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Discharge impedance of solenoidal inductively coupled plasma discharge

K.-I. You and N. S. Yoon
Korea Basic Science Institute, Taejeon 305-333, Korea
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The discharge impedance is calculated for a solenoidal inductively coupled plEGRalischarge, which
is one of the important sources for plasma processing. To calculate this impedance, the electromagnetic field
guantities are obtained by solving the two-dimensional Maxwell equations in a realistic geometry. Also con-
sidered in the calculation is the anomalous skin effect which is regarded as a collisionless heating mechanism
of ICP discharge. The results show that the discharge impedance is a function of various discharge parameters,
such as plasma density, electron temperature, antenna position, collision frequency, excitation frequency, and
chamber geometrfS1063-651X99)03706-X

PACS numbgs): 52.80.Pi, 52.506-b, 52.75--d

I. INTRODUCTION One of two main difficulties in two-dimensional modeling
is that the radial normal mode of the electron kinetic equa-
The inductively coupled plasm#CP) source has been the tion is not amenable to cooperation with the eigenmode of
subject of many experimental and theoretical investigationshe wave equation. The other is the determination of excita-
[1-14. Since a high-density plasma with good uniformity is tion coefficients of the normal mode by the external coil
easily obtained under low pressure without an external mageurrent. In the work of Yoon, Hwang, and CHdi8], the first
netic field, the ICP becomes a strong candidate for a nextproblem was overcome by assuming that the radius of
generation source for plasma processing. Two types of ICBlasma is much larger than the skin depth, as is often the
reactors are available, which are classified according to thease in the practical ICP discharge condition. For the second
shape and position of the coil. One type of the reactors has problem, an effective surface current representing the trans-
solenoidal coil wound around the cylindrical chamkssle-  verse magnetic field was introduced into the interface be-
noidal type [1-9] and the other type has a planar coil at thetween plasma and vacuum as a tentative boundary condition.
top of the chambe(planar type, also called TGP10-14. This surface current can be presented as a function of the
For the electron heating mechanism of the ICP dischargegntenna coil current by manipulating the Maxwell equations,
collisionless heating is widely accepted as the primaryand thus the excitation coefficients can be determined. The
mechanism, since it is sustained with low-pressure neutralse of the effective surface current is justified by the unique-
gas. The collisionless electron heating mechanism is thaess theorem of the solution. From the viewpoint of an elec-
anomalous skin effect originated from thermal motion oftrical circuit model, an impedance matching condition is de-
plasma particleg5,15]. The anomalous skin effect is a trans- termined with the discharge impedance which is the
verse analogue of the Landau damping from the standpoinmmpedance of the whole chamber. This discharge impedance
of wave-particle interaction in plasma, since the electronsan be calculated from the electromagnetic field quantities in
gain energy through a resonant coupling with the transversthe antenna region. The electromagnetic field in the plasma
electromagnetic waves. region is calculated easily with the method of Rdfg]; the
Although the anomalous skin effect has been a traditionalield in the antenna region, however, cannot be obtained.
subject in plasma physics, many issues remain to be under- In this work, we develop a two-dimensional heating
stood more fully, especially in relation to the collisionlesstheory of the solenoidal ICP discharge by representing the
heating mechanism of the ICP discharge. The recent progresmiomalous skin effect in terms of the conductivity of homo-
is well reviewed in Refs[9,16]. One of the important issues geneous hot plasma; for the calculation of the conductivity,
of the collisionless heating mechanism is the calculation otlectrons are assumed to reflect perfectly on the plasma
surface and plasma impedances, since they are the represéoundary. The normal mode in the plasma region is repre-
tative quantities of the heating mechanism. In the case of theented with an effective surface current, and this surface cur-
TCP discharge, Yoonetal. [17] developed a one- rentis determined by the antenna current not only with the
dimensional model including the anomalous skin effect andnethod of Yoonet al. (hereafter called the mode excitation
the modulation effect of the wave electric field by conduct-method, but also with the image current method. In the im-
ing boundaries at the other side of the plasma. This modedge current method, the wave equation is solved also in the
was extended to a two-dimensional mofiE8]. The surface antenna region by replacing the plasma current with an ap-
impedance can be calculated from the one-dimensiongiropriate current sheétvhich we call image current sheeit
model, and the plasma impedance from the two-dimensiona certain radial position in the plasma region. The image
model with the field definition of impedandd9]. For the current and the electromagnetic field in both regions are de-
solenoidal ICP discharge, the surface impedance was calctermined, without loss of generality, by assuming that the
lated by Sayasof20] with a one-dimensional model, but the electric and magnetic fields should be continuous at the
plasma impedance has not yet been fully calculated. There @asma-vacuum boundary. Once the electromagnetic field is
no such calculation obtained for the discharge impedance. determined, the plasma impedance can be calculated from

1063-651X/99/566)/707411)/$15.00 PRE 59 7074 ©1999 The American Physical Society



PRE 59 DISCHARGE IMPEDANCE OF SOLENOIDA. .. 7075

2 2
shielding cap ~y (0, L) (RI,,L) (R,.L) 1% 10 1 17 ) . Ar
: +-—=+ + =—ik—
A T A
@
u = LM.B
T. . where k=wl/c, w is the excitation wave frequency, the

speed of light, and the sum of all current densities appear-
ing in the chamber. Here, the electric field and the current are
‘ assumed to depend on time in the formeof “t. The com-

®

antenna

T ponents of the magnetic field can be calculated fierhy
dielectric tube l l (R" '0) (RS’O) using Faraday’s law
vacuum pump = B (I’ Z)= i—iE(l’ Z) (2)
r ) K (92 l ’

FIG. 1. Schematic diagram of a solenoidal ICP discharge de-
vice. i 0
Bz(rlz):_;E[rE(rlz)]l (3)
the field quantitie$19] on the plasma-vacuum interface and
the discharge impedance from those on the surface of thgnq the absorption power densiy, defined as the power
antenna. The resulting plasma and discharge impedances g§sorbed by the plasma in unit volume is
functions of various parameters such as plasma density, elec-

tron temperature, radius of chamber, length of plasma, radius P 5 Re(J; E), (4)
of plasma, electron collision frequency, excitation frequency,
and the position and size of the antenna coil. whereJ,, is the plasma current density.

In Sec. Il, the wave equation and boundary conditions are The whole chamber is assumed to be surrounded with a
described and the solution is presented. The numerical I'serfect conductor; thu€=0 at the chamber surface. Since
sults and discussion are presented in Sec. lll, and the suni-is not easy to solve Eq1) for the whole chamber, the
mary is given in Sec. IV. wave equation is solved separately in each region and the

solutions are matched at boundary without loss of generality.
The wave equation in the plasma region is solved with a
Il. THEORY temporal boundary condition at the plasma-vacuum bound-
A. Wave equation and boundary conditions ary-

Figure 1 shows a schematic diagram of a usual solenoidal B,=B, atr=R,. (5
ICP source, whose electromagnetic field and impedance are
calculated. The dielectric tube filled with plasma has a radiusg g determine the value @, we use two methods of mode
of R, and the antenna coil with radil; is wound around excitation and image current.
this dielectric tube. We define the plasma and antenna re- In the mode excitation method, the electric and magnetic
gions by the inner range<9r<R, and the outer rangR, fields satisfying source-free wave equations in the antenna
<r=Rs, respectively, wher& is the chamber radius. Since region are used in a vector relation derived from the Maxwell
the alternating current in the antenna coil generates timeequations. Integrating this identity in the antenna regip,
varying magnetic flux in the plasma region, the azimuthalcan be obtained as a function of the antenna current. In the
electric field is induced in the plasma. Electrons gain energyl‘nage current method, the wave equa‘[ion in the antenna re-
from this electric field through the resonant coupling andgion is also solved easily by replacing the plasma current
ionize the neutral gas. with an image current sheet at a certain position within the

In general, the electric field can be resolved into irrota'p|asma region_ This image current aﬁq are determined
tional (longitudinal or capacitiveand solenoidaltransverse  from the magnetic and the electric field continuity conditions
or inductive parts. Two important roles of the capacitive at the plasma-vacuum boundary. The electromagnetic field in
field are to make a difference of the conduction current OR”the antenna region can be obtained with the image current
the antenna from the input current as much as the displacgnethod, although the calculation in this method is more
ment current in the perpendicular direction to the antenngomplex and time consuming than that based on the mode
surface, and to heat the plasma electrécapacitive dis-  excitation method. The procedures of the mode excitation
charge. For the practical ICP discharge condition, however,gng image current methods should be guaranteed by the
the dominant electron heating source is the inductive part Olfjniqueness theorem. The proof of uniqueness is offered by
the electric field rather than the capacitive part, and the caygon, Hwang, and Choji18] for the case of the TCP dis-
pacitive field is usually Faraday shielded. Therefore, only the:harge. Since the solenoidal ICP situation is not much dif-
inductive field is considered in this work. ferent from the TCP case in proving the uniqueness theorem,

Assuming that all physical quantities hadesymmetry  the validity of the uniqueness theorem for the ICP is as-
and the electric fieldE has only a¥ componentE=E#), the = sumed without any proof. Owing to this uniqueness theorem,
wave equation for the azimuthal electric ficidin (r,z) co-  the results from the mode excitation and the image current
ordinate system is written as methods can be cross-checked to examine if they are equal.
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B. Normal mode in the plasma region

In the plasma region, the wave equation is written as

# 1o 1 # L\ 4w
FrReirea R S E__'KTJP’ (6)
with boundary conditions
E=0 atr=0, (7)
B,=B, atr=R,. (8

The homogeneous solution of E@) with the boundary
condition given by Eq(8) can be transformed into a particu-
lar solution with the effective surface current dendity at
R,, and the equivalent wave equation becomes

# 149 1 2| g
— - — S+ —+
a2 rar 2 a2k

AT
—|KT[JP+K55(r—Rp)], (9)

where §(r) is the Dirac delta function ankls=cB,/27.
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wheref, and f; are the uniform equilibrium and perturbed
distribution functions, respectively, and/gt).q is a colli-

sion operatorv,, vy, € andm are velocity components in
radial and azimuthal directions, electron charge, and electron
mass, respectively. Here, the axial derivative of the perturbed
electron velocity distribution {f,/9z) is neglected on the
assumption oL > 6, whereé is the skin depth in the radial
direction. Using the Maxwellian distribution function fdg

and Krook’s model collision operator, we have

. . ofy e
—I(w+|v)f1+vrﬁ—r+_|TEvgfo=O, (16
e

wherev and T, are the frequency of electron collision with
neutral gas particles and the electron temperature, respec-
tively. Following the procedure given in R4R0], Eq. (16)

can be solved assuming tHR§> & and electrons reflect per-
fectly from the plasma boundary. After some algebraic ma-
nipulation forf,, the plasma conductivity can be expressed
by the Dini series and its component becomes

ie’n,R, . o+iv ) an
g = - y
P 2 2mThgm "\ Nomvin/ Rp

This equation can be solved by the mode analysis method

using the Fourier-Dini serig1], and the results become

sin(g,2), (10

r
E= E emn\]l( )\OmR_
m,n p

.
Jp=2 emnﬂop,mJl(AOmR—)sin(qnz), (11)
P

m,n
where

2i kb

e 12
mn Rle()\Om)Dmn ( )

4
Dng(AOm/Rp)2+ qﬁ— K2~ TIK\/Z’JTG'me, (13

andJ, is the first-order Bessel function ang,, are roots of
the zeroth Bessel functiod, satisfyingJo(\om)=0. Here,
d,=nw/L with plasma lengti, o, ,, is themth coefficient
of plasma conductivityo, in the Dini series and is given
from the solution of the Boltzmann equation, dnygl, is the
nth coefficient ofB, in the Fourier series defined by

2 (L
bp'”:Ef B, sin(qn2)dz (14

0

The remaining unknowb, ., will be obtained from the elec-

whereZ,, n,, andvy, are the plasma dispersion function
[22], plasma density, and electron thermal velocity, respec-
tively.

C. Mode excitation method

In this subsection, we determine the magnetic field com-
ponent at the plasma-vacuum boundaby, () [Eq. (14)],
using the mode excitation method. By adopting this method,
we connect the normal mode in the plasma region to the
antenna current without solving the wave equation in the
antenna region.

From the Maxwell equations, we derive a vector relation

V- (EX By~ EnoXB)=(47/c)J; Epo, (18)
whereJ, is the source current density, and the subsaript
means the electromagnetic field satisfies the source-free
wave equation

(92
+ ﬁ + K2 Eno: 0

(92
—+
ar?

19 1

T (19

Here,E,=E.f#, and the boundary condition for E€L9) is

tric field continuity condition at the plasma-vacuum bound-The solution of Eq(19) can be written as

ary.

The plasma conductivity is deduced from the Boltzmann

equation for the electron velocity distribution functi§rand
the equation for the dominant order is

of, (a) .
o) v
col

ot

oty e _dfy

+ e — =
Uor T m vy (15

E,.=0 atr=R;. (20)
Eno= 2, CnGn(1)sin(an2), (22)

with
gn(r):Kl(ﬁnRs)ll(IBnr)_ll(ﬁnRs)Kl(Bnr)- (22)
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in which 1, and Kl are the first-order modified Bessel func- position in the plasma region. This image current &ng,
tions, andﬁn—qn—x From the Maxwell equations, mag- are determined without using the results of Sec. Il C.

netic fieldB,, becomes The wave equation for the electric field in the antenna
region is

0= S Cof 0y COL )01+ By SING, N (1) 2], # 1o 1 & am

IK ™n —2 -3 7+K E:—iK—JC. (32)

a2 rar 1?2 oz o
(23)

with The boundary conditions are

(1) =Ks(BaR) o Bal) + 11 BaRIKo( Bl ), (24) E=0 atr=R., 33

I, andK, being the zeroth-order modified Bessel functions.2NdE andB; are continuous at=R, . As in the case of the
With Eq. (18) volume integrated over the antenna region, anP/@Sma region, the wave equati8®) is transformed to

integral equation is obtained 2 19 1 Py

b —— +
4 (L (Rs a2t a2tz «*|E
f (EnoBz— Bno,zE)de z=— J f J.Enr drdz,
r:Rp C 0 Rp . A
25 = ik [+ Ky 81— Ry +Kepd(r—Ry)), (34

with assumption oE=0 at the chamber surface. Expanding

B. atR. in the Eourier series where Kg; is an image current density flowing &,
z P

(<Rp), and the boundary condition of E(B3) can be sat-

isfied by a surface current densiy,=cB,(R,)/27.

B.(Ry) = > bp,n SiN(qn2), (26 Equation(34) can be solved by the mode analysis method
" using the Fourier-Dini series. The source current density can

and using the electric field continuity conditionRy and the be represented as

orthogonality of the series, we have r
4 3 ] Jc:% jmn‘]l( )\Omﬁ)sm(qnz)i (35
an , S
Dpn=2Brrle| TEM(nsiNG,) Cardz, (27
' ¢ rzle L where
wherel is a source current ani,(r) is given by 4 |
H mn
n(r)= ,BanA——ZslB' (28)
with {icj/Rs= J ( )31(?\0mR )sm(qnz) drdz (37
s _E ,Bﬁ 29 Inserting Eq.(35) into Eq.(34) and expandings; andB, at
v m Dmn’ Rs.
A=K1(BnRs)11(BrRp) = 11(BrRs)K1(BrRp), (30 Kslzg Ks1nSiN(0nz), (39
B:Kl(IBnRs)IO(ﬁan)'I'|1(:8nRs)KO(:8an)- (31)
Using the mode excitation method, the electromagnetic BZ(RS):; bs,n SIN(0n2), (39
field in the plasma region is easily determined, but the field
in the outer region cannot be calculated, which is essential iQye obtain
obtaining the discharge impedance. To obtain the electro-
magnetic field in the antenna region, the wave equation @ r .
should be solved also in this region. E:Zn emnd1 )\Omﬁs sin(qnz), (40
D. Image current method where
In this subsection, we determine the magnetic field com- . YR
ponent at the plasma-vacuum boundaby () [Eq. (14)], by a2 21k ({J s 87
solving the wave equation in the antenna region. We solve ™ RJ1(Nom) D Ji(Aom) Lc ' ©
the wave equation by replacing the plasma current with an
artificial image current sheégiving equivalent effects to the ReJ1(AomRe/Rs) 4_77 b (41)
electromagnetic field in the antenna regiana certain radial RsJ1(Aom) c stn’Tsnp
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Dimh=(Nom/Re)*+ 07— K%, (42)
Applying the boundary condition of E433) to Eq. (40), the
coefficientbs , can be determined, and the resultant coeffi-
cient of the electric field becomes

e(z): 2ik {Jmn/Rs}
DiaaRsJ1 (N om) | J1(Aom)
. 2:8n lo(ﬂnRs) {Jmn/Rs}
Ry (BnRy) & J<x0m>D<2>
2ik (Jl()\OmRe/RS)
- DRI (Nom) | J1(Nom)
nRe) | Re 4
TR ¢

Since the axial magnetic field should be continuouR@at
[see EQq.(8)], the coefficient of the surface current density
Ks1n Can be obtained:

c Ksi1

T7 Koy (44)

sin—

where
NomJo(AomRp/Ro){jcj/Rs}
O‘ém"’ BﬁRg)Ji()\Om)

_ ﬁnRsI O(Ban) E {J cln/RS}
11(BaRs) & (Ngm+ BaRS)I1(Nom)

>

m

Ks11= bp,n_ (

167
Lc

c

|

)\Om‘JO()\Ome /Rs)JlO\OmRe/Rs)
(\om+ BaRE) I (N om)
lo( BnRp)11(BnRe)

B ) 2R,
211(BnRs)10(BnRs) | Rs

With Eq. (44), the electric field is represented as a function
of the source current and the magnetic fiel&Rgt Using the
remaining condition of the electric field continuity R}, the
coefficient of the magnetic field can be expressed as

Kero= ( %}

by n=bp1/bps, (45)
where
bp1= 2,8an(477/Lc)| L2BnRsl 1(BnRs) 1 o( BrRs)
X (S5~ S5) S+ 1 1(BrRp) 1 1(BnRe) Ss
+2B1Rsl o BaR){ BnRsl o BrRp) —11(BRp)}S6S:
~ BaRsl o BaRp) 1 1(BaRe) 31, (46)
bp2=251[2B:Rsl 1(BrRs) o( BaRs) S
~ BaRel o BaRp) 1 1(BrRe) ]
~ BARR{L 2B:Rsl 1(BnRs) 1 o( BnRs) S,
~11(BaR) 1 1(BaRe)]. (47)
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Here,S;,S,,...,Ss are sums ovem and functions oh given
by

1 J1(NomRp/Rs)J1(AgmRe/Rs)
S$,=> = 752 2 ,
m )\Om+:8nRs Jl()\Om)
(48)
1 JomRp/R{INVRS
S$=2 — 752 = : >, (49
m )\0m+:8nRs 1()\0m)
1 )\Om‘]O()\Ome/Rs)Jl()\OmRe/Rs)

S :2 ]
* S Nomt+ BARS IZ(Nom)

(50)
B 1 NomJo(AomRp/Re){ic) /Rt
S Nt R FNon) 6
1 imR,
S=3 Uei IR (52

(Nom)

It is straightforward to show that Eq$27) and (45) are
equivalent. Actually, the electric field in the plasma region
calculated using the mode excitation method and the electric
field in the antenna region calculated using the image current
method are linked continuously to each otheRgt

™ Nomt BaRS J1

E. Plasma and discharge impedances

According to the Poynting theorem for harmonic fields,
the impedance can be defined using field quantjiti€s The
Poynting theorem is written as

1. - -
—f J*-Edf(+2iwf (Wo— W) A%+ 3§s-ﬁda=o,
2 )y v s
(53

where J is current densityE electric field, we=|E|%/167
electric field energy densitywm—|§|2/167-r magnetic field

energy densityS=E X B*c/8x the Poynting vector, and
unit vector with outward normal direction to the surface. In
Eqg. (53), the first term represents the rate of work done by
the fields in finite volumé/, the second is the stored energy
rate within the electromagnetic fields, and the third is the
energy flow rate in outward direction through the surf&ce
surrounding the volume.

When only the plasma region is considered, the sum of
the stored and the dissipated energy rates in the plasma is the
same as the energy inflow rate through the plasma-vacuum
interface. From the viewpoint of an electrical circuit, this
sum can be replaced with

%IZV:%“JZZpIr (54)
wherel ¢, V, andZ are source current, potential difference
applied to the plasma, and plasma impedance, respectively.
Hence, the plasma impedance is derived as

2 [ .
z |=——2f S-fda, (55)
P I® s

p
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whereS, is the plasma-vacuum interface. After some alge-
bra, it can be shown that

1 iowl « [bpal?
R
1el* 2 @

Dmn ’

(56)

whereb,, , andD,,, are defined in Sec. I B.

The power dissipated in the antenna can be calculated in
terms of the current and electric field on the antenna and can
also be represented in terms of the current and antenna im-
pedance. Hence, the antenna impedance is

1 e o
zaz——zf J* Edx, (57)
||c| Va

whereV, is the antenna volume. Since all the power dissi-
pated and stored in the plasma and vacuum regions is trans-
ferred through the surface surrounding the antenna, the im-
pedance calculated from E¢57) is the same as the total
impedance of the dischargealled discharge impedance
Zg4i). Using the orthogonality of the Fourier-Dini series, the
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E (V/cm)

phase (1)

discharge impedance reduces to
27R )
Zgs=——— 2 {igTRel, (58)
C m,n
m

where{j"/Rs} ande{?) are defined in Sec. II D.

IIl. NUMERICAL RESULTS AND DISCUSSION

FIG. 2. Profiles ofa) amplitude andb) phase of electric fiel&E
in the plasma.

by using Eq.(62), this new series converges faster than the
original one.
In this section are presented the numerical results based

Since the serieS,,S;,...,S;, especially the ones involv- on Egs.(2)—(4), (10), (11), (56), and (58); i.e., the electric
ing Ji in denominators, converge very slowly, some tech-and the magnetic fields, the plasma current density, the ab-
nigues are needed to accelerate the series convergence. Borption power density, and the plasma and the discharge
this purpose we use the following identities involving seriesimpedances. The parameters used for the calculatiolRare

sums:

1 Jihomf/R) 1 14(Br)

22 TR Do " 28RIoR) TR
(59)
Nom  Jo(Aomf/R) 1 1o(pBr)
2T R 0w 2igpR) R
(60)
5 Jl()\Omrl/R)Jo()\Omrz/R)_{R/Zrl (r,<r,;<R)
m NomJ5(Xom) 10 (r;<r,<R),
(61)
2 Jl()\omrllR)Jl()\omrle)_{r2/4r1 (r2<r1<R)
m )\Cz)mJi(AOm) S rifdry  (ri<r,<R).
(62)

=20cm, R,=10cm, L=20cm, n,=10%cm 3, T,=5eV,
w/27m=13.56 MHz, R.=11cm, andz.=10cm. Herez. is

the axial position of the antenna. The antenna coil is made of
a rectangular wire loop with the cross section of 1 cn?.

The collision frequency is set to zero. Except a parameter
that is used as a variable or specially mentioned, all param-
eters have fixed values as set above.

In the two-dimensional space ,g) of the plasma region
with two coils located ar=7.5 and 12.5 cm, the electric and
the magnetic fields, plasma current density, and absorption
power density are shown in Figs. 2—6. Plots of the electric
field amplitude and phase are shown in Fig. 2, and there exist
certain points where the electric field vanishes and the phase
abruptly changes byr [18]. The magnetic field is presented
in Figs. 3 and 4. The axial component of the magnetic field
B, is out of phasd /2 fastej with the electric fieldFig. 3).

The magnitude of the radial component of the magnetic field
B, is smaller thanB,. There are three nodal points m
direction, two of which are located at the coil positions and

As an example of using these series, let us consider the seriﬁ§e third is atz=L/2 due to the boundary conditions &f

S,. If the series is rewritten as

1 1 Jl(AOme/Rs)Jl()\OmRe/Rs)
52:2 32 o a22p2 Y2 2
m )\0m+:8nRs )\Om Jl()\Om)
;R 63
4R (63

P

=0 at bothz=0 andz=L (Fig. 4). The plasma current is
nearly out of phasén/2 latep with the electric field, since,

as shown in Eq(17), the imaginary part of the plasma con-
ductivity is much larger than the real part in the collisionless
procesqFig. 5. The absorption power density is localized at
the plasma edge and there is a region where the absorption
power is negativéFig. 6).
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In Fig. 7(c), the plasma resistance is presented as a func-

tion of the excitation frequency for various plasma densities.

Figures 7 and 8 display the plasma resistance, which i%s js seen in Fig. @) for n,, there is a maximum plasma
the real part of the plasma impedance and proportional to thgssjstance, since the induced electric field in the plasma in-

power deposited in the plasma. Figur@plots the plasma  ¢reases with the excitation frequency but the skin depth de-
resistance as a function of the plasma density. The plasma

resistance has a maximum value at a certain plasma density, A0
which is similar to the results of Rdf18], where the plasma
resistance of TCP discharge is calculated. The position of the
maximum point moves upward to the plasma density and its
value increases as the excitation frequency becomes higher.
The dependence of the plasma resistance on the electron
temperature is shown in Fig(B). Since more electrons in-
teract with the electric field as the electron temperature in-
creases, the plasma resistance is an increasing function of the
electron temperature. At a given temperature, there exists the
most effective excitation frequency for heating, since the
electron gains the energy through resonant coupling with the (a)

excitation wave.

B, (gauss)

FIG. 4. Profile of amplitudeB, in the plasma.
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2
z
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6 8 10
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FIG. 6. Profiles of the absorption power dendity,sin (a) two
dimensions andb) one dimension at positions a=12.4 and 10
cm.
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FIG. 7. Dependences of the plasma resistaRgeon (a) the plasma density,, (b) the electron temperaturg,, (c) the excitation
frequencyw/27, and(d) the plasma radiuR;, .

creases. It is noted from Figs(af and 7c) that there is an the electron thermal motion across the plasma diameter and
optimal condition of the excitation frequency for a given the wave[17]. The second one can be explained as follows.
density. When the plasma radius is small, the number of electrons in
The dependence of the plasma resistance on the plasnii@e skin depth increases with plasma radius. However, when
radius can be seen in Fig(dJ, where the antenna radius is the plasma radius is sufficiently large, the plasma resistance
given asR,+1 in units of cm. There are two peaks in this decreases rapidly, since the induced current at the chamber
plot. The first peak originates from the resonant coupling ofwall increases as the antenna moves closer to the chamber

»/2n = 13.56 MHz

05}

R, (@)
Ry (@)

0.0 "
10 20 30 40

R, (@)
R, (@)

20

z (cm)

FIG. 8. Dependences of the plasma resistdRgen (a) the chamber radiuBs, (b) the plasma length, (c) the antenna radius,, and
(d) the axial positiorg; of the antenna.
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FIG. 9. Dependences of the plasma reactaXigeon (a) the plasma density,, (b) the electron temperaturg,, (c) the excitation
frequencyw/2m, and(d) the plasma radiuR;, .

wall. This induced current is out of phase with the sourcecreases rapidly and then becomes saturated. The reason is
current, so the sum of the induced and source currents ihat the induced electric field at the chamber surface is a
smaller than the source current. Therefore, the induced eledecreasing function of the distance between the antenna and
tric field in the plasma region decreases. the chamber surface. In Fig(8, the antenna is positioned at
The dependences of the plasma resistance on the chamlibe midpoint of the plasma lengtlz€L/2). As the antenna
radius and on the plasma length are shown in Fig®. &d radius increases, the plasma resistance decreases, since the
8(b), respectively. In both cases, the plasma resistance irinduced electric field at the plasma region is a decreasing

®/2n =50 MHz

o/2x = 13.56 MHz

X1 (@)

X, (@)

z. (cm)

FIG. 10. Dependences of the plasma reactafigen (a) the chamber radiuBs, (b) the plasma length, (c) the antenna radiug,, and
(d) the axial positiorg; of the antenna.
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FIG. 11. Dependences of the discharge reactafgeon (a) the plasma density,, (b) the electron temperatuig,, (c) the excitation
frequencyw/2m, and(d) the plasma radiuR;, .

function of the distance from the plasma to the antdffig. =~ reactance is a decreasing function of the plasma delfsigy
8(c)]. The plasma resistance has a maximum plateau whe®(a)] and a somewhat increasing function of the electron
the antenna is located near the midrange of the plasma lengtemperaturgFig. 9b)]. As the excitation frequency is in-
[Fig. 8d)]. creased, the plasma reactance increases rafftitly 9(c)].
Figures 9 and 10 show the plasma reactance which is th€his shows that the main component of the plasma reactance
negative of the imaginary part of the impedance. The plasm# the inductive part proportional to the wave frequency. Fig-

35 100 . .
o /2% = 50 MHz
301
5t . e wi2n = 1356 MHz
S ] 10}
g 20r 3 ©/2rn =5 MHz
) =
15|
10 . . | . . . .
10 20 30 20 0 10 20 30 40 50
R, (cm) L (cm)
a0l
30|
5 a
3 20| 2
< ><.U
1o}
10 12 14 16 18 20 0 5 10 15 20

r, (em) z, (cm)

FIG. 12. Dependences of the discharge reactafgeon (a) the chamber radiuRg, (b) the plasma length, (c) the antenna radius;,
and (d) the axial positiorg; of the antenna.
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ure 9d) indicates that the plasma reactance is an increasing IV. SUMMARY

function of the plasma radius. In Fig. 10, it is seen that the

dependence of the plasma reactance on the chamber geom-The discharge and plasma impedances of a solenoidal in-

etry is similar to that of the plasma resistance. Since theluctively coupled plasma discharge are calculated by a mode

plasma reactance is related to the power stored in a form afnalysis technique. To calculate the discharge impedance,

electromagnetic field, the magnitude of the induced electriche electric and magnetic fields are determined in the entire

field in the plasma region, which depends on the geometricathamber. The anomalous skin effect is included in the

factors, can explain the dependence of the plasma reactanpasma conductivity and the antenna current is realistically

on the geometrical factors. modeled. The discharge and plasma impedances are func-
The discharge reactance, which is the imaginary part ofions of plasma density, electron temperature, excitation fre-

the discharge impedance and the sum of the plasma and aguency, chamber geometrical factors, and geometry of an-

tenna reactances, is shown as a function of the various p&enna coils.

rameters in Figs. 11 and 12. Since the antenna reactance is The anomalous skin effect is related to the thermal motion

much larger than that of the plasma, the discharge reactancd electrons, and the thermal motion is included only in the

is affected mainly by the antenna reactance. The antenna co#dial direction in this work. For more accurate calculation

is assumed to have no resistance, hence the discharge resi$the anomalous skin effect, the thermal motion in the axial

tance is the same as the plasma resistance. The dischardjeection should also be considered. For the self-consistent

reactance decreases with the plasma defBity. 11(a)] but  determination of plasma parameters of density and tempera-

does not vary with the electron temperat{ffégg. 11(b)]. The ture, the energy and particle transport equations should be

main component of the discharge reactance is also the induselved. These subjects are under investigation and the results

tive part[Fig. 11(c)]. When the antenna is far from the cham- will be reported elsewhere.

ber wall, the discharge reactance increases with the antenna

radius[Figs. 11d) and 1Zc)] but is not a function of the

antenna position irz direction [Fig. 12d)]. When the an-

tenna radius is too large, the reactance decrd&sgs. 11d) ACKNOWLEDGMENT

and 1Zc)] because of the induced electric field in the cham-

ber wall. The reactance is saturated as the chamber radius This work was supported by the Korean Ministry of Sci-

and plasma length become lard€igs. 12a) and 12Zb)]. ence and Technology.
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