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Discharge impedance of solenoidal inductively coupled plasma discharge

K.-I. You and N. S. Yoon
Korea Basic Science Institute, Taejeon 305-333, Korea

~Received 11 December 1998!

The discharge impedance is calculated for a solenoidal inductively coupled plasma~ICP! discharge, which
is one of the important sources for plasma processing. To calculate this impedance, the electromagnetic field
quantities are obtained by solving the two-dimensional Maxwell equations in a realistic geometry. Also con-
sidered in the calculation is the anomalous skin effect which is regarded as a collisionless heating mechanism
of ICP discharge. The results show that the discharge impedance is a function of various discharge parameters,
such as plasma density, electron temperature, antenna position, collision frequency, excitation frequency, and
chamber geometry.@S1063-651X~99!03706-X#

PACS number~s!: 52.80.Pi, 52.50.2b, 52.75.2d
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I. INTRODUCTION

The inductively coupled plasma~ICP! source has been th
subject of many experimental and theoretical investigati
@1–14#. Since a high-density plasma with good uniformity
easily obtained under low pressure without an external m
netic field, the ICP becomes a strong candidate for a n
generation source for plasma processing. Two types of
reactors are available, which are classified according to
shape and position of the coil. One type of the reactors h
solenoidal coil wound around the cylindrical chamber~sole-
noidal type! @1–9# and the other type has a planar coil at t
top of the chamber~planar type, also called TCP! @10–14#.

For the electron heating mechanism of the ICP discha
collisionless heating is widely accepted as the prim
mechanism, since it is sustained with low-pressure neu
gas. The collisionless electron heating mechanism is
anomalous skin effect originated from thermal motion
plasma particles@5,15#. The anomalous skin effect is a tran
verse analogue of the Landau damping from the standp
of wave-particle interaction in plasma, since the electro
gain energy through a resonant coupling with the transve
electromagnetic waves.

Although the anomalous skin effect has been a traditio
subject in plasma physics, many issues remain to be un
stood more fully, especially in relation to the collisionle
heating mechanism of the ICP discharge. The recent prog
is well reviewed in Refs.@9,16#. One of the important issue
of the collisionless heating mechanism is the calculation
surface and plasma impedances, since they are the repr
tative quantities of the heating mechanism. In the case of
TCP discharge, Yoonet al. @17# developed a one
dimensional model including the anomalous skin effect a
the modulation effect of the wave electric field by condu
ing boundaries at the other side of the plasma. This mo
was extended to a two-dimensional model@18#. The surface
impedance can be calculated from the one-dimensio
model, and the plasma impedance from the two-dimensio
model with the field definition of impedance@19#. For the
solenoidal ICP discharge, the surface impedance was ca
lated by Sayasov@20# with a one-dimensional model, but th
plasma impedance has not yet been fully calculated. The
no such calculation obtained for the discharge impedanc
PRE 591063-651X/99/59~6!/7074~11!/$15.00
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One of two main difficulties in two-dimensional modelin
is that the radial normal mode of the electron kinetic eq
tion is not amenable to cooperation with the eigenmode
the wave equation. The other is the determination of exc
tion coefficients of the normal mode by the external c
current. In the work of Yoon, Hwang, and Choi@18#, the first
problem was overcome by assuming that the radius
plasma is much larger than the skin depth, as is often
case in the practical ICP discharge condition. For the sec
problem, an effective surface current representing the tra
verse magnetic field was introduced into the interface
tween plasma and vacuum as a tentative boundary condi
This surface current can be presented as a function of
antenna coil current by manipulating the Maxwell equatio
and thus the excitation coefficients can be determined.
use of the effective surface current is justified by the uniq
ness theorem of the solution. From the viewpoint of an el
trical circuit model, an impedance matching condition is d
termined with the discharge impedance which is t
impedance of the whole chamber. This discharge impeda
can be calculated from the electromagnetic field quantitie
the antenna region. The electromagnetic field in the plas
region is calculated easily with the method of Ref.@18#; the
field in the antenna region, however, cannot be obtained

In this work, we develop a two-dimensional heatin
theory of the solenoidal ICP discharge by representing
anomalous skin effect in terms of the conductivity of hom
geneous hot plasma; for the calculation of the conductiv
electrons are assumed to reflect perfectly on the pla
boundary. The normal mode in the plasma region is rep
sented with an effective surface current, and this surface
rent is determined by the antenna current not only with
method of Yoonet al. ~hereafter called the mode excitatio
method!, but also with the image current method. In the im
age current method, the wave equation is solved also in
antenna region by replacing the plasma current with an
propriate current sheet~which we call image current sheet! at
a certain radial position in the plasma region. The ima
current and the electromagnetic field in both regions are
termined, without loss of generality, by assuming that
electric and magnetic fields should be continuous at
plasma-vacuum boundary. Once the electromagnetic fiel
determined, the plasma impedance can be calculated f
7074 ©1999 The American Physical Society
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PRE 59 7075DISCHARGE IMPEDANCE OF SOLENOIDAL . . .
the field quantities@19# on the plasma-vacuum interface an
the discharge impedance from those on the surface of
antenna. The resulting plasma and discharge impedance
functions of various parameters such as plasma density, e
tron temperature, radius of chamber, length of plasma, ra
of plasma, electron collision frequency, excitation frequen
and the position and size of the antenna coil.

In Sec. II, the wave equation and boundary conditions
described and the solution is presented. The numerica
sults and discussion are presented in Sec. III, and the s
mary is given in Sec. IV.

II. THEORY

A. Wave equation and boundary conditions

Figure 1 shows a schematic diagram of a usual soleno
ICP source, whose electromagnetic field and impedance
calculated. The dielectric tube filled with plasma has a rad
of Rp and the antenna coil with radiusRc is wound around
this dielectric tube. We define the plasma and antenna
gions by the inner range 0<r<Rp and the outer rangeRp
<r<Rs , respectively, whereRs is the chamber radius. Sinc
the alternating current in the antenna coil generates ti
varying magnetic flux in the plasma region, the azimut
electric field is induced in the plasma. Electrons gain ene
from this electric field through the resonant coupling a
ionize the neutral gas.

In general, the electric field can be resolved into irro
tional ~longitudinal or capacitive! and solenoidal~transverse
or inductive! parts. Two important roles of the capacitiv
field are to make a difference of the conduction current
the antenna from the input current as much as the displ
ment current in the perpendicular direction to the ante
surface, and to heat the plasma electrons~capacitive dis-
charge!. For the practical ICP discharge condition, howev
the dominant electron heating source is the inductive par
the electric field rather than the capacitive part, and the
pacitive field is usually Faraday shielded. Therefore, only
inductive field is considered in this work.

Assuming that all physical quantities haveu symmetry
and the electric fieldEW has only au component (EW 5Eû), the
wave equation for the azimuthal electric fieldE in ~r,z! co-
ordinate system is written as

FIG. 1. Schematic diagram of a solenoidal ICP discharge
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S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DE~r ,z!52 ik
4p

c
J~r ,z!,

~1!

where k5v/c, v is the excitation wave frequency,c the
speed of light, andJ the sum of all current densities appea
ing in the chamber. Here, the electric field and the current
assumed to depend on time in the form ofe2 ivt. The com-
ponents of the magnetic field can be calculated fromE by
using Faraday’s law

Br~r ,z!5
i

k

]

]z
E~r ,z!, ~2!

Bz~r ,z!52
i

k

]

]r
@rE~r ,z!#, ~3!

and the absorption power densityPabs defined as the powe
absorbed by the plasma in unit volume is

Pabs5
1
2 Re~Jp* E!, ~4!

whereJp is the plasma current density.
The whole chamber is assumed to be surrounded wi

perfect conductor; thus,E50 at the chamber surface. Sinc
it is not easy to solve Eq.~1! for the whole chamber, the
wave equation is solved separately in each region and
solutions are matched at boundary without loss of genera
The wave equation in the plasma region is solved with
temporal boundary condition at the plasma-vacuum bou
ary:

Bz5Bp at r 5Rp . ~5!

To determine the value ofBp , we use two methods of mod
excitation and image current.

In the mode excitation method, the electric and magne
fields satisfying source-free wave equations in the ante
region are used in a vector relation derived from the Maxw
equations. Integrating this identity in the antenna region,Bp
can be obtained as a function of the antenna current. In
image current method, the wave equation in the antenna
gion is also solved easily by replacing the plasma curr
with an image current sheet at a certain position within
plasma region. This image current andBp are determined
from the magnetic and the electric field continuity conditio
at the plasma-vacuum boundary. The electromagnetic fiel
the antenna region can be obtained with the image cur
method, although the calculation in this method is mo
complex and time consuming than that based on the m
excitation method. The procedures of the mode excitat
and image current methods should be guaranteed by
uniqueness theorem. The proof of uniqueness is offered
Yoon, Hwang, and Choi@18# for the case of the TCP dis
charge. Since the solenoidal ICP situation is not much
ferent from the TCP case in proving the uniqueness theor
the validity of the uniqueness theorem for the ICP is
sumed without any proof. Owing to this uniqueness theore
the results from the mode excitation and the image curr
methods can be cross-checked to examine if they are eq
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B. Normal mode in the plasma region

In the plasma region, the wave equation is written as

S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DE52 ik
4p

c
Jp , ~6!

with boundary conditions

E50 at r 50, ~7!

Bz5Bp at r 5Rp . ~8!

The homogeneous solution of Eq.~6! with the boundary
condition given by Eq.~8! can be transformed into a particu
lar solution with the effective surface current densityKs at
Rp , and the equivalent wave equation becomes

S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DE

52 ik
4p

c
@Jp1Ksd~r 2Rp!#, ~9!

whered(r ) is the Dirac delta function andKs5cBp/2p.
This equation can be solved by the mode analysis met

using the Fourier-Dini series@21#, and the results become

E5(
m,n

emnJ1S l0m

r

Rp
D sin~qnz!, ~10!

Jp5(
m,n

emnA2psp,mJ1S l0m

r

Rp
D sin~qnz!, ~11!

where

emn5
2ikbp,n

RpJ1~l0m!Dmn
, ~12!

Dmn5~l0m /Rp!21qn
22k22

4p

c
ikA2psp,m , ~13!

andJ1 is the first-order Bessel function andl0m are roots of
the zeroth Bessel functionJ0 satisfyingJ0(l0m)50. Here,
qn5np/L with plasma lengthL, sp,m is themth coefficient
of plasma conductivitysp in the Dini series and is given
from the solution of the Boltzmann equation, andbp,n is the
nth coefficient ofBp in the Fourier series defined by

bp,n5
2

L E
0

L

Bp sin~qnz!dz. ~14!

The remaining unknownbp,n will be obtained from the elec
tric field continuity condition at the plasma-vacuum boun
ary.

The plasma conductivity is deduced from the Boltzma
equation for the electron velocity distribution functionf, and
the equation for the dominant order is

] f 1

]t
1v r

] f 1

]r
2

e

m
E

] f 0

]vu
5S ]

]t D
col

f 1 , ~15!
d

-

n

where f 0 and f 1 are the uniform equilibrium and perturbe
distribution functions, respectively, and (]/]t)col is a colli-
sion operator.v r , vu , e, andm are velocity components in
radial and azimuthal directions, electron charge, and elec
mass, respectively. Here, the axial derivative of the pertur
electron velocity distribution (] f 1 /]z) is neglected on the
assumption ofL@d, whered is the skin depth in the radia
direction. Using the Maxwellian distribution function forf 0
and Krook’s model collision operator, we have

2 i ~v1 in! f 11v r

] f 1

]r
1

e

Te
Evu f 050, ~16!

wheren andTe are the frequency of electron collision wit
neutral gas particles and the electron temperature, res
tively. Following the procedure given in Ref.@20#, Eq. ~16!
can be solved assuming thatRp@d and electrons reflect per
fectly from the plasma boundary. After some algebraic m
nipulation for f 1 , the plasma conductivity can be express
by the Dini series and its component becomes

sp,m52
ie2npRp

2A2pTel0m

ZpS v1 in

l0mv th /Rp
D , ~17!

where Zp , np , and v th are the plasma dispersion functio
@22#, plasma density, and electron thermal velocity, resp
tively.

C. Mode excitation method

In this subsection, we determine the magnetic field co
ponent at the plasma-vacuum boundary (bp,n) @Eq. ~14!#,
using the mode excitation method. By adopting this meth
we connect the normal mode in the plasma region to
antenna current without solving the wave equation in
antenna region.

From the Maxwell equations, we derive a vector relati

¹W •~EW 3BW no2EW no3BW !5~4p/c!JW c•EW no, ~18!

whereJc is the source current density, and the subscriptno
means the electromagnetic field satisfies the source-
wave equation

S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DEno50. ~19!

Here,EW no5Enoû, and the boundary condition for Eq.~19! is

Eno50 at r 5Rs . ~20!

The solution of Eq.~19! can be written as

Eno5(
n

Cngn~r !sin~qnz!, ~21!

with

gn~r !5K1~bnRs!I 1~bnr !2I 1~bnRs!K1~bnr !, ~22!
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in which I 1 andK1 are the first-order modified Bessel fun
tions, andbn

2[qn
22k2. From the Maxwell equations, mag

netic fieldBW no becomes

BW no5
1

ik (
n

Cn@2qn cos~qnz!gn~r ! r̂ 1bn sin~qnz!hn~r !ẑ#,

~23!

with

hn~r !5K1~bnRs!I 0~bnr !1I 1~bnRs!K0~bnr !, ~24!

I 0 andK0 being the zeroth-order modified Bessel function
With Eq. ~18! volume integrated over the antenna region,
integral equation is obtained

E
r 5Rp

~EnoBz2Bno,zE!Rpdz5
4p

c E
0

LE
Rp

Rs
JcEnor dr dz,

~25!

with assumption ofE50 at the chamber surface. Expandin
Bz at Rp in the Fourier series

Bz~Rp!5(
n

bp,n sin~qnz!, ~26!

and using the electric field continuity condition atRp and the
orthogonality of the series, we have

bp,n52bn

4p

c
I cE

r ,z

Jc

I c
f n~r !sin~qnz!

r

L
dr dz, ~27!

whereI c is a source current andf n(r ) is given by

f n~r !5
gn~r !

bnRpA22S1B
, ~28!

with

S15(
m

bn
2

Dmn
, ~29!

A5K1~bnRs!I 1~bnRp!2I 1~bnRs!K1~bnRp!, ~30!

B5K1~bnRs!I 0~bnRp!1I 1~bnRs!K0~bnRp!. ~31!

Using the mode excitation method, the electromagn
field in the plasma region is easily determined, but the fi
in the outer region cannot be calculated, which is essentia
obtaining the discharge impedance. To obtain the elec
magnetic field in the antenna region, the wave equa
should be solved also in this region.

D. Image current method

In this subsection, we determine the magnetic field co
ponent at the plasma-vacuum boundary (bp,n) @Eq. ~14!#, by
solving the wave equation in the antenna region. We so
the wave equation by replacing the plasma current with
artificial image current sheet~giving equivalent effects to the
electromagnetic field in the antenna region! at a certain radial
.
n

ic
d
in
o-
n

-

e
n

position in the plasma region. This image current andbp,n
are determined without using the results of Sec. II C.

The wave equation for the electric field in the anten
region is

S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DE52 ik
4p

c
Jc . ~32!

The boundary conditions are

E50 at r 5Rs , ~33!

andE andBz are continuous atr 5Rp . As in the case of the
plasma region, the wave equation~32! is transformed to

S ]2

]r 2 1
1

r

]

]r
2

1

r 2 1
]2

]z2 1k2DE

52 ik
4p

c
@Jc1Ks1d~r 2Re!1Ks2d~r 2Rs!#, ~34!

where Ks1 is an image current density flowing atRe
(,Rp), and the boundary condition of Eq.~33! can be sat-
isfied by a surface current densityKs25cBz(Rs)/2p.

Equation~34! can be solved by the mode analysis meth
using the Fourier-Dini series. The source current density
be represented as

Jc5(
m,n

j mnJ1S l0m

r

Rs
D sin~qnz!, ~35!

where

j mn5
4

LRs

I c

J1
2~l0m!

$ j c j
mn/Rs%, ~36!

$ j c j
mn/Rs%[E

r ,z
S Jc

I c
D J1S l0m

r

Rs
D sin~qnz!

r

Rs
dr dz. ~37!

Inserting Eq.~35! into Eq.~34! and expandingKs1 andBz at
Rs ,

Ks15(
n

Ks1,n sin~qnz!, ~38!

Bz~Rs!5(
n

bs,n sin~qnz!, ~39!

we obtain

E5(
m,n

emn
~2!J1S l0m

r

Rs
D sin~qnz!, ~40!

where

emn
~2!5

2ik

RsJ1~l0m!Dmn
~2! S $ j c j

mn/Rs%

J1~l0m!

8p

Lc
I c

1
ReJ1~l0mRe /Rs!

RsJ1~l0m!

4p

c
Ks1,n1bs,nD , ~41!
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Dmn
~2!5~l0m /Rs!

21qn
22k2. ~42!

Applying the boundary condition of Eq.~33! to Eq.~40!, the
coefficientbs,n can be determined, and the resultant coe
cient of the electric field becomes

emn
~2!5

2ik

Dmn
~2!RsJ1~l0m!

S $ j c j
mn/Rs%

J1~l0m!

2
2bn

Rs

I 0~bnRs!

~bnRs!
(
m

$ j c j
mn/Rs%

J1~l0m!Dmn
~2!D 8p

Lc
I c

1
2ik

Dmn
~2!RsJ1~l0m!

S J1~l0mRe /Rs!

J1~l0m!

2
I 1~bnRe!

I 1~bnRs!
D Re

Rs

4p

c
Ks1,n . ~43!

Since the axial magnetic field should be continuous atRp
@see Eq.~8!#, the coefficient of the surface current dens
Ks1,n can be obtained:

Ks1,n5
c

4p

Ks11

Ks12
, ~44!

where

Ks115bp,n2S (
m

l0mJ0~l0mRp /Rs!$ j c j
mn/Rs%

~l0m
2 1bn

2Rs
2!J1

2~l0m!

2
bnRsI 0~bnRp!

I 1~bnRs!
(
m

$ j c j
mn/Rs%

~l0m
2 1bn

2Rs
2!J1~l0m! D 16p

Lc
I c ,

Ks125S (
m

l0mJ0~l0mRp /Rs!J1~l0mRe /Rs!

~l0m
2 1bn

2Rs
2!J1

2~l0m!

2
I 0~bnRp!I 1~bnRe!

2I 1~bnRs!I 0~bnRs!
D 2Re

Rs
.

With Eq. ~44!, the electric field is represented as a functi
of the source current and the magnetic field atRp . Using the
remaining condition of the electric field continuity atRp , the
coefficient of the magnetic field can be expressed as

bp,n5bp1 /bp2 , ~45!

where

bp152bnRp~4p/Lc!I c@2bnRsI 1~bnRs!I 0~bnRs!

3~S32S5!S21I 1~bnRp!I 1~bnRe!S5

12bnRsI 0~bnRs!$bnRsI 0~bnRp!2I 1~bnRp!%S6S2

2bnRsI 0~bnRp!I 1~bnRe!S3#, ~46!

bp252S1@2bnRsI 1~bnRs!I 0~bnRs!S4

2bnRsI 0~bnRp!I 1~bnRe!#

2bn
2RpRs@2bnRsI 1~bnRs!I 0~bnRs!S2

2I 1~bnRp!I 1~bnRe!#. ~47!
-

Here,S1 ,S2 ,...,S6 are sums overm and functions ofn given
by

S25(
m

1

l0m
2 1bn

2Rs
2

J1~l0mRp /Rs!J1~l0mRe /Rs!

J1
2~l0m!

,

~48!

S35(
m

1

l0m
2 1bn

2Rs
2

J1~l0mRp /Rs!$ j c j
mn/Rs%

J1
2~l0m!

, ~49!

S45(
m

1

l0m
2 1bn

2Rs
2

l0mJ0~l0mRp /Rs!J1~l0mRe /Rs!

J1
2~l0m!

,

~50!

S55(
m

1

l0m
2 1bn

2Rs
2

l0mJ0~l0mRp /Rs!$ j c j
mn/Rs%

J1
2~l0m!

, ~51!

S65(
m

1

l0m
2 1bn

2Rs
2

$ j c j
mn/Rs%

J1~l0m!
. ~52!

It is straightforward to show that Eqs.~27! and ~45! are
equivalent. Actually, the electric field in the plasma regi
calculated using the mode excitation method and the elec
field in the antenna region calculated using the image cur
method are linked continuously to each other atRp .

E. Plasma and discharge impedances

According to the Poynting theorem for harmonic field
the impedance can be defined using field quantities@19#. The
Poynting theorem is written as

1

2 EV
JW* •EW dxW12ivE

V
~we2wm!dxW1 R

S
SW •n̂da50,

~53!

where JW is current density,EW electric field, we5uEW u2/16p

electric field energy density,wm5uBW u2/16p magnetic field
energy density,SW 5EW 3BW * c/8p the Poynting vector, andn̂
unit vector with outward normal direction to the surface.
Eq. ~53!, the first term represents the rate of work done
the fields in finite volumeV, the second is the stored energ
rate within the electromagnetic fields, and the third is t
energy flow rate in outward direction through the surfaceS
surrounding the volume.

When only the plasma region is considered, the sum
the stored and the dissipated energy rates in the plasma i
same as the energy inflow rate through the plasma-vac
interface. From the viewpoint of an electrical circuit, th
sum can be replaced with

1
2 I c* V5 1

2 uI cu2Zpl, ~54!

whereI c , V, andZpl are source current, potential differenc
applied to the plasma, and plasma impedance, respectiv
Hence, the plasma impedance is derived as

Zpl52
2

uI cu2 E
Sp

SW •n̂ da, ~55!
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whereSp is the plasma-vacuum interface. After some alg
bra, it can be shown that

Zpl52
1

uI cu2
ivL

2 (
m,n

ubp,nu2

Dmn
, ~56!

wherebp,n andDmn are defined in Sec. II B.
The power dissipated in the antenna can be calculate

terms of the current and electric field on the antenna and
also be represented in terms of the current and antenna
pedance. Hence, the antenna impedance is

Za[2
1

uI cu2
E

Va

JW c* •EW dxW , ~57!

whereVa is the antenna volume. Since all the power dis
pated and stored in the plasma and vacuum regions is tr
ferred through the surface surrounding the antenna, the
pedance calculated from Eq.~57! is the same as the tota
impedance of the discharge~called discharge impedanc
Zdis!. Using the orthogonality of the Fourier-Dini series, t
discharge impedance reduces to

Zdis52
2pRs

I c
(
m,n

$ j c j
mn/Rs%emn

~2! , ~58!

where$ j c j
mn/Rs% andemn

(2) are defined in Sec. II D.

III. NUMERICAL RESULTS AND DISCUSSION

Since the seriesS1 ,S2 ,...,S6 , especially the ones involv
ing J1

2 in denominators, converge very slowly, some tec
niques are needed to accelerate the series convergence
this purpose we use the following identities involving ser
sums:

(
m

1

l0m
2 1b2R2

J1~l0mr /R!

J1~l0m!
5

1

2bR

I 1~br !

I 0~bR!
~r ,R!,

~59!

(
m

l0m

l0m
2 1b2R2

J0~l0mr /R!

J1~l0m!
5

1

2

I 0~br !

I 0~bR!
~r ,R!,

~60!

(
m

J1~l0mr 1 /R!J0~l0mr 2 /R!

l0mJ1
2~l0m!

5 HR/2r 1 ~r 2,r 1,R!

0 ~r 1,r 2,R!,
~61!

(
m

J1~l0mr 1 /R!J1~l0mr 2 /R!

l0m
2 J1

2~l0m!
5 H r 2/4r 1 ~r 2,r 1,R!

r 1/4r 2 ~r 1,r 2,R!.
~62!

As an example of using these series, let us consider the s
S2 . If the series is rewritten as

S25(
m

S 1

l0m
2 1bn

2Rs
22

1

l0m
2 D J1~l0mRp /Rs!J1~l0mRe /Rs!

J1
2~l0m!

1
Re

4Rp
~63!
-

in
an
m-

-
ns-

-

-
For
s

ies

by using Eq.~62!, this new series converges faster than t
original one.

In this section are presented the numerical results ba
on Eqs.~2!–~4!, ~10!, ~11!, ~56!, and ~58!; i.e., the electric
and the magnetic fields, the plasma current density, the
sorption power density, and the plasma and the discha
impedances. The parameters used for the calculation arRs
520 cm, Rp510 cm, L520 cm, np51012cm23, Te55 eV,
v/2p513.56 MHz, Rc511 cm, andzc510 cm. Here,zc is
the axial position of the antenna. The antenna coil is mad
a rectangular wire loop with the cross section of 131 cm2.
The collision frequencyn is set to zero. Except a paramet
that is used as a variable or specially mentioned, all par
eters have fixed values as set above.

In the two-dimensional space (r ,z) of the plasma region
with two coils located atz57.5 and 12.5 cm, the electric an
the magnetic fields, plasma current density, and absorp
power density are shown in Figs. 2–6. Plots of the elec
field amplitude and phase are shown in Fig. 2, and there e
certain points where the electric field vanishes and the ph
abruptly changes byp @18#. The magnetic field is presente
in Figs. 3 and 4. The axial component of the magnetic fi
Bz is out of phase~p/2 faster! with the electric field~Fig. 3!.
The magnitude of the radial component of the magnetic fi
Br is smaller thanBz . There are three nodal points inz
direction, two of which are located at the coil positions a
the third is atz5L/2 due to the boundary conditions ofE
50 at bothz50 andz5L ~Fig. 4!. The plasma current is
nearly out of phase~p/2 later! with the electric field, since,
as shown in Eq.~17!, the imaginary part of the plasma con
ductivity is much larger than the real part in the collisionle
process~Fig. 5!. The absorption power density is localized
the plasma edge and there is a region where the absorp
power is negative~Fig. 6!.

FIG. 2. Profiles of~a! amplitude and~b! phase of electric fieldE
in the plasma.
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Figures 7 and 8 display the plasma resistance, whic
the real part of the plasma impedance and proportional to
power deposited in the plasma. Figure 7~a! plots the plasma
resistance as a function of the plasma density. The pla
resistance has a maximum value at a certain plasma den
which is similar to the results of Ref.@18#, where the plasma
resistance of TCP discharge is calculated. The position of
maximum point moves upward to the plasma density and
value increases as the excitation frequency becomes hig

The dependence of the plasma resistance on the ele
temperature is shown in Fig. 7~b!. Since more electrons in
teract with the electric field as the electron temperature
creases, the plasma resistance is an increasing function o
electron temperature. At a given temperature, there exists
most effective excitation frequency for heating, since
electron gains the energy through resonant coupling with
excitation wave.

FIG. 3. Profiles of~a! amplitude and~b! phase ofBz in the
plasma.

FIG. 4. Profile of amplitudeBr in the plasma.
is
he
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e
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er.
ron

-
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e
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In Fig. 7~c!, the plasma resistance is presented as a fu
tion of the excitation frequency for various plasma densiti
As is seen in Fig. 7~a! for np , there is a maximum plasm
resistance, since the induced electric field in the plasma
creases with the excitation frequency but the skin depth

FIG. 5. Profiles of~a! amplitude and~b! phase of plasma curren
Jp .

FIG. 6. Profiles of the absorption power densityPabs in ~a! two
dimensions and~b! one dimension at positions ofz512.4 and 10
cm.
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FIG. 7. Dependences of the plasma resistanceRpl on ~a! the plasma densitynp , ~b! the electron temperatureTe , ~c! the excitation
frequencyv/2p, and~d! the plasma radiusRp .
n

s
is
is
o

and
s.

s in
hen
nce
ber
ber
creases. It is noted from Figs. 7~a! and 7~c! that there is an
optimal condition of the excitation frequency for a give
density.

The dependence of the plasma resistance on the pla
radius can be seen in Fig. 7~d!, where the antenna radius
given asRp11 in units of cm. There are two peaks in th
plot. The first peak originates from the resonant coupling
ma

f

the electron thermal motion across the plasma diameter
the wave@17#. The second one can be explained as follow
When the plasma radius is small, the number of electron
the skin depth increases with plasma radius. However, w
the plasma radius is sufficiently large, the plasma resista
decreases rapidly, since the induced current at the cham
wall increases as the antenna moves closer to the cham
FIG. 8. Dependences of the plasma resistanceRpl on ~a! the chamber radiusRs , ~b! the plasma lengthL, ~c! the antenna radiusr c , and
~d! the axial positionzc of the antenna.
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FIG. 9. Dependences of the plasma reactanceXpl on ~a! the plasma densitynp , ~b! the electron temperatureTe , ~c! the excitation
frequencyv/2p, and~d! the plasma radiusRp .
rc
s
le

m

i

on is
s a
and
t

e the
ing
wall. This induced current is out of phase with the sou
current, so the sum of the induced and source current
smaller than the source current. Therefore, the induced e
tric field in the plasma region decreases.

The dependences of the plasma resistance on the cha
radius and on the plasma length are shown in Figs. 8~a! and
8~b!, respectively. In both cases, the plasma resistance
e
is
c-

ber

n-

creases rapidly and then becomes saturated. The reas
that the induced electric field at the chamber surface i
decreasing function of the distance between the antenna
the chamber surface. In Fig. 8~b!, the antenna is positioned a
the midpoint of the plasma length (z5L/2). As the antenna
radius increases, the plasma resistance decreases, sinc
induced electric field at the plasma region is a decreas
FIG. 10. Dependences of the plasma reactanceXpl on ~a! the chamber radiusRs , ~b! the plasma lengthL, ~c! the antenna radiusr c , and
~d! the axial positionzc of the antenna.
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FIG. 11. Dependences of the discharge reactanceXdis on ~a! the plasma densitynp , ~b! the electron temperatureTe , ~c! the excitation
frequencyv/2p, and~d! the plasma radiusRp .
h
n

t
m

on
-

nce
ig-
function of the distance from the plasma to the antenna@Fig.
8~c!#. The plasma resistance has a maximum plateau w
the antenna is located near the midrange of the plasma le
@Fig. 8~d!#.

Figures 9 and 10 show the plasma reactance which is
negative of the imaginary part of the impedance. The plas
en
gth

he
a

reactance is a decreasing function of the plasma density@Fig.
9~a!# and a somewhat increasing function of the electr
temperature@Fig. 9~b!#. As the excitation frequency is in
creased, the plasma reactance increases rapidly@Fig. 9~c!#.
This shows that the main component of the plasma reacta
is the inductive part proportional to the wave frequency. F
FIG. 12. Dependences of the discharge reactanceXdis on ~a! the chamber radiusRs , ~b! the plasma lengthL, ~c! the antenna radiusr c ,
and ~d! the axial positionzc of the antenna.
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ure 9~d! indicates that the plasma reactance is an increa
function of the plasma radius. In Fig. 10, it is seen that
dependence of the plasma reactance on the chamber g
etry is similar to that of the plasma resistance. Since
plasma reactance is related to the power stored in a form
electromagnetic field, the magnitude of the induced elec
field in the plasma region, which depends on the geometr
factors, can explain the dependence of the plasma react
on the geometrical factors.

The discharge reactance, which is the imaginary par
the discharge impedance and the sum of the plasma and
tenna reactances, is shown as a function of the various
rameters in Figs. 11 and 12. Since the antenna reactan
much larger than that of the plasma, the discharge react
is affected mainly by the antenna reactance. The antenna
is assumed to have no resistance, hence the discharge
tance is the same as the plasma resistance. The disch
reactance decreases with the plasma density@Fig. 11~a!# but
does not vary with the electron temperature@Fig. 11~b!#. The
main component of the discharge reactance is also the in
tive part@Fig. 11~c!#. When the antenna is far from the cham
ber wall, the discharge reactance increases with the ant
radius @Figs. 11~d! and 12~c!# but is not a function of the
antenna position inz direction @Fig. 12~d!#. When the an-
tenna radius is too large, the reactance decreases@Figs. 11~d!
and 12~c!# because of the induced electric field in the cha
ber wall. The reactance is saturated as the chamber ra
and plasma length become larger@Figs. 12~a! and 12~b!#.
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IV. SUMMARY

The discharge and plasma impedances of a solenoida
ductively coupled plasma discharge are calculated by a m
analysis technique. To calculate the discharge impeda
the electric and magnetic fields are determined in the en
chamber. The anomalous skin effect is included in
plasma conductivity and the antenna current is realistic
modeled. The discharge and plasma impedances are f
tions of plasma density, electron temperature, excitation
quency, chamber geometrical factors, and geometry of
tenna coils.

The anomalous skin effect is related to the thermal mot
of electrons, and the thermal motion is included only in t
radial direction in this work. For more accurate calculati
of the anomalous skin effect, the thermal motion in the ax
direction should also be considered. For the self-consis
determination of plasma parameters of density and temp
ture, the energy and particle transport equations should
solved. These subjects are under investigation and the re
will be reported elsewhere.

ACKNOWLEDGMENT

This work was supported by the Korean Ministry of Sc
ence and Technology.
h-

J.

ci.

ev.

s

@1# J. W. Denneman, J. Phys. D23, 293 ~1990!.
@2# B. W. Yu and S. L. Girshick, J. Appl. Phys.69, 656 ~1991!.
@3# R. B. Piejak, V. A. Godyak, and B. M. Alexandrovich, Plasm

Sources Sci. Technol.1, 179 ~1992!.
@4# G. G. Lister and M. Cox, Plasma Sources Sci. Technol.1, 67

~1992!.
@5# V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasm

Sources Sci. Technol.3, 169 ~1994!.
@6# T. Sakuta, S. Oguri, T. Takashima, and M. I. Boulos, Plas

Sources Sci. Technol.2, 67 ~1993!.
@7# V. I. Kolobov, G. J. Parker, and W. N. G. Hitchon, Phys. Re

E 53, 1110~1996!.
@8# V. I. Kolobov and W. N. G. Hitchon, Phys. Rev. E52, 972

~1995!.
@9# V. I. Kolobov and D. J. Economou, Plasma Sources Sci. Te

nol. 6, R1 ~1997!.
@10# P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M

Kushner, Appl. Phys. Lett.63, 605 ~1993!.
@11# P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M

Kushner, J. Vac. Sci. Technol. B12, 461 ~1994!.
a

.

-

.

.

@12# R. A. Stewart, P. Vitello, and D. B. Graves, J. Vac. Sci. Tec
nol. B 12, 478 ~1994!.

@13# A. P. Paranjpe, J. Vac. Sci. Technol. A12, 1221~1994!.
@14# G. DiPeso, V. Vahedi, D. W. Hewett, and T. D. Rognlien,

Vac. Sci. Technol. A12, 1387~1994!.
@15# M. M. Turner, Phys. Rev. Lett.71, 1844~1993!.
@16# M. A. Lieberman and V. A. Godyak, IEEE Trans. Plasma S

26, 955 ~1998!.
@17# N. S. Yoon, S. S. Kim, C. S. Chang, and D. I. Choi, Phys. R

E 54, 757 ~1996!.
@18# N. S. Yoon, S. M. Hwang, and D. I. Choi, Phys. Rev. E55,

7536 ~1997!.
@19# J. D. Jackson,Classical Electrodynamics~John Wiley & Sons,

New York, 1975!.
@20# Y. S. Sayasov, Helv. Phys. Acta52, 288 ~1979!.
@21# G. N. Watson,A Treatise on the Theory of Bessel Function,

2nd ed.~Cambridge, London, 1966!.
@22# B. D. Fried and S. D. Conte,The Plasma Dispersion Function

~Academic, New York, 1961!.


