannot infer, however, that this s
lution is best fitted to quantities other thanV, such as the
evaluation of Eq.~2.5!. This consideration applies to th
SHM too: one finds that the one-electron energies ma
neither Eq.~2.7! nor the rather intuitive quantity

« i
05

]Eeff

]Pi
U

~P
i
0!

, ~2.18!

where Eeff@(Pk)#52Sk(Z̃k
2/2nk

2)Pk and Z̃k5Z
2Sk8skk8Pk8(12dkk8 /Dk). Finally, first corrections to the
variational AAM cannot be implemented easily. This is t
main drawback of this formalism because one has to cha
S0 in order to improve the calculation ofV in Eq. ~2.15!.
This makes it difficult to build a systematic variational a
proach that could lead to a convergent perturbation exp
sion for the grand potential@43#.

In summary, the AAM can be viewed using two strateg
in order to evaluate the grand-canonical partition functionZG
~2.1!: a saddle-point method or a variational principle. Y
for mathematical convenience and central processing
~CPU! considerations, the domain of validity of the AAM
remains questionable, as well as the opportunity to go
yond this mean-field approach~the independent-electron de
scription augmented with second-order corrections ass
ated with fluctuations of occupation probabilities around
average mean-field equilibrium!. These considerations led u
to adopt an alternative approach using the SCA. This met
makes possible the calculation ofZG ; the SCA is an analytic
technique, which inherently converges to the solution wi
out any recourse to stochastic method@15#. Consequently,
the SCA provides a powerful and systematic tool for gett
answers to certain classes of otherwise unsolvable ma
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particle problems, such as those involving the screen
hydrogenic LTE average-atom model.

III. SUPERCONFIGURATION ACCOUNTING

Let us introduce the required theoretical background. T
leading notations, commonly used by Bar-Shalomet al.
@26,28# or Blenskiet al. @44–46#, have been used whenev
possible. A supershells is a set of ordinary atomic subshel
sPs. A superconfiguration~SC! J of a Q electron ion, de-
fined by its supershell occupation numbersQs , is a group of
ordinary configurationsC symbolically written as the prod
uct over supershells:

J5)
s

sQs, (
s

Qs5Q. ~3.1!

In other words, the SC is constructed by simply dispatch
theQs electrons occupying supershells among the subshell
in all possible ways subject to the constraint$SsPsPs
5Qs%: sQs5SYs

Pss
Ps. Ys means $SsPsPs5Qs%.

One should mention that each partition ofQ is an ordinary
configurationC: C5Pss

Ps[PsPsPssPs. The main role is
transferred from subshellss to supershellss, in the same
way the concept of SC supersedes the trivial notion of c
figuration. This fact can be exploited to rewrite Eq.~2.1! in
terms of SC only: ZG5(JUJ , UJ5(CPJUC . UC

5DCe2b@EC2mQ# and UJ are, respectively, the partitio
functions of configurationNC of SC J. Note that the total
number of electronNC of configurationC has been replace
by Q, since NC5Q by definition. The SC notion clearly
bridges a gap between the integer-charge stageQ and the
configuration C partitions: ZG5(QUQ , UQ5(CPQUC
5(JPQUJ , whereUQ is the partition function of ions with
Q electrons.

As first pointed out by Bar-Shalomet al. @28#, a SC con-
tains ordinary configurations lying sufficiently near in ener
by construction. As a result, we can take advantage of
dramatic simplification ofUQ occurring in the noninteracting
limit, whereEC is linear with respect to (Pi). Consequently,

UJ'e2bDEJ (
CPJ

)
s

S Ds

Ps
DXs

Ps, ~3.2!

where

Xs5e2b~«s
J

2m!, «s
J5

]E

]Ps
U

~P
r
J!

~3.3!

and

DEJ5E@~Ps
J!#2PT«J. ~3.4!

Equation~3.2! can be more compactly written by introducin
the partition functionUQs

(g) of a supershells,

UJ'e2bDEJ)
s

UQs
~g!, UQs

~g!5(
Ys

S Ds

Ps
DXs

Ps,

~3.5!
d-

e

g

-

e

where~g! stands for the set of shell degeneracies (Ds). From
here on, this notation is generalized to (grs...)5(Di2d ir
2d is2¯). The only approximation lies in the Taylor ex
pansion ofEC truncated after the linear terms. This proc
dure is known to be open to criticism when average-at
atomic data are used as reference. Yet, it becomes less
less questionable as the SC partitioning of the configura
space reaches DCA. In practice, the main drawback of
method is that it takes into account only configuratio
whose contribution is estimated to be the most significana
priori . SCA provides a test of this approximation, since
can easily include all contributions and contains a system
convergence procedure in its roots. Here, this formalism
applied to calculate standard-textbook thermodynamic qu
tities such as average and variance of ionization and
populations. The results can thus be compared to AAM
sults, as well as to indirect computations starting with t
grand potentialV.

In quantum field theory, it is well known that the con
nected Green functions are generated by the logarithm of
partition function in the presence of a source term@15#. A
similar phenomenon occurs here withV. Indeed, Eq.~2.5!
can be rewritten as follows:ZO5e2bVO

5(CDCe2b@EC2mNC1lOC# and Ō5]VO /]lu0 . The cen-

tered moment(O2Ō)n of order n can be obtained by iter
ating the derivation with respect tol. As an example, for
fixed r, b, andm, we have the identity@47,48# @Eq. ~2.2!#

V~m1l!5V~m!2~1/b!(
k51

`
~lb!k

k!
^Nk&c , ~3.6!

where ^Nk&c52]kV/]lku0 /bk2152]kV/]mkum /bk21 is

the kth cumulant and is related to the momentsNm with m

<k. For instance, ^N1&c5Z2Z̄* , ^N2&c5sZ*
2 , ^N3&c

52(Z* 2Z* )3, and^N4&c5(Z* 2Z* )423sZ*
4 . Generally,

^Nk&c is not equal to thekth centered moment(N2N̄)k.

^N1&c is the expectationN̄ which, according to Eq.~2.2!, is
related to the average ionization, and^N2&c is the variance of
ionization. When normalized to the standard deviation
ionization sZ* , the quantitiessZ* 52^N3&c /sZ*

3 and kZ*
5^N4&c /sZ*

4 denote the skewness and the kurtosis~or flat-
ness!, respectively@49#. A characteristic feature of the nor
mal ~or Gaussian! distribution is that cumulants higher tha
the third are zero. Thus,^Nk&c , with 3<k, gives a measure
of any deviation from the normal distribution. The kurtosis
the most common indicator of this trend. With respect to
normal distribution, flat curves have a negative kurtosis a
sharp curves a positive one. These distributions are ter
leptokurtic and platykurtic, respectively. Cumulants beyo
the kurtosis are rarely considered for practical reasons
similar strategy is adopted in this paper: only the skewn
and the kurtosis are of great interest in terms of enhanc
any deviation of the ionization distribution with respect
the normal distribution.

Let us consider the one-parameter family of probabil
density (I a5e2uxua), wherea.0. Since the mean value i
zero, the centered moments are identical to the moment
is then a straightforward calculation to show that the va
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ance s2(a) and the kurtosisk~a! are given by s2(a)
5G(3/a)/G(1/a) and k(a)5G(5/a)G(1/a)/G2(3/a)23,
whereG(z)5*0

`du uz21e2u. One can check the equalitie
k(2)50 anddk/da(2)521; so k(21«) '

«→0
2« and the

sign of k~a! changes towardsa52 ~see Fig. 1!.
Any cumulant may be calculated in the SCA language

using an operator technique@26#. Yet, the computation of the
kth centered moments of ionization rapidly becomes pa
taking with increasingk, like the successive derivations o
the effective grand potentialVeff in Eq. ~2.9! with respect to
the chemical potentialm. This is especially true when one
compelled to replace, for numerical reasons, the elec
counting by the hole counting in the statistical sums invo
ing supershells with a large number of bound electrons@44#.
We propose to calculate such superconfiguration-avera
quantities with a technique widely used in analytic numb
theory. This formalism is based on the notion of integ
representation in the complex plane and is entirely equ
lent to the aforementioned operator technique. However,
physical significance of the relevant quantities we are d
ing with are often clearer with this new viewpoint. Som
how, this reminds us of the situation of the path integ
versus the more conventional operator formalism in quan
field theory. We can see how this method works by comp
ing the following statistical sum that appears again and ag
in the SCA approach:

UQ~g!5(
Y

S Ds

Ps
DXs

Ps, ~3.7!

whereY stands for(sPs5Q. Algebraic analysis is simpli-
fied by introducing the Kronecker-symbol integral repres

FIG. 1. ~a! Behavior of the kurtosisk~a! of the distribution

I a(x)5a/@2G(1/a)#e2uxua ~normalized to unity! as a function ofa.
~b! Plots of a leptokurtic (a51), normal~or Gaussian,a52!, and
platykurtic (a54) distributions.
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tation into the summation, leading to UQ(g)
5(1/2ip)r(dz/zQ11)Ps(11zXs)

Ds. r denotes an integra
tion in the complex plane around a circle centered atz50.
This expression is the starting point to calculate various
erages, such as powers of shell occupation number in
hole or particle language@26,44–46#, that are needed to ge
the ionization-distribution moments.

First, let us prove Eqs.~42! and ~43! of Ref. @28#:

UQ~g!5 (
n51

Q

xnUQ2n~g!Y Q, xn52(
s

Ds~2Xs!
n,

~3.8!

with U0(g)51. Such identities are readily obtained by a
plying the Cauchy formula toUQ(g), since

UQ~g!5~1/Q! !
]Q

]zQ F)
s

~11zXs!
DsGU

0

. ~3.9!

A similar recursion formula can be found—in conjunctio
with the notion of a generating function—in the singl
particle ideal-gas model@28# and in the computation of the
partition number of an integer@see Eq.~B19! and Appendix
B for more details#. Indeed,UQ(g) andxn are generated by
F(z) andG(z), respectively:

(
Q50

`

UQ~g!zQ5)
s

~11zXs!
Ds[s~z!5F~z! ~3.10!

and

(
n50

`

xnzn52(
s

Ds Y ~11zXs!5G~z!. ~3.11!

For Q.0,

UQ~g!5 R dz

2ip

s~z!

zQ11 , ~3.12!

and, by performing an integration by parts,

UQ~g!5
1

Q R dz

2ip

1

zQ11 S z

s~z!

ds~z!

dz D s~z!. ~3.13!

But

z

s~z!

ds~z!

dz
5(

s
Ds2(

s
Ds Y ~11zXs! ~3.14!

and

z

s~z!

ds~z!

dz
5G̃~z![ (

n51

`

xnzn; ~3.15!

consequently,

UQ~g!5
1

Q R dz

2ip

1

zQ11 F~z!G̃~z!5
ãQ

Q
, ~3.16!

where
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ãQ5 (
n51

Q

xnUQ2n~g! ~3.17!

with

F~z!G̃~z!5 (
Q51

`

ãQzQ. ~3.18!

In the same spirit, the relationship betweenUQ(g) and
UQ(gr), namely

UQ~g!5UQ~gr !1XrUQ21~gr ! ~3.19!

@Eq. ~45! of Ref. @26##, simply comes from the following
identity:

UQ~g!5~1/2ip! R ~dz/zQ11!~11zXr !

3)
s

~11zXs!
Ds2drs. ~3.20!

It is then straightforward to infer the expressions
UQ(grs...) @26#. Finally, a simple factorization inside the in
tegral representation of a statistical sum leads from the e
tron counting~no star! to the hole counting~with star!:

UQ~g!5S)
s

Xs
DsDUQ* ~g!,

~3.21!

UQ* ~g!5~1/2ip! R ~dz/zQ* 11!)
s

~11zX̃s!
Ds,

where Q* 5Gs2Q, Gs5(sDs , and X̃s51/Xs @Eq. ~5! of
Ref. @44##. The integral representation is very useful beca
the average of a polynomial in the shell-occupation numb
is thus obtained by simply deriving under the integral sym
r with respect to the termXi of interest, which is formally
equivalent to using a chemical potentialm i for each subshel
i. In the case where many subshells are involved, one m
be careful when some of them belong to the same supers
In summary, any standard-textbook formula of intere
which is valid for noninteracting Fermi gas, can be applied
calculate various averages, such as powers of shell occ
tion number, in the hole or the particle language@26,44–46#.

As a result, we find the following explicit formulas for th
average ionization and the variance of ionization com
from the averages involving (Pi) and (Pi Pj ):

Z* 5Z2 (
i 51

Kmax

Pi , sZ*
2

5 (
i , j 51

Kmax

Pi Pj2Pi Pj , ~3.22!

where

Pi5DiS 12
1

ZG
(
J

UJ

UQs i
~gi !

UQs i
~g! D . ~3.23!

If the subshellsi and j do not belong to the same supersh
(s iÞs j ), then
f

c-

e
rs
l

st
ell.
t,
o
a-

g

l

Pi Pj5~DiD j /ZG!F(
J

UJS 12

UQs i
~gi !

UQs i
~g! D

3S 12

UQs j
~gj !

UQs j
~g! D G . ~3.24!

Conversely (s i5s j5s),

Pi Pj5~DiD j /ZG!F(
J

UJS 12
UQs

~gi !

UQs
~g!

2
UQs

~gj !

UQs
~g!

1
UQs

~gi j !

UQs
~g! D G ~3.25!

if iÞ j and

Pi
25~Di

2/ZG!F(
J

UJS 12~221/Di !
UQs

~gi !

UQs
~g!

1~121/Di !
UQs

~gii !

UQs
~g! D G ~3.26!

otherwise. In order to go rapidly from the electron to ho
language, the modified statistical sums of a supershell, s
as UQs

(gi) or UQs
(gi j ), are normalized by the unaltere

UQs
(g).

The fractionFQ of ion with Q electrons, or charge stag
(Z2Q), is then easily computed sinceFQ5UQ /ZG . The
SCA method givesFQ5(JPQUJ /ZG , whereas within the

framework of the AAM FQ'e2(Q2N̄)2/(2s
Z*
2

)/

(Q8e
2(Q82N̄)2/(2s

Z*
2

). Of course, the skewness§Z* and the
kurtosiskZ* , estimated within the same theoretical mod
can be used to improve this guess and go beyond the Ga
ian assumption. The SCA method can provide an indicat
concerning the statistical weightFC of any particular con-
figuration C. If C belongs to the superconfigurationJ, FC

'Ps(Ps

Ds)Xs
Pk/PsUQs

(g) @Eq. ~3.5!#. If no selected super-

configuration containsC, one can infer thatFC is negligible.

IV. NUMERICAL APPLICATIONS

As an illustration, we begin by comparing the avera
ionization and the ionization variance values obtained fr
different methods@Eq. ~3.22!#. The first is well known and
consists in using the AAM only, with or without FAA cor
rective terms@Eq. ~2.7!#. The second one is an explicit ca
culation of Z* and sZ*

2 with the SCA technique. All the
results are drawn in Fig. 2. The SHM@27# has been em-
ployed with the finite-temperature convention~2.18!. We re-
strict ourselves to the nonrelativistic regime; moreover, pl
mas effects on the electron structure are neglec
Calculations have been made withnl subshells ranging
from 1s to 5g. A LTE germanium plasma (r
50.053 07 g cm23) has been considered, since a series
experiments were carried out on this element@50# to explore
Ge photoabsorption properties at temperatures where thM
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shell is almost filled. The temperature domain ranges fr
10 to 250 eV, in order to sweep the conditions where t
shell progressively empties with increasing temperature. S
prisingly, the agreement uponZ* is good, even when theM
shell is almost filled or empty. Conversely, things chang
little bit for sZ*

2 . The main point is the close agreeme
between the mean-field method with FAA correction and
SCA. As far as the bare AAM is concerned, the situat
progressively deteriorates when theM shell becomes filled
~near 20 eV! or empty~around 200 eV!: the AAM tends then
to overestimate the fluctuations aroundZ* . The adequacy
gets better at higher temperature due to the progressive e
tiness of theL shell. We have performed similar calculation
with the grand potential. The comparisons show less of
influence of the FAA correction to match with the SCA com
putation, which is intended to be considered as the refere
In other words, the simple AAM calculations give very goo
values for the grand potential and the average ionizatio
reasonably good estimation of the variance of ionization
found too, especially where the model is not guaranteed
yield accurate results, i.e., when a shell is completely em
or full.

Same conclusions can be drawn as far as the sh
occupation numbers are considered. For clarity and for
aforementioned reasons, only the relative errors forM-shell
occupation numbers are presented in Fig. 3. The SCA c
putations serve as a reference; the FAA inclusion constit
again the key parameter to be discussed and significan
fects can be noted. Clearly, the mismatch between a sim
AAM and a SCA calculation is moderate. In this example
maximum amount of 10% is reached for the 3d subshell. As
expected, this occurs when theM shell is empty, or, in other
words, when the occupation numbers become quite sm
The FAA correction is efficient everywhere: as a result,
maximum relative error does not exceed 3% for the cho
range of electron temperatures.

Finally, let us comment on Eq.~3.6!. This formula has

FIG. 2. Average ionization and ionization variance of a LT
germanium plasma (r50.053 07 g cm23) calculated by using an
average-atom model—AAM, an average-atom model and F
correction—AAM1FAA, and a direct SCA computation—SCA.
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been used to check direct SCA calculations. As for ioni
tion, l is allowed to vary in a small range centered on ze
A Chebyshev approximation ofV(m1l) has been con-
structed forlP@20.05m,0.05m#, with a moderately large
number of polynomials~here 32!. A power of 2 is preferen-
tially chosen in order to use a fast cosine transform for c
culating the collocation-point coefficients of the Chebysh
approximation@51#. The precision encountered forV~m!,
]V/]m, and]2V/]m2 was quite impressive. This well-know
property of the Chebyshev approximating polynom
@52,53# is used to estimate higher derivatives]kV/]mk. By
doing so, higher centered moments of ionization~or cumu-
lants! can be obtained by alleviating direct calculation
which generally become more and more tedious with
creasingk. This is a convenient way to get around this d

ficulty and to tackle(O2Ō)n, especially whenO@(Pi)# is a
nonpolynomial function of (Pi).

As an illustration~Fig. 4!, the skewness (§Z* ) and the
kurtosis (kZ* ) of the ionization distribution have been com
puted by using the Chebyshev approximating-polynom
technique and by keeping the same thermodynamic co
tions for the germanium plasma of interest. The correspo
ing third (mZ*

3 ) and fourth (mZ*
4 ) centered moments hav

been added too. As expected,mZ*
4 is minimum when theM

shell is closed or empty and is maximum when it is ha
populated~near 100 eV!. In this region, many ions of differ-
ent charged stage contribute to the partition function and
ionization distribution is relatively symmetric:mZ*

3 is thus
relatively small. Yet, when we approach the emptiness of
M shell from below in temperature,mZ*

3 decreases down to
minimum and then increases with a change of sign. Wh
mZ*

3 is positive, this indicate that we are above theM-shell
emptiness in temperature, or equivalently below the clos

FIG. 3. Relative errors of theM-shell occupation-numbers, with
respect to the reference SCA values of a LTE germanium pla
(r50.053 07 g cm23). Two average-atom model calculations a
considered: with (AAM1FAA) or without ~AAM ! FAA correction.
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7104 PRE 59G. FAUSSURIER
of the L shell: mZ*
3 begins to decrease and changes s

when, as above, the dominant principal shell~hereL-shell! is
half-populated. Differences between AAM and SCA a
quite moderate. Let us now give an insight into the skewn
and kurtosis curves. At first glance, the discrepancies
tween AAM and SCA keep increasing with the order of t
cumulant, especially into the considered region where
dominant principal shell is closed or empty. First of all, e
cept in this region, the ionization distribution presents a h
degree of normal-distribution character. Obviously, arou
200 eV, the peakedness of the ionization distribution is fa
pronounced~kZ* is positive! and its asymmetry is changing
§Z* is negative below 200 eV and positive above. This fac
well-known and is due to the large ionization-potential g
between@Mg#- and @Na#-like ions and @Ne#- and @F#-like
ions. As an illustration, we have plotted in Fig. 5 the ioniz
tion distribution calculated with the SCA method for tw
temperatures: 160 and 260 eV. Clearly, the ionizati
distribution skewness at 160 eV is negative because
with ionization degrees higher than the neonlike ionizat
stage~@F#-like ions, @O#-like ions, . . . ! are playing a minor
role due to the aforementioned ionization-potential gap.
the contrary, the ionization-distribution skewness at 260
is positive due, now, to the dominant statistical weights
these ions.

V. CONCLUSION

In this paper, the screened-hydrogenic average-a
model has been compared to the systematic, analytic,
nonperturbative superconfiguration accounting method. F
a powerful method has been presented for calcula
superconfiguration-averaged quantities. It has been prove

FIG. 4. Third (mZ*
3 ) and fourth centered moments (mZ*

4 ), skew-
ness (§Z* ), and kurtosis (kZ* ) of the ionization distribution of a
LTE germanium plasma (r50.053 07 g cm23) as function of tem-
perature. All quantities are found by deriving the grand potentiaV
with respect to the chemical potentialm. The Chebyshev
approximating-polynomial technique@51# is used for SCA
calculations—SCA. By contrast, explicit derivation ofV0 in Eq.
~2.9! are performed as far as average-atom data are concern
AAM @25,41# ~Appendix A!.
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be related to the notion of a partition used in analytic numbe
theory. This new viewpoint extends the original operato
technique and almost offers a clearer insight into the physic
significance of the quantities being dealt with. Second
though the superconfiguration accounting approach is unr
lated to the saddle-point method, it has been shown that bo
techniques yield similar results for the grand potential, th
average ionization, and the variance of ionization. It has bee
shown that higher-order centered moments of the ionizatio
distribution can be calculated within the framework of the
average-atom model. The robustness of the average-at
model keeps constant, except, perhaps, towards a princip
shell closure~or emptiness!, in which case mean-field results
deteriorate progressively with increasing order of the cen
tered moment. To sum up, the average-atom model calcu
tions remain competitive with respect to the superconfigura
tion accounting results in a widespread range of temperatur
and densities for the considered matter model.

The LTE case has been criticized in the present docume
For future works, the first step consists of extending the s
perconfiguration formalism to tackle non-LTE plasmas with
out reference to the ionization temperature notion@54–58#.
Then, it would offer the possibility to study the worth of the
screened-hydrogenic average-atom model, in such a therm
dynamic situation@59,60#, as well as Busquet’s model. Sec-
ond, the important question of density effects within the su
perconfiguration formalism might be addressed in th
context of a thorough and rigorous statistical treatment o
ions in LTE or non-LTE plasmas.
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FIG. 5. Charged-stage distribution of LTE germanium plasm
(r50.053 07 g cm23) at two electron temperatures: 160 and 260 eV
obtained with the SCA method. For instance,@Ne# denotes the
neonlike ion stage. The skewness (§Z* ) at 160 and 260 eV is nega-
tive and positive, respectively.
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APPENDIX A

Equation~2.6! is found from Eq.~2.1! by introducing aux-
iliary variables (xi) and by using the Fourier integral repr
sentation of the Dirac distribution@34#:

ZG5E dKmaxxdKmaxv

~2p!Kmax
e2bE@~xk!#1 ivTx )

k51

Kmax

@11e2 ivk1h#Dk.

~A1!

Equation~2.6! naturally comes from straightforward eleme
tary algebra.vT is the line vector transposed from th
Kmax-dimensional column vectorv whose components ar
the dummy variables (v i). Equation~2.6! is valid for any
expression of the configuration energyEC . Let us calculate
]S/]Ui u(U j )

and ]2S/]Ui]U j u(Uk), respectively. The forme
quantity leads to the AAM~2.7! equations and the latter t
the FAA correction~2.9!. To this end, the original variable
(xi) and (v i) are preferred to the compact notation (Ui), and
one finds that

]S

]xj
5

]E

]xj
2 iv j /b,

~A2!
]S

]v j
52 ix j /b1 iD j /$b@11exp~ iv j2h!#%,

]2S

]xj]xk
5

]2E

]xj]xk
5Vjk ,

]2S

]xj]vk
52 id jk /b,

~A3!
]2S

]v j]vk

5d jkD j /$b@11exp~ iv j2h!#@11exp2~ iv j2h!#%.

d jk is the Kronecker symbol. Equation~2.7! is deduced from
the stationary condition]S/]xj5]S/]v j50. Consequently,
it is easy to establish Eq.~2.9! by following the successive
steps@Eq. ~2.10!#

ZG'e2bS@~Ui
0
!#E dKmaxxdKmaxv

~2p!Kmax

3e2~1/2!( j ,k~xjbVjk
0 xk1v jL j

0d jkvk22ix jd jkvk!, ~A4!

ZG'
e2bS@~Ui

0
!#

S )
j 51

Kmax

2pL j
0D 1/2 E dKmaxxe2~1/2!( j ,kxj ~bVjk

0
1d jk /L j

0
!xk,

~A5!

ZG'
e2bS@~Ui

0
!#

Adet~DS0!
, ~A6!

through which formula 1/Adet(A)5exp@21
2 Tr ln(A)# and the

well-known Gaussian identity

A@~2p!Kmax/det~A!#e~1/2!bTA21b5*dKmaxxe2~1/2!xTAx2bTx
have been employed@15,37#. b is a Kmax-dimensional line
vector andA a Kmax3Kmax-dimensional definite positive ma
trix. It is instructive to compare these results with the co
tinuous version of Eq.~2.1!,

ZG'e2bV0E dKmaxDPe2~1/2!DPTADP,

~A7!
Ai j 5bVi j

0 1d i j /L i
0,

found by replacing the original discrete summation with
Kmax-dimensional integral, using the Stirling formula to a
proximate the binomial coefficients, and by developing t
action around its minimum up to second order@25,61,62#.
Then,

V'V01
Tr ln~A!

2b
ÞV01

Tr ln~DS0!

2b
. ~A8!

The difference matters in the calculation of the thermod
namical potential but also in quantities reached by deriv
V with respect to relevant parameters~b or m!, because (L i

0)
are not constant. They depend on the thermodynamical c
ditions through (Pi

0). In summary, great care is require
when using such developments. One really needs ano
viewpoint to grasp their meaning and to compare to. This
precisely the role assigned to the SCA technique.

SinceVeff depends onm andb, it is possible to reach any
kth derivative with respect to both thermodynamical va
ables@(]kV/]mk)r,b or (]kV/]bk)r,m#. The key points are
( l 51

KmaxDSkl
0]Pl

0/]m5bLk
0 and ( l 51

KmaxDSkl
0]Pl

0/]b52Lk
0ek

0 @Eqs.
~2.9! and ~2.10!# @25,41#. This allows us to solve the appa
ent paradox of computing akth centered moment of ioniza
tion from the average-atom populations (Pi

0) only @34#. At
first sight, (Pi

0) is naively understood to give only an ap
proximate value forZ* . Yet, the self-consistency of th
average-atom equations, that is to say the dependence o
one-electron parameters (« i

0) on (Pi
0), leads to a nontrivial

dependence of (Pi
0) ~and hence ofVeff! on the thermody-

namical parametersb andm.
Although well-adapted to get the cumulants of the ioniz

tion distribution, the quantityV is not efficient enough to
study the properties of the energy distribution. It is therefo
better to consider the quantitybF, whereF is the free en-
ergy (F5V1mN̄). More precisely, anykth cumulant of the
energy distribution can be found from2]k(bF)/]bk.

Conversely, the electron pressureP can be estimated
without any derivative with respect to density sinceP
52V totNa , or equivalently,P52V totrN/A. Here,V tot is
the sum of two terms: V and the free-electron compone
V free @61# $V free522Z* F3/2(h)/@3bF1/2(h)#%.

APPENDIX B

The integral representation of the Kronecker symbold i j
~or the circle method@33#! is well-suited to standard combi
natorial issues with constraints. For instance, it can be u
to count the numberNconfN of N-electron configurationsCN
constructed fromKmax shells with degeneracies (Dk). By
definition,NconfN is equal to
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NconfN5(
CN

15(
C

d0Y , ~B1!

whereY denotes(k51
KmaxPk2N. An unrestricted summation i

provided by using the forthcoming integral representation
the Kronecker symbol:

d0N5
1

2ip E
2 ip1a0

ip1a0
dt etN, ~B2!

whereN anda0 are integer and real, respectively. A clos
form for NconfN can then be derived:

NconfN5E
2 ip1a0

ip1a0 dt

2ip
etN )

k51

Kmax 12e2t~Dk11!

12e2t ~B3!

or

NconfN5
1

2ip R dz

zN11 )
k51

Kmax 12z~Dk11!

12z
. ~B4!

r denotes an integration in the complex plane around a ci
of radiuse2a0(z5e2t) centered in zero. The last expressi
is just the Cauchy formulaNconfN5(1/N!)(dN/dzN)@Pk51

Kmax

3(12z(Dk11))/(12z)u0# .
As an example, withnl subshells from 1s to 5g, when

N57 we can construct 101 126 configurations, whenN
513, 1.123107 configurations, whenN526, 2.963109

configurations, and finally, whenN579, 1.0531010 configu-
rations. It gives a simple illustration of the impressive nu
bers of configurations typically encountered when a bru
force summation of a partition function is performed.

The total numberNtot of all possible configurationsCN ,
where NP@0,NT#, and the total numberNtot

ki2kf of one-
electron transitions can be found in the same spirit:

Ntot5 (
N50

NT

NconfN

5E
2 ip1a0

ip1a0 dt

2ip

12et~NT11!

12et )
k51

Kmax 12e2t~Dk11!

12e2t .

~B5!

For a transitionki→kf , both shellski andkf are discarded
when the former is empty or the latter is full:

Ntot
ki→kf5E

2 ip1a0

ip1a0 dt

2ip

12et~NT11!

12et

3 )
k51

Kmax 12e2t~Dk112dkki
2dkkf

!

12e2t . ~B6!

A numerical evaluation of these integrals is to be p
formed with caution. This originates from the oscillato
character of the arguments: in practice the results appe
depend ona0 due to numerical uncertainties. Mathema
cally, it should not be the case. This freedom with respec
a0 can be used to evaluate the aforementioned integrals
the saddle-point method. Since all integrals are of the sa
f

le

-
-

-

to

o
ith
e

type, *
2 ip1a0

ip1a0 (dt/2ip)ef (t), the optimum valueã0 of a0 to

choose is the associated saddle point@40# (d f /dtu ã0
50).

At this occasion, an approximate value of this type of in
gral can be deduced:*

2 ip1a0

ip1a0 (dt/2ip)ef (t)'ef (ã0)/

A2p(d2f /dt2)u ã0
.

Such tricks are clearly powerful but there are situatio
for which direct computations ought to be preferred. W
have in mind numbersSm(Q) ~originally called Nk

(m) by
Oreget al. @26#!,

Sm~Q!5 (
nm2150

Q

(
nm2250

nm21

¯ (
n150

n2

1, ~B7!

whereQ>0 andm>2. These numbers were computed a
tabulated using Bernoulli functions. Yet, simple algeb
shows that

Sm~Q!5 )
k51

m21
Q1k

k
5S Q1m21

m21 D . ~B8!

This relation is proven by induction onm, wherebyQ is held
fixed. The result form52 is trivial sinceS2(Q)5(n150

Q 1

5( 1
Q11). By noting that (m.2),

Sm~Q!5 (
nm2150

Q

Sm21~nm21!, ~B9!

we have

Sm~Q!5 (
nm2150

Q S nm211m22
m22 D . ~B10!

The identity

(
n50

Q S n1p
p D5S Q1p11

p11 D ~B11!

is then used to get Eq.~B8!, which ends the demonstratio
by induction.

Identity ~B11! can be shown as follows@63#. Let us note
that

(
n50

Q

~11x!p1n5¯1xp(
n50

Q S n1p
p D1¯ . ~B12!

Since forxÞ0

(
n50

Q

~11x!p1n5
~11x!Q1p112~11x!p

x
, ~B13!

the coefficient of xp originates from expansion of (1
1x)Q1p11 only, which yields Eq.~B11!.

Sm(Q) numbers are much more than a mathematical
riosity. The original expression can be slightly modify
obtain the following formula:

p~n!5 (
qn>0

n

(
qn21>qn

n

¯ (
q2>q3

n

(
q1>q2

n

d0g , ~B14!
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wherep(n) andg denote the number of partitions ofn and
n2( i 51

n qi , respectively. In other words,p(n) is equal to the
number of ways a positive integern can be represented as
sum of positive integers without regard to order and with
restrictions@33,64,65#. As an example,p(5)57 because the
partitions of 5 are 5, 411, 312, 31111, 21211, 211
1111, and 111111111. It may appear tempting to in
sert the integral representation of the Kronecker symbo
get a tractable formula forp(n). However, the fact thatqk
takes its values into the set$qk21 ,qk2111, . . . ,n21,n%
prevents any factorization, and consequently, any closed
pression of practical interest forp(n).

Indeed, the generating function ofp(n) is known @33# to
be the infinite productPk51

` (12zk)21. With the convention
p(0)51, we thus have

(
n50

`

p~n!zn5 )
n51

`

~12zn!21, ~B15!

where p(n)51/(2ip)r(dz/zn11)Pk51
n (12zk)21. The ra-

dius of the integration circle should be chosen lower to un
(a0.0). This way of thinking can be extended further b
considering alsod(n) and s(n), which are the number o
divisors and the sum of the divisors ofn, respectively:

(
n51

`

d~n!zn5 (
n51

`

zn/~12zn!, ~B16!

(
n51

`

s~n!zn5 (
n51

`

nzn/~12zn!. ~B17!

Similar integrations in the complex plane allow one
calculated(n) ands(n). But a much more powerful metho
can be built. First, let us introduces(z)5Pn51

` (12zn), thus
(n51

` s(n)zn52@z/s(z)#ds(z)/dz. By multiplying both
sides bys(z) and identifying term by term the coefficients o
the null polynomials(z)(n51

` s(n)zn1z@ds(z)/dz#, Euler
found the recursion relation

s~n!5s~n21!1s~n22!2s~n25!2s~n27!

1s~n212!1s~n215!2s~n222!2s~n226!

1¯ , ~B18!

where the sum is limited to positive arguments with the c
vention s(0)5n. The integers differ by the number
1,3,2,5,3,7,4,9,5,11,6, . . . . The polynomial s(z) and the
generating functions ofp(n) ands(n) lead @65# to a recur-
sion formula forp(n):

p~n!5
1

n (
k51

n

s~k!p~n2k!. ~B19!

This equation is obtained as follows. Let us defineF(z)
and G(z) the generating functions of p(n) and
s(n):(n50

` p(n)zn51/s(z)5F(z) and (n51
` s(n)zn

52@z/s(z)#ds(z)/dz5G(z). By integrating by parts,
o

o

x-

y

-

p(n)5(1/n)r(dz/2ip)(1/zn11)F(z)G(z). Or, F(z)G(z)
5(n50

` anzn, with a051 and an5(k51
n s(k)p(n2k).

Hence,p(n)5an /n.
The partitionsp(n) are thus exactly obtained withinn

steps. The CPU time is drastically reduced and no more
tegration in the complex plane is required. Here,p(n) is
calculated in the same way the partition function is compu
in the STA and SCA models because the recursion formu
are analogous to the recursion formulas~42!, ~43!, and~45!
of Ref. @28#. p(n) and s(n) play the role ofUQ and xn ,
respectively@see Eq.~3.8!#. Finally, note that one can go
further by eliminatings(n) to find a closed recursion for
mula for p(n), namely,

p~n!5 (
k>1

~21!k21FpS n2
k~3k21!

2 D
1pS n2

k~3k11!

2 D G
with the conventionp(m)50 for m,0.

As an illustration, we have drawn in Fig. 6 the relativ
errors r `(n)5u12p`(n)/p(n)u and r HR(n)5u1
2pHR(n)/p(n)u as a function ofn, for nP$1, . . . ,1000%.
p`(n) and pHR(n) are both asymptotic approximations o
p(n), especially valid for large values ofn:

p`~n!5ep~2n/3!1/2
/~4n31/2!

p~n! '
n2`

pHR~n!

5
d

dn
@ep~2/3!1/2~n21/24!1/2

/~n21/24!1/2#/~2p21/2!.

~B20!

FIG. 6. Relative errorsr `(n)5u12p`(n)/p(n)u and r HR(n)
5u12pHR(n)/p(n)u. p(n) is the number of partitions ofn. p`(n)
andpHR(n) are two asymptotic analytic expressions ofp(n).
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The last approximation~established by Hardy and Raman
jan @48,64–66#! is more precise thanp` , which appears as a
limit case @67#. In Fig. 6, we can see that the convergen
towards zero ofr `(n) is slow @r `(1000)'2%# and rather
noisy below 20. Conversely, the convergence ofr `(n) is
a-

R

ry

-

6

Ra

s

s

pe

A

ec

. E

M

e

smoother and very rapid. It could be interesting to look fo
similar approximation for the superconfiguration averag
like the statistical sumUQ(g) in Eq. ~3.8! to avoid the sums
with alternate sign. Unfortunately, we fail to propose such
approximation, if it really exists.
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@39# R. Balian and M. Ve´néroni, Phys. Rev. Lett.47, 1353~1981!;
47, 1765~E! ~1981!.

@40# R. Balian, Du Microscopique au Macroscopique, Cours de
Physique de l’Ecole Polytechnique~Ellipse, Paris, 1982!.

@41# R. Balian, P. Bonche, H. Flocard, and M. Ve´néroni, Nucl.
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