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Modeling of spatiotemporal patterns in bacterial colonies

A. M. Lacasta, I. R. Cantalapiedra, C. E. Auguet, A. Pen˜aranda, and L. Ramı´rez-Piscina
Departament de Fı´sica Aplicada, Universitat Polite`cnica de Catalunya, Avenida Dr. Maran˜on 44, E-08028 Barcelona, Spain

~Received 21 October 1998!

A diffusion-reaction model for the growth of bacterial colonies is presented. The often observed cooperative
behavior developed by bacteria which increases their motility in adverse growth conditions is here introduced
as a nonlinear diffusion term. The presence of this mechanism depends on a response which can present
hysteresis. By changing only the concentrations of agar and initial nutrient, numerical integration of the
proposed model reproduces the different patterns shown byBacillus subtilisOG-01.
@S1063-651X~99!05706-2#

PACS number~s!: 87.10.1e, 87.17.Aa, 47.54.1r
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I. INTRODUCTION

Some kinds of bacterial colonies present interesting st
tures during their growth@1–11#. Depending on the bacteria
species and the culture conditions, colonies can exhib
great diversity of forms. In general, the complexity of t
growth pattern increases as the environmental conditions
come less favorable. Bacteria respond to adverse gro
conditions by developing sophisticated strategies and hig
microlevel organization in order to cooperate more e
ciently. Examples of these strategies are the differentia
into longer-motile bacteria, the production of extracellu
wetting fluid, the secretion of surfactants which change
surface tension, or the chemotactic response to chem
agents produced by bacteria@1–8#. The experiments are usu
ally made in a Petri dish, which contains a solution of nu
ent and agar. A drop of bacterial solution is then inocula
in the center of the dish. The growth conditions are co
trolled by the initial concentration of the medium comp
nents. The agar concentration determines the consistenc
the medium, which becomes harder as the amount of a
increases, and the nutrient concentration controls the ba
rial reproduction. Depending on these two factors, the col
grows at a higher or lower rate, developing different kinds
patterns.

In particular, colonies of the bacteriumBacillus subtilis
OG-01 present a rich variety of structures@8–11#. Figure 1
shows the morphological diagram obtained by Ohgiwa
Matsushita, and Matsuyama@10#. They classified the colony
patterns into five types, fromA to E, whose main features
can be summarized as follows. If the medium is very ha
i.e., with a high concentration of agar, bacteria can har
move and the colony essentially grows due to the consu
tion of nutrient and subsequent reproduction. If the level
nutrient is also low~region A), the growth is controlled by
the diffusion of the nutrient up to the bacteria placed at
interface. The colony develops a ramified structure v
similar to the patterns obtained with the diffusion-limite
aggregation model~DLA ! @9,12#. It takes approximately 1
month to cover the dish. If the initial agar concentration
mains high and the nutrient concentration is increased,
growth is faster than in regionA. The branches grow thicke
until they fuse into a dense disk with rough interface~region
B), similar to the patterns obtained with an Eden model@13#.
PRE 591063-651X/99/59~6!/7036~6!/$15.00
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This structure needs 5–7 days to cover the disk. When
level of agar is decreased, which produces a medium a l
softer than in regionB, and the level of nutrient remain
high, the colony forms concentric rings~regionC). This re-
gion is characterized by periodic dynamics: for 2–3 h t
colony expands while the bacteria move actively~‘‘migra-
tion phase’’! and then they almost stop for 2-3 h~‘‘consoli-
dation phase’’!, during which the colony does not grow ap
preciably and the bacterial density increases due
reproduction. The crossover between the two phases is sh
The periodic cycles of subsequent migration and consol
tion phases create the pattern of concentric rings@8,11#. Ac-
curate measurements show that in the growth phase there
high concentration of longer and more motile bacteria, a
consequence of a differentiation process@8#. When a high
level of nutrient is maintained, and the agar concentratio
decreased further, the colony spreads over the agar plate
after less than 8 h ahomogeneous disk of low bacterial de
sity is formed covering all the dish~region D). In this thin
surface, bacteria are always short and can move easily
swimming. By decreasing the nutrient concentrations fo

FIG. 1. Morphological diagram of patterns observed in colon
of Bacilus subtilisOG-01 as a function of nutrient concentratio
(Cn) and the hardness of agar surface (1/Ca ,Ca being the agar
concentration!. Experiments were performed in a Petri dish with
diameter of 88 mm. Taken with permission from@8#.
7036 ©1999 The American Physical Society



h
l-

ta
in
he
th
n

-

d

er
c
e

o
an
ng
c-
is

rie

f
n
d

M
ct
io

ho
by
fie

p
a

ry

re

n
n

e
b
e

wo
ien
a
o
om
he
er
a

can
olo-
rns.

te-
by

u-
ten

me
c-

rse
ove
a-
y

me
e-
th

cal
ing
of
op-
s a
nd a
de-
s a
’’

ins.
re

e
ed-
in

PRE 59 7037MODELING OF SPATIOTEMPORAL PATTERNS IN . . .
semisolid medium, the colony develops a densely branc
pattern~region E) similar to the dense branching morpho
ogy ~DBM! found in other systems@14#. The ratio of the
width of the branches to the gap between them is cons
over the whole colony. The colony grows quite fast, show
its main activity at the tips of the fingers, and covering t
dish in less than 24 h. The dynamics is related to both
consumption of nutrients and the bacterial motility. In ge
eral, when environmental conditions are adverse~low nutri-
ent or hard surface!, a higher level of cooperation is ob
served.

The existence of a cooperative behavior seems to be
terminant in the formation of the rings patterns of regionC.
The same kind of concentric rings has been found in exp
ments with other bacterial species. In the case of the ba
rium Proteus mirabilis, the migration phases clearly involv
the movement of differentiated swarmer bacteria~elongated
and hyperflagellated! @5–7#. Similar ring patterns have als
been observed in other nonliving systems, like the Lieseg
rings produced by precipitation in the wake of a movi
reaction front@15# or some experiments of interfacial ele
trodeposition@16#. In the case of the Liesegang patterns, it
well known that the distance between rings increases ast1/2,
whereas in bacterial and electrodeposition it is constant.

Several models have been proposed to explain the va
of patterns exhibited byBacillus subtilis, as shown in Fig. 1
@2,3,9,17–21#. DLA-like patterns~region A in Fig. 1! have
been interpreted@9# as growth controlled by the diffusion o
nutrients in the context of the DLA model. Ben-Jacob a
co-workers proposed a communicating walkers model to
scribe some of the morphologies@2,3#. This model repro-
duces the crossover between regionsA and B by coupling
random walkers to fields representing the nutrients. DB
like patterns are also obtained by introducing a chemota
agent. Other kinds of models are based on reaction-diffus
equations for bacterial density. The Fisher equation@17# can
be used for reproducing the homogeneous circular morp
ogy ~regionD) @18#. Further developments were achieved
introducing new elements to the Fisher model, such as a
for nutrient and nonlinear diffusion coefficients@19,20#. De-
pending on the new elements introduced, these models re
duce some of the patterns of Fig. 1. However, the ring p
terns ~region C) have so far eluded a satisfacto
modelization. Although the model suggested in Ref.@20# can
generate concentric ring patterns, they are rather diffe
from those observed in experiments@8#. In fact, dynamical
cycles of consolidation and growth phases are not fou
Finally, we must mention a model proposed by Esipov a
Shapiro @21# for the study ofProteus mirabiliscolonies,
which introduces a lifetime for the differentiated swarm
bacteria. This model reproduces concentric ring patterns
does not explain why no periodicity is observed in oth
regions of the morphological diagram.

In this paper, we propose a model consisting of t
coupled diffusion-reaction equations for bacteria and nutr
concentrations, where the bacterial diffusion coefficient c
adopt two different expressions, corresponding to two p
sible mechanisms of motion. The first is the usual rand
swimming performed by bacteria in a liquid medium. T
second is developed by bacteria in response to adv
growth conditions, and depends on their concentration. B
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terial response is modeled as a global variable that
present hysteresis. Our model reproduces the five morph
gies observed in the experiments, including the ring patte

II. MATHEMATICAL MODEL

We consider a two-dimensional system containing bac
ria and nutrients, both diffuse, while bacteria proliferate
feeding on nutrient. Let us denote byb̄(r 8,t) the density of
bacteria at timet and spatial positionr 8, and byn̄(r 8,t) the
concentration of nutrient. Then,b̄ and n̄ are in general gov-
erned by the following equations@17,19#:

]b̄

]t
5¹Db¹b̄1u f ~ b̄,n̄!,

~1!
]n̄

]t
5Dn¹2n̄2 f ~ b̄,n̄!.

The functionf (b̄,n̄) denotes the consumption term of n
trient by bacteria, and can be described by Michaelis-Men
kinetics @17#

f ~ b̄,n̄!5
kn̄b̄

~11g8n̄!
, ~2!

wherek is the intrinsic consumption rate. For smalln̄, the
consumption rate is approximately linear inn̄ and it saturates
at the valuek/g8 asn̄ increases.Db andDn are the diffusion
coefficients of bacteria and nutrient, respectively. We assu
that Dn is constant, butDb can depend on nutrient and ba
terium concentrations.

As explained above, experiments show that in adve
conditions, bacteria can adapt themselves in order to impr
their motility. In a soft medium and high nutrient concentr
tion ~regionD of Fig. 1!, short bacteria can swim randoml
without difficulty, but in an adverse environment~regionsA,
B, C, andE) they need to develop mechanisms to beco
more motile. For intermediate conditions of semisolid m
dium and sufficient nutrient, there are periods of fast grow
~migration phase! and slow growth~consolidation phase! that
lead to the concentric ring patterns.

The analysis of periodic rings suggests a dynami
scheme with hysteresis that can be outlined in the follow
way: during the consolidation phase, the population
longer-motile bacteria increases in order to overcome the
position to the movement. When this population exceed
certain value, enhanced movement becomes possible a
migration phase begins. Then, however, a progressive
crease in long-bacterial population ensues, until it reache
minimum at which the ‘‘enhanced-movement mechanism
does not work. Then a new consolidation phase beg
Within this scheme, regionD corresponds to a case whe
the maximum value is never reached~and therefore bacteria
always move by the usual diffusion!, whereas in regionsA,
B, and E long-bacterial population does not fall below th
minimum ~and therefore always moves by the enhanc
movement mechanism!. All these ideas can be introduced
our model by means of two basic points.
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~a! The diffusion coefficientDb(n̄,b̄) can take two differ-
ent expressions depending on the long-bacterial populat

~b! The net production of long bacteria depends on
environmental conditions and also on the colony phase
growth.

According to these ideas, we propose the following fun
tion for Db :

Db5D~ d̄11d̄2b̄!n̄, ~3!

where D depends on the concentration of agar, which
lower for a harder medium. To take into account the inh
mogeneities of the medium, we introduce a quenched di
der inD, which is written asD5D0@11j(r 8)#, j(r 8) being
a random term defined on a square lattice. From now on,D0
will be referred to as the diffusion parameter.

The first term of Eq.~3! describes the usual diffusion o
bacteria in a liquid medium. The second describes the co
erative enhanced-movement mechanism promoted by
bacteria. This second mechanism can be modeled by a
fusion coefficient that depends on the bacterial concen
tion. We multiply both terms by nutrient concentration
take into account the fact that bacteria are inactive in
region where nutrient has been depleted. This dependenc
n̄ would not have been necessary if we had considere
‘‘death’’ term in the equation forb̄. The coefficientsd1 and
d2 can adopt two different values~one of them zero! depend-
ing on the concentration of the long bacteria, as will be sp
ifed below.

Equations~1! with Eqs. ~2! and ~3! can be written in a
simpler form as

]b

]t
5¹$D~d11d2b!n¹b%1

nb

11gn
,

~4!
]n

]t
5¹2n2

nb

11gn
,

with

r5S uk2

Dn
D 1/4

r 8, t5k~uDn!1/2t,

n5S u

Dn
D 1/2

n̄, b5S 1

uDn
D 1/2

b̄, ~5!

g5S Dn

u D 1/2

g8, d15S 1

uDn
D 1/2

d̄1 , d25d̄2 .

At this point, we need to specify how to choosed1 andd2
depending on the population of long bacteria. In order to
this, we introduce a global phenomenological quantityW(t)
that measures the amount of long bacteria. The evolutio
this quantity should have a ‘‘creation term’’ that represe
the transformation of short bacteria into long ones and
‘‘annihilation term’’ that represents the opposite transform
tion ~septation!. It seems reasonable to assume that the
ation term is directly dependent on the mean bacterial c
centration, and inversely dependent on the level of nutr
(n0) and on the diffusion parameter~adverse conditions, i.e.
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D0 andn0 small, mean a faster differentiation process!. With
regard to the annihilation term, it can adopt two possi
values depending on the growth phase. The simplest e
tion that includes all these considerations can be written

]W

]t
5l

B

n0D0
2ci , ~6!

wherel is a constant andci can have two different value
(cg or cs , cg.cs!. The quantityB, defined asB5(b2/(b,
is a measure of the mean concentration of bacteria inside
colony. We introduce the hysteresis previously pointed
by assuming that there are two limit valuesWmax andWmin
for which

when W>Wmax then ci5cg , d25D2 , d150,

when W<Wmin then ci5cs , d250, d151.
~7!

With a suitable choice of parametersl, cs , andcg , and
by changing onlyn0 and D0, we can obtain colonies tha
always move with one of the two types of diffusion or col
nies that periodically change from one type to the other. T
will occur if cs,lB/(n0D0),cg , which will give rise to the
ring patterns. Although the bacterial response has been
pressed in terms of the population of long bacteria, ot
possible kinds of responses admit identical modelization
this sense, our model is quite general.

III. NUMERICAL RESULTS

We have numerically integrated Eqs.~4! with Eqs.~6! and
~7! in a square lattice of lateral sizeL5600 using a fourth-
order Runge-Kutta method with mesh sizeDx50.5 and time
stepDt50.005. The system was initially prepared by assig
ing to each point a nutrient concentrationn(r ,0)5n0
1h(r ,0), h being a uniform random number in the interv
(20.1,0.1), and a bacterial concentrationb(r ,0)50, except
in a small central square whereb(r ,0)5b0. The random
term of the diffusion,j(r ), takes a different and uncorrelate
value in each box of side 4Dx. The random values are as
sumed to be uniformly distributed in the interval (2e,e).
The box size and the intensitye do not essentially affect the
results.

In all our simulations, we used the parametersb050.7,
g50.5, D2530, e50.4, l50.18, cg52, cs51.6, Wmax
53, andWmin52. We reproduce the different morphologie
observed in experiments by changing the values of the in
concentration of nutrientsn0 and the softness of the media
related toD0.

In Figs. 2 and 3 we present the results obtained forD0
50.005 and different values ofn0. By increasingn0 we re-
produce the crossover between regionsA and B of Fig. 1,
from DLA-like patterns@Fig. 2~a!# to a dense rough structur
similar to that found with an Eden model@Fig. 2~b!#. All of
them correspond to a situation in which, due to the sm
value ofD0, the creation term of Eq.~6! is greater thancg ,
except at the very beginning. The responseW can never de-
crease below the valueWmin , and therefore the colony wil
always grow with the enhanced-movement mechanism
spite of this cooperative mechanism, and because of
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hardness of the medium, the effective diffusionD0D2bn is
still small. The growth is mostly due to reproduction by fee
ing on the nutrient. For low level of nutrient, i.e., smalln0,
the colony growth is limited by the diffusion of these nut
ents. It develops branches, which are thicker asn0 increases.
The prototype model that reproduces this kind of structur
the diffusion-limited aggregation@12#, which is known to
form a fractal pattern with a fractal dimension ofdF51.71
@1,22#. Experiments performed by Matsushita and Fujika
@9# in region A of Fig. 1 also show a fractal growth with
dimensiondF51.73@9#. We have analyzed the fractal natu
of the patterns obtained with our model, forD050.005 and
several values of the initial nutrient, fromn051 ~DLA-like !
to n055 ~rough structure!. We have calculated their fracta
dimensions by using the box-counting method@1,22#. In Fig.

FIG. 2. Bacterial colonies~top! and nutrient patterns~bottom!
for a fixed value ofD050.005 and two values of initial nutrient
n051 ~a! andn055 ~b!. They correspond to timest52500 and 75,
respectively.

FIG. 3. Fractal dimensions determined by the box-count
method, forD050.005 andn051 ~s!, 2 ~L!, 3 ~h!, and 5~n!.
Two lines of slopes 1 and 1.73 are also plotted for comparison w
experiments.
-

is

a

3 we show, in a log-log plot, the numberN of boxes of size
e that contain any part of the pattern, versus the size of
boxes. The slopes of the lines represent the fractal dim
sions. We observe that the cases that correspond to low
trient have a fractal dimension of aboutdF51.73, showing
good agreement with experiments. On the other hand, th
is an abrupt change between these patterns and those th
not fractal (dF51). These last cases can be analyzed
terms of the roughness of their interfaces.

It is well known that Eden structures are not themselv
fractal, but their surfaces exhibit a self-affine scaling@22,23#.
This implies that, for a long enough time, the width of th
rough interfaces scales with an exponenta as a function of
the length of the interfacel (s; l a). The roughness expo
nent for the Eden model isa50.5. Vicseket al. @13# ana-
lyzed experimental data corresponding to the regionB of
Fig. 1. They concluded that these colony surfaces are s
affine with a roughness exponenta50.74. We have checked
this point for our dense rough pattern@Fig. 2~b!# by measur-
ing the width s for intervals of interface of lengthl. The
results, as a function ofl, are presented in Fig. 4. In order t
avoid additional effects derived from the radial growth of t
colony, we have also performed a complementary simula
for the same parameters as Fig. 2~b! but with a strip geom-
etry. To do this, we have used a rectangular lattice of h
zontal lateral sizeLx5600, with periodic boundary condi
tions in thex direction, and taken as an initial condition fo
bacteria a horizontal line of lengthLx . The results for this
case are also plotted in Fig. 4. For both circular and s
cases, we observe analogous behavior to that observe
experiments@13#. Our results show a linear region with
slope compatible with the experimental valuea50.74.

With the aim of reproducing other morphologies of Fig.
we now keep the initial nutrient fixed at the valuen051 and
increase the diffusion parameterD0. Results are shown in
Figs. 5~a! and 5~b!. We observe a crossover from the DLA
like structure@Fig. 2~a!# to a dense branching morpholog
analogous to that represented in regionE of Fig. 1.

g

h

FIG. 4. Width of the rough interface as a function of the leng
of the interval in which it is measured. They correspond to
pattern of Fig. 2~b! ~h! and to a case with the same parameters
with strip geometry~n!. A line of slope 0.74 is also plotted fo
comparison with experimental results.
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In Fig. 5~c! and 5~d!, we present two snapshots obtain
for a fixed value of the initial nutrientn055. They show
how different kinds of patterns are obtained whenD0 is in-
creased: from the dense rough structure@Fig. 2~b!#, to con-
centric rings@Fig. 5~c!#, and homogeneous disk@Fig. 5~d!#.
They correspond to the regionsB, C, and D, respectively.
Homogeneous disks are obtained whenD0 and n0 are so
high that the creation term of Eq.~6! is always smaller than
cs . This means that the valueWmax, above which the
enhanced-movement mechanism begins, is never reac
and bacteria move with the usual diffusion coefficientD0n.

Ring patterns correspond to a narrow region of parame
D0 and n0 for which the creation term of Eq.~6! takes a
value betweencs andcg . As explained in Sec. II, this lead
to dynamics in which bacteria move alternatively by t
usual diffusion D0n ~consolidation phase! or by the
enhanced-movement mechanismD0D2bn ~migration phase!.
The two phases are clearly manifested in Fig. 6~a!, where we
represent the radius of the colony as a function of time. T
pattern of concentric rings is a consequence of this dyna
behavior. In Fig. 6~b! we plot the radial density profile, cir
cularly averaged, corresponding to the ring pattern show
Fig. 5~c!. The maxima are formed in the positions where
consolidation phase began. To illustrate this point, we h
pointed out in Fig. 6 the positions corresponding to t
colony radius at the beginning of each consolidation pha

Numerically, our model also reproduces the experim
tally observed robustness of the growth-plus-consolida
period, which is barely dependent on changes in either nu
ent or agar concentrations over a wide range. For h
enoughn0, the value of the global quantityB approachesn0.
In this limit, as can be derived from Eq.~6! the period is
given by

T5D0~Wmax2Wmin!S 1

l2D0cs
2

1

l2D0cg
D , ~8!

FIG. 5. Patterns obtained forn051 with D050.025 ~a! and
D050.05~b! and forn055 with D050.05~c! andD051 ~d!. They
correspond to timest5500, 300, 50, and 25, respectively.
ed,

rs

e
ic

in

e
e
.
-
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which does not depend onn0. Moreover, as a function ofD0,
the period also maintains a rather constant value withi
certain range~determined by parametersl, cg , and cs! to
increase sharply in the boundaries of the ring patterns reg
(D0→l/cs , D0→l/cg!. For equal period, the width of the
rings increases withn0.

IV. CONCLUSIONS

We have proposed a reaction-diffusion model for t
study of bacterial colony growth on agar plates, which co
sists of two coupled equations for nutrient and bacterial c
centrations. The most important feature, which introdu
differences from previous models, is the fact that here
consider two mechanisms for the bacterial movement:
random swimming in a liquid medium and a cooperati
enhanced movement developed by bacteria when the gro
conditions are adverse. The two mechanisms are introdu
in our model by means of a diffusion term with two differe
expressions which depend on the bacterial response to
environmental conditions. This response is modeled as a
bal variable that presents hysteresis depending on the co
tions of the medium. The inhomogeneities of the agar pl
have been taken into account as a quenched disorder in
diffusion parameter.

We have shown that, simply by changing the parame
related to the hardness of the medium and the initial nutrie
our model reproduces all the patterns obtained experim
tally with the bacteriumBacillus subtilis: DLA-like, dense-
rough disk, DBM-like, ring patterns, and homogeneous di
We have calculated the fractal dimension of the DLA-li
structures and the roughness exponent of the rough disk
face, obtaining results in good agreement with experime
The ring patterns have been obtained for intermediate va
of agar and high nutrient. In this region, the bacterial
sponse presents hysteresis and the two mechanisms of
tion work alternatively, leading to cycles of migration an

FIG. 6. ~a! Time evolution of the colony radius, for paramete
D050.05 andn055; ~b! radial density profile corresponding t
time t550 @pattern of Fig. 5~c!#. The positions where each consol
dation phase started are pointed out.
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consolidation phases. The duration of these cycles is rou
constant for different values of nutrient and agar concen
tion over a wide range. This periodical dynamics genera
patterns of concentric rings.

In summary, the model proposed satisfactorily reprodu
the whole experimental morphological diagram. It represe
a first attempt at describing the response of bacteria to
verse growth conditions and, in certain conditions, their a
ity to improve their motility. Further refinements could b
made. The bacterial response, here described as a g
variableW(t), could be considered in a more realistic w
by introducing a coupling term in a local version of Eq.~6!
for a fieldW(r ,t). However, preliminary studies with such
a
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model@24# shows the same essential features previously
scribed.
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PB96-0241-02!, by the Comissionat per Universitats i Re
cerca de la Generalitat de Catalunya~Grant No. SGR97-
439!, and by the Universitat Polite`cnica de Catalunya~Grant
No. PR-9608!. We also acknowledge computing suppo
from the Fundacio´ Catalana per a la Recerca and Cen
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