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Crystallization by settling in suspensions of hard spheres
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We examine crystallization by settling for two different model hard-sphere suspensions. Sedimentation
velocities, internal shock velocities, and crystal growth velocities are measured. Dynamic light scattering
experiments measure volume fraction profiles in fluid phases, while Bragg scattering experiments determine
volume fraction profiles in crystal phases. Centrifugation experiments determine the particle Pe´clet number
above which samples will not crystallize. The sedimentation velocities, as a function of volume fraction, agree
with other ‘‘hard-sphere’’ data. Remarkably, the value of the reduced crystal growth velocity~;0.075! obtains
for two orders of magnitude of the particle Pe´clet number. Kynch theory provides an adequate description of
the data in the fluid phase, but is less adequate for volume fraction profiles in the crystal phase. The crystals in
the dense sediment are compressed more along a vertical axis relative to the horizontal axis. Predicted Wilson-
Frenkel crystal growth velocities, calculated using known hard-sphere equations of state and a short-time
self-diffusion constant, rationalize the measured crystal growth velocities.@S1063-651X~99!05806-7#

PACS number~s!: 64.70.Dv, 81.10.Fq, 82.70.Dd
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I. INTRODUCTION

The growth of colloidal crystals has been studied in
variety of systems@1–6#. The crystal radius grows linearl
with time @2–4# following homogeneous or heterogeneo
nucleation in suspensions of charge-stabilized particles.
Wilson-Frenkel growth law provides an explanation for the
data. In suspensions of hard spheres, the crystal radius g
with a quasi-power-law behavior in time with an expone
typically between1

2 and unity@6,7# following homogeneous
nucleation. For hard spheres the volume fraction differs
10% between the crystal and liquid in the coexistence reg
Thus crystal growth in the coexistence region depletes
surrounding metastable liquid in the immediate neighb
hood of the crystal. A depletion zone also develops for me
stable fluid volume fractions above the melting value if t
osmotic pressure balance across the liquid crystal inter
produces a relatively larger crystal volume fraction co
pared to the fluid. The depletion zone leads to diffusio
limited growth @8# with growth exponent12 when particle
incorporation rates into the crystal are large. Otherwise
crystal growth is not fully interfaced or diffusion limited bu
has a transient quasi-power-law growth. The depletion p
cess masks observation of the Wilson-Frenkel growth
for hard-sphere crystals and can be determined only i
rectly @8#.

Alternatively, at volume fractions less than the freezi
value, crystals have been observed to grow as long colu
in the accumulating sediment of colloidal suspensions. T
crystal growth rates are linear in time even for ‘‘har
sphere’’ suspensions because the gravitational settling o
metastable fluid to the crystal boundary provides a ste

*Author to whom correspondence should be addressed. Electr
address: bjack@osuunx.ucc.okstate.edu
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source of material. Evidently, no diffusion-limited depletio
zone develops. Davis and Russel have studied this sedim
tation process both theoretically and experimentally@9–12#.
They assume a linear growth velocity given by the Wilso
Fenkel law and governed by the volume fraction of the me
stable fluid in contact with the growing crystal interface. F
hard spheres the growth velocity of the crystal increases w
increasing volume fraction of the metastable fluid above
freezing value due to the increase of thermodynamic driv
forces with increasing quench depth. However, viscous l
terms, due to hydrodynamic interactions, reduce the cry
growth velocity as the volume fraction increases above~ap-
proximately! the crystal melting value and towards the gla
If the flux of settling particles is greater than that which t
maximum crystal growth velocity can accommodate,
glassy sediment results. Otherwise, there is a range of st
growth velocities from zero at the freezing point to the ma
mum velocity near the melting point. In principle, by co
trolling the rate of settling by centrifugation, one can test t
Wilson-Frenkel growth theory.

We present data for two different suspensions of h
spheres that have larger particle Pe´clet numbers (Pep) than
previously reported though the sample Pe´clet value~Pe! is
within the same range of earlier studies@9#. Measured sedi-
mentation velocities indicate that these samples better
proximate hard-sphere suspensions than earlier studies@9#.
Kynch theory rationalizes observations in the fluid pha
We extend the Kynch theory into the crystal phase. The co
pressibility gradient is sufficiently large that this solution
not as good an approximation as that for the overlying fl
phase. However, the Kynch result is the zeroth-order so
tion for large Pe´clet number expansions. The Wilson-Frenk
growth law, with improved approximations for the fluid an
solid equations of state and for the self-diffusion kinetic c
efficient, provides an explanation for our observations
crystal growth. This theory predicts a very narrow range
ic
6903 ©1999 The American Physical Society
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6904 PRE 59BRUCE J. ACKERSONet al.
values for the experimentally measured reduced cry
growth velocities, consistent with observation.

II. EXPERIMENTAL METHODS AND RESULTS

We report data for two different model hard-sphere s
tems. A thin layer~;10 nm! of poly-12-hydroxysteraric acid
stabilizes the larger 500-nm radius polymethyl-methacry
core particles from aggregation. A mixture of decalin a
tetralin suspends the particles and is tuned to match the
ticle refractive index, rendering the samples transpar
Static light scattering measurements show the polydispe
to be less than 5% relative standard deviation. The part
Péclet value is Pep5U0R/D050.165. HereR is the particle
radius andU052DrR2g/9h is the dilute limit sedimentation
velocity. Dr is the difference between particle and solve
density,g is the acceleration of gravity, andh is the solvent
viscosity.D05kBT/6phR is the dilute solution particle dif-
fusion constant, wherekBT is the thermal energy. The
smaller 380-nm-radius particles have cores of copolyme
methylmethacrylate and tri-fluoroethylacrylate with a sta
lizing coating of poly-12-hydroxystearic acid as well. Th
suspending solvent, cis-decalin, matches the particle inde

FIG. 1. Feature height versus time for a 380-nm particle sam
with initial volume fraction 0.041. The filled circles represent t
boundary between the disordered particle suspension and the
supernatant. The triangles represent the boundary between the
ordered particle suspension and the ordered crystal phase. K
theory predicts lines shown for times less than 800 ks.

FIG. 2. Feature height versus time for a 380-nm particle sam
with initial volume fraction 0.124. The symbols are the same as
Fig. 1. The solid squares represent the position of a fluid sho
Kynch theory predicts the lines for times less than approxima
1000 ks.
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refraction. The polydispersity is 5%, as determined by d
namic light scattering, and Pep50.048. The particle Pe´clet
numbers range nearly an order of magnitude larger t
those for the systems investigated by Davis and Russel@9#.
Yet these systems still evidence columnar crystal grow
Previous investigations of our systems reveal hard-sphere
havior @5–7,13#. This earlier work includes determining th
hard-sphere phase transition and referencing reported vol
fractions to the accepted theoretical freezing value@13,14#.
These experiments determine the core volume fractions
the freezing and melting points for each system. Scaling
volume fractions so the freezing core volume fraction cor
sponds to that determined via computer simulation,f freeze
50.494, determines the volume fraction reported@14#. The
ratio of the reported volume fractions to those determin
directly by weighing is 1.15 for the 380-nm-radius particl
and 1.04 for the 500-nm-radius particles.

Rectangular cuvettes (13135 cm3) hold individual
samples of each particle size and span a range of vol
fractions. Mechanical tumbling, end for end as much as 2
mixes the samples thoroughly. Particles settle in station
cuvettes stood upright and subjected to ambient room t
perature. The temperature for any given run varied by
more than one-half degree. For comparison of different ru
we report data corrected to 20 °C. In time the samples
velop shock fronts, regions where the particle volume fr
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FIG. 3. Feature height versus time for a 380-nm particle sam
with initial volume fraction 0.22. The symbols have the same me
ing as in Figs. 1 and 2. Kynch theory predicts the lines shown
times less than approximately 1500 ks.

FIG. 4. Dynamic light scattering first cumulant minus the the
retical dilute limit cumulant versus volume fraction for homog
neous samples of 380-nm particles.
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PRE 59 6905CRYSTALLIZATION BY SETTLING IN SUSPENSIONS . . .
tion changes rapidly with vertical height. We measured
position of these shock fronts as a function of elapsed ti
using a telescope mounted on a vernier capable of readin
10-mm accuracy. Figures 1–3 show height versus elap
time data for the smaller radius particle samples at volu
fractionsf50.041, 0.124, and 0.22, respectively. The upp
most line in each figure marks the boundary between
pure solvent above from the uniform distribution of particl
setting below. The particle volume fraction in this lower r
gion equals the initial value. The slope of this boundary l
determines the sedimentation velocityU. The lowest bound-
ary line separates the growing crystal from the fluid ph
above. The slope of this line determines the crystal gro
velocity Uc . For samples with initial volume fractions abov
;0.1, there is another shock boundary, where the fluid ph
volume fraction changes abruptly. Above this boundary,
initial sample volume fraction obtains, while below th
boundary the sample volume fraction increases with decr
ing height in the sample. This region is the ‘‘fan’’ becau
lines of constant volume fraction in Kynch theory extrap
late through the origin~or fan out from the origin! in this
region. For volume fractions below;0.1, no fan is observed
We also monitored the air-sample meniscus height. T
height decreased with time, indicating solvent evaporat

FIG. 5. Height versus volume fraction for a 380-nm partic
sample with initial volume fraction 0.124 after settling for 680 k
The solid lines are the prediction of Kynch theory.

FIG. 6. Height versus volume fraction for a 380-nm partic
sample with initial volume fraction 0.22 after settling for 760 k
The solid lines are predicted by Kynch theory.
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The evaporation does not influence the dynamics of settl
but does increase the initial volume fraction of the sample
it is mixed again for any subsequent runs.

We measured the first cumulant of the dynamic light sc
tering ~DLS! correlation function@15# using a helium neon
laser at 90° scattering angle for selected smaller part
samples having uniform density. Thorough tumbling of the
samples prior to measurement homogenized any den
variations. The measurements determine the monotonic fu
tion shown in Fig. 4, which correlates sample volume fra
tion with the measured first cumulant minus the theoreti
cumulant value at zero-particle concentration. In this w
cumulant measurements as a function of height for hetero
neous samples give the volume fraction as a function
height. The height resolution is 300mm, the width of the
focused incident laser beam in the sample. Figures 5–7 s
this density as a function of height for the three volum
fractionsf50.124, 0.22, and 0.44 after settling for 680, 76
and 765 ks respectively. We do not expect this mapping
work for the crystal phase~volume fractions greater tha

FIG. 7. Height versus volume fraction for a 380-nm partic
sample with initial volume fraction 0.44 after settling for 765 k
The solid lines are predicted by Kynch theory.

FIG. 8. Reduced sedimentation velocity as a function of volu
fraction for the 380-nm particle samples~circles and triangles! and
the 500-nm particle samples~squares! for initial volume fractions
less than the freezing value and~inverted triangles! for initial vol-
ume fractions greater than the melting value. The solid line is
fitted form given by Eq.~3! and the dotted line is the Zick-Homse
result for a settling fcc crystal. The long-dashed line gives
Batchelor result.
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6906 PRE 59BRUCE J. ACKERSONet al.
0.55! because the volume fraction correlation is done w
respect to fluid phases only.

Figure 8 shows the sedimentation velocity as a function
volume fraction for both particle types with data normaliz
by the dilute limiting sedimentation velocityU0 for each
particle type. These data are determined from the slope o
uppermost shock in each sample as described above. F
9 shows the crystal growth velocity determined from t
slope of the liquid-crystal boundary line. Below the freezi
volume fractionf freeze the crystals in the dense sedime
grow as columns, extending as long pillars from the c
bottom to the liquid-crystal interface. The columns are n
identical in thickness, but we determine an average colu
width by counting the number of columns that span a cer
distance~;2 mm! in the sample and dividing that distanc
by the number of columns counted. Figure 10 shows
average column width as a function of initial volume fracti
for two slightly different measurement techniques.

Light diffraction from the crystal sediment of the 500-n
particle systems evidences a distorted crystal lattice.
first-order Bragg scattering angle varies both as a functio
height in the sample and as a function of the scattering p

FIG. 9. Reduced crystal growth velocity shown as a function
the initial sample particle volume fraction. The inverted triang
are Davis-Russel data with Pep50.001– 0.023. The squares are da
for the 500-nm particles in this study with Pep50.165. The tri-
angles and circles are data for the 380-nm particles in this s
with Pep50.048. The dashed and solid lines are the predic
growth velocities given by Eq.~9! for sediments withfmax50.65
and 0.74, respectively. Forf.0.1 reduced velocities lie betwee
0.07 and 0.08.

FIG. 10. Average crystal width for 380-nm particle samples a
function of volume fraction. The solid curve represents width e
mates using the long-time self-diffusion coefficient and the das
curves two different short-time self-diffusion coefficients.
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with respect to the vertical direction. At particle volume fra
tions greater than 0.50, the hard-sphere freezing value, c
tals nucleate and grow homogeneously in the bulk bef
settling and being incorporated into a dense crystal sedim
The crystal structure is a registered random stacking
close-packed layers of particles@25#. The layers correspond
to ~111! planes in a fcc crystal if all the stacking faults a
eliminated in favor of a pure fcc form. The lowest-ord
powder pattern diffraction maximum results from reflectio
from these planes and the scattering angle is related to
separation of these planes. In Figs. 11 and 12 the volu
fraction is plotted based on the measured layer separatioa,
where f52.31Vsphere/a

3 and Vsphere is the volume of a
sample particle. Of course, this volume fraction assumes
crystals are not distorted, while the measured a val
change with orientation and indicate the crystals are d
torted. Corrections must be made for refraction of the ligh
the sample boundaries.

f

y
d

a
-
d

FIG. 11. Bragg scattering estimates of crystal volume fraction
a function of height in the sample of 500-nm particles. The squa
triangles, and circles correspond to 15, 27, and 35 days after m
ing, respectively. A vertical axis is coplanar with the scatteri
plane for the solid symbols and perpendicular to the scattering p
for the grey~lower! symbols. The initial volume fraction is 0.42
The connecting lines are a guide to the eye.

FIG. 12. Bragg scattering estimates of crystal volume fraction
15 days after mixing as a function of height in samples of 500-
particles. The initial volume fractions are 0.42 in the fluid pha
~squares as in Fig. 11! and 0.50 in the coexistence region~tri-
angles!. A vertical axis is coplanar with the scattering plane for t
solid symbols and perpendicular to the scattering plane for the g
~lower! symbols. The thick and thin solid curves are Kynch theo
predictions for maximum volume fractions 0.74 and 0.685, resp
tively. The dashed line is a solution to Eq.~13! having velocity
0.0695 and maximum crystal volume fraction 0.68.
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Figure 11 presents results for a sample with an ini
volume fractionf50.42. Here columnar crystals form an
grow up from the bottom. The Bragg scattering indicates t
the crystal is near maximum packing except near the
where the volume fraction decreases. The measured la
constant is smaller for those~111! planes not perpendicula
to the vertical axis. The crystal profile is shown for 15, 2
and 35 days after mixing. Figure 12 presents results fo
sample in the coexistence region with an initial volume fra
tion f50.50 and for thef50.42 sample shown in Fig. 11 a
15 days. For the larger volume fraction sample the crys
nucleate homogeneously in the bulk and settle. At 15 d
there is a dense compressed and anisotropic sediment g
ing up from the bottom with a fairly uniform but less den
crystal having volume fraction near the coexistent va
fmelt50.545 settling down from above. Note the similari
of the density profile where the two volume fractions ov
lap.

Settling experiments for greater than one earth gra
(1g) were performed using a modified swinging rotor tab
top centrifuge. A swinging rotor ensures that the parti
acceleration direction is parallel to the vertical axis of t
sample cells. This avoids the boycott effect and global c
vection present with a fixed rotor. The swinging arm w
lengthened so that the variation in the particle accelera
over the length of the sample is less than 10% of the m
mum acceleration~gravitational plus centrifugal!. Samples
were mixed by tumbling thoroughly overnight and then
ther centrifuged immediately or left to settle until a sm
amount of crystal begins to accumulate at the cell bott
before centrifugation. This was done to ensure that we w
testing the rate of crystal growth rather than simply the r
of nuclezation.

III. DISCUSSION

Davis and Russel@10# proposed a theory for the sedime
tation of hard spheres based on a one-dimensional contin
equation for the conservation of sphere number. They
sume the particle volume fractionf to vary with height in
the sample but otherwise to be uniform. The continuity eq
tion is

]f

]t8
1

]U0f

]x8
50, ~1!

whereU0f is the particle flux. Both convective and diffusiv
terms contribute to the flux as

U0f ~f!52fU0K~f!2D0K~f!
d

df
@fZ~f!#

df

dx8
.

~2!

In the convective term, the first term on the right-hand s
of Eq. ~2! U0 is the dilute limit sedimentation velocity de
fined previously andU5U0K(f) is the sedimentation ve
locity at finite volume fraction. Figure 8 shows a nearly e
ponential dependence of the reduced sedimentation velo
on volume fraction. The functional form

K~f!5exp@2f~6.013.0f!#, ~3!
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shown as a solid line Fig. 8, gives a good fit to the da
While this functional form fits the data as a whole, the fun
tional formK(f)5exp@2f(5.514.0f)# gives a better fit to
the smaller particle data. The small volume fraction exp
sion for either of these forms deviates from the ‘‘exac
results calculated by Batchelor@16# for hard spheres,K(f)
5116.55f1O(f2), shown as the long-dashed curve
Fig. 8. The experimental deviation from the Batchelor res
is not deemed significant given the simplicity of the fittin
form.

Also shown in this figure, as a dotted curve, is the p
dicted sedimentation velocity for a face-centered-cubic cr
tal lattice @17#. The particles are assumed fixed rigidly
position in this theoretical calculation. In the region whe
the crystal is thermodynamically stable, the sedimentat
velocities for the metastable fluid@Eq. ~3!#, the Zick-Homsey
prediction for a rigid fcc lattice, and the measured crys
sedimentation velocities are remarkably similar. Experim
tally, the particles are not rigidly fixed in position. In th
volume fraction range the crystals nucleate homogeneo
in the bulk and form a mass of finite-size randomly oriente
settling crystals.

The diffusion term in Eq.~2! accounts for particle diffu-
sion, the effect of interparticle direct interactions, and hyd
dynamic interactions. This term includes the dilute limit d
fusion constantD0 and the compressibility factorZ(f)
5P/nkBT, where P is the osmotic pressure andn
53f/4pR3 is the particle number density. The compres
ibility factor is evaluated using the equation of state for ha
spheres. For the fluid phase we use a fit to the Carnah
Starling equation@18#

Zf~f!5
0.904

~f20.731!210.0160
~4!

and for the crystal phase the Hall form@19# for a face-
centered-cubic crystal

Zc~f!5
2.17

0.7382f
. ~5!

Further details related to the chemical potential of the fl
and crystal phases and the volume fraction of fluid and cr
tal phases in osmotic equilibrium are given elsewhere@8#.
The approximation in Eq.~4! gives a good fit to the
Carnahan-Starling equation and does not diverge at ran
close packingf50.638.

If we scale distance and time to the height of the sam
H0 , dimensionless variables are introduced as

x5x8/H0 , t5U0t8/H0 ~6!

and the continuity equation becomes

]f

]t
2

]

]x
@fK~f!#5

1

Pe

]

]x S K~f!
d

df
@fZ~f!#

]f

]x D .

~7!

This equation holds for 0,x,1 with the sample Péclet
number given by Pe5U0H0 /D0 . The flux is zero,f (f)
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6908 PRE 59BRUCE J. ACKERSONet al.
50, at the top (x51) and bottom (x50) of the sample.
Approximate solutions of Eq.~7! describe much of the ob
served data@9#.

A. Kynch theory

The sample Pe´clet number Pe is much greater than un
~;2500 for the smaller particles and;6600 for the larger
particles! such that the term on the right-hand side of Eq.~7!
may be set to zero provided the compressibility factor a
the change of volume fraction with height in the sho
boundaries are not too large. When the diffusion term on
right-hand side of the equation is neglected, Kynch the
@9# results. This theory requires two experimental inputs,
reduced sedimentation velocity given in Fig. 8 and the v
ume fraction of the crystal or dense sedimentfmax accumu-
lating at the sample bottom. The dense sediment is assu
uniform in volume fraction.

The maximum possiblefmax for hard spheres is 0.74
which obtains for fcc, hexagonal-close-packed, or rand
stacked@20# crystalline structures. However, experimen
estimates offmax give smaller values. This results, in pa
from inefficient packing of particles in the interfacial regio
between crystals having different orientations in the colu
nar or polycrystalline structures. Furthermore, the anisotr
observed by Bragg scattering suggests that crystals are
torted in the dense sediment. The particles are more wid
separated~not close packed! in the horizontal direction as
compared to the vertical direction. Finally, the hydrodynam
drag forces increase as particle surfaces come close to
tact. Thus the time scale for closest packing may be larg

There are a number of ways to estimate the maxim
crystal volume fraction. For the sample shown in Fig. 1,
downward flux of particlesfU must equal the accumulatio
of dense sediment that is assumed of uniform volume fr
tion (fmax2f)Uc . While computer simulations indicate tha
particle polydispersity increases the value of the volu
fraction at freezing@21#, we have assumed the arrival o
identically sized particles withf50.041 for this sample. The
sedimentation velocityU is determined from the slope of
straight line fitted to the data represented by the circles
Figs. 1–3. The crystal growth velocityUc is determined
from the slope of a straight line fitted to the data represen
by the triangles. These assumptions and measurements
fmax50.041(11U/U0)50.6760.02. Alternatively,fmax is
estimated fromfmax50.041(H0 /HF)50.6860.01, where
H0 is the initial height of the sample, determined from t
sedimentation velocity fit and extrapolation to zero elap
time, andHF is the final crystal height measured at lon
times. Because the samples shown in Figs. 2 and 3 evid
fans, the former method of estimating the maximum crys
volume fraction is not valid. The latter estimate givesfmax
50.7060.01 and 0.67060.01, respectively, assuming th
last data point for each series represents a fully compre
and uniform crystal. Further compression will produce larg
estimates and this may be especially true for thef50.22
sample. The estimated maximum volume fraction values
less than 0.74.

Kynch theory utilizes the flux curve given byfK(f) as
shown in Fig. 13. The data are obtained from Fig. 8
multiplying reduced sedimentation velocities by correspo
d
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ing volume fractions to obtain the particle flux. Similarly, th
solid curve obtains from the fitted form given in Fig. 8. Th
dashed curve is the flux for a fcc crystal predicted by Z
and Homsey@17#. The squares are experimentally dete
mined flux values for a polycrystalline sediment in the coe
istence region@14#.

The lines shown in Figs. 1–3 represent positions in
sample where the volume fraction undergoes a rapid cha
with height. In Kynch theory, which neglects particle diffu
sion, this change is discontinuous. Except for fan regions,
volume fraction is uniform on either side of the discontinu
ties or ‘‘shocks.’’ Conservation of particle number predic
the dimensionless shock speed as

Ushock52
@f1K~f1!2f2K~f2!#

@f12f2#
, ~8!

wheref1 andf2 are sample volume fractions on either si
of the shock boundary. Simply put, the speed of the sh
times the volume fraction difference across the shock eq
the net flux of particles into the shock region to mainta
particle conservation locally.

Shocks are represented as straight lines on the flux c
graph. For example, the tie lineB in Fig. 13 represents a
sample with a small initial volume fraction. This tie lin
connects the initial volume fractionf250.045, with the
maximum volume fractionf15fmax50.74 in the dense
sediment. Since it is tangent to the flux curve atf50.615,
this is the limiting tie line~largestf2! for f15fmax50.74.
There is another shock in the sample from zero volume fr
tion ~the clear supernatant! to f250.045, the initial volume
fraction. Since the dense sediment is constrained from m
ing by the cell bottom, the flux at maximum volume fractio
is set equal to zero,fmaxK(fmax)50. Thus the sample ha
two shocks separating three regions of different but unifo
volume fraction.

These two shocks determine the lines shown in Fig.
The slope of the lines depends, of course, on the value

FIG. 13. Particle flux data~filled circles! for both the 380-nm
particle and 500-nm particle samples as a function of volume fr
tion. The squares are flux data for polycrystalline sediments
500-nm particles in the coexistence region. The solid curve is
rived from Eq.~3!. The dashed curve is the flux for a fcc cryst
determined by Zick and Homsey. The straight lineA represents a
shock separating the initial volume fraction from a denser volu
fraction at the top of a fan. The straight lineB represents a shock
separating the initial volume fraction from a dense sedimen
fmax50.74.
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the volume fractions on either side of the shock. For
ample,

Usediment5
fK~f!

fmax2f
~9!

gives the dense sediment growth velocity, where there
zero flux at the maximum volume fraction and the fluid vo
ume fraction above the dense sediment isf. Within the
Kynch theory approximation, we identify the growth of th
dense sediment with the crystal growth velocityUsediment
5Uc . This dimensionless crystal growth velocity is com
pared to data in Fig. 9. The velocity of the crystal grow
increases with increasing initial volume fraction. Here t
crystal grows as fast as material can be supplied. The da
line is the velocity predicted iffmax50.65 and the solid line
if fmax50.74. The lower dense sediment volume fracti
dashed curve fits the data by Davis and Russel@9# better than
the larger volume fraction solid line. Our data fit the larg
volume fraction curve better, though the error is large. T
comparison is another method to estimate the volume f
tion of the dense sediment.

To represent physically allowed states, the tie lines in F
13 must remain below the flux curve. Thus tie lines direc
from the initial volume fraction to the maximum packin
may be made provided the initial volume fraction is less th
f50.07, if fmax50.65, and decreasing to 0.045 iffmax
50.74 for a flux curve determined solely by Eq.~3!. For
initial volume fractions greater than;0.07, the tie line to
fmax intersects the flux curve and represents an unstable
dition. The tie line now must extend from the initial volum
fraction to a volume fraction where it is tangent to the fl
curve ~line A in Fig. 13!. Thus, solving

d@f1K~f1!#

df1
5

@f1K~f1!2f2K~f2!#

@f12f2#
~10!

for f1 gives the volume fraction where the tie line is tange
to the flux curve. The other volume fraction (f2) is the
initial volume fraction. There is a second tie line that is a
tangent to the flux curve and extends tofmax at zero flux.
This tie line represents a shock between the dense sedi
~at fmax5f250.65, for example! and the less dense colloida
fluid (f150.51, in this case!. The predicted value of the
fluid volume fractionf1 in contact with the dense sedime
is highly dependent on the functional form ofK(f) and on
the value offmax. If the form of the reduced sedimentatio
velocity that fits the smaller particle data better,K(f)
5exp@2f(5.514.0f)#, is used with the samefmax50.65,
thenf150.52. If fmax is increased to 0.66, there is a furth
increase in the colloidal fluid value tof150.53. However,
given a unique form for the flux curve and a singlefmax
Kynch theory predicts that the same volume fraction of c
loidal fluid is in contact with the growing dense sedime
independent of the initial volume fraction, provided this vo
ume fraction is greater than;0.07. Since the colloidal crys
tal grows in response to the fluid concentration adjacent t
the crystal growth rate saturates and becomes constan
volume fractions greater than;0.07, as seen in Fig. 9.

Between the two~tie line! tangent points on the flux
curve, there is a fan region, where the volume fraction
-

is

ed

r
s
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.

n

n-
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ent

-
,
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-

creases continuously with decreasing height. In the sam
each of these volume fractionsf moves upward in time with
a velocity equal to the slope of the flux curve at that volum
fraction

Vfan~f!52
d@fK~f!#

df
, ~11!

The predictions of Kynch theory are shown in several figu
above. In Figs. 1–3 the boundary between the clear supe
tant and the uniform suspension with the initial volume fra
tion is a line having slopeK(f) determined using Eq.~3!.
Equation~9! with K(f) and fmax50.65 predicts the dens
sediment~crystal! boundary represented by a dash-dott
line. The crystal growth velocity depends on the initi
sample volume fraction forf,0.070. Forf.0.070, a fan is
present and the fluid volume fraction in contact with t
crystal is independent of the initial volume fraction. It
predicted by equating Eqs.~9! and~11! with the fan velocity
set equal to the sediment velocity. The reduced cry
growth velocity is constant in this region and determin
from either Eq.~9! and~11! once the fluid volume fraction is
known. Thus Kynch theory rationalizes the observed crys
growth behavior displayed in Fig. 9. When there is an int
nal fluid/fluid shock from the initial volume fraction to
denser fluid volume fraction, the shock boundary~as ob-
served in Figs. 2 and 3! is determined by Eq.~8! using ap-
propriate volume fraction values on either side of the sho
These internal fluid/fluid shock speeds predicted for init
volume fractionsf50.0124 and 0.22 are 0.13 and 0.17, r
spectively. Fitting the shock boundaries~squares! to a
straight lines give experimental shock speeds 0.13060.004
and 0.1860.03, respectively. This simple Kynch theor
gives a good fit to the data.

There are problems with the previous application
Kynch theory to interpretation of the data. First, the volum
fraction of the dense sediment that gives a good fit to
crystal growth velocities isfmax50.65, a smaller value than
the theoretical crystalline dense packing of hard sphe

FIG. 14. Kynch theory construction including a compressib
settling crystal phase. The dashed line is the metastable fluid
curve, while the light solid line is the flux curve from the Zick
Homsey calculation. The dark solid line betweena andb is the fluid
to crystal shock boundary, while the dark solid line betweenc and
zero flux is the shock boundary from the crystal fan to the de
crystal sediment.
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~0.74! and less than all experimental estimates of the de
~crystal! sediment described earlier. Second, there is no
plicit treatment of a phase transition between liquid and cr
talline phases. Third, the dense sediment is assumed uni
in volume fraction, contrary to the Bragg scattering volum
fraction estimates given in Figs. 11 and 12. We address th
concerns in the following construction for the fluid-cryst
phase transition region.

Figure 14 shows the experimentally determined flux cu
for the colloidal liquid state~dashed line! extended into the
metastable fluid region. Also shown is the theoretical res
of Zick and Homsey@17# for a rigid face-centered-cubic lat
tice ~solid line! that describes well the measured fluxes
settling of a polycrystalline hard-sphere solid. If we requ
the osmotic pressures to balance on either side of a slo
moving fluid-crystal interface~mechanical equilibrium!, the
crystal volume fraction may be determined in terms of
metastable fluid volume fraction by using the hard-sph
equations of state. In this way tie lines from the fluid flu
curve to the crystal flux curve may be constructed as sho
by the line segmentAB in Fig. 14. The tie line represents
shock whose speed is given by Eq.~8!, wheref1 is the fluid
volume fraction andf2 is the crystal volume fraction in the
immediate vicinity of the fluid-crystal interface. The flui
volume fraction is fixed theoretically by requiring the sho
speed to match the crystal growth velocity. Later we desc
this matching procedure using the Williams-Frenkel grow
law, which gives the crystal velocity in terms of the met
stable fluid volume fraction at the fluid-crystal interface. Th
solves the Kynch level problem, provided a solution exi
and that the solution is stable. It should be noted that Da
and Russel solve this problem in a different way@9#. They
require the osmotic pressure to balance across the fl
crystal interface, as do we. However, they require the tie
to be tangent to the fluid flux curve atf1 . Thus the fluid-
crystal interface grows parallel to one of the lines of const
volume fraction in the metastable fluid fan region. The d
tails of matching the crystal end of the tie line with the cry
tal flux curve are not considered. Such additional constra
would overdetermine the problem giving no solution in ge
eral.

For the moment we assume that our Kynch solution ex
and concentrate on the stability of this solution. Note that
the tie line drawn in Fig. 14 the slope of the line is less th
the slope of the fluid flux curve on the fluid side atf1 but
more than the slope of the crystal flux curve on the crys
side atf2 . In this way the fluid, fluid-crystal, and crysta
regions stay in the same order as the interface moves.
crystal region does not overtake the fluid-crystal interfa
for example. This is required for stability of the constructio
Furthermore, the fluid-crystal interface is asymptotica
stable in the following sense. If the interface is displace
small amount, there are no forces to return it to the origi
position nor to move it further away. However, as the grow
continues and the fans and connecting regions expand
relative position of the interface approaches the original
sition asymptotically. Corrections to the Kynch theory, w
an increasing volume fraction as the interface is approac
on the fluid side, will be absolutely stable for volume fra
tions between freezing and melting as discussed by D
and Russel@9#.
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Figures 5–7 show the measured particle volume fract
as a function of height for the smaller particle samples w
initial volume fractions 0.124, 0.22, and 0.44 at times 68
760, and 760 ks after mixing, respectively. The solid lin
represent the predictions for volume fraction from the Kyn
theory taking crystallization into account. Of course, we e
pect no fit in the crystal region (f.0.5) because no DLS
correlation function measurements were made in unifo
crystals as a function of volume fraction. In the upper reg
of the suspensions, the volume fraction is uniform and eq
to the initial volume fraction. Presumably, the failure of th
f50.124 sample to produce this volume fraction in the u
per regions is due to representing the data in Fig. 4 by
best-fit straight line as shown. The sample volume fract
remains uniform down to the fluid-fluid shock region
samples with initial volume fractions 0.124 and 0.22. Th
there is a sharp increase in volume fraction with height in
shock followed by a slower increase in volume fraction
the fan region, as the height in the sample decreases
sharp increase in volume fraction, or fluid-fluid shock,
predicted or observed for the most concentrated sample
initial volume fraction 0.44. The qualitative agreement b
tween theory and experiment is good given the limited re
lution of the experimental method and the neglect of dif
sion in the theory, which both contribute to a smoothing
any volume fraction discontinuities. The volume fractio
variation in the fan is well represented. To plot Kynch theo
for the phase transition region, we assume a reduced cry
fluid velocity of 0.0735 to agree with the average ‘‘co
stant’’ velocity at large volume fractions (0.07660.003).
Further, for purposes of illustration, we assume the theor
cal maximum packing~0.74! for the crystal in the dense
sediment. Under these assumptions, both the metastable
and the crystal volume fractions are within fan regions
their respective flux curves. Using the hard-sphere equat
of state and Eq.~8! for the crystal growth velocity gives
0.500 and 0.553, respectively, for the fluid and crystal v
ume fractions at the phase boundary. These volume fract
extend uniformly away from the interface until interestin
the liquid or crystal fans as shown in Figs. 4–6. The veloc
of the fluid fan intersection point is 0.0823, while the crys
fan intersection point velocity is 0.064. The uniform volum
fraction regions on either side of the phase boundary exp
in time just like the fan regions. The shock boundary fro
the crystal to the dense crystal sediment connects volu
fraction 0.612 with 0.74 and propagates with velocity 0.03

Decreasing the maximum volume fraction of the sedim
reduces the volume fraction in the crystal fan where
shock occurs. Figure 12 shows this effect explicitly. T
thick solid curve shows the Kynch theory just described a
applied to the volume fraction estimates from Bragg scat
ing for the larger particle samples. The thin line gives Kyn
theory for a maximum volume fraction 0.685, which is clos
to our estimates given earlier and that value where the cry
fan is completely eliminated. For this maximum volum
fraction value, there is no crystal fan predicted, only a jum
from the volume fraction value at coexistence to the de
sediment value. The Kynch theory cannot describe the
served volume fraction anisotropy.

Also shown in Fig. 12~squares! are data for an initial
volume fraction below the freezing value. These cryst
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grow as long columns. They exhibit the same density pro
as samples with initial volume fraction within coexisten
region values~triangles! that produce a polycrystalline sed
ment. Above the dense sediment the polycrystalline solid
uniform density. The Kynch theory with a maximum packin
fraction 0.74 does not produce a satisfactory volume frac
profile for either starting volume fraction. For a maximu
packing fraction equal to 0.685, the theoretical profile
more representative. However, the data are much smoo
than the theory. Finally, we note that the measured volu
fractions appear systematically high, given the expec
crystal volume fraction in the coexistence region. This va
~0.545! should obtain at large times in the upper portion
the crystal before compression occurs in the fan and de
sediment, but measurements indicate a value;4% larger.
Alternatively, crystals homogeneously nucleated in me
stable fluids are compressed by larger than equilibrium
motic pressures. Crystals so formed may not have yet
laxed to the equilibrium volume fraction.

B. Wilson-Frenkel growth law

The Wilson-Frenkel growth law predicts crystal grow
velocities that depend on the metastable fluid volume fr
tion f in contact with the crystal interface. The growth v
locity is given by

Ug5
f 0Ds

RU0
@12exp~dm/kBT!#5

f 0Ds

PepD0
@12exp~dm/kBT!#,

~12!

wheredm is the difference in chemical potential between t
crystal and metastable liquid at the interface. We calcu
this chemical potential difference, assuming osmotic equi
rium between the liquid and crystal phases, using equat
of state determined from computer simulations@8,9#. The
kinetic coefficient combines a particle self-diffusion consta
divided by a particle radiusDs /R to estimate particle ‘‘ve-
locities,’’ with a particle sticking coefficient given byf 0 @9#.
Division by the dilute solution sedimentation velocityU0

FIG. 15. Reduced crystal growth velocity@Uc5Ug2K(f)# at
Pep / f 050.85 ~short-dotted line!, 0.49 ~dash-dotted line!, 0.14
~dash–double-dotted line!, 0.014~long-dashed line! as a function of
metastable fluid volume fraction. The reduced liquid fan velocity
shown as a light solid line and the crystal velocity from Eq.~8! as
a dark solid line. Acceptable solutions for our samples occur af
50.523 andUc50.61 for the 500-nm particles at 1g and f
50.502 andUc50.70 for the 380-nm particles at 1g.
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scales this velocity the same as other velocities discussed
renders it dimensionless. The observed crystal growth ve
ity Uc5Ug2Kc(f) is less than the Wilson-Frenkel estima
because the crystal settles in the gravitational field.

Figure 15 presents the measured crystal growth velo
Uc , where we assume a ‘‘short-time’’ self-diffusion consta
having the form@22# Ds5D0(12f/0.64)21.17. As f ~the
metastable fluid volume fraction in contact with the growi
crystal! tends to the freezing value, the chemical poten
difference and growth velocityUg tend to zero. The growth
velocity is thermodynamically limited. As the volume frac
tion increases above the melting value, the growth veloc
decreases due to hydrodynamic drag effects. This dimens
less form of the growth velocity depends only onf and
Pep / f 0 . The growth velocityUc is shown for several differ-
ent values of Pep / f 0 .

When the fan curve@given by Eq. ~11!# intersects the
Wilson-Frenkel curve, both represent the same reduced
locity. Russel and Davis@9# argue that only the lower vol-
ume fraction of two possible intersection values is stab
Further, they argue that the lower volume fraction inters
tion point determines the observed crystal growth velocity
given fan volume fraction is in contact with the crystal. Th
crystal grows in response to this volume fraction accord
to the Wilson-Frenkel law and both move together with t
same velocity in a stable fashion. If the Pep value is in-
creased by increasing particle size or by centrifugation, t
the intersection point of interest moves to larger volume fr
tion until the fan curve fails to intersect the Wilson-Frenk
curve. For sufficiently large Pep , no crystal can grow and a
glassy sediment results.

The Davis-Russel model assumes a crystal formed at
maximum dense sediment volume fraction, so they may
glect any sedimentation of the crystal in comparing the
with experiment. Furthermore, we have argued that wit
the Kynch theory including a liquid to crystal phase tran
tion, there is an expanding region of uniform crystal a
metastable liquid on either side of the phase boundary.
interface is not in direct contact with the fan and therefore
not constrained to match the fan velocity. However, parti
number must be conserved such that the interface veloci
given by Eq.~8! using the liquid and crystal volume fraction
immediately on either side of the interface. The predicti
for this velocity, assuming an osmotic pressure bala
across the interface, is shown in Fig. 15 as a dark solid l

To determine f 0 within this model we centrifuged a
smaller particle sample at variousg values. We were carefu
to allow some crystal to form in the bottom under 1g before
centrifugation. It is possible that nucleation of column
crystals can be suppressed before crystal growth is s
pressed. Thus pre-existing crystals eliminate nucleation c
straints. The sample failed to crystallize when the centri
gation was greater than;6g. The dotted curve in Fig. 15
corresponds to this 6g limiting value, where Pep / f 0
(50.85) marks the boundary between crystallization a
glass formation. The correspondingf 0 value is 0.34, which
agrees reasonably well with 0.27, a value determined
molecular-dynamic simulations of a Leonnard-Jones fl
@23#. Using this value forf 0 determines the dash-dotte
curve for the larger particle samples at 1g and the dash–
double-dotted curve for the smaller particle samples atg.
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The corresponding predicted crystal growth velocities
0.61 and 0.70, respectively. This is somewhat lower than
observed values that lie between 0.70 and 0.80, but the
row range of observed velocities is predicted. For Pep / f 0
values tending to zero, the velocity reaches a maxim
value 0.735. Thus the theory has the same span in pred
velocities as seen in experiment, though smaller in abso
magnitude, for the same range in Pep . Using a long-time
self-diffusion approximation in Eq.~12! will move the maxi-
mum velocity to smallerf values and, consequently, larg
velocities in Fig. 15. However, this requires unaccepta
larger ~by an order of magnitude! values forf 0 .

C. Beyond Kynch theory

The Kynch theory for the growth of columnar crysta
with an initial volume fraction less than;0.07 posits a jump
from the initial volume fraction to the maximum packin
fraction possible. These volume fractions lie outside
range of allowable values (0.494,f,0.638) used in the
Wilson-Frenkel theory. As shown in Fig. 9, the velocity
the crystal phase boundary goes to zero as the initial volu
fraction tends to zero. This is quite different from predictio
of the Kynch theory solution in the fan region for initia
volume fractions greater than 0.07. Here the Wilson-Fren
growth law is consistent with a very narrow range of reduc
crystal growth velocities, also observed experimentally
shown in Fig. 9. We wish to understand how Wilson-Fren
theory applies to the low initial volume fraction (f,0.07)
suspensions.

Experimentally one observes a more dense colloidal fl
in contact with the growing crystal compared to the unifo
colloidal fluid above. This more dense region moves up w
the crystal without expanding into a fan. It is the result
diffusive broadening. Since the fluid and crystal sedimen
tion rates are measured and the equations of state know
hard spheres, the relative magnitude of the convective
diffusive terms may be calculated. From these calculati
we expect the Kynch theory to be marginal for our samp
in the crystalline phase. This explains some of the failure
Kynch theory to fit crystalline data.

The Kynch theory results from the zeroth-order equat
in a large Pe perturbation expansion of the ‘‘outer solutio
of Eq. ~7! @10#. In this expansion, convection is dominan
‘‘Resolution of the continuous variation off within the sedi-
ment boundary layer’’ requires an ‘‘inner’’ expansion@10#,
which scales lengths on Pe21. The zeroth-order solution
have volume fraction profiles that translate uniformly
time. Thus we assume a solution of the formf(Y)
5f(Pe@x2Lt#) for Eq. ~7! in the boundary layer regions. I
this way the time derivative is replaced by a spatial deri
tive times2L. The whole equation is integrated with respe
to Y to find

D~f!
df

dY
5L~f02f!1f0K~f0!2fK~f!, ~13!

whereD(f)5K(f)$d@fZ(f)#/df%. For the colloidal fluid
region above the crystal phase boundary at low initial v
ume fractions or for the fluid shock region at larger init
volume fractions,f0 is the initial volume fraction and
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f (f0)5f0K(f0) is the flux of particles at this volume frac
tion. Whenf5f0 , the volume fraction is constant in spati
variable Y, as indicated by a zero-value spatial derivativ
Alternatively, in the crystal phase at the sample bottom, th
is a different boundary condition. The volume fractio
reaches its maximum valuef05fmax and f (f0)
5f0K(f0)5fmaxK(fmax)50. Thus two equations, one fo
the fluid phase and one for the crystal phase, may be der
using appropriate boundary conditions for each phase. S
lar considerations lead to an appropriate equation for
clear supernatant-uniform initial volume fraction shock pr
file @10#. Each of the resulting equations is integrated w
respect toY to determine~moving! spatial volume fraction
profiles.

Figure 16 shows volume fraction profiles for the liqu
phase~dark line! with initial volume fraction 0.0225 and the
solid phase~light line! with maximum volume fraction 0.68
with Pe56600. Each solution profile represents a const
particle flux, but the flux for the solid and the liquid solution
differ in general. The reduced velocity of the shock given
Kynch theory@Eq. ~8!# is 0.03 for these boundary condition
This is also the translational velocity of both the liquid a
crystal profiles if they are to move together. The motion
the shock profile represented by the phase transition m
also have the same reduced velocity but given by
Wilson-Fenkel law~see Fig. 15!. This latter constraint fixes
the liquid and crystal volume fractions at the phase bound
to be 0.5105 and 0.5660, respectively, shown as horizo
dashed lines in Fig. 16. Thus the phase boundary is at
spatial origin in this figure. The theory predicts a dense fl
region of thickness;0.01 cm in contact with the crystal. Th
thickness does not increase in time, as a fan does, an
consistent with experimental observations. For sma
growth velocities, the liquid volume fraction in contact wit
the crystal must move closer to the freezing value.

Now we consider the volume fraction profile for the cry
tal presented in Fig. 12. The dashed curve is a solution to
~13! for a maximum crystal volume fraction 0.68. Th
growth or translational velocity of this profile is 0.0695 an
reasonably consistent with experimental observations.
have already stated that the measured volume fractions
probably systematically large. If they are scaled to sligh

FIG. 16. Volume fraction versus sample height profile genera
from Eq. ~13! for the larger particle samples. The volume fractio
indicated by the dashed lines correspond to crystal and fluid va
that have the same theoretical osmotic pressure and reduced v
ity ~0.03! due to crystallization as the fluid~dark line! and crystal
~light line! profiles.
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smaller values then there is good agreement with the da
line. Both samples with initial volume fractions above a
below the freezing value are shown. This first-order diffus
broadening of Kynch theory represents the data well. T
solution to Eq.~13! for the maximum crystal volume fractio
0.74 produces a crystal shock boundary with much slo
translational velocity, similar to the translational velocity
the Kynch theory at the base of the fan. While the data in
cate crystal anisotropy, which is not included in the theory
seems clear that there is very little crystal fan region. T
maximum crystal packing must be less than 0.74 and clo
to 0.68.

Further approximate solutions@10# may be developed an
are quite complex. It is possible that a crystal fan is pres
but obscured by diffusive effects represented in higher-or
approximations. Without more accurate data and a the
including crystal anisotropy, we will not develop these so
tions further. However, these approximate solutions are
veloped with respect to the underlying Kynch theory p
sented here.

D. Column width issues

Figure 10 shows that the measured average width of
dense sediment colloidal crystal columns increases with
creasing volume fraction. Recall that the crystal growth
locity saturates for initial volume fractions greater than 0.
because the fluid volume fraction in contact with the crys
is the same for all samples with a fluid fan. Thus the crys
column width must be determined early in the process be
the fan develops. One possible explanation is that the c
tals initially laid down on the bottom of the container in
crease in size with increasing volume fraction. This is co
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trolled by how well particles can diffuse to crystal site
before they are locked into position by the settling of p
ticles on top of them. This is the same argument given for
creation of a glass if the acceleration of gravity is increas
beyond a certain magnitude. This argument suggests
crystals form, if there is sufficient horizontal motion~diffu-
sion! of particles relative to the vertical settling motion. L
S5@Dst#

1/2 be the distance that a particle diffuses horizo
tally in a time t. The average vertical distance the partic
falls in the same time is given byA5Ut5U0K(f)t. Let t
be the time taken to fall a particle radiusR. Then with self-
diffusion constants@22,24# given by Ds5D0(12f/f lim)a,
with f lim50.58 anda51.74 ~long-dashed line!, 2.6 ~short-
dashed line! for the short-time self-diffusion estimates an
f lim50.64 anda51.17 for the long-time self-diffusion co
efficients, we have

S

R
5A D0

U0R
AS 12

f

f lim
D a

K~f!
. ~14!

When scaled as in Fig. 10, this functional form brackets
data. However, the characteristic length given
@D0 /U0R#1/254.5 is two orders of magnitude too sma
This argument suggests that the column length scale is
termined early on in the settling process, before height in
mogeneities develop.
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