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Simple central pattern generator model using phasic analog neurons
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Many biological neurongcalled phasic or adapting neurgrdisplay neural adaptation: their response to a
constant input diminishes with time. A simple method of adding adaptive firing thresholds to existing analog
(or graded-respong@eural models is described. A half-center central pattern generator is modeled using two
mutually inhibitory phasic analog neurons. Hopf bifurcation analysis shows that oscillatory solutions will arise
if the mutual inhibition is sufficiently strong, and allows us to characterize the stability of the cycles which
arise.[S1063-651X99)01006-3

PACS numbds): 87.10+¢€, 07.05.Mh, 87.19.La

[. INTRODUCTION In associative memory or optimization problems, net-
works of analog neurons produce their “answer” by con-
Animals are capable of remarkable feats of perceptionyerging to a fixed-point attractor. In the memory problem we
learning, and cognition. The neuron is the building block outcreate an attractor corresponding to each stored pattern, and
of which the networks generating animal behavior are madegxpect the network to recover the original pattern when pre-
and there has therefore been considerable interest in modedented with a noisy version of it. For such applications, we
ing the function of neurons, as a step toward understandinglways want the network to converge to a fixed point, and
(and perhaps mimickinghe capabilities of living creatures. oscillatory solutions are to be avoided. Extensive analysis
Broadly speaking, neurons respond to stimuli by generathas been performed on networks of the types introduced in
ing action potentials: voltage spikes which travel down theRefs.[6,7], and it has been showfsee, in addition to the
cell's axon. Arriving at synaptic junctions, these spikes in-original papers, Ref§11-16) that they do indeed have the
fluence, typically through neurotransmitters diffused across @roperty of always converging to a fixed point.
synaptic gap, the states of other neurdos of muscles or There are many biological situations, however, in which
other tissues To model the behavior of a neuron, we may oscillations are necessary, for example, to drive autonomic
work at the level of the biochemistry of the cell, or we may functions and in locomotiorisee Ref.[17] and references
propose simplified models which capture various aspects aherein. It is thus of interest to examine situations in which
the dynamics. Several popular neural models are, in order ahe much-studied analog neuron model may be made to gen-
increasing abstractness, the Hodgkin-Huxley equatfdhs erate oscillatory solutions. Many of the oscillatory neural
the FitzZHugh-Nagumo equatiorig], and integrate-and-fire signals seen in biology are generated by central pattern gen-
models(see, for example, Ref§3,4]). erators (CPG’S: networks of neurons whose interconnec-
At a higher level of abstraction, we may replace the indi-tions are such that the neurons collectively produce rhythmic
vidual spiking times with a time-averaged firing rate. Infor- outputs. CPG's often work on the principle of mutual inhi-
mation is lost in this procegsee Ref[5] for a discussion of  bition, in which neurongor groups of neuronsare recipro-
this poiny; the result is a considerably simplified model in cally connected so that the output of each neuron inhibits the
which each neuron may be considered to output an analogther[17]. Perhaps the earliest description of a CPG of the
value, its firing rate. Such “analog” or “graded-response” type shown in Fig. 1 was Brown'’s “half-center mod€I18].
neural models were proposed by Hopfigdd and Cohen and  As Brown noted, oscillations in two mutually inhibitory neu-
Grossberd 7], and may be applied in cases where the timerons can occur if the inhibition is limited in duration. If an
scale of interest is long relative to the typical interspike time.initial asymmetry allows the first neuron to dominate, it will
Analog models may be explicitly derived from spiking-time “gain the upper hand,” suppressing the other while firing
models by carrying out the time averaging process; Bresslof§trongly itself. If this inhibition is of limited duration, the
and Coombe$4], for example, generated an analog integralsecond neuron will eventually cease to be suppressed, allow-
equation from an integrate-and-fire model by convolving theing it to dominate and inhibit the first, and so on, yielding a
postsynaptic potential with a firing rate function. Analog cycle of alternating bursts of activity in the two neurons.
neurons have proven useful in modeling associative memorRespite its simplicity, the half-center model does capture the
[6,8], as behavior controllers for autonomous rol@®k and  essential dynamics of CPG’s actually observed in biology:
in solving optimization problemgl0]. Satterlie[19], for example, described the signals used in
swimming in the pteropod mollusklione limacinaas being
generated by this mechanism.
* Author to whom correspondence should be addressed. Electronic What could cause the limited duration of inhibition which
address: drm@sdr.utias.utoronto.ca the half-center model assumes? There are several possible
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L I, Suppose that we wish to model the half-center CPG using
analog neurons connected as in Fig. 1. If we use two stan-
dard analog neurongs,7], the system will converge to a
fixed point, and no oscillations will occur. If we wish this
simple two-neuron system to oscillate, we must introduce
some mechanism to limit the inhibitory duration. We shall
do this by proposing a simple means by which the qualitative
dynamics of neural adaptation may be added to existing ana-
log neuron models. Beyond allowing us to model the half-
center CPG, the addition of neural adaptation to existing ana-
W log neurons enriches their dynamics, and extends the range
of neurological phenomena to which they may be applied.
FIG. 1. A two-neuron network, representing Brown’s half-  We begin by introducing our “phasic analog neurons,”
center mode([18]. Standard analog neuron mod¢&7] will not  then proceed to discuss a model of the half-center CPG
yield oscillatory solutions in this configuration, but the addition of formed by connecting two such neurons with mutual inhibi-
_neural adaptatio_n to the_se models allows oscillations to occur, makjon. A Hopf bifurcation analysis of the model reveals the
ing the network into a simple central pattern generator. inhibitory connection strength at which oscillations will oc-

: : . . : : cur, and shows us how to tune the system parameters to yield
neurophysiological mechanisms, including fatigue, post-

inhibitory rebound, and neural adaptatipti7,20. We shall cycles with desired characteristics.

focus on the last of these. While some biological neurons are

“tonic,” responding with a steady firing rate output when Il. PHASIC ANALOG NEURONS

stirgulated wiEh_a. constant input, many others are "phasic”  \enyorks of the Hopfield6] or Cohen-Grossberg7]

or “adapting, '”'"‘?‘”V responding to a con_stant _stlmulus_, pes capture the essential dynamics of temporal summation:
but gra_dually ceasing to respond as the stlmulapon Persis iological neurons maintain a decaying trace of their past
[21]' (Fig. 2 shows the d|fferent responses of tonic and .pha'excitation levels[21]. Models of this type generally omit,
sic neurons to a constant inpu€learly if the two neurons in however, the dynamics of neural adaptation: many real neu-
Fig. 1 are phasic, oscillations become possible; once a give ns (calfed “phasic” or “adapting”) respond only at the
neuron has come to dominate, its input becomes constant and et of a constant or slowly varying stimulus, then cease

it will eventually “adapt out,” reducing its output and allow- responding as the stimulus persi24]: biological neurons

Ing th_e other neuron to take oveé';l’.he_term adap_tatlon IS which respond steadily to constant input also exist, and are
used in many different contexts in biology. In this paper, we. o4 “tonic.” We propose a simple method by which a

;hall alwgys use adaptation to refer to the neural behaViQIrorm of neural adaptation may be added to existing analog
just described. neuron models.

09 . . T T We will consider the analog equatiorx=—x+1 [6,9].
//”" Here x represents the degree of excitation of the neuron,
o8y e ] corresponding to some generalized “tendency to fire.” In the
/! real biological system, this is a complex function of many

: 1 factors, including the membrane potential and various ionic
! concentrations. The terins the net input to the neuron. The

i 1 neuron’s output is a firing ratg=f(x), wheref(-) is some

/ (generally nonlinearfunction mapping the cell’'s excitation

] ] to the rate of production of action potentials; we assume that
/ | f(-) maps all values onto the ranf@,1], so we may viewy

as a fraction of the neuron’s maximum firing rate.

Neural adaptation is often attributed to changes in the
behavior of ion channels in the cellular membrane, for ex-
ample the activation of Ga-dependent K channels or the
inactivation of Na or C&" channel§22—-24. It is possible
: : — to construct detailed models which capture the dynamics of

adaptation at the ionic level; see Walgfl] for an example.
) ) ) Here we are concerned only with the qualitative dynamics:
FIG. 2. The different responses of tonic and phasic analog neYs e want adaptation to act so as to limit the duration of a
rons. The_ plot shows the “”.‘e integrgt_ion of Eg) for a single neuron’s firing in response to steady or slowly varying in-
Cviﬁr%r;rg&ztgfgfg'czrrfcg%’ eric_egl ngh: rfggféinst (')T'ESE; puts. We expect the adaptive firing threshold to increase as
=f(y(x—a)+0) is s’hown 1"ork=0 (dashed line; a tonic neurpn the neuron become_s ’.“‘”e excited, to decay back tQ rest in
’ the absence of excitation, and to reach an upper limit set by

andk=1 (solid line; a phasic neurgnThe output may be seen as a h N he simpl h iteria is with
fraction of the neuron’s maximum firing rate, with O representingt e excitation. The simplest way to meet these criteria is wit

no action potentials being produced, and 1 representing spiking &n equation of the fornar=Kk(x—a), wherea is the firing
the highest attainable rate. Here the sigmoidal firing functionthreshold. This equation excludes any nonlinear effects, and
f1(g) =111+ exp(~q)] has been used. produces the desired behavior.
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Augmenting each neuron’s description with a second dif-

ferential equation, we now write the dynamics of a networ
of n neurons as

Ti)-(i:_xi—’—; Wjiyj+|i
(1)

i =ki(X—a))

fori=1,...n.x; represent excitation levels with time con-
stantst;>0. «; are firing thresholds with rate constarks

=0. y; represent output firing rates, and are functions of the

difference betweenx and a: we usey;= f(y(xi— a;) + 6),
wheref(-) is some firing rate function angi>0 and @ are
scaling and shifting parameters. We will not specify the fir

ing rate function at this point; in Sec. Ill we will discuss the
effects of two different choices of this function. We take the

connection strengthsa(; from neuroni to neuronj) to be
constant. Each neuron receives an external imputwhich
may be time varying. Figure 2 shows the result of integratin
Eq. (1) for a single node with no self-connectiow{;=0).

Matsuoka[25] proposed a similar approach to adding
neural adaptation to an analog model, but one in which an
adaptation term is incorporated directly into the activation

equation; in our model, the equation may be appended to
any form of activation equatioffor concreteness, we will
use the form in Eq(1) throughout this papér Horn and
Usher[26] described a form of adaptation for discrete-time
binary-state neurons, as did Halpeft?].

The effect of neural adaptation is high-pass filtering of th
input signal[28], and the addition of ther equation to an
analog neural model is equivalent to passiithrough an
R C high-pass filter circuit, withkk=1/RC. Since the effect of
temporal summation is low-pass filtering of the inp28], a
phasic neuron acts as a band-pass filter. Consider a sin
neuron of the type given ifl), with no self-connectionrx
=—x+I(t), a=k(x—a). We take the input to be(t)
= coswt. The steady-state output is thenx—a)(t)
=D cos(t+ ), with

D=0 w?(1+k7)?+ (k—w?r)?] 12 (2
and
I k— w?T
Yy=tan m 3

The amplitudeD drops to zero am— 0 and asv— oo, reach-
ing a maximum value oD=1/(1+k7) at w=k/7. The
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lll. HALF-CENTER CPG: HOPF BIFURCATION

k ANALYSIS

We now consider the behavior of two phasic neurons,
reciprocally connected as shown in Fig. 1. This represents
the dynamics of a simple CPG, the half-center model
[17,18,2Q, and we will show that oscillatory solutions arise
for sufficiently strong mutual inhibition. Consider the case of
two identical neurons#;= 7,= 7, k;=k,=Kk) with a sym-
metric connection W,,=w,;=w) and no self-connections
(wq1,=W,,=0). The system has a single fixed point; we shift
this point to the origin and write

Xy = —Xq + WH(y(Xo— ap) + ) —WF(0),

a1 =k(X;—ay),
Xy =—Xo+ W (y(Xy— ay) + 6)—wf(0),
B o 4
a=k(X2—az),
Yuhere we have defined, =x,— |, —wf(6) and a;=a;—|,
—wf(6). Here we assume that the inpufsare constants.
Treatingw as a bifurcation parameter, we perform a Hopf
bifurcation analysis of Eq4) using standard techniques. See
Ref. [31] for more information.(Also, Collins and Stewart
[32] discussed Hopf bifurcations in a general class of
coupled nonlinear oscillators, and Atiya and Bdl8] dem-
onstrated the bifurcation in a pair of asymmetrically con-
'nected neurons with self-connections.
Evaluating the Jacobian of Eqgl) at the origin, we seek
€values ofw for which a pair of purely imaginary eigenvalues
exists; this is the first condition of the Hopf bifurcation theo-
rem. Atw=*=w*, wherew* =(1+k7)/yf’(0) with f'(q)
=9df(q)/dq, we have the eigenvalues,,=[—(1+kr7)
+\1+kr+ (kn)?])/7 and Azs=*V—kit=%*iw, wherew
9le /77 Note thath, and, are real and both strictly nega-
tive for k>0.

The second condition of the Hopf bifurcation theorem re-
quires that the eigenvalues cross the imaginary axis with
nonzero ‘“velocity:”

d[Re(\)1/dW|yy— - yx=d#0. (5)
For our system, we find= = yf'(0)/27. Forf’(8)#0, both
conditions of the Hopf theorem are satisfiedvat =w* . We
now examine the stability of the periodic solutions which
emerge after the bifurcation.

Since the half-center model relies on mutual inhibition,
we will considerw= —w* — u, and examine what occurs as
M crosses from negative to positive values. Applying a linear
change of coordinates, we bring Edg) into the normal
form

phasey is zero atw= \k/ 7, approachesr/2 asw—0, and :
approaches- 7/2 asw— . (21) :()\1 0 ) ) s d)l(z)),
Adaptation is most often discussed in relation to sensory 2, 0 No/\Z2) \¢2(2)
neurons, so it is perhaps worth pointing out that motor neu- (6)
rons can also display this behavior. Atwood and Nguyen ('23> 0 —w\lz b3(2)
[30], for example, discussed phasic and tonic motor neurons . :< ) + )
in crayfish. Z o 0]z $4(2)
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We define the abbreviationd=kr, B=\J1+A+AZ C
=B(A+1), D=B(A-1), E=C—(A+1)?, F=D+A?
+1, G=D—-A?-1, H=C+(A+1)?, x;=v((A—B)z;/
(1+A)+(A+B)z,/(1+A)—z5/JA) + 6, x2=v((A
—B)zy /(1+A)+(A+B)z,/(1+A) + 25/ JA) + 6, Jio
=f(x1) +f(x2) —2f(6), and In="F(x2) —f(x1). We may
then write the nonlinear terms in Eq$) as

2B7¢1(2)=Ez +Fz,+WJ;,(B—1)/2,
2B7¢hy(2) =Gz +Hzp+WJip(B+1)/2,

Th3(2) = — 25(A+ 1)+ Wy VA2, (7)
$4(2)=0.

The stability coefficient for the periodic solutions, com-
monly denoted, is defined in terms of partial derivatives of
the functions(7); see Ref[31] for the expression. We ap-
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FIG. 3. Stability boundaries for Eq$4), using the sigmoidal

proximate the center manifold by a power series near thé&ring rate functionf,(q)=1/[1+ exp(-q)]. The periodic solutions
origin, obtain the coefficients, evaluate the derivatives, an@"sing at the Hopf bifurcation point are stable in the central region

after some algebra find that

2

Y N;—N;

4= 16knr D; ®
where
N, =f"(6)f"(0)(16(k7)3+57(k7)?+ 57k 7+ 16),
N,=8[f"(0)]2((k7)3+3(k7)?+3kr+1), (9

D,=[f'(6)]%(16(k7)2+ 41k 7+ 16).

Both supercritical §<0; stable oscillatory solutionsnd
subcritical @>0; unstable oscillatory solutionglopf bifur-
cations occur for our system, depending on the choice of th
parameterg, 7, y, and6. The sign ofais a function only of
0 (associated with the baseline output of each neyrand
the productkr (which is the ratio of the time scales of the
excitation and adaptation equationshe magnitude oé de-
pends on all four parameters; note from E8), however,
that the dependence onis a simple proportionality to/?.

The details of the stability of the oscillatory solutions de-
pend on the form of the firing rate functiof(-). First we
consider a common sigmoidal choicef{(q)=1[1
+ exp(—Qq)].- We havef’(8)>0 for all 6, and thus the trans-
versality condition(5) is satisfied for any choice of. The

stability boundaries for this case are shown in Fig. 3. Note2

that for this firing function, whether the bifurcation is super-
critical or subcritical depends mainly on the value @&f

which is associated with the spontaneous firing rate of eacl -4

neuron §(0) is the firing rate when the neuron is either
unexcited or fully adapted Figure 4 shows a plot of(0)
with the other parameters fixed lat 7=1 andy=4.

When deriving an analog version of their integrate-and-

fire model, Bressloff and Coombg4] used a nonsigmoidal
firing rate function. A simplified version of their function is
fo(q)=0(q)/[1+ In(1+1/q)], where ®(gq)=1 for >0,
and is zero otherwise. For this choice of firing function, we
must consider onlyd>0; otherwise we havef’'(6)=0,
which renders the bifurcation value* =(1+k7)/yf'(6)

(a<0), and unstable above and below &*0).

undefined, as well as violating the transversality condition
(5). Figure 5 shows the stability boundaries when this firing
function is used. Note that this choice of firing rate function
makes the produckr the main factor in determining the
stability of solutions.

Numerical simulation has been used to test the algebraic
results.[All numerical results have been generated using the
sigmoidal firing rate functiori,(-), introduced abové With
k=7=1, y=4, and #=0, we findw*=2, anda=—1.
With w=—w* — u, the Hopf theorem predicts oscillations
with radiusr = —du/a= - yf'(6) u/2ra= Jul2. Setting
u=0.02 and integrating Eq$6) numerically, we find that
g1e projection of the trajectory onto the-z, plane con-
verges to a circle of radius=0.02/2=0.1, as expected.
Note that Hopf bifurcation analysis is strictly local: it tells us
that oscillatory solutions will arise in the vicinity of the ori-

1
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FIG. 4. Stability coefficient [for sigmoidal firing rate function
f1(+), as in Fig. 3, plotted as a function of parametér(the other
system parameters are fixed atk=1 and y=4). A transition
from stable to unstable oscillations occursfat +1.68.
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fir te function f,(q)=©(q)/[1+ In(1+1/g)], wh 0(q) =4, =—4, andw=—w* —0.02, wherew* =28.308. The plot
iring rate functionf,(q)=0(q n q)], where ©(q . _ ~ o~ .
=1 if g>0, and is zero otherwise. Oscillatory solutions are stabl shows the firing rate outputg=f(y(x;— ;) + ) for node 1(solid

to the right of the boundary linea<0) and unstable to the left ellne) and node Zdas_hed ling: As in F.'g' 2,_t_he neural outputs_, may
(a>0). be taken to be fractions of the maximal firing rate. The oscillations

seen here correspond to the large-magnitude limit cycle seen in Fig.
6.
gin of Egs.(4) when|w| exceedsw*. It does not guarantee
that oscillatory solutions wilhot occur prior to this point.  point, corresponding to small fluctuations in the base firing
With a>0, a large-magnitude limit cycle appears; this cyclerate of the two neurons. Wita>0 and x>0, we obtain a
is globally stable foru>0, while for x<0 the system be- |arge limit cycle in which the two neurons are alternately
comes multistable, with some solutions converging to thestrongly activated and strongly inhibited, and this is the case
origin and some to the limit cycle. Figure 6 shows such aye select to represent the half-center CPG. See Fig. 7 for a
case. Witha<0, the simulations indicate that the origin is plot of the outputs of the two nodes for one possible set of
globally stable foru.<0. system parameters. The transitions here are very sharp, mak-
This analysis allows us to choose the system parameteffg the network’s output resemble a square wave, but we
in Eq. (4) to yield the type of oscillatory solutions we desire. may tune the abruptness of the transitions by chanaitigr
Selecting parameters for which<<O, and takingu to be  example, this may be accomplished by varyéhghile hold-
small, we obtain small limit cycles in the vicinity of the fixed ing the other parameters fixed.
We have considered only the vicinity ef w*, but an-
6 ; . . . . . . . . other Hopf bifurcation with identical stability properties oc-
curs forw=w* + . The oscillatory solutions arising for this
case have the two neurons becoming active in phase with
each other, rather than being activated in alternation as in the
half-center model.

IV. SUMMARY AND CONCLUSIONS

We have introduced a simple means of adding the quali-
tative dynamics of neural adaptation to any existing analog
_ (also known as graded-respopseuron model. Using these
phasic analog neurons, we have shown that we may model
the dynamics of the simplest central pattern generator, the
half-center model: two phasic neurons connected in a mutu-
ally inhibitory fashion, producing alternating bursts of activ-
R , , , , , , , , , ity. A Hopf bifurcation analysis shows us the inhibitory
5 strength past which oscillatory solutions will certainly arise,
and allows us to produce oscillations of a desired type by

FIG. 6. Trajectories obtained by numerical integration of Eqs.tuning the system parameters.

(6), with 7=k=1, y=4, and §=—4. The bifurcation point is In the absence of neural adaptation, two mutually inhibi-
w* =28.308, and the stability coefficient &=0.973. We takev  tory neurons will end up with one neuron fully inhibiting the
=—w*—u. The plot shows trajectorie®rojected onto thes-z,  Other, a situation known as “oscillator death.” This was dis-
plane for u=—15. Note that the system is multistable, with coex- cussed, in the context of both analog and integrate-and-fire
istence between a stable fixed point and a stable limit cycle. neural models, Atiya and Baldj3] and Bressloff and

=2F

_af
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Coombeqd4]. As we have seen in this paper, mutual inhibi- examine the firing rate experimentally and construct a func-

tion can in fact lead to oscillatory behavior in a pair of neu-tion from that data.

rons, provided that the inhibitory effect is of limited dura-  Analog neurons have proven to be a useful tool both in

tion. modeling some of the functions of the brain, and in attempt-
The limited duration of the inhibition is the key to the ing to reproduce animal behavior in the context of robotics

appearance of oscillatory solutions. Thus, although it may b@ng artificial intelligence. The addition of neural adaptation

of interest to consider a more physiologically detailed modeto these models may enhance their usefulness in each of
of the neural adaptation effect, we would not expect suchhese areas.

extensions to affect the existence of the Hopf bifurcation.

The precise time course of the adaptation is less significant

thar_1 the fact that each neuron_eventually ceases to fire, al- ACKNOWLEDGMENTS
lowing the other to become active.

Figures 3 and 5 make it clear that the choice of firing rate This work was funded by the Natural Science and Engi-
function has a significant effect on the behavior of the sysneering Research Coun€dMSERQ. Special thanks are due
tem. It is not clear that we can describe eitfg(-) or  to Dr. R. Kapral(Chemistry, University of Toronfoand Dr.
fo(-) as more biologically realistic for all cases. In attempt-J. Collins (Center for Biodynamics, Boston Universitjor
ing to model a particular set of neurons, one should ideallyhelpful comments and advice.
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