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Simple central pattern generator model using phasic analog neurons
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Institute for Aerospace Studies, University of Toronto, 4925 Dufferin Street, Toronto, Ontario, Canada M3H 5T6
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~Received 21 December 1998!

Many biological neurons~called phasic or adapting neurons! display neural adaptation: their response to a
constant input diminishes with time. A simple method of adding adaptive firing thresholds to existing analog
~or graded-response! neural models is described. A half-center central pattern generator is modeled using two
mutually inhibitory phasic analog neurons. Hopf bifurcation analysis shows that oscillatory solutions will arise
if the mutual inhibition is sufficiently strong, and allows us to characterize the stability of the cycles which
arise.@S1063-651X~99!01006-5#

PACS number~s!: 87.10.1e, 07.05.Mh, 87.19.La
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I. INTRODUCTION

Animals are capable of remarkable feats of percepti
learning, and cognition. The neuron is the building block o
of which the networks generating animal behavior are ma
and there has therefore been considerable interest in mo
ing the function of neurons, as a step toward understand
~and perhaps mimicking! the capabilities of living creatures

Broadly speaking, neurons respond to stimuli by gene
ing action potentials: voltage spikes which travel down
cell’s axon. Arriving at synaptic junctions, these spikes
fluence, typically through neurotransmitters diffused acros
synaptic gap, the states of other neurons~or of muscles or
other tissues!. To model the behavior of a neuron, we m
work at the level of the biochemistry of the cell, or we m
propose simplified models which capture various aspect
the dynamics. Several popular neural models are, in orde
increasing abstractness, the Hodgkin-Huxley equations@1#,
the FitzHugh-Nagumo equations@2#, and integrate-and-fire
models~see, for example, Refs.@3,4#!.

At a higher level of abstraction, we may replace the in
vidual spiking times with a time-averaged firing rate. Info
mation is lost in this process~see Ref.@5# for a discussion of
this point!; the result is a considerably simplified model
which each neuron may be considered to output an an
value, its firing rate. Such ‘‘analog’’ or ‘‘graded-response
neural models were proposed by Hopfield@6# and Cohen and
Grossberg@7#, and may be applied in cases where the ti
scale of interest is long relative to the typical interspike tim
Analog models may be explicitly derived from spiking-tim
models by carrying out the time averaging process; Bress
and Coombes@4#, for example, generated an analog integ
equation from an integrate-and-fire model by convolving
postsynaptic potential with a firing rate function. Analo
neurons have proven useful in modeling associative mem
@6,8#, as behavior controllers for autonomous robots@9#, and
in solving optimization problems@10#.

*Author to whom correspondence should be addressed. Electr
address: drm@sdr.utias.utoronto.ca
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In associative memory or optimization problems, n
works of analog neurons produce their ‘‘answer’’ by co
verging to a fixed-point attractor. In the memory problem w
create an attractor corresponding to each stored pattern,
expect the network to recover the original pattern when p
sented with a noisy version of it. For such applications,
always want the network to converge to a fixed point, a
oscillatory solutions are to be avoided. Extensive analy
has been performed on networks of the types introduce
Refs. @6,7#, and it has been shown~see, in addition to the
original papers, Refs.@11–16#! that they do indeed have th
property of always converging to a fixed point.

There are many biological situations, however, in whi
oscillations are necessary, for example, to drive autono
functions and in locomotion~see Ref.@17# and references
therein!. It is thus of interest to examine situations in whic
the much-studied analog neuron model may be made to
erate oscillatory solutions. Many of the oscillatory neu
signals seen in biology are generated by central pattern
erators ~CPG’s!: networks of neurons whose interconne
tions are such that the neurons collectively produce rhyth
outputs. CPG’s often work on the principle of mutual inh
bition, in which neurons~or groups of neurons! are recipro-
cally connected so that the output of each neuron inhibits
other @17#. Perhaps the earliest description of a CPG of
type shown in Fig. 1 was Brown’s ‘‘half-center model’’@18#.
As Brown noted, oscillations in two mutually inhibitory neu
rons can occur if the inhibition is limited in duration. If a
initial asymmetry allows the first neuron to dominate, it w
‘‘gain the upper hand,’’ suppressing the other while firin
strongly itself. If this inhibition is of limited duration, the
second neuron will eventually cease to be suppressed, al
ing it to dominate and inhibit the first, and so on, yielding
cycle of alternating bursts of activity in the two neuron
Despite its simplicity, the half-center model does capture
essential dynamics of CPG’s actually observed in biolo
Satterlie @19#, for example, described the signals used
swimming in the pteropod molluskClione limacinaas being
generated by this mechanism.

What could cause the limited duration of inhibition whic
the half-center model assumes? There are several pos
ic
6994 ©1999 The American Physical Society
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PRE 59 6995SIMPLE CENTRAL PATTERN GENERATOR MODEL . . .
neurophysiological mechanisms, including fatigue, po
inhibitory rebound, and neural adaptation@17,20#. We shall
focus on the last of these. While some biological neurons
‘‘tonic,’’ responding with a steady firing rate output whe
stimulated with a constant input, many others are ‘‘phas
or ‘‘adapting,’’ initially responding to a constant stimulu
but gradually ceasing to respond as the stimulation pers
@21#. ~Fig. 2 shows the different responses of tonic and p
sic neurons to a constant input.! Clearly if the two neurons in
Fig. 1 are phasic, oscillations become possible; once a g
neuron has come to dominate, its input becomes constan
it will eventually ‘‘adapt out,’’ reducing its output and allow
ing the other neuron to take over.~The term ‘‘adaptation’’ is
used in many different contexts in biology. In this paper,
shall always use adaptation to refer to the neural beha
just described.!

FIG. 1. A two-neuron network, representing Brown’s ha
center model@18#. Standard analog neuron models@6,7# will not
yield oscillatory solutions in this configuration, but the addition
neural adaptation to these models allows oscillations to occur, m
ing the network into a simple central pattern generator.

FIG. 2. The different responses of tonic and phasic analog n
rons. The plot shows the time integration of Eq.~1! for a single
neuron with no self-connection, receiving a constant inputI 51,
with parameterst51, g54, andu522. The neuron’s outputy
5 f „g(x2a)1u… is shown fork50 ~dashed line; a tonic neuron!
andk51 ~solid line; a phasic neuron!. The output may be seen as
fraction of the neuron’s maximum firing rate, with 0 representi
no action potentials being produced, and 1 representing spikin
the highest attainable rate. Here the sigmoidal firing funct
f 1(q)51/@11 exp(2q)# has been used.
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Suppose that we wish to model the half-center CPG us
analog neurons connected as in Fig. 1. If we use two s
dard analog neurons@6,7#, the system will converge to a
fixed point, and no oscillations will occur. If we wish thi
simple two-neuron system to oscillate, we must introdu
some mechanism to limit the inhibitory duration. We sh
do this by proposing a simple means by which the qualitat
dynamics of neural adaptation may be added to existing a
log neuron models. Beyond allowing us to model the ha
center CPG, the addition of neural adaptation to existing a
log neurons enriches their dynamics, and extends the ra
of neurological phenomena to which they may be applied

We begin by introducing our ‘‘phasic analog neurons
then proceed to discuss a model of the half-center C
formed by connecting two such neurons with mutual inhi
tion. A Hopf bifurcation analysis of the model reveals th
inhibitory connection strength at which oscillations will o
cur, and shows us how to tune the system parameters to y
cycles with desired characteristics.

II. PHASIC ANALOG NEURONS

Networks of the Hopfield@6# or Cohen-Grossberg@7#
types capture the essential dynamics of temporal summa
biological neurons maintain a decaying trace of their p
excitation levels@21#. Models of this type generally omit
however, the dynamics of neural adaptation: many real n
rons ~called ‘‘phasic’’ or ‘‘adapting’’! respond only at the
onset of a constant or slowly varying stimulus, then ce
responding as the stimulus persists@21#; biological neurons
which respond steadily to constant input also exist, and
called ‘‘tonic.’’ We propose a simple method by which
form of neural adaptation may be added to existing ana
neuron models.

We will consider the analog equationt ẋ52x1I @6,9#.
Here x represents the degree of excitation of the neur
corresponding to some generalized ‘‘tendency to fire.’’ In t
real biological system, this is a complex function of ma
factors, including the membrane potential and various io
concentrations. The termI is the net input to the neuron. Th
neuron’s output is a firing ratey5 f (x), wheref (•) is some
~generally nonlinear! function mapping the cell’s excitation
to the rate of production of action potentials; we assume
f (•) maps all values onto the range@0,1#, so we may viewy
as a fraction of the neuron’s maximum firing rate.

Neural adaptation is often attributed to changes in
behavior of ion channels in the cellular membrane, for e
ample the activation of Ca21-dependent K1 channels or the
inactivation of Na1 or Ca21 channels@22–24#. It is possible
to construct detailed models which capture the dynamics
adaptation at the ionic level; see Wang@24# for an example.
Here we are concerned only with the qualitative dynami
we want adaptation to act so as to limit the duration o
neuron’s firing in response to steady or slowly varying
puts. We expect the adaptive firing threshold to increase
the neuron becomes more excited, to decay back to res
the absence of excitation, and to reach an upper limit se
the excitation. The simplest way to meet these criteria is w
an equation of the formȧ5k(x2a), wherea is the firing
threshold. This equation excludes any nonlinear effects,
produces the desired behavior.
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Augmenting each neuron’s description with a second
ferential equation, we now write the dynamics of a netwo
of n neurons as

t i ẋi52xi1(
j

wji y j1I i

~1!

ȧ i5ki~xi2a i !

for i 51, . . . ,n. xi represent excitation levels with time con
stantst i.0. a i are firing thresholds with rate constantski
>0. yi represent output firing rates, and are functions of
difference betweenx and a: we useyi5 f „g(xi2a i)1u…,
where f (•) is some firing rate function andg.0 andu are
scaling and shifting parameters. We will not specify the
ing rate function at this point; in Sec. III we will discuss th
effects of two different choices of this function. We take t
connection strengths (wi j from neuroni to neuronj ) to be
constant. Each neuron receives an external inputI i , which
may be time varying. Figure 2 shows the result of integrat
Eq. ~1! for a single node with no self-connection (w1150).

Matsuoka @25# proposed a similar approach to addin
neural adaptation to an analog model, but one in which
adaptation term is incorporated directly into the activat
equation; in our model, theȧ equation may be appended
any form of activation equation@for concreteness, we wil
use the form in Eq.~1! throughout this paper#. Horn and
Usher@26# described a form of adaptation for discrete-tim
binary-state neurons, as did Halperin@27#.

The effect of neural adaptation is high-pass filtering of
input signal@28#, and the addition of theȧ equation to an
analog neural model is equivalent to passingx through an
RC high-pass filter circuit, withk51/RC. Since the effect of
temporal summation is low-pass filtering of the input@29#, a
phasic neuron acts as a band-pass filter. Consider a s
neuron of the type given in~1!, with no self-connection:t ẋ

52x1I (t), ȧ5k(x2a). We take the input to beI (t)
5 cosvt. The steady-state output is then (x2a)(t)
5D cos(vt1c), with

D5v@v2~11kt!21~k2v2t!2#21/2 ~2!

and

c5tan21F k2v2t

v~11kt!G . ~3!

The amplitudeD drops to zero asv→0 and asv→`, reach-
ing a maximum value ofD51/(11kt) at v5Ak/t. The
phasec is zero atv5Ak/t, approachesp/2 asv→0, and
approaches2p/2 asv→`.

Adaptation is most often discussed in relation to sens
neurons, so it is perhaps worth pointing out that motor n
rons can also display this behavior. Atwood and Nguy
@30#, for example, discussed phasic and tonic motor neur
in crayfish.
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III. HALF-CENTER CPG: HOPF BIFURCATION
ANALYSIS

We now consider the behavior of two phasic neuro
reciprocally connected as shown in Fig. 1. This represe
the dynamics of a simple CPG, the half-center mo
@17,18,20#, and we will show that oscillatory solutions aris
for sufficiently strong mutual inhibition. Consider the case
two identical neurons (t15t25t, k15k25k) with a sym-
metric connection (w125w215w) and no self-connections
(w115w2250). The system has a single fixed point; we sh
this point to the origin and write

t ẋ̃152 x̃11w f„g~ x̃22ã2!1u…2w f~u!,

ȧ̃15k~ x̃12ã1!,

t ẋ̃252 x̃21w f„g~ x̃12ã1!1u…2w f~u!,
~4!

ȧ̃25k~ x̃22ã2!,

where we have definedx̃i5xi2I i2w f(u) and ã i5a i2I i
2w f(u). Here we assume that the inputsI i are constants.

Treatingw as a bifurcation parameter, we perform a Ho
bifurcation analysis of Eq.~4! using standard techniques. Se
Ref. @31# for more information.~Also, Collins and Stewart
@32# discussed Hopf bifurcations in a general class
coupled nonlinear oscillators, and Atiya and Baldi@3# dem-
onstrated the bifurcation in a pair of asymmetrically co
nected neurons with self-connections.!

Evaluating the Jacobian of Eqs.~4! at the origin, we seek
values ofw for which a pair of purely imaginary eigenvalue
exists; this is the first condition of the Hopf bifurcation the
rem. At w56w* , wherew* 5(11kt)/g f 8(u) with f 8(q)
5] f (q)/]q, we have the eigenvaluesl1,25@2(11kt)
6A11kt1(kt)2#/t and l3,456A2k/t56 iv, where v
[Ak/t. Note thatl1 andl2 are real and both strictly nega
tive for k.0.

The second condition of the Hopf bifurcation theorem
quires that the eigenvalues cross the imaginary axis w
nonzero ‘‘velocity:’’

d@Re~l!#/dwuw56w* [dÞ0. ~5!

For our system, we findd56g f 8(u)/2t. For f 8(u)Þ0, both
conditions of the Hopf theorem are satisfied atw56w* . We
now examine the stability of the periodic solutions whi
emerge after the bifurcation.

Since the half-center model relies on mutual inhibitio
we will considerw52w* 2m, and examine what occurs a
m crosses from negative to positive values. Applying a line
change of coordinates, we bring Eqs.~4! into the normal
form

S ż1

ż2
D 5S l1 0

0 l2
D S z1

z2
D 1S f1~z!

f2~z!
D ,

~6!

S ż3

ż4
D 5S 0 2v

v 0 D S z3

z4
D 1S f3~z!

f4~z!
D .
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We define the abbreviationsA[kt, B[A11A1A2, C
[B(A11), D[B(A21), E[C2(A11)2, F[D1A2

11, G[D2A221, H[C1(A11)2, x1[g„(A2B)z1 /
(11A)1(A1B)z2 /(11A)2z3 /AA…1u, x2[g((A
2B)z1 /(11A)1(A1B)z2 /(11A)1z3 /AA)1u, J12
[ f (x1)1 f (x2)22 f (u), and J21[ f (x2)2 f (x1). We may
then write the nonlinear terms in Eqs.~6! as

2Btf1~z!5Ez11Fz21wJ12~B21!/2,

2Btf2~z!5Gz11Hz21wJ12~B11!/2,

tf3~z!52z3~A11!1wJ21AA/2, ~7!

f4~z!50.

The stability coefficient for the periodic solutions, com
monly denoteda, is defined in terms of partial derivatives o
the functions~7!; see Ref.@31# for the expression. We ap
proximate the center manifold by a power series near
origin, obtain the coefficients, evaluate the derivatives, a
after some algebra find that

a5
g2

16~kt!t

N12N2

D1
, ~8!

where

N15 f-~u! f 8~u!„16~kt!3157~kt!2157kt116…,

N258@ f 9~u!#2
„~kt!313~kt!213kt11…, ~9!

D15@ f 8~u!#2~16~kt!2141kt116!.

Both supercritical (a,0; stable oscillatory solutions! and
subcritical (a.0; unstable oscillatory solutions! Hopf bifur-
cations occur for our system, depending on the choice of
parametersk, t, g, andu. The sign ofa is a function only of
u ~associated with the baseline output of each neuron!, and
the productkt ~which is the ratio of the time scales of th
excitation and adaptation equations!. The magnitude ofa de-
pends on all four parameters; note from Eq.~8!, however,
that the dependence ong is a simple proportionality tog2.

The details of the stability of the oscillatory solutions d
pend on the form of the firing rate function,f (•). First we
consider a common sigmoidal choice,f 1(q)51/@1
1 exp(2q)]. We havef 8(u).0 for all u, and thus the trans
versality condition~5! is satisfied for any choice ofu. The
stability boundaries for this case are shown in Fig. 3. N
that for this firing function, whether the bifurcation is supe
critical or subcritical depends mainly on the value ofu,
which is associated with the spontaneous firing rate of e
neuron (f (u) is the firing rate when the neuron is eith
unexcited or fully adapted!. Figure 4 shows a plot ofa(u)
with the other parameters fixed atk5t51 andg54.

When deriving an analog version of their integrate-an
fire model, Bressloff and Coombes@4# used a nonsigmoida
firing rate function. A simplified version of their function i
f 2(q)5Q(q)/@11 ln(111/q)#, where Q(q)51 for q.0,
and is zero otherwise. For this choice of firing function, w
must consider onlyu.0; otherwise we havef 8(u)50,
which renders the bifurcation valuew* 5(11kt)/g f 8(u)
e
d

e

e

h

-

undefined, as well as violating the transversality condit
~5!. Figure 5 shows the stability boundaries when this firi
function is used. Note that this choice of firing rate functi
makes the productkt the main factor in determining the
stability of solutions.

Numerical simulation has been used to test the algeb
results.@All numerical results have been generated using
sigmoidal firing rate functionf 1(•), introduced above.# With
k5t51, g54, and u50, we find w* 52, and a521.
With w52w* 2m, the Hopf theorem predicts oscillation
with radiusr 5A2dm/a5A2g f 8(u)m/2ta5Am/2. Setting
m50.02 and integrating Eqs.~6! numerically, we find that
the projection of the trajectory onto thez3-z4 plane con-
verges to a circle of radiusr 5A0.02/250.1, as expected
Note that Hopf bifurcation analysis is strictly local: it tells u
that oscillatory solutions will arise in the vicinity of the or

FIG. 3. Stability boundaries for Eqs.~4!, using the sigmoidal
firing rate functionf 1(q)51/@11 exp(2q)#. The periodic solutions
arising at the Hopf bifurcation point are stable in the central reg
(a,0), and unstable above and below it (a.0).

FIG. 4. Stability coefficienta @for sigmoidal firing rate function
f 1(•), as in Fig. 3#, plotted as a function of parameteru ~the other
system parameters are fixed att5k51 and g54). A transition
from stable to unstable oscillations occurs atu561.68.
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gin of Eqs.~4! when uwu exceedsw* . It does not guarantee
that oscillatory solutions willnot occur prior to this point.
With a.0, a large-magnitude limit cycle appears; this cyc
is globally stable form.0, while for m,0 the system be-
comes multistable, with some solutions converging to
origin and some to the limit cycle. Figure 6 shows such
case. Witha,0, the simulations indicate that the origin
globally stable form,0.

This analysis allows us to choose the system parame
in Eq. ~4! to yield the type of oscillatory solutions we desir
Selecting parameters for whicha,0, and takingm to be
small, we obtain small limit cycles in the vicinity of the fixe

FIG. 5. Stability boundaries for Eqs.~4!, using the nonsigmoida
firing rate function f 2(q)5Q(q)/@11 ln(111/q)#, where Q(q)
51 if q.0, and is zero otherwise. Oscillatory solutions are sta
to the right of the boundary line (a,0) and unstable to the lef
(a.0).

FIG. 6. Trajectories obtained by numerical integration of E
~6!, with t5k51, g54, and u524. The bifurcation point is
w* 528.308, and the stability coefficient isa50.973. We takew
52w* 2m. The plot shows trajectories~projected onto thez3-z4

plane! for m5215. Note that the system is multistable, with coe
istence between a stable fixed point and a stable limit cycle.
e
a

rs

point, corresponding to small fluctuations in the base fir
rate of the two neurons. Witha.0 andm.0, we obtain a
large limit cycle in which the two neurons are alternate
strongly activated and strongly inhibited, and this is the c
we select to represent the half-center CPG. See Fig. 7 f
plot of the outputs of the two nodes for one possible set
system parameters. The transitions here are very sharp,
ing the network’s output resemble a square wave, but
may tune the abruptness of the transitions by changinga; for
example, this may be accomplished by varyingu while hold-
ing the other parameters fixed.

We have considered only the vicinity of2w* , but an-
other Hopf bifurcation with identical stability properties o
curs forw5w* 1m. The oscillatory solutions arising for thi
case have the two neurons becoming active in phase
each other, rather than being activated in alternation as in
half-center model.

IV. SUMMARY AND CONCLUSIONS

We have introduced a simple means of adding the qu
tative dynamics of neural adaptation to any existing ana
~also known as graded-response! neuron model. Using thes
phasic analog neurons, we have shown that we may m
the dynamics of the simplest central pattern generator,
half-center model: two phasic neurons connected in a m
ally inhibitory fashion, producing alternating bursts of acti
ity. A Hopf bifurcation analysis shows us the inhibitor
strength past which oscillatory solutions will certainly aris
and allows us to produce oscillations of a desired type
tuning the system parameters.

In the absence of neural adaptation, two mutually inhi
tory neurons will end up with one neuron fully inhibiting th
other, a situation known as ‘‘oscillator death.’’ This was d
cussed, in the context of both analog and integrate-and
neural models, Atiya and Baldi@3# and Bressloff and

e

.

FIG. 7. Numerical integration of Eqs.~4!, with t5k51, g
54, u524, and w52w* 20.02, wherew* 528.308. The plot

shows the firing rate outputsyi5 f (g( x̃i2ã i)1u) for node 1~solid
line! and node 2~dashed line!. As in Fig. 2, the neural outputs ma
be taken to be fractions of the maximal firing rate. The oscillatio
seen here correspond to the large-magnitude limit cycle seen in
6.
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Coombes@4#. As we have seen in this paper, mutual inhib
tion can in fact lead to oscillatory behavior in a pair of ne
rons, provided that the inhibitory effect is of limited dur
tion.

The limited duration of the inhibition is the key to th
appearance of oscillatory solutions. Thus, although it may
of interest to consider a more physiologically detailed mo
of the neural adaptation effect, we would not expect su
extensions to affect the existence of the Hopf bifurcati
The precise time course of the adaptation is less signific
than the fact that each neuron eventually ceases to fire
lowing the other to become active.

Figures 3 and 5 make it clear that the choice of firing r
function has a significant effect on the behavior of the s
tem. It is not clear that we can describe eitherf 1(•) or
f 2(•) as more biologically realistic for all cases. In attemp
ing to model a particular set of neurons, one should ide
h-
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ly

examine the firing rate experimentally and construct a fu
tion from that data.

Analog neurons have proven to be a useful tool both
modeling some of the functions of the brain, and in attem
ing to reproduce animal behavior in the context of robot
and artificial intelligence. The addition of neural adaptati
to these models may enhance their usefulness in eac
these areas.
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