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We examine crystallization by settling for two different model hard-sphere suspensions. Sedimentation
velocities, internal shock velocities, and crystal growth velocities are measured. Dynamic light scattering
experiments measure volume fraction profiles in fluid phases, while Bragg scattering experiments determine
volume fraction profiles in crystal phases. Centrifugation experiments determine the partieie rRenber
above which samples will not crystallize. The sedimentation velocities, as a function of volume fraction, agree
with other “hard-sphere” data. Remarkably, the value of the reduced crystal growth veledit75 obtains
for two orders of magnitude of the particle dhet number. Kynch theory provides an adequate description of
the data in the fluid phase, but is less adequate for volume fraction profiles in the crystal phase. The crystals in
the dense sediment are compressed more along a vertical axis relative to the horizontal axis. Predicted Wilson-
Frenkel crystal growth velocities, calculated using known hard-sphere equations of state and a short-time
self-diffusion constant, rationalize the measured crystal growth velodid€63-651X99)05806-1

PACS numbeps): 64.70.Dv, 81.10.Fq, 82.70.Dd

I. INTRODUCTION source of material. Evidently, no diffusion-limited depletion
zone develops. Davis and Russel have studied this sedimen-
The growth of colloidal crystals has been studied in atation process both theoretically and experimentgh12).
variety of systemg$1—6]. The crystal radius grows linearly They assume a linear growth velocity given by the Wilson-
with time [2-4] following homogeneous or heterogeneousFenkel law and governed by the volume fraction of the meta-
nucleation in suspensions of charge-stabilized particles. Thstable fluid in contact with the growing crystal interface. For
Wilson-Frenkel growth law provides an explanation for thesehard spheres the growth velocity of the crystal increases with
data. In suspensions of hard spheres, the crystal radius growgreasing volume fraction of the metastable fluid above the
with a quasi-power-law behavior in time with an exponentfreezing value due to the increase of thermodynamic driving
typically between; and unity[6,7] following homogeneous forces with increasing quench depth. However, viscous loss
nucleation. For hard spheres the volume fraction differs byterms, due to hydrodynamic interactions, reduce the crystal
10% between the crystal and liquid in the coexistence regiorgrowth velocity as the volume fraction increases ab@pe
Thus crystal growth in the coexistence region depletes theroximately the crystal melting value and towards the glass.
surrounding metastable liquid in the immediate neighbordf the flux of settling particles is greater than that which the
hood of the crystal. A depletion zone also develops for metamaximum crystal growth velocity can accommodate, a
stable fluid volume fractions above the melting value if theglassy sediment results. Otherwise, there is a range of stable
osmotic pressure balance across the liquid crystal interfacgrowth velocities from zero at the freezing point to the maxi-
produces a relatively larger crystal volume fraction com-mum velocity near the melting point. In principle, by con-
pared to the fluid. The depletion zone leads to diffusion-trolling the rate of settling by centrifugation, one can test the
limited growth [8] with growth exponent; when particle ~ Wilson-Frenkel growth theory.
incorporation rates into the crystal are large. Otherwise the We present data for two different suspensions of hard
crystal growth is not fully interfaced or diffusion limited but spheres that have larger particlecRe numbers (Rg than
has a transient quasi-power-law growth. The depletion propreviously reported though the samplecle value(Pe is
cess masks observation of the Wilson-Frenkel growth lawwithin the same range of earlier studi€§. Measured sedi-
for hard-sphere crystals and can be determined only indimentation velocities indicate that these samples better ap-
rectly [8]. proximate hard-sphere suspensions than earlier stiiflies
Alternatively, at volume fractions less than the freezingKynch theory rationalizes observations in the fluid phase.
value, crystals have been observed to grow as long columna/e extend the Kynch theory into the crystal phase. The com-
in the accumulating sediment of colloidal suspensions. The@ressibility gradient is sufficiently large that this solution is
crystal growth rates are linear in time even for “hard- not as good an approximation as that for the overlying fluid
sphere” suspensions because the gravitational settling of thghase. However, the Kynch result is the zeroth-order solu-
metastable fluid to the crystal boundary provides a steadsion for large Pelet number expansions. The Wilson-Frenkel
growth law, with improved approximations for the fluid and
solid equations of state and for the self-diffusion kinetic co-
* Author to whom correspondence should be addressed. Electrongfficient, provides an explanation for our observations of
address: bjack@osuunx.ucc.okstate.edu crystal growth. This theory predicts a very narrow range of
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FIG. 1. Feature height versus time for a 380-nm particle sample  F|G_ 3. Feature height versus time for a 380-nm particle sample
with initial volume fraction 0.041. The filled circles represent the y;th initial volume fraction 0.22. The symbols have the same mean-

boundary between the disordered particle suspension and the clggg as in Figs. 1 and 2. Kynch theory predicts the lines shown for
supernatant. The triangles represent the boundary between the dignes less than approximately 1500 ks.

ordered particle suspension and the ordered crystal phase. Kynch

theory predicts lines shown for times less than 800 ks. . . o .
yp refraction. The polydispersity is 5%, as determined by dy-

values for the experimentally measured reduced crystdl@mic light scattering, and pe0.048. The particle futet
growth velocities, consistent with observation. numbers range nearly_ an o_rder of magn_ltude larger than
those for the systems investigated by Davis and RU$gel

Yet these systems still evidence columnar crystal growth.
Previous investigations of our systems reveal hard-sphere be-
We report data for two different model hard-sphere syshavior[5-7,13. This earlier work includes determining the
tems. A thin laye(~10 nm of poly-12-hydroxysteraric acid hard-sphere phase transition and referencing reported volume

stabilizes the larger 500-nm radius polymethyl-methacrylatdractions to the accepted theoretical freezing vell@,14.

core partic|e5 from aggregation_ A mixture of decalin andTheSE‘ experiments determine the core volume fractions of
tetralin suspends the particles and is tuned to match the paife freezing and melting points for each system. Scaling the
ticle refractive index, rendering the samples transparent/olume fractions so the freezing core volume fraction corre-
Static light scattering measurements show the polydispersit§Ponds to that determined via computer simulati®fece

to be less than 5% relative standard deviation. The particle=0.494, determines the volume fraction reporféd]. The
Pelet value is Pg=U,R/D(=0.165. HereR is the particle ratio of the reported volume fractions to those determined
radius andJ ,=2A pR?g/97 is the dilute limit sedimentation directly by weighing is 1.15 for the 380-nm-radius particles
velocity. Ap is the difference between particle and solventand 1.04 for the 500-nm-radius particles.

density,g is the acceleration of gravity, anglis the solvent Rectangular cuvettes (1X5cn?) hold individual
viscosity.Do=kgT/67 7R is the dilute solution particle dif- samples of each particle size and span a range of volume
fusion constant, wheré&gT is the thermal energy. The fractions. Mechanical tumbling, end for end as much as 24 h,
smaller 380-nm-radius particles have cores of copolymer ofixes the samples thoroughly. Particles settle in stationary
methylmethacrylate and tri-fluoroethylacrylate with a stabi-cuvettes stood upright and subjected to ambient room tem-
lizing coating of poly-12-hydroxystearic acid as well. The perature. The temperature for any given run varied by no

suspending solvent, cis-decalin, matches the particle index é¢nore than one-half degree. For comparison of different runs,
we report data corrected to 20 °C. In time the samples de-

Il. EXPERIMENTAL METHODS AND RESULTS

20 . : velop shock fronts, regions where the particle volume frac-
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FIG. 2. Feature height versus time for a 380-nm particle sample
with initial volume fraction 0.124. The symbols are the same as in
Fig. 1. The solid squares represent the position of a fluid shock. FIG. 4. Dynamic light scattering first cumulant minus the theo-
Kynch theory predicts the lines for times less than approximatelyetical dilute limit cumulant versus volume fraction for homoge-

1000 ks.
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neous samples of 380-nm particles.
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FIG. 5. Height versus volume fraction for a 380-nm particle  FIG. 7. Height versus volume fraction for a 380-nm particle
sample with initial volume fraction 0.124 after settling for 680 ks. sample with initial volume fraction 0.44 after settling for 765 ks.
The solid lines are the prediction of Kynch theory. The solid lines are predicted by Kynch theory.

tion changes rapidly with vertical height. We measured therhe evaporation does not influence the dynamics of settling,
position of these shock fronts as a function of elapsed timepyt does increase the initial volume fraction of the sample if
using a telescope mounted on a vernier capable of reading {pis mixed again for any subsequent runs.

10-um accuracy. Figures 1-3 show height versus elapsed \ye measured the first cumulant of the dynamic light scat-
tlme_data for the smaller radius particle sa_mples at volumfigering (DLS) correlation functior{15] using a helium neon
fractions¢=0.041, 0.124, and 0.22, respectively. The Upper{aser at 90° scattering angle for selected smaller particle
most line in each figure marks the boundary between theamples having uniform density. Thorough tumbling of these
pure solvent above from the uniform distribution of partlclessamp|es prior to measurement homogenized any density
setting below. The particle volume fraction in this lower re- yariations. The measurements determine the monotonic func-
gion equals the initial value. The slope of this boundary lin€jon shown in Fig. 4, which correlates sample volume frac-
determines the sedimentation velodiy The lowest bound- tjon with the measured first cumulant minus the theoretical
ary line separates the growing crystal from the fluid phas&myjant value at zero-particle concentration. In this way
above. The slope of this line determines the crystal growthymylant measurements as a function of height for heteroge-
velocity U... _For samples with initial volume fractions _above neous samples give the volume fraction as a function of
~0.1, there is another shock boundary, where the fluid phasﬁeight. The height resolution is 30@m, the width of the
volume fraction changes abruptly. Above this boundary, thgqcysed incident laser beam in the sample. Figures 5—7 show
initial sample volume fraction obtains, while below this 5 density as a function of height for the three volume
boundary the sample volume fraction increases with decrea?r‘actions¢=0.124 0.22, and 0.44 after settling for 680, 760
ing height in the sample. This region is the “fan” because 5,4 765 ks respectively. We do not expect this mapping to

lines of constant volume fraction in Kynch theory extrapo-yyork for the crystal phasévolume fractions greater than
late through the origir(or fan out from the originin this

region. For volume fractions below0.1, no fan is observed.
We also monitored the air-sample meniscus height. This
height decreased with time, indicating solvent evaporation.
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2 FIG. 8. Reduced sedimentation velocity as a function of volume
0 fraction for the 380-nm particle samplésrcles and trianglésand

the 500-nm particle sampldsquares for initial volume fractions

less than the freezing value afidverted trianglesfor initial vol-

ume fractions greater than the melting value. The solid line is the
FIG. 6. Height versus volume fraction for a 380-nm particle fitted form given by Eq(3) and the dotted line is the Zick-Homsey

sample with initial volume fraction 0.22 after settling for 760 ks. result for a settling fcc crystal. The long-dashed line gives the

The solid lines are predicted by Kynch theory. Batchelor result.
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FIG. 9. Reduced crystal growth velocity shown as a function of  F|G. 11. Bragg scattering estimates of crystal volume fraction as
the initial sample particle volume fraction. The inverted trianglesa function of height in the sample of 500-nm particles. The squares,
are Davis-Russel data with Pe0.001-0.023. The squares are data triangles, and circles correspond to 15, 27, and 35 days after mix-
for the 500-nm particles in this study with 2e0.165. The tri-  ing, respectively. A vertical axis is coplanar with the scattering
angles and circles are data for the 380-nm particles in this studglane for the solid symbols and perpendicular to the scattering plane
with Pg,=0.048. The dashed and solid lines are the predictedor the grey(lower) symbols. The initial volume fraction is 0.42.
growth velocities given by Eq9) for sediments with¢,.,=0.65  The connecting lines are a guide to the eye.
and 0.74, respectively. Fap>0.1 reduced velocities lie between

0.07 and 0.08. with respect to the vertical direction. At particle volume frac-
tions greater than 0.50, the hard-sphere freezing value, crys-

0.55 because the volume fraction correlation is done withtals nucleate and grow homogeneously in the bulk before

respect to fluid phases only. settling and being incorporated into a dense crystal sediment.

Figure 8 shows the sedimentation velocity as a function ofThe crystal structure is a registered random stacking of
volume fraction for both particle types with data normalizedclose-packed layers of particlgd5]. The layers correspond
by the dilute limiting sedimentation velocity, for each to (111) planes in a fcc crystal if all the stacking faults are
particle type. These data are determined from the slope of theliminated in favor of a pure fcc form. The lowest-order
uppermost shock in each sample as described above. Figupewder pattern diffraction maximum results from reflections
9 shows the crystal growth velocity determined from thefrom these planes and the scattering angle is related to the
slope of the liquid-crystal boundary line. Below the freezingseparation of these planes. In Figs. 11 and 12 the volume
volume fraction ¢seeze the crystals in the dense sediment fraction is plotted based on the measured layer separation
grow as columns, extending as long pillars from the cellwhere ¢=2.31V5phem/a3 and Vgphere is the volume of a
bottom to the liquid-crystal interface. The columns are notsample particle. Of course, this volume fraction assumes the
identical in thickness, but we determine an average columugrystals are not distorted, while the measured a values
width by counting the number of columns that span a certaithange with orientation and indicate the crystals are dis-
distance(~2 mm) in the sample and dividing that distance torted. Corrections must be made for refraction of the light at
by the number of columns counted. Figure 10 shows théhe sample boundaries.
average column width as a function of initial volume fraction
for two slightly different measurement techniques.

Light diffraction from the crystal sediment of the 500-nm
particle systems evidences a distorted crystal lattice. The
first-order Bragg scattering angle varies both as a function of 07
height in the sample and as a function of the scattering plane ¢
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% FIG. 12. Bragg scattering estimates of crystal volume fraction at
< 15 days after mixing as a function of height in samples of 500-nm

particles. The initial volume fractions are 0.42 in the fluid phase
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angles. A vertical axis is coplanar with the scattering plane for the
solid symbols and perpendicular to the scattering plane for the grey

FIG. 10. Average crystal width for 380-nm particle samples as alower) symbols. The thick and thin solid curves are Kynch theory
function of volume fraction. The solid curve represents width esti-predictions for maximum volume fractions 0.74 and 0.685, respec-
mates using the long-time self-diffusion coefficient and the dashetively. The dashed line is a solution to E(L3) having velocity
curves two different short-time self-diffusion coefficients. 0.0695 and maximum crystal volume fraction 0.68.

Volume Fraction
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Figure 11 presents results for a sample with an initialshown as a solid line Fig. 8, gives a good fit to the data.
volume fractiongp=0.42. Here columnar crystals form and While this functional form fits the data as a whole, the func-
grow up from the bottom. The Bragg scattering indicates thational form K( ¢) =exg — ¢(5.5+4.0¢4) ] gives a better fit to
the crystal is near maximum packing except near the tophe smaller particle data. The small volume fraction expan-
where the volume fraction decreases. The measured latticgon for either of these forms deviates from the “exact”
constant is smaller for thogd11) planes not perpendicular results calculated by Batchelpt6] for hard spheresK ()
to the vertical axis. The crystal profile is shown for 15, 27,=1+6.554+ O(¢#?), shown as the long-dashed curve in
and 35 days after mixing. Figure 12 presents results for &ig. 8. The experimental deviation from the Batchelor result
sample in the coexistence region with an initial volume frac-is not deemed significant given the simplicity of the fitting
tion ¢=0.50 and for thep=0.42 sample shown in Fig. 11 at form.

15 days. For the larger volume fraction sample the crystals Also shown in this figure, as a dotted curve, is the pre-
nucleate homogeneously in the bulk and settle. At 15 daysicted sedimentation velocity for a face-centered-cubic crys-
there is a dense compressed and anisotropic sediment groval lattice [17]. The particles are assumed fixed rigidly in
ing up from the bottom with a fairly uniform but less dense position in this theoretical calculation. In the region where
crystal having volume fraction near the coexistent valuethe crystal is thermodynamically stable, the sedimentation
dmer=0.545 settling down from above. Note the similarity velocities for the metastable fluji&q. (3)], the Zick-Homsey

of the density profile where the two volume fractions over-prediction for a rigid fcc lattice, and the measured crystal
lap. sedimentation velocities are remarkably similar. Experimen-

Settling experiments for greater than one earth gravitytally, the particles are not rigidly fixed in position. In this
(1g) were performed using a modified swinging rotor tablevolume fraction range the crystals nucleate homogeneously
top centrifuge. A swinging rotor ensures that the particlein the bulk and form a mass of finite-size randomly oriented,
acceleration direction is parallel to the vertical axis of thesettling crystals.
sample cells. This avoids the boycott effect and global con- The diffusion term in Eq(2) accounts for particle diffu-
vection present with a fixed rotor. The swinging arm wassion, the effect of interparticle direct interactions, and hydro-
lengthened so that the variation in the particle acceleratioalynamic interactions. This term includes the dilute limit dif-
over the length of the sample is less than 10% of the maxifusion constantD, and the compressibility factoZ(¢)
mum acceleratior(gravitational plus centrifugal Samples =II/nkgT, where II is the osmotic pressure and
were mixed by tumbling thoroughly overnight and then ei-=3¢/47R® is the particle number density. The compress-
ther centrifuged immediately or left to settle until a smallibility factor is evaluated using the equation of state for hard
amount of crystal begins to accumulate at the cell bottonspheres. For the fluid phase we use a fit to the Carnahan-
before centrifugation. This was done to ensure that we wer8tarling equatior}18]
testing the rate of crystal growth rather than simply the rate
of nuclezation. 0.904

Zi(#)= (5=0.7302+ 0.0160

4
lll. DISCUSSION

Davis and RussglL0] proposed a theory for the sedimen- and for the g:rystal phase the Hall forfa9] for a face-
glentered—cublc crystal

tation of hard spheres based on a one-dimensional continuit
equation for the conservation of sphere number. They as-

sume the particle volume fractiogh to vary with height in Z ()= 217 _ (5)
the sample but otherwise to be uniform. The continuity equa- ¢ 0.738- ¢
tion is
Further details related to the chemical potential of the fluid
dp  IUgf and crystal phases and the volume fraction of fluid and crys-
WJF ox D tal phases in osmotic equilibrium are given elsewh&ke

The approximation in Eq.4) gives a good fit to the
whereU,f is the particle flux. Both convective and diffusive Carnahan-Starling equation and does not diverge at random

terms contribute to the flux as close packing)=0.638. , _
If we scale distance and time to the height of the sample
d de Hy, dimensionless variables are introduced as
Uof(d)=~— ¢UoK(¢)—DoK(¢)@[¢Z(¢)]W-

(2) X:X'/Ho, t:UOt,/HO (6)

In the convective term, the first term on the right-hand side@nd the continuity equation becomes
of Eq. (2) Uy is the dilute limit sedimentation velocity de-

fined previously andJ=UK(¢) is the sedimentation ve- ] ﬁ—i[(ﬁK(@]:ii K(d))i[d)z(ﬁb)]% _
locity at finite volume fraction. Figure 8 shows a nearly ex at X Pe dx d¢ X
ponential dependence of the reduced sedimentation velocity (7)

on volume fraction. The functional form
This equation holds for €x<1 with the sample Peclet
K(¢)=exd — ¢(6.0+3.04)], (3  number given by PeUyHy/Dy. The flux is zero,f(¢)
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=0, at the top x=1) and bottom x=0) of the sample. 0.06
Approximate solutions of Eq.7) describe much of the ob-

served dat9].
0.04

Flux

A. Kynch theory

The sample Rdet number Pe is much greater than unity
(~2500 for the smaller particles and6600 for the larger
particleg such that the term on the right-hand side of EA).
may be set to zero provided the compressibility factor and 0.0 02 0.4 0.6 0.8
the change of volume fraction with height in the shock Voiume Fraction
boundaries are not too large. When the diffusion term on the

right-hand s'd.e of the equa}tlon IS negIeCFed, Kynch theory article and 500-nm particle samples as a function of volume frac-
[9] results. T.hls theqry requwgs tV\./O experlmental inputs, thEfi)on. The squares are flux data for polycrystalline sediments of
reduced sedimentation velocity given in Fig. 8 and the vol-5q nm particles in the coexistence region. The solid curve is de-
ume fraction of the crystal or dense sediméif., aCCUMU-  yjyed from Eq.(3). The dashed curve is the flux for a fcc crystal
lating at the sample bottom. The dense sediment is assume@iermined by Zick and Homsey. The straight liagepresents a
uniform in volume fraction. shock separating the initial volume fraction from a denser volume
The maximum possiblep ., for hard spheres is 0.74, fraction at the top of a fan. The straight liferepresents a shock
which obtains for fcc, hexagonal-close-packed, or randondeparating the initial volume fraction from a dense sediment at
stacked[20] crystalline structures. However, experimental ¢,,,,=0.74.
estimates ofp ., give smaller values. This results, in part,

from inefficient packing of particles in the interfacial regions ing volume fractions to obtain the particle flux. Similarly, the
between crystals having different orientations in the columgjig curve obtains from the fitted form given in Fig. 8. The
nar or polycrystalline structures. Furthermore, the anisotropyyashed curve is the flux for a fec crystal predicted by Zick
observed by Bragg scattering suggests that crystals are digpq Homsey[17]. The squares are experimentally deter-

torted in the dense sediment. The particles are more widelyyineq flux values for a polycrystalline sediment in the coex-
separatednot close packedin the horizontal direction as jstence regiori14].

compared to.the vertical dire(_:tion. Finally, the hydrodynamic  the lines shown in Figs. 1-3 represent positions in the
drag forces increase as particle surfaces.come close to CO83mple where the volume fraction undergoes a rapid change
tact. Thus the time scale for closest packing may be large. yith height. In Kynch theory, which neglects particle diffu-
There are a number of ways to estimate the maximumgjon, this change is discontinuous. Except for fan regions, the
crystal volume fraction. For the sample shown in Fig. 1, the,q)yme fraction is uniform on either side of the discontinui-

downward flux of particlegpU must equal the accumulation ties or “shocks.” Conservation of particle number predicts
of dense sediment that is assumed of uniform volume fracqe gimensionless shock speed as

tion (¢max— ?)U.. While computer simulations indicate that
particle polydispersity increases the value of the volume [D1K (1) — doK( o) ]
fraction at freezing[21], we have assumed the arrival of Ushock™ — [h1— b,] : (8
identically sized particles witkb=0.041 for this sample. The
sedimentation velocity) is determined from the slope of a
straight line fitted to the data represented by the circles invhere ¢, and ¢, are sample volume fractions on either side
Figs. 1-3. The crystal growth velocity. is determined of the shock boundary. Simply put, the speed of the shock
from the slope of a straight line fitted to the data representetimes the volume fraction difference across the shock equals
by the triangles. These assumptions and measurements gittee net flux of particles into the shock region to maintain
Pmax=0.041(1+U/Uy) =0.67+0.02. Alternatively,pax IS particle conservation locally.
estimated from ¢,,,=0.041Hy/H)=0.68+0.01, where Shocks are represented as straight lines on the flux curve
H, is the initial height of the sample, determined from thegraph. For example, the tie linB in Fig. 13 represents a
sedimentation velocity fit and extrapolation to zero elapsedample with a small initial volume fraction. This tie line
time, andHg is the final crystal height measured at long connects the initial volume fractiog,=0.045, with the
times. Because the samples shown in Figs. 2 and 3 evideneceaximum volume fractiong;= ¢,,=0.74 in the dense
fans, the former method of estimating the maximum crystakediment. Since it is tangent to the flux curvedat 0.615,
volume fraction is not valid. The latter estimate giwés.,  this is the limiting tie line(largeste,) for ¢1= dma=0.74.
=0.70£0.01 and 0.67£0.01, respectively, assuming the There is another shock in the sample from zero volume frac-
last data point for each series represents a fully compresseibn (the clear supernatanto ¢,=0.045, the initial volume
and uniform crystal. Further compression will produce largeifraction. Since the dense sediment is constrained from mov-
estimates and this may be especially true for #we0.22  ing by the cell bottom, the flux at maximum volume fraction
sample. The estimated maximum volume fraction values ares set equal to zerop ., K(dmad=0. Thus the sample has
less than 0.74. two shocks separating three regions of different but uniform
Kynch theory utilizes the flux curve given byK(¢) as  volume fraction.
shown in Fig. 13. The data are obtained from Fig. 8 by These two shocks determine the lines shown in Fig. 1.
multiplying reduced sedimentation velocities by correspondThe slope of the lines depends, of course, on the values of

FIG. 13. Particle flux datdfilled circles for both the 380-nm
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the volume fractions on either side of the shock. For ex- 0.015 T T ;
ample,

 $K(9)

sediment” m
max

gives the dense sediment growth velocity, where there is
zero flux at the maximum volume fraction and the fluid vol- 0.005
ume fraction above the dense sedimentdis Within the

Kynch theory approximation, we identify the growth of the

dense sediment with the crystal growth veloctegiment

U (9) 0.010

Flux

=U.. This dimensionless crystal growth velocity is com- 0.000 0'5 ole 0'7
pared to data in Fig. 9. The velocity of the crystal growth ’ T :
increases with increasing initial volume fraction. Here the Volume Fraction

crystal grows as fast as material can be supplied. The dashed

line is the velocity predicted ifya—0.65 and the solid line - going crystal phase. The dashed line is the metastable fluid flux
if $ma=0.74. The lower dense sediment volume fractiong e “while the light solid line is the flux curve from the Zick-

dashed curve fits the data by Davis and Ruk@gbetter than  yomgey calculation. The dark solid line betweeandb is the fluid
the larger volume fraction solid line. Our data fit the largeryq crystal shock boundary, while the dark solid line betwe@nd

volume fraction curve better, though the error is large. Thiszero flux is the shock boundary from the crystal fan to the dense
comparison is another method to estimate the volume fraccrystal sediment.

tion of the dense sediment.
To represent physically allowed states, the tie lines in Figcreases continuously with decreasing height. In the sample
13 must remain below the flux curve. Thus tie lines directlyeach of these volume fractiogsmoves upward in time with

from the initial volume fraction to the maximum packing a velocity equal to the slope of the flux curve at that volume
may be made provided the initial volume fraction is less tharfraction

¢$=0.07, if ¢y,5,=0.65, and decreasing to 0.045 i«

=0.74 for a flux curve determined solely by E®). For d[ #K(¢)]

initial volume fractions greater than0.07, the tie line to Vian( )= — T dg 1D
dmaxintersects the flux curve and represents an unstable con-

dition. The tie line now must extend from the initial volume The predictions of Kynch theory are shown in several figures
fraction to a volume fraction where it is tangent to the fluxabove. In Figs. 1-3 the boundary between the clear superna-
curve(line A in Fig. 13. Thus, solving tant and the uniform suspension with the initial volume frac-
tion is a line having slop&(¢) determined using Eq3).
dl 1K ()] _ [$1K(¢1) — $2K (o) ] (10) Equation(9) with K(¢) and ¢,,,x=0.65 predicts the dense
d¢, [P1— &) sediment(crysta) boundary represented by a dash-dotted
line. The crystal growth velocity depends on the initial
for ¢, gives the volume fraction where the tie line is tangentsample volume fraction fo<0.070. For¢>0.070, a fan is
to the flux curve. The other volume fractionpf) is the present and the fluid volume fraction in contact with the
initial volume fraction. There is a second tie line that is alsocrystal is independent of the initial volume fraction. It is
tangent to the flux curve and extends dq,., at zero flux.  predicted by equating Eq&9) and(11) with the fan velocity
This tie line represents a shock between the dense sedimesét equal to the sediment velocity. The reduced crystal
(at pmax==0.65, for exampleand the less dense colloidal growth velocity is constant in this region and determined
fluid (¢,=0.51, in this case The predicted value of the from either Eq(9) and(11) once the fluid volume fraction is
fluid volume fraction¢,; in contact with the dense sediment known. Thus Kynch theory rationalizes the observed crystal
is highly dependent on the functional form K{ $) and on  growth behavior displayed in Fig. 9. When there is an inter-
the value ofda. If the form of the reduced sedimentation nal fluid/fluid shock from the initial volume fraction to
velocity that fits the smaller particle data bettd( ) denser fluid volume fraction, the shock bound#as ob-
=exd — #(5.5+4.0¢)], is used with the samé,,,,=0.65, served in Figs. 2 and)3s determined by Eq(8) using ap-
then¢,=0.52. If ¢4« iS increased to 0.66, there is a further propriate volume fraction values on either side of the shock.
increase in the colloidal fluid value t¢,;=0.53. However, These internal fluid/fluid shock speeds predicted for initial
given a unique form for the flux curve and a singlg,,,  volume fractions¢=0.0124 and 0.22 are 0.13 and 0.17, re-
Kynch theory predicts that the same volume fraction of col-spectively. Fitting the shock boundarigsquares to a
loidal fluid is in contact with the growing dense sediment,straight lines give experimental shock speeds 013004
independent of the initial volume fraction, provided this vol- and 0.18-0.03, respectively. This simple Kynch theory
ume fraction is greater thar0.07. Since the colloidal crys- gives a good fit to the data.
tal grows in response to the fluid concentration adjacent to it, There are problems with the previous application of
the crystal growth rate saturates and becomes constant féiynch theory to interpretation of the data. First, the volume
volume fractions greater thanr0.07, as seen in Fig. 9. fraction of the dense sediment that gives a good fit to the
Between the two(tie line) tangent points on the flux crystal growth velocities ig,,=0.65, a smaller value than
curve, there is a fan region, where the volume fraction inthe theoretical crystalline dense packing of hard spheres

FIG. 14. Kynch theory construction including a compressible
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(0.74 and less than all experimental estimates of the dense Figures 5—7 show the measured particle volume fraction
(crysta) sediment described earlier. Second, there is no exas a function of height for the smaller particle samples with
plicit treatment of a phase transition between liquid and crysinitial volume fractions 0.124, 0.22, and 0.44 at times 680,
talline phases. Third, the dense sediment is assumed unifori#0, and 760 ks after mixing, respectively. The solid lines
in volume fraction, contrary to the Bragg scattering volumerepresent the predictions for volume fraction from the Kynch
fraction estimates given in Figs. 11 and 12. We address thegheory taking crystallization into account. Of course, we ex-
concerns in the following construction for the fluid-crystal pect no fit in the crystal region¢(>0.5) because no DLS
phase transition region. correlation function measurements were made in uniform
Figure 14 shows the experimentally determined flux curvecrystals as a function of volume fraction. In the upper region
for the colloidal liquid stat€dashed ling extended into the of the suspensions, the volume fraction is uniform and equal
metastable fluid region. Also shown is the theoretical resulto the initial volume fraction. Presumably, the failure of the
of Zick and Homsey17] for a rigid face-centered-cubic lat- ¢=0.124 sample to produce this volume fraction in the up-
tice (solid line) that describes well the measured fluxes forper regions is due to representing the data in Fig. 4 by the
settling of a polycrystalline hard-sphere solid. If we requirebest-fit straight line as shown. The sample volume fraction
the osmotic pressures to balance on either side of a slowlgemains uniform down to the fluid-fluid shock region in
moving fluid-crystal interfacémechanical equilibrium the  samples with initial volume fractions 0.124 and 0.22. Then
crystal volume fraction may be determined in terms of thethere is a sharp increase in volume fraction with height in the
metastable fluid volume fraction by using the hard-spherghock followed by a slower increase in volume fraction in
equations of state. In this way tie lines from the fluid flux the fan region, as the height in the sample decreases. No
curve to the crystal flux curve may be constructed as showsharp increase in volume fraction, or fluid-fluid shock, is
by the line segmenAB in Fig. 14. The tie line represents a predicted or observed for the most concentrated sample with
shock whose speed is given by E8), whereg, is the fluid initial volume fraction 0.44. The qualitative agreement be-
volume fraction andp, is the crystal volume fraction in the tween theory and experiment is good given the limited reso-
immediate vicinity of the fluid-crystal interface. The fluid lution of the experimental method and the neglect of diffu-
volume fraction is fixed theoretically by requiring the shock sion in the theory, which both contribute to a smoothing of
speed to match the crystal growth velocity. Later we describany volume fraction discontinuities. The volume fraction
this matching procedure using the Williams-Frenkel growthvariation in the fan is well represented. To plot Kynch theory
law, which gives the crystal velocity in terms of the meta-for the phase transition region, we assume a reduced crystal-
stable fluid volume fraction at the fluid-crystal interface. Thisfluid velocity of 0.0735 to agree with the average “con-
solves the Kynch level problem, provided a solution existsstant” velocity at large volume fractions (0.0%®.003).
and that the solution is stable. It should be noted that Davigurther, for purposes of illustration, we assume the theoreti-
and Russel solve this problem in a different w&}. They  cal maximum packing0.74 for the crystal in the dense
require the osmotic pressure to balance across the fluidediment. Under these assumptions, both the metastable fluid
crystal interface, as do we. However, they require the tie lineand the crystal volume fractions are within fan regions of
to be tangent to the fluid flux curve @t;. Thus the fluid- their respective flux curves. Using the hard-sphere equations
crystal interface grows parallel to one of the lines of constanbf state and Eq(8) for the crystal growth velocity gives
volume fraction in the metastable fluid fan region. The de-0.500 and 0.553, respectively, for the fluid and crystal vol-
tails of matching the crystal end of the tie line with the crys-ume fractions at the phase boundary. These volume fractions
tal flux curve are not considered. Such additional constraintextend uniformly away from the interface until interesting
would overdetermine the problem giving no solution in gen-the liquid or crystal fans as shown in Figs. 4—6. The velocity
eral. of the fluid fan intersection point is 0.0823, while the crystal
For the moment we assume that our Kynch solution exist$an intersection point velocity is 0.064. The uniform volume
and concentrate on the stability of this solution. Note that foffraction regions on either side of the phase boundary expand
the tie line drawn in Fig. 14 the slope of the line is less thanin time just like the fan regions. The shock boundary from
the slope of the fluid flux curve on the fluid side @f but  the crystal to the dense crystal sediment connects volume
more than the slope of the crystal flux curve on the crystafraction 0.612 with 0.74 and propagates with velocity 0.039.
side at¢,. In this way the fluid, fluid-crystal, and crystal Decreasing the maximum volume fraction of the sediment
regions stay in the same order as the interface moves. Theduces the volume fraction in the crystal fan where the
crystal region does not overtake the fluid-crystal interfaceshock occurs. Figure 12 shows this effect explicitly. The
for example. This is required for stability of the construction. thick solid curve shows the Kynch theory just described and
Furthermore, the fluid-crystal interface is asymptoticallyapplied to the volume fraction estimates from Bragg scatter-
stable in the following sense. If the interface is displaced ang for the larger particle samples. The thin line gives Kynch
small amount, there are no forces to return it to the originatheory for a maximum volume fraction 0.685, which is closer
position nor to move it further away. However, as the growthto our estimates given earlier and that value where the crystal
continues and the fans and connecting regions expand, tHan is completely eliminated. For this maximum volume
relative position of the interface approaches the original pofraction value, there is no crystal fan predicted, only a jump
sition asymptotically. Corrections to the Kynch theory, with from the volume fraction value at coexistence to the dense
an increasing volume fraction as the interface is approachesediment value. The Kynch theory cannot describe the ob-
on the fluid side, will be absolutely stable for volume frac- served volume fraction anisotropy.
tions between freezing and melting as discussed by Davis Also shown in Fig. 12(squarep are data for an initial
and Russe[9]. volume fraction below the freezing value. These crystals
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0.10 scales this velocity the same as other velocities discussed and
renders it dimensionless. The observed crystal growth veloc-
0.08 ity U,=Uy—K(¢) is less than the Wilson-Frenkel estimate
because the crystal settles in the gravitational field.
L e Figure 15 presents the measured crystal growth velocity
- U., where we assume a “short-time” self-diffusion constant
004 having the form[22] D¢=Do(1— $/0.64) 117 As ¢ (the
002 | metastable fluid volume fraction in contact with the growing
’ v crysta) tends to the freezing value, the chemical potential
000 Ll L7 . . N difference and growth velocity 4 tend to zero. The growth
" 0.48 0.52 0.56 0.60 0.64 velocity is thermodynamically limited. As the volume frac-

Volume Fraction tion increases above the melting value, the growth velocity
decreases due to hydrodynamic drag effects. This dimension-

FIG. 15. Reduced crystal growth velocity,=U,—K(4)] at less form of the growth velocity depends only ehand
Pe,/fo=0.85 (short-dotted ling 0.49 (dash-dotted ling 0.14  P&/fo. The growth velocityl, is shown for several differ-
(dash—double-dotted lipg0.014(long-dashed lingas a function of ~ €nt values of Rg/fy.
metastable fluid volume fraction. The reduced liquid fan velocity is ~ When the fan curvdgiven by Eq.(11)] intersects the
shown as a light solid line and the crystal velocity from B).as ~ Wilson-Frenkel curve, both represent the same reduced ve-
a dark solid line. Acceptable solutions for our samples occup at locity. Russel and Davi§9] argue that only the lower vol-
=0.523 andU.=0.61 for the 500-nm particles atgland ¢ ume fraction of two possible intersection values is stable.
=0.502 andJ.=0.70 for the 380-nm particles agl Further, they argue that the lower volume fraction intersec-

tion point determines the observed crystal growth velocity. A
grow as long columns. They exhibit the same density profilgjiven fan volume fraction is in contact with the crystal. The
as samples with initial volume fraction within coexistence crystal grows in response to this volume fraction according
region valuedtriangles that produce a polycrystalline sedi- to the Wilson-Frenkel law and both move together with the
ment. Above the dense sediment the polycrystalline solid hasame velocity in a stable fashion. If the Pealue is in-
uniform density. The Kynch theory with a maximum packing creased by increasing particle size or by centnfugatlon then
fraction 0.74 does not produce a satisfactory volume fractiomhe intersection point of interest moves to larger volume frac-
profile for either starting volume fraction. For a maximum tion until the fan curve fails to intersect the Wilson-Frenkel
packing fraction equal to 0.685, the theoretical profile iscurve. For sufficiently large Re no crystal can grow and a
more representative. However, the data are much smoothglassy sediment results.
than the theory. Finally, we note that the measured volume The Davis-Russel model assumes a crystal formed at the
fractions appear systematically high, given the expecteghaximum dense sediment volume fraction, so they may ne-
crystal volume fraction in the coexistence region. This valugglect any sedimentation of the crystal in comparing theory
(0.545 should obtain at large times in the upper portion ofwith experiment. Furthermore, we have argued that within
the crystal before compression occurs in the fan and dens@e Kynch theory including a liquid to crystal phase transi-
sediment, but measurements indicate a val#% larger. tion, there is an expanding region of uniform crystal and
Alternatively, crystals homogeneously nucleated in metametastable liquid on either side of the phase boundary. The
stable fluids are compressed by larger than equilibrium osinterface is not in direct contact with the fan and therefore is
motic pressures. Crystals so formed may not have yet renot constrained to match the fan velocity. However, particle

laxed to the equilibrium volume fraction. number must be conserved such that the interface velocity is
given by Eq.(8) using the liquid and crystal volume fractions
B. Wilson-Frenkel growth law immediately on either side of the interface. The prediction

hl‘or this velocity, assuming an osmotic pressure balance
across the interface, is shown in Fig. 15 as a dark solid line.
To determinef, within this model we centrifuged a
smaller particle sample at variogsvalues. We were careful
to allow some crystal to form in the bottom undeg thefore
centrifugation. It is possible that nucleation of columnar
crystals can be suppressed before crystal growth is sup-
(12) pressed. Thus pre-existing crystals eliminate nucleation con-
straints. The sample failed to crystallize when the centrifu-
wheredu is the difference in chemical potential between thegation was greater tharr6g. The dotted curve in Fig. 15
crystal and metastable liquid at the interface. We calculateorresponds to this @ limiting value, where Pg/f,
this chemical potential difference, assuming osmotic equilib{=0.85) marks the boundary between crystallization and
rium between the liquid and crystal phases, using equationglass formation. The corresponditfig value is 0.34, which
of state determined from computer simulatid®9]. The agrees reasonably well with 0.27, a value determined by
kinetic coefficient combines a particle self-diffusion constantmolecular-dynamic simulations of a Leonnard-Jones fluid
divided by a particle radiu®¢/R to estimate particle “ve- [23]. Using this value forf, determines the dash-dotted
locities,” with a particle sticking coefficient given b [9]. curve for the larger particle samples aj And the dash—
Division by the dilute solution sedimentation velocity,  double-dotted curve for the smaller particle samplest 1

The Wilson-Frenkel growth law predicts crystal growt
velocities that depend on the metastable fluid volume frac®
tion ¢ in contact with the crystal interface. The growth ve-
locity is given by

Uy=

foDs
9= RUO[l exp(SulkgT)]= D
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The corresponding predicted crystal growth velocities are 08
0.61 and 0.70, respectively. This is somewhat lower than the
observed values that lie between 0.70 and 0.80, but the nar-

. . 0.6
row range of observed velocities is predicted. Fop/Pg N
values tending to zero, the velocity reaches a maximum
value 0.735. Thus the theory has the same span in predicted 04
velocities as seen in experiment, though smaller in absolute
magnitude, for the same range inyPeUsing a long-time 0.2
self-diffusion approximation in Eq12) will move the maxi-
mum velocity to smallekp values and, consequently, larger 0
velocities in Fig. 15. However, this requires unacceptably 0.1 0.05 0 0.05 01
larger (by an order of magnitudevalues forf. Position (cm)

FIG. 16. Volume fraction versus sample height profile generated
from Eq. (13) for the larger particle samples. The volume fractions

The Kynch theory for the growth of columnar crystals indicated by the dashed lines correspond to crystal and fluid values
with an initial volume fraction less tharn0.07 posits a jump that have the same theoretical osmotic pressure and reduced veloc-
fraction possible. These volume fractions lie outside thelight line) profiles.

range of allowable values (0.494$<0.638) used in the _ . . . i

Wilson-Frenkel theory. As shown in Fig. 9, the velocity of f(4o) ¢°K(f°) is the flux of particles at this volume frac
Y tion. When¢= ¢, the volume fraction is constant in spatial

the crystal phase boundary goes to zero as the initial volume

. 7 S ... VariableY, as indicated by a zero-value spatial derivative.
fraction tends to zero. This is quite different from predictions . :
Alternatively, in the crystal phase at the sample bottom, there

of the Kynch theory solution in the fan region for initial : - :
volume fractions greater than 0.07. Here the Wilson-Frenkel> 2 different boundary  condition. The volume fraction

. . . eaches its maximum valuego=dmax and f(eog)
growth law is consistent with a very narrow range of reduceJ: boK (o) = b K (ch)=0. Thus two equations, one for

crystal growth velocities, also observed experimentally a$y ¢ fluid phase and one for the crystal phase, may be derived

shown in Fig. 9. We wish to understand how Wilson-Frenkel ™ "~ ; 7 o
theory applies to the low initial volume fractionp0.07) using ap_proprl_ate boundary conditions for each phase. Simi=
suspensions ' lar considerations lead to an appropriate equation for the
Experimeﬁtally one observes a more dense colloidal flui .Iear supernatant-uniform 'r."t'al volume frgc'qon shock pro-
in contact with the growing crystal compared to the uniform lle [10]. Each of the _resultmg equations s mtegrateo_l with
colloidal fluid above. This more dense region moves up Withre;?izcst 1Y to determine(moving spatial volume fraction
the crystal without expanding into a fan. It is the result of P Ei u;e 16 shows volume fraction profiles for the liquid
diffusive broadening. Since the fluid and crystal sedimenta- 9 P 9

tion rates are measured and the equations of state known ng1 gse(dark I!ne W'th |n|t'|al volu.me fraction 0'0225. and the
lid phaselight line) with maximum volume fraction 0.68

hard spheres, the relative magnitude of the convective and. . .
diffusive terms may be calculated. From these calculation ith Pe=6600. Each solution profile represents a constant

. article flux, but the flux for the solid and the liquid solutions
we expect the Kynch theory to be marginal for our Sampleé)iffer in general. The reduced velocity of the shock given by

in the crystalline phase. This explains some of the failure oﬂynch theonEq. (8] is 0.03 for these boundary conditions.

Kynch theory to fit crystalline data. o ) i .
The Kynch theory results from the zeroth-order equationTh'S is also the translational velocity of both the liquid and

in a large Pe perturbation expansion of the “outer S°|Uti°n”frzs§:0%r|? mfc?ﬁ:2t?syrggir:?eg]zveﬂt%getr?gé -I;raen;?t(i)ct)lr?nmczjfst
of Eq. (7) [10]. In this expansion, convection is dominant. also have pthe samF()a reduced %/elocitp but aiven by the
“Resolution of the continuous variation @f within the sedi- Wilson-Fenkel law(see Fig. 15 This IattZ:r cons%raint fixyes
ment boundary layer” requires an “inner” expansipn0], o 9. .

: . the liquid and crystal volume fractions at the phase boundary
which scales lengths on Pt The zeroth-order solutions to be 05105 and 0.5660. respectively. shown as horizontal
have volume fraction profiles that translate uniformly in i o : P Y, ;

. : dashed lines in Fig. 16. Thus the phase boundary is at the
time. Thus we assume a solution of the forg(Y)

— p(Pdx—Lt]) for Eq. (7) in the boundary layer regions. In spatial origin in this figure. The theory predicts a dense fluid

this way the time derivative is replaced by a spatial deriva.€dion of thickness-0.01 cm in contact with the crystal. The

tive times—L. The whole equation is integrated with res ectthiCkneSS does not increase In time, as a fan does, and Is
' q 9 PECt consistent  with experimental observations. For smaller

C. Beyond Kynch theory

to Yo find growth velocities, the liquid volume fraction in contact with
de the crystal must move closer to the freezing value.
D(¢) av - L(dg— @)+ dpoK(dg) — pK(p), (13 Now we consider the volume fraction profile for the crys-

tal presented in Fig. 12. The dashed curve is a solution to Eq.

(13) for a maximum crystal volume fraction 0.68. The
whereD(¢)=K(){d[ ¢Z(¢)]/d¢}. For the colloidal fluid  growth or translational velocity of this profile is 0.0695 and
region above the crystal phase boundary at low initial vol-reasonably consistent with experimental observations. We
ume fractions or for the fluid shock region at larger initial have already stated that the measured volume fractions are
volume fractions, ¢, is the initial volume fraction and probably systematically large. If they are scaled to slightly
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smaller values then there is good agreement with the dasherblled by how well particles can diffuse to crystal sites
line. Both samples with initial volume fractions above andbefore they are locked into position by the settling of par-
below the freezing value are shown. This first-order diffusiveticles on top of them. This is the same argument given for the
broadening of Kynch theory represents the data well. Thereation of a glass if the acceleration of gravity is increased
solution to Eq(13) for the maximum crystal volume fraction beyond a certain magnitude. This argument suggests that
0.74 produces a crystal shock boundary with much slowecrystals form, if there is sufficient horizontal motiddiffu-
translational velocity, similar to the translational velocity of sion) of particles relative to the vertical settling motion. Let
the Kynch theory at the base of the fan. While the data indiS=[D]"? be the distance that a particle diffuses horizon-
cate crystal anisotropy, which is not included in the theory, ittally in a timet. The average vertical distance the particle
seems clear that there is very little crystal fan region. Thealls in the same time is given bf=Ut=U K()t. Let t
maximum crystal packing must be less than 0.74 and closdse the time taken to fall a particle radi&s Then with self-
to 0.68. diffusion constant$22,24] given by Ds=Dy(1— ¢/ pjim)*,
Further approximate solution$0] may be developed and with ¢;,=0.58 anda=1.74 (long-dashed ling 2.6 (short-
are quite complex. It is possible that a crystal fan is presentlashed ling for the short-time self-diffusion estimates and
but obscured by diffusive effects represented in higher-ordeg,,,=0.64 anda=1.17 for the long-time self-diffusion co-
approximations. Without more accurate data and a theorgfficients, we have
including crystal anisotropy, we will not develop these solu-
tions further. However, these approximate solutions are de-

veloped with respect to the underlying Kynch theory pre- IS Do
sented here. R™ UgR

(14

D. Column width issues When scaled as in Fig. 10, this functional form brackets the

Figure 10 shows that the measured average width of thdata. However, the characteristic length given by
dense sediment colloidal crystal columns increases with infD/UoR]¥?=4.5 is two orders of magnitude too small.
creasing volume fraction. Recall that the crystal growth ve-This argument suggests that the column length scale is de-
locity saturates for initial volume fractions greater than 0.07termined early on in the settling process, before height inho-
because the fluid volume fraction in contact with the crystalmogeneities develop.
is the same for all samples with a fluid fan. Thus the crystal
column width must be determined early in. the. process before ACKNOWLEDGMENT
the fan develops. One possible explanation is that the crys-
tals initially laid down on the bottom of the container in-  This work was supported by the National Science Foun-
crease in size with increasing volume fraction. This is con-dation through Grant No. DMR 9501865.
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