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Polymer depletion effects near mesoscopic particles
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The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing
polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free
energy for immersing a single particle in the solution is calculated explicitly. Important features are qualita-
tively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the
validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experi-
mental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall,
and between two small spheres, quantitative results are presented. A systematic approach for studying effective
many-body interactions is provided. The common Asakura-Oosawa approximation modeling the polymer coils
as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.
[S1063-651%99)01406-3

PACS numbg(s): 61.25.Hq, 05.70.Jk, 68.35.Rh, 82.70.Dd

I. INTRODUCTION mented as the purely geometrical restriction that the chain
must not intersect the particl@2]. For our investigations we
In colloidal suspensions the depletion interaction betweemise an Edwards-type moddl5,17,1§ for the polymer chain
mesoscopic dissolved particles and nonadsorbing free polyvhich allows for an expansion in terms of the EV interaction
mer chains represents one of the basic and tunable effecti&nd which is amenable to a field-theoretical treatment. The
interactions(see, e.g., Reff1] for a review. For example, basic elements in this expansion are partition functions
adding free polymer chains to the solvent of a colloidal soZoj(r.r") for chain segments without EV interacti¢as in-
lution leads to an effective attraction between the particleslicated by the subscrig0]) and with the two ends of the
which may lead to flocculatiof2]. For two individual col- ~ segment fixed at andr’. In this coarse grained description
loidal particles or for a single particle near a planar wall thisthe interaction of the nonadsorbing polymer with the particle
effective interaction can be measured even dirg@l]. In IS implemented by the boundary condition that the segment
view of its importance it is surprising that for a long time the partition function vanishes asor r’ approaches the surface
interaction between polymers and colloidal particles hasS of the particle[15,19, i.e.,
been modeled only rather crudely by approximating the
polymer chains by nondeformable hard sphéfe$,3,4. Zjgy(r,r')—0, r—S. (1.9
Chain flexibility has been taken into account only more
recently. Mainly the following two cases have been consid-Equation(1.1) also applies for long walks on a lattice which
ered: (a) strongly overlapping chaingsemidilute solution =~ Must not visit the region occupied by the mesoscopic particle
which are described within a self-consistent field theory of12] provided one considers the variation of the partition
within the framework of a phenomenological scaling theoryfunction on length scales much larger than the lattice con-
[6—9]; (b) nonoverlapping chainglilute solution whichto a  Stant.
certain extent can be modeled by random walks without self- The only relevant property which characterizes one of the
avoidance(ideal chains [10—14. In three dimensions this interacting polymer chains is its mean square end-to-end dis-
latter situation is closely realized in a theta solvEt]. tanceRé in the absence of particles and other chains. Within
Besides presenting some new results for ideal chains, thide perturbative treatment of the EV interaction it will be
main emphasis of the present contribution is on the generibecessary to generalize the three-dimensional space to a
case of agoodsolvent and we investigate systematically thespace oD spatial dimensions. In this respect it is convenient
consequences of the ensuing excluded volume interactidid 7] to introduce
(EV interaction [16] on depletion effects in a dilute and
monodisperse polymer solution. The interactiorianfy flex- RE=REID, (1.2
ible chains with mesoscopic particles leadsutiversalre-
sults which are independent of most microscopic detailghe mean square of the projection of the end-to-end distance
[15,17-19 and depend only on a few gross properties suctvector onto a particular direction, say, thkeaxis, in the
as the shape of the particles. By focusing on such systems wg-dimensional space. For industrially produced polymers
obtain results which are free of nonuniversal model paramsuch as polystyrene, values Bf up to the order ojum are
eters. Due to the universality of the corresponding propertiesasily accessible.
it is sufficient to choose a simple model for calculating these The simplest particle shapes relevant for applications are
results. For example, in a lattice model the interaction bespheres and rodkl] but the particles can also have more
tween a particle and a nonadsorbing chain can be implecomplex structures such as those of closed bilayer mem-
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branes in the case of vesiclg20]. We note that the radiug FO=RIY, p(x), (1.5

of spherical particles can be quite small as compared to ac-

cessible values oRR,, e.9.,R~0.012 um in the case of whereY, is a universal scaling function of the scaling
Ludox silica particles[21]. Rodlike objects are provided, variable

e.g., by fibers or colloidal rodg22], semiflexible polymers

with a large persistence length, such as actin for which X=Ry/R. (1.6)
/y=~17 pum [23], and microtubuli[23]. The ratio of the _ . _ . ) .
Iepngthl gnd t[he]radius? of rodlike E)arlticles may be of the O |dezazlid():ha|n$no EV interactiop andd fixed the f(‘i?Ct'o”
order of 40 or larger, in conjunction with a quite small radius Y&.0= Ya IS independent oD(id()compare | wheref was
such asR~0.007 m in the case of colloidal boehmite rods denoted assfy). Results forYy™ for d=3 (spher¢ andd
[22]. As the interaction between rodlike particles and poly-= 2 (cylinden) have been given in Ref11]and in I. Here we
mers is concerned, we consideng rods, i.e.R,R,<I, and ~ calculate the scaling functiolyp(x) for chains with EV
neglect effects which may arise due to their finite lergth ~ interaction perturbatively in terms af=4—D with the up-
order to be able to treat spheres and cylinders in a unifie@€r critical dimensiorD,.=4. In particular, we investigate
way and in general dimensionality, we are thus led to conthe following features of (.

sider ageneralized cylinder Kwith an infinitely extended (@) Forshortchains, i.e.x<1, we assume thaty p(X) is
“axis” of dimension 8. Such a generalized cylinder has beenanalytic so that it can be expanded into a Taylor series
introduced in Ref[14], hereafter denoted as I. The “axis” aroundx=0. This is plausible since for short chains the
can be the axis of an ordinary infinitely elongated cylinderthickness ~R, of the polymer depletion layer is much
(6=1), or the midplane of a slabS&D—1), or the center smaller than the particle radius so that a small curvature
of a sphere §=0). For general integel and & the explicit ~ expansion is applicable " in which a volume term-R?

form of K is is followed by a surface term-RY"! and by successive
terms~R%72, RY73 etc., generated by the surface curva-
K={r=(r, ,r) e RP7°xR%r,|<R} (1.3  ture. We note, however, that it can be rather difficult to ac-

tually prove this assumption.
with r; andr perpendicular and parallel to the axis, respec- The first Taylor coefficients of the expansion 6§ p(x)

tively. Note thatr, is ad-dimensional vector with aroundx=0 also determine the curvature energies of a par-
ticle £ of more general shaperovided its surfaceS is
d=D-56. (1.4  smooth and all principal radii of curvature are much larger

than the polymer siz&k, (compare Ref[25] and ). Con-
The radiusR of the generalized cylindé is the radius in the  sider the increas&  in configurational free energy upon
cases of an ordinary cylinder or a sphere and it is half of thémmersing a particléC with finite volumeuv . into the dilute
thickness in the case of a slab. For the slab the geometrgolymer solution with bulk pressune,kgT. Due to general
reduces to the much studied case(tfo decoupleyl half  argumentd26] in three dimensions one expects an expan-
spaceg19]. We stress that the generalizationdfto values  sion of the Helfrich-typd27]
different from 3 is introduced only for technical reasons be-
causeD =4 marks the upper critical dimension for the rel- _ _ 2
evance of the EV interaction in the blk5,17,18. Eventu- Fre=Npks Tvc= fst{AU+AK1Km+AK2Km+AKGKG
ally we will be interested in—and will obtain results for—the
experimentally relevant casB =3. These results concern T} (1.7a
the solvation free energy for a single particle and the deple- .
tion interaction between patrticles. with the local mean curvature

1/1 1
A. Solvation free energy of a particle Km:§<R_1 + R_z) (1.7

We consider the increase in configurational free energy of )
a dilute solution of long flexible polymers with number den- @1d the local Gaussian curvature
sity n, upon immersing a single particle. Fér0 we actu- _
ally consider a generalized cylinder with a large finite Ke=1/(RiR2), (.79
axis lengthl® (i.e., an ordinary cylinder with axis lengthor  \hereR, andR, are the two principal local radii of curva-
a slab with cross section aré8 ') and study the increase ture. We use the convention thgf,R,>0 means that the
nefi) in free energy pekgT and perl? in the limit |,  phoundary surface is bergway from the polymer solution
for which | drops ouf 24]. For a spherenpf&l) is simply the  located in the exterior ofC. Provided that the expansion
free energy increase pkgT. The additional increase in free (1.73 is valid, the surface tensioAo and the curvature
energy upon immersing the particle in the polymer-fie,  energiesA«;, Ak,, and Axg are determined uniquely by
n,=0) solvent is regarded as a background term which, inhe special cases that is a sphere and a cylinder, respec-
an experiment, can be determined separately. In thévely. Our explicit results foiy p(x) provide a strong indi-
asymptotic regime where botR, and R are large on the cation that the Helfrich-type expansigh.7) is indeed valid
microscopic scalé¢such as the monomer length or the diam-and, moreover, does yield quantitative estimates of the sur-
eter of the solvent molecule# turns out thatf(Kl) takes the face tension and of the curvature energies for the polymer
scaling form depletion problem in the presence of EV interaction. These
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(b) Forlong chains, i.e.x>1, a single chain can deform
in order to avoid the space occupied by the particle and coil
around a spherical or rodlike partideee Fig. 1b)]. In this
case it turns out thaYy H(x) exhibits a power law

Yq.p(X—)—Ag px*” (1.8

with a dimensionless and universal amplitudg, pro-
vided

d>1/v, (1.9

so thatf{!) vanishes foR—0 [see Eq(1.5)]. Herev is the
Flory exponent characterizing the power-law dependence
R «~N” of R, on the numbeN of monomers per chain ¥
is large. The properties described by E@s.8 and (1.9
follow from a small radius operator expansi¢8RE (see
Sec. | B below.
(b) Finally, we emphasize tha‘lf<1) is experimentally acces-
sible by monitoring the dependence of the number demsity
FIG. 1. Situations of short and long chains in which the limiting Of the colloidal particles on the number density of the
behavior of the scaling functioly 5(R,/R) can be applied(a) polymers in a sufficiently dilute solute of immersed particles
For R,<R the functionY, , determines the change of the surface which is in thermal equilibrium with a surrounding ideal gas
tensionAo and curvature energieAx;, Ak, and Axg in the phase with given partial pressupéo) of the particleq30].

Helfrich-type expansior{1.7) of a membrane upon exposing one Accordingly n. is determined by a Henry-type law
side of it to a dilute polymer solutiorib) For R,>R the polymer

can deform in order to avoid the space occupied by the particle and (0)
coil around a sphericdlor rodlike) particle and the functiofYy ne= € AL (1.108
exhibits the power law1.8) with the Flory exponent. ksT

values are the extra contributiofes indicated by tha’s) to ~ WhereA measures the change of the solubility of the colloi-
the solvation free energy of a particle in addition to its back-dal particles due to the presence of the polymers and is given

ground value for the polymer free solvefne., n,=0), not

included in Eq.(1.73. To the best of our knowledge, this is (1)

the first check of the expansidi.7) for a nontrivial inter- A=expnpfil°). (1.100
acting system that can be realized in nature.

For other types of systems the expansidn7) can be For the dilute immersed particles the reduced free energy
violated. For example, as pointed out by Yansral.[28], a increasenpf,(})l % constitutes a reduced one-particle potential
somewhat counterintuitive behavior arises for the case imr, equivalently, an increase in chemical potential, so that
which a surface is exposed on one side to a dilute solution dfq. (1.10 follows upon equating the chemical potentials of
thin rigid rods (needlek even for arbitrarily small surface the particles in the ideal gas phase and in the solution phase.
curvature the free energy in this case cannot be expanded in
the analytical and local form of the Helfrich-type expansion
(1.7). However, for flexible ideal chains instead of needles
the expansion is known to applgee ). In particular, the We consider the case in which a polymer chain interacts
asymmetry in the curvature contributienR ™2 between the With a spherical or cylindrical particle whose radius
inside and outside of a spherical or cylindrical surface afR—albeit being large on the microscopic scale—is much
reported by the above authors for needles does not occur fémaller than the siz&, of the chain and other characteristic
flexible ideal chains. lengths[31]. In this limiting case the effect of the spherical

We note that the curvature energies are experimentallparticle upon the configurations of the chain can be repre-
accessible. For example, the expansibry) determines the sented by a-function potential located at the center of the
change in surface tension and in the first- and second-ordgarticle which repels the monomers of the chain. For a gen-
curvature energies of flexible surface such as membrane eralized cylinderK with a small radiusR this J-function
upon exposing one side of it to a solution of polymers whichpotential is smeared out over its axis. Thus the Boltzmann
are depleted near the membrasee Fig. 18)]. Thus the weight W,{y;} for the chain[32] arising from the presence
addition of polymers to a solution of closed membranes, i.e.pf K (whose axis includes the origiiis replaced by
vesicles, should influence the phase diagram of vesicle A= 1
shapes in a quantitatively controllable wésee, e.g., Ref. Widyi}—1—AgpR™ " wy (111
[29]). An additional experimental access to the solvation free
energy will be discussed at the end of this subsection. with

B. Colloidal particles with small radii
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5 immersing spherical particleX,, ... Ky centered at
W= Jﬂéd rp(r.=0r), d<D 11y v The quantityf{M has the form
p(0), d=D, M M
or(re, =2 f+ 2 f () +--

providedd>1/v. The positions{y;;i=1, ... N} of the N =1 b
chain monomers that define the chain configuration appear in M)
Eq. (1.12 in terms of the modified monomer density i kT eorw) (114

1 N The mbody contributionsf(™ for 2<m<M on the right-

p(r)= T" > 5O (y.—r). (1.13  hand side of Eq(1.14) are defined inductively by consider-
=1

ing first two particles in order to definE? via Eq.(1.14),
. . ) then three, and so on. For spherical particles the dimension
The sum ofé functions in Eq.(1.13 is the usual monomer f £(M s that of a volume, i.e., of (lengtR) The existence
number density at a point We have chosen its prefactor of polymer-mediated nonpairwise interactions has first been
such thatp(r) is less dependent on the microscopic mono-noticed within the PHS approximation, which consists in re-
mer structurdi.e., on what is considered as a monojtaan placing the polymer by a hard sphdi. Here we consider
the sum itself. In particularfd®r p(r)="R " is independent  the limit for which the polymer is flexible and much longer
of these details whileN is not. The scaling dimensiob than the particle radii, i.e.R,>R, and where the small-
—1/v of p(r) equals its naive inverse length dimension soradius expansioiil.11) gives a simple andjuantitativede-
that the exponent oR in Eq. (1.11) follows by comparing  scription. We find that the polymer-mediated interaction for
naive dimensions. The amplitudg,  is dimensionless and particles with smalR is drastically different from the deple-
universal[33]. tion interaction for largeR in which case the PHS approxi-
The monomer positiongy;} are statistical variables so mation is reasonable and has been widely used. This con-
that Eq. (1.1 is a relation between fluctuating quantities firms the generally accepted belief that for the applicability
which is to be used inside polymer conformation averagesf the PHS approximation a large size raR6R, is crucial
such as the ratio of polymer partition functions with andand refutes an opposite claim in RE®](b).
without the presence oK. One can use Eql.11) for a As illustration we consider three spherical partichesB,
variety of different situations. IK is the only particle within  C with radii Ry, Rg, Rc much smaller than their mutual
reach of the polymer chain, Ed1.1]) leads to the free distances and thaR,. It is easy to see that is deter-
energy change given by E¢L.5 in the limit discussed in  mined by the Boltzmann weights of the particles introduced

Eq. (1.8. This is the reason why the same amplitullgp in the text preceding Eq1.11) in the form
appears in Eqg1.8) and(1.11). If there are in addition other

particles or wallK’, Eq. (1.11) can be used to calculate the
polymer-mediated free energy of interactigpotential of fgogt)(rA’rB'rC):fRDdDy{l_WAWBWC}y’ (1.15
mean forcg betweenK’ andK (compare | and Sec. I C be-
low). Equation(1.11) simplifies the theoretical treatment of where{ }, denotes the average over all conformations of a
these problems significantly becaukeis replaced by the single chain infree space(i.e., no particlesunder the con-
monomer density(r). While the remaining, simpler aver- straint that one end of the chain is fixed at the pginin the
ages depend on the particular problem under consideratiofimit of small radii R one finds by using Eq(1.11) that in
the universal amplituddq ; is always the same. addition to the one-body contributiorf§?, "), and f,

In this work we study the small radius expansidnll) each exhibiting the scaling form described by Eqg5) in the
for the generalized cylindef for the case of polymers in a limit given by Eq.(1.8), there arise two-body contributions
good solvent. Our main objective is to present quantitative @) ) D1/
estimates for the universal amplitudés ; and A, 5 corre- fae— —(Ap,p)“(RaRs) Ca(ra,re), (1.163
sponding to a sphere and to an infinitely elongated cylinde
in three dimensions. The cylindére., d=2) is particularly
interesting since in this case the EV interaction changes the (3) 3 D—1/v
behaviorqualitatively while for ideal chains a thin cylinder fag,c—(Ao,p)"(RaReRe)™ T Cs(ra T ’rC)'(l 16
is a marginal perturbation which can lead to a logarithmic '
behavior[10] and for which Eq.(1.11) doesnot apply, for  The arrows in the above relations indicate the leading behav-
chains with EV interaction the power-law exponeht 1/v  jor for small radii. HereC, andC; are pair and triple corre-
~0.30 ispositiveand Eq.(1.11) holds. This peculiarity for |ation functions corresponding to
d=2 is reflected in the expansion ofAyp for D=4—¢.

?§3>C andf), and a three-body contribution

C(rasra, )= ﬁHDdDy{P(rl)P(rZ)‘ . 'P(rm)}y

Polymer-mediated interactions between particles are in (.19
generalnot pairwise additivei.e., they cannot be written as of the (modified monomer density(r) defined in Eq(1.13
a superposition of pair interactiof$,12]. For a dilute poly-  for a single polymer chain in free space. Sirieg and the
mer solution with polymer densitg, we consider the total relative distances,g=|r,—rg| are large on the microscopic

increase in reduced configurational free eneng%(',\{') upon  scale, these correlation functions exhibit the scaling forms

C. Interactions between particles
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Cz(fA,rB)=R§/”_D9(ZAB), (1.183 discuss the rgsulting beh.aviortig_,D(x) in the Iimit _of short
and long chains, respectively. Finally, we obtain in Sec. 11D
with zag=rag/Ry, and an approximation for the full scaling functiory 3(x) corre-

B sponding to a sphere iD=3.
C3(rA,rB ,rc):RE/V ZDh(ZAB,ZAc,ZBc), (118b

which follow from the scaling dimensio® —1/v of p(r). A. Density of chain ends and polymer magnet analogy

Thus for three spherical particles with equal rdglind with We employ the polymer magnet analo@®MA) in order
center-to-center distancesg, rac, r'sc Which are of the to calculate the density profild1g of chain ends in a dilute
order of R, but much larger thai, the three-body interac- solution of chains with EV interaction which arises in the
tion is smaller than the two-body interaction by a factorpresence of the nonadsorbing generalized cyliriientro-
~(RIR)P W, duced in Eq(1.3). As in | we defineMg as bulk normalized
Similar fluctuation-induced, non-pairwise-additive inter- so that it approaches 1 far from the particle. It is given by
actions arise between particles which are immersed in a near-
critical fluid mixture[34]. In this case one encounters order Me(r1;Lo,R,Uo)

parameter correlation functions instead of the present mono-

mer density correlation functions. :J dDr’Z(r,r’;Lo,R,uo)/ J dPr’Zy(r,r";Lg,up).
The small radius expressiof.16 cease to apply—even v v

if the equal radiR are much smaller thaR,—if some of the 2.3

relative distances between the spheres become comparable
with R. However, there are other types of short distance extereZ andZ, are partition functions of a single chain with
pansions which are capable of describing these latter situdbe two ends fixed at, r’ in the presence and absence,
tions. In particular we shall discuss a “small dumbbell” ex- respectively, of the generalized cylindkr (the subscripb
pansion for a pair of spherds B for which bothR andr x5 stands for “bulk”). The volumeV available for the chain is
are much smaller than the other lengths. The structure of thihe outer spac¥’=R"\K of K. The parameteu, character-
expansion is similar to Eq(1.11) in conjunction with the izes the strength of the EV interaction aingldetermines the
lower part of Eq.(1.12, but the amplitude corresponding to monomer content or “length” of the chain such that @
Ap.p Now depends on the ratig/R. We calculate this new equals the mean squaf; of the projected end-to-end dis-
amplitude function for the case of ideal chains. tance of the chain in the absencelofand of the EV inter-

In Sec. Il we discuss in detail the solvation free energy foraction, i.e., forup=0. The usual arguments of the PMA
a single particle. In Sec. lll we consider the depletion inter{15,17—19 carry over to the present case and imply the cor-
action between particles. Section IV contains our conclufespondence
sions. In Appendix A we derive the asymptotic expansions , ,
for a small and large size ratiB, /R required for Sec. II. In Z(r,r"5Lo,RiUg) =Ly (P2 Po(r))| =0 (2.4
Appendix B we discuss the perturbative treatment of theD _ . .
small radius operator expansion. Finally, in Appendix C, we etween Z, ar_ld the  two-point _co_rrelatlon function
derive a short-distance amplitude which characterizes the b&P1()®1(r")) in an O(N)-symmetric field theory for an

havior of monomer density correlation functions in freeV-Component order parameter fiefli=(®,, ... ,) in
space as needed in Sec. III. the restricted volum&'=R"\K. In Eq. (2.4) the operation

1
Il. SOLVATION FREE ENERGY OF A PARTICLE Liyoly= 5 f digeto'o 2.9
C

The free energy for immersing a particle in a dilute solu- ) o )
tion of freely floating chains with or without self-avoidance acting on the correlation function is an inverse Laplace trans-
can be expressed in terms of the density profile of chain end®'m with C a path in the complet, plane to the right of all
in the presence of the partideompare, e.g., Eq3.7)in1].  Singularities of the integrand. The Laplace conjudagtef L,

For the scaling function introduced in E€L.5) this implies ~ and the excluded volume strength appear, respectively, as
the temperature parameter and the prefactor of thé)%

Qq 5 term in the Ginzburg-Landau Hamiltonian
Yap(X)= F+Qde,D(77), n=Xx2, (2.1

H {<I>}=f dDr:E(VQ)ZJr t—O<I>2+%(<I>2)2
with Qu=27%4T'(d/2), the surface area of the K v 2 2 24 '
d-dimensional unit sphere, and (2.6a

S which provides the statistical weight expf{c{®}) for the

Qd,D(’?):J dpp™ [1=Mg(p,n)]. (2.2 field theory. The position vectar covers the volum&/ and

! its boundary, which is the surface &f In order to be con-

In Eq. (2.2 the scaling functioMc(r, /R, 7) is the bulk sistent with Eq.(1.1) we have to impose the Dirichlet con-
normalized density profile of chain ends at a distance dItion
—R_fr_om the particle s_,urface. In Sec. IlA we derl\_/e the ®(r)=0 if |r,|=R (2.6b
explicit form of Qq p(7) in the presence of EV interaction to
lowest nontrivial order ik=4—D. In Secs. lI B and IIC we on the boundary. This corresponds to the fixed point bound-
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ary condition of the so-called ordinary transitif86,36 for ~ [37] [this is related via Eq(2.4) to a corresponding proce-
the field theory. For our renormalization-group improveddure in the Edwards mod@l7-19]. The basic element of
perturbative investigations we use a dimensionally regularthe perturbation expansion is the Gaussian two-point corre-
ized continuum version of the field theory which we shalllation function (or propagator (®;(r)®;(r’))jo; where the
renormalize by minimal subtraction of poles in=4—D subscripff 0] denotesuy=0. It is given by

(CIDi(r)CI)j(r')>[0]= 5ijG(r,r,;t0,R)= 5”(3(& ,ri ,19,||'H_r”,|;t0,R)

i () il i Ate /. d<D
2 (ﬁ)fﬁﬁ(zw)ﬁexq'P(rl‘H)]Gn(U,n,S,R),
—) ¢ (2.78

nZO W (N By(r, .11 5to,R), d=D,

where a=(d—2)/2, S=P?+ty, r,=|r,|, and ® is the o0 5, ,
angle between, andr! (compare Fig. 1 in)l Note that for x(rste,R)= fvd r'G(r,r';to,R)
d=D [last line in Eq.(2.73] there is no parallel component
ri—rj and hence no Fourier variable. The functions R2 p~ K (p o)

(a) =—|1-—2—". (2.9
W, () are given by 7 K (Vo

d/2y—1 a
W ()= (2m™) " T(e)(n+a)Cr(cosd), d#2 The greek symbols on the right-hand si@as) denote di-
" (2m) 12~ 8, 0)c0¢N), d=2, mensionless variables expressed in terms of the raRliok
(279 Kk

wherel is the gamma functiorC, are Gegenbauer polyno- 0=toR% p=r, IR (2.10

mials [38], and dn0=1 for n=0 and zero otherwise. The
funct|onsW ) are normalized so thdtdeW(“) ono- The  According to standard perturbation theory the one-loop con-

propagatoiG,, has the form tribution is given by
e ’ () (>)y—a (>)y N+2u
Ga(r 1SR =(r{r) " K (VST ol it R)= = 2 2 Py Gir it R)
laan(VSTE) X G(y,y:to, XY, ito,R)
N+2 Ug
e SR) o -2 2R [Tyt
— K n (VS () |, 3
Kasn(VSR) o
xg(lvaOvs)X (l;baTO)! (211)

(2.79

where r{~)=min(r, r!) and r{*)=max¢, r). For d=D
the variableS is replaced byg. |, andK, denote modified
Bessel function$38].

The numerator in the density profiletz in Eqg. (2.3) can
be obtained from the integrated two-point correlation func-
tion, i.e., the local susceptibility, for t,>0. Due to rota-

where =y, /R [compare Eq(2.10]. The functions in the
integrand of the last line in E¢2.11) are dimensionless and
defined by

X0y, 10) =R 2x%(y, ;to,R), (2.12

tional invariance around and translational invariance along G(p.th,70)=R**Gpolr Y i8=1t,R), (213
the axis ofK, the local susceptibility only depends on the g
radial component of the pointr=(r, ,rj). The loop ex- yia(y, To,s)=yLR*2“G(y,y;to,R). (2.19

pansion ofy reads
The functiong can be split intog=g,+gs, Where
x(ry 5to,R,ug) = xt(r 5tg,R) +uox™(r, ;to,R)

+0(u), 2.8 Gb( 1 70.6) = ri-eizga—e LE2T D)

CE (2.153

where the zero-loop contributiogl® is given by the inte-
grated propagator stems from the bulk contribution @(y,y;ty,R) and
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Q * i n(VO? o
: fo dqq571 - ( : +TO) [Ka+n(¢' q +TO)]21 d<D

- (2m)° Kasn(V0*+70)
gs(l//,fo,s)=—¢//“§_‘,o W(9=0) | " ) " (2.15h
n= a+n 0 Ka+n \/— 2' d=D.
—Ka+n(\/7—o)[ (\70)]

Note thaté6=D —d=4—¢—d. In the casal<D we shall consided [anda= (d—2)/2] as a variable which i;mmdependenbf
D=4-¢ whereas in the cagt=D the variablea=1—¢/2 depends of course an One can check that in the cade- 1, for
which Wﬁf’)(ﬁ= 0) with = —1/2 contributes only fon=0 and 1, the upper part of E(2.15h leads indeed to the half-space
result

Op4 f‘” pP-2
G(Y,Y:tg,R)—Gy(V,V:tg) = — dP ex] —2yP?+t -R)], d=1, 2.15
(V,¥;10,R) = Gp(y,Yito) 2mP 1o ¥ 2 )PPt i oy —R)] (2.159

where the integral can be expressed in terms of a modified Bessel function. We add the following two remarks about the
behavior ofgg for d>1 if R—» or R—0.

(i) It is instructive to see how the behavior for the half-space arises by taking theRimit with t; andy, —R fixed.
Consider, e.g., the cask=D =4 corresponding to the sphere in four dimensions. Since upon approaching the above limit the
arguments of the Bessel functions in the lower Eg15bh become large and since many terms contribute in the sumrmver
one has to use the uniform asymptotic expansion of the Bessel funftiompare, e.g., Eqgs. 9.7.7 and 9.7.8 in R88(a)]]
and may replace the sum by an integral. This yields ®@,y;tg,R) —Gy(y,y;tg) for d=D=4 does indeed tend to the
half-space expression on the rhs of E21159 with D =4, where the role of the lengf of the wave vectoP is taken by the
ratio n/R.

(i) For d>2 and fixed nonvanishing lengtlys andt, '/

the quantitygs(#, 79,€) has a finite limit forR—0, i.e.,

270 | 2 [ Gk g2 TR R g, d<D

98N yro,8)=lim gg( ¢, 70,8) = — ———1 (2m)° (2.159
R—0 7T (@) 2 e 2
(#270) “[KaleNT0) 12, d=D,
|
which depends only on th&independent products/z, =(uR)?t (2.169

=y, Vto and describes the behavior gf for R<y, , t, 2.
This is consistent with the operator expansion for small ra- . . -
diusR of the Boltzmann weight representikgwhen applied of To- The renormalized, i.e., pole-free, local susceptibility
to a Gaussian field theoricompare ). While g® decays ~ Xren 'S related toy by [36,37
exponentially fory\/7o—, it approaches a finite constant
for \/o—0, which equals— a/(47?) forl</92=0 and char- Xrer T L 6 R,U)= x(r ;to,R,Up)/Zg(U)
acterizes the behavior @ for R<y, <t, ““. This should _ . 2
be compared with the behavigg~ —(ng—ol)Z*D which ap- =x(r5to,R,up) +O(U%)  (2.169
pliesclose to the surfacef K, i.e., for 0<y, —R<R, ty 2.
The reparametrizatior87] with the renormalization factaZ, of the field® which de-
viates from one only in second order un The only pole in
Up=16m2f(e)uZu, Z,=1+0O(u), (2.16a x!! is due to the bulk contributiogy, in Eq. (2.153. When
the results fory!®! and ugy!*! in Egs.(2.9) and(2.11) are
and substituted into Eq(2.8) and when the bare parametets
andug are expressed in terms of their renormalized counter-
) ) +2u ) parts7 andu according to Eqs(2.16), the poles ine cancel
to=pZit=p 1+ ———+0(U9) |t (216D  indeed[39]. This cancellation can be traced back to the re-
lation

of the bare bulk parameterg andt, in terms of their renor-

malized and dimensionless counterpartandt are not af- oc 9

fected by the presence of the surfd88,36. Here u is the J dyr g 1G(p, ¢, 1) X0V (g, 1) = — E_X[O](P,T)-
inverse length scale which determines the renormalization- 2.17
group flow andf(e)=1+¢f;+0(e?). The coefficientf, ’
drops out from universal quantities and therefore can be cho-
sen arbitrarily. Equation2.16h implies the renormalized The resulting renormalized and scaled local susceptibility
counterpart X,en=R ™ ?xren Up to One-loop order reads
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N+2 and
Xren(PaT1/~LRuu):X[0](P:T)+ u
1L + LAH2 +0(&? 2.2
In " V=3t g aree o). @29
X 7—|n(,u,R)+B T[?—X[ ](p,T)
7 The bulk correlation lengtit, can be defined in various
) ways. For definiteness we assume théatis defined as the
+&(p,7) | +0O(U) (2.18 second moment of the two-point correlation function divided

by 2D, which implies
with the nonuniversal constant

N+2
Ce 1 In(4) (gg)zz[Dt(u)]ZV(N)[,U«Z[]-—N_’_S.SB-FO(SZ)]
e 249 (229

with the nonuniversal constaBtdefined in Eq(2.19. Here
the curly bracket equalg? for t=1 andu=u*, and the
w dependence of&;)? onu is contained in the dimensionless
Ed(p,r)=—8772f dy y1G(p, i, 7) amplitude D, which can be expressed in terms of Wilson
! functions corresponding to the renormalization-group flow of
X ge(, 7,6 =0) X (i, 7). (220 tandu[37,17-19 When Eqs(2.23—(2.25 are combined
with Egs.(2.18 and(2.21), one finds that¥;e,/ Xenp, at the
Since&, belongs to the one loop contribution and because irfixed point is indeed consistent with E@.22) and that the
the last line of Eq(2.11) the order of they integration and ~ scaling function= - is given by
the limit e —0 can be interchanged, we set 0 in the inte- Nt2
grand on the rhs of Eq2.20. This implies that in the case = — ~, yl0] 2
d=D only &, enters into Eq(2.18 [compare the remark =alpy) =yt (p’y)Jr/\/+8‘97{5"(‘)’7”0(8 ):
below Eq.(2.15b]. The integral on the rhs of E42.20 is (2.26
well-defined since the divergence@f( ¢, 7, =0) for ¢\ 1
becomes integrable due to the Dirichlet behaviorGodnd
X101 as implied by Eq(2.6b. We also need the bulk value
(far away fromK) of the renormalized local susceptibility up
to one-loop order, which reads

whereCg is Euler’s constant, and the function

Equation(2.26 provides the general result for the bulk nor-
malized local susceptibility of the magnetic analog in the
presence oK.

The densityM of chain ends as defined in EQ.3) can
be related taX,e;=R ™ Zxren, With x;en from Eq. (2.160, by
means of Eqs(2.4) and(2.16). The result is

¥ R.U) 1 J\/+2u|nrI R) 4B
H 1u =—— X5 |3 — n
e b(T H T 3 T 2 (M ) ME(rL ;L01R1u0)=Zren(pi)\quiu)/Zren,b()\quvg)é
27
+0(u?). (2.21) (2.273
where
The perturbative resu{2.18 can be improved using stan-
dard renormalization-group argumen36]. Although we Zred PN R =L\ Xed oy T kR U H A=
need only the result€2.18 and(2.21) for the discussion of (2.279

the polymer-depletion problem, we note that in the, , . . .
asymptotic limit for whichr, , R, and the bulk correlation is the renormalized and scaled version of the integrated chain

lenath for t>0 are large compared with microscopic partitioq function in lthe_numerator of the rhs of BEQ.3).
Iengths§+the ratio g P P Here £ is the operation in Eg(2.5) and

— A=L/(uR)2=2Z.L,/R? 2.27
Ko o7 R Ko7 R Ep(pry) (2,22 (uR)*=Ziko (2.279

yields a scaling form expressed in terms of the univers
scaling function E,{(p,y) with the scaling variablesp
=r, /R and y=R%* &2 . The functionE ; depends on the
numberN of components ofP, on the parametgd, wh.ich Me(r ;Lg,R,ug)—Me(p, ), (2.279
characterizes the shapel§f and on the space dimensién

While the amplitudegg in the bulk relationt, = ggt—v(M is  whereM¢ is a universal scaling function @f=r, /R and the
nonuniversal, the exponem(/\) is universal and depends scaling variable

only on A/ and D. The asymptotic scaling behavior is gov-

is the scaled counterpart of the renormalized and dimension-
ess chain “length”L [17-19 so thatA7=Lt=Lyt,. For
larger, , Ly, Rthe end density exhibits the scaling behavior

erned by the infraredlong-distancg stable fixed point for _ R>2< (2,279
which = oR2’ :
38 . . el . 2: 2
U=u* = +0(e?) 2.23 According to our definition in Eq(.l_._2) of RE_ DRy ,as the
N+8 second moment of the bulk partition functia(r,r’) the
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nonuniversal prefactorr3 in the asymptotic behavior In Eq.(2.300 we have introduced the function
REI(2D)=r3L?", with v=v(N=0), has the form
2D N=9) Ca(m) =L, 4{Ca(7)} (2313

] with
(2.28

with B from Eq.(2.19. The curly bracket equal® 2/(2D)
for L=1 andu=u* and the dependence of on u is con-

C
B+1——E)+O(82)

18
4 2

ré=[DL<u)12V[;r2

Co(T)= fl dp p® 1&4(p,7)

tained in the amplitud®, =1/D, with D, from Eq. (2.25 = —8772f dy g4, 7,6=0)
(compare, e.g., Ref19]). Obviously  plays a similar role !
as the inverse of the scaling variable= R?/¢2 in Eq. (2.26 X[ X0 (g, 1)72, (2.31h

in the magnetic analog. By using Eq®.273 and (2.27h
and by carrying out the same steps which lead to the scalingthere Eq.(2.20 has been used. The functions in the inte-
function = - in Eq. (2.26 of the magnetic analog, one ar- grand of the last line in E¢2.31b are given by Eqs2.15b
rives at and (2.12 in conjunction with Eq.(2.9). In the cased=D

we have to considef,(7) only [compare the remark below

€
Me(p, 7)=MP(p,7)+ ZME'](p,n)—i—O(gz), Eq.(2.20].
(2.293 B. Short chains: Y4 p(x) for x—0

where The aim of this subsection is to determine the surface
tensionA ¢ and the curvature energids«;, Ak, andA kg
MP(p, ) =L, AXO(p,7)} (2.29B  in the expansior(1.7) to first order ine=4—D by consid-
) . . o ering the special cases that the partitleis a generalized
is the zero-loop, i.e., Gaussian contribution §Ad] cylinderK with d=D, 3, and 2.
P The analyticity ofYy4 p(x) atx=0 mentioned in Sec. | A
r—X(p, 7) is corroborated by our first-order results in E¢8.30 and
ot (2.31) for Qg p(7), which can be expanded into a Taylor
series in 7;=x/\/§. In the following we determine the first

In7

M E](Pr 7]) = Lfﬂn{gd(pv 7)}+ ET*} 7][ 2

1 1 J
+-|{+3 1-MP(p,7)— nﬁ—M{EO](p,n)} three terms of this expansion. The expansion is consistent
7 7 with the behavior
0 _ _ _ _
X[In 7+ Cel+ my ME(p,7). (229 Cm=Cor $EecPlrtecfrsioe)
2.3

Equation(2.29 provides the general result for the bulk o, large 7= («R)2t of the functionCy(7) in Eq. (2.31bH
normalized density of chain enddg in a dilute polymer \yhich we verify in Appendix A. Its forn{40]
solution in the presence &. According to Eq(2.2) for the

scaling functionYy p we only need the integrated form. The 2 L2 s
terms in EQ.(2.299 have been arranged such that the Qd,D(ﬂ):_(l_Z 1
integration in Eqg.(2.2) can be carried out in each bracket Vm

3In2
_T+C°

separately. This leads to d—1 “ 47%2((d—1)(d—3)
e B I ot O = 8
Qao(m=P(m)+ 7 Pil(m)+0(e?), (2.308 i
e(11 5In2 £ () s 2
where N2l T2 —2C2 [ TO(7 &%)
K. T (2.33
PPI(m=L,, 3,2;([) (2:30b _—
K (1) follows from Egs.(2.30 and(2.31) by inserting Eq.(2.32
and the larger behavior
is the zero-loop, i.e., Gaussian contribution and
Kers(W?) ,, d=1  (d-1)(d-3) .
N7 3| Kypa(N7) =1 P+ 2+ T
W= — THT 9| Ratt 32 2 8
Pd (77) Cd(ﬂ)+‘cr~>7][ 2 ar 7'3/2Ka( \/;)‘H T a(\/;)
+0(773). (2.39
1 PRI()+ iP[O]( ){[In 7+ Cg]
2| 4T Mgy, Tk e Since(, is related to the surface tensidwo it should not

depend on the shape Kf i.e., on the value odl. Using, e.g.,
Egs. (2.31h, (2.14), and (2.159 corresponding to a planar

J
9 bl
R (2300 all(ie. d=1). one finds
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- The last expressions on the rhs of E2.39 apply to the

Co=— 5 +—. (2.35 surface of a generalized cylind&rwith integerd<D. These

\/§ expressions hold because the surfaceKdfiasd—1 finite

. - . local radii of curvatureR;=R which allow for (d—1)(d

The evaluation of the coeff|C|en(§l_d) andc¥ inEq.(2.32 ~2)12 different pairings.l Note that fob—3 E(;s. (2‘)3(9)
for d=D, 3, and 2 is carried out in Appendix A by extend- reduce to Eqs(1.7b and (1.79. Applying Egs.(1.78 and

:ngdt_he method Oedx_plained ﬁfter qu'ls% to the nlext-t%- (2.39 to generalized cylinder in D dimensions one infers
f?ne:j ing terms. Fod =D, we have to considef,(7) only an from the definition(1.5) of Y4 and Eq.(2.1) the general

form
17 157 3437 _ _1)2
M, 7 d-11 (d—1)
Ci'=—st2 >3 (2368 nksTRQuo(m=A0+AKki—— =+ | Ak
8011r 1913w (d—1)(d—2)] 1
4 _ _ : 3
C3 66+ —53 g (2.36b +Ang}§+om )
for d=3, we find (2.40
17 57 of Q for small 5. Explicit results forAo, Axy, Ak,, and
Cg.S): - 34'7_\/577’ (2.373 A kg follow from the results(2.35—(2.38 for the coeffi-
cientsC{? by comparing Eq(2.40 with Eq. (2.33. Using
O 551 16737 407 . _n:R)Z(/(ZRZ), we find for the surface tension to first order
> ——E§+—2§——?En (2370 ine=4-D
2 € 3In2
and ford=2, Ao=npkBTRx\/;(l—Z 1- 5 +Co
c@— %}3; _ @ (2.383 ~n ksTR,0.7981—0.0508)+O(£2). (2.41)
Here and in the rest of this subsection by taking1l one
@ 221 1791r 433w obtains the corresponding estimate for the physical dimen-
C'=- 5T 18 T 8 (2.38D  sionD=3. By settingd=2, 3, andD in Eq.(2.40), in which

the generalization ofl to noninteger values is obvious, we
We now determine the surface tensibpe and the curva- find for the curvature energies

ture energied «x,, Ak,, andA kg in the expansioril.7). To
this end we need to generalize this expansion to be appli-
cable to D —1)-dimensional surfaces of general shape with
values ofD different from 3. According to differential ge- 2 )
ometry for integerD=3 the expansion has again the form ~npkgTR;0.51-0.13%)+0(s7), (2.42
(1.79 and the corresponding curvatures are given by

R2 g
AK]_:npkBTTX[ 1- E Cg_z)}

b1 A T [1 2 (11 SIHZ) sc(z)H
1o 1 d-11 Ke= ~MpKe I o ==117 7|15 ~ —ob2
Km:i E E:Tﬁ (2393 3v2m 4 6 2
“~ R
I ' ~—npkBTR§O.1331—0.071%)+O(82), (2.43
and ]
and finally
D-1
1 d-1)(d-2) 1
Ke= 2, :( i ) 5 (2.399 RS ¢
pars RiR; 2 Akg=—Aky,—enkgT——= ——
i<] 32w 2
whereR; are theD — 1 principal local radii of curvature. ~npkBTRfO.1331—0.177s)+0(82). (2.44

We briefly outline the argument: Following R¢R6] the

curvature contributions should depend on how the surface igote thatA «, is fixed by considering only one of the cases
embedded in the spadg®, i.e., they should be derivable d=2, 3, andD [we chosed=2 in Eq. (2.42)]. However,
from the local extrinsic curvature tenskif; =K;;n, wheren  sinceA x; must not depend on the valuedfone derives the
is the local unit vector normal to the surfagge only con-  two conditions

sider orientable surfacgsThe principal local radii of curva-

tureR, are the inverse of thB — 1 eigenvalues of the matrix c® ¢

(Kj;). ThereforeK,,, K2, andKg as defined in Eq92.39 C1 ~To T3 (2.453
are the only independent scalar quantities to first and second

order in 1R; which can be deduced frok;; and which are  which must be fulfilled if the expansio(i.7) is consistent up
invariant under permutations of the indides1,... D—1. to one-loop order in the EV interaction of the polymer
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chains. Similarly,Ax, and Ak are fixed by considering particular, the three-dimensional sphere for whichD = 3.
only two of the cased=2, 3, andD [we chosed=2 and 3  For the contribution of second order in the curvature the
in Egs.(2.43 and(2.44)]. Thus one derives the third condi- reason is a combination of the general propétty= K% for

tion d=3 [compare Eq(2.39] with the propertyA kg=—A«x>

valid for any dimensiorD if the chains are ideal. However,
c(24)= 3[c(23)_c(22)]_ (2.45n  the last property is rather special and is violated for polymers

with EV interaction inD slightly below 4 since Eq(2.44)

By using the values of { andC!?) as derived in the cases MPles

(@), (b), (c) above, one finds that all three conditiof®&s45

are indeed fulfilled. This confirms to first order inthe as- R3 ¢

sumption preceding Eq(2.32 that the scaling function AK2+AKG:_8npkBT?_)\/TT

Yq4,p(X) is analytic atx=0, and that the Helfrich-type ex- &

pansion(1.7) is applicable to the present polymer-depletion ~ —snpkBTR§0.0141+ O(£?). (2.46

problem for chains with EV interaction. Considering the in-

volved analytical means which were necessary to derive th . . L .
ffici y(d) . h.y %here is no reason to believe that this violation is removed in
coefficientsC;™ (see Appendix A we regard this as a very D=3. Rather the crossover to a behavigs s~ (Ry/R)L”
. vQs. y

valuable and important check of our calculation and in addi-

. : for R,/R—x with the Flory exponent~0.588[see Egs.
tion as strong evidence that the above statement¥fg((x) X AR
are general properties iD=3 which hold beyond the (1.8, (2.1), and Sec. 11 ¢ implies infinitely many nonvan-

e o aats o e o e e
Note that the EV interaction of the polymer chains re_(;m.ensional S herg }t/he ay earpance of the EV interaction
duces the absolute values of the surface tendionand of phere PP
. does lead to gualitative change.
the curvature energieS«,, Ax,, andAkg as compared to : : : . .
. ) . . As an illustration, consider a spherical membrane in the
ideal chains. This trend can be anticipated because the Egi

. . . : lute polymer solution withboth sides of the membrane
interaction of the chain monomers effectiveigducesthe exposed to the polymers. In this case the contributions to
depletion effect of the particle surfageompare, e.g., Ref. P poly ‘

[19]). However, the corresponding corrections are reIativerAK1Km in the expansion(1.79 from each side cancel and

small so that the overall behavior is changed only quantitaEq' (2.46 implies that for chains with EV interaction the

tively. Thus exposing one side of a flexible membrane to gree energy cost for immersing the spherical membrane is

solution of polymers which are depleted by the membranesl_malleras compared to a flat membrane with the same area.
favors a bending of the membrane surface towards the sol his is different from the behavior for ideal chains for which

tion [41] and leads to a weakening of its surface rigidity. TheltIhe solvation free energies for a spherical and a flat mem-
brane with the same area are equal in this case.

sign of the Gaussian curvature enerfyxg will generally

favor surfaces with higher genusesee the Introduction and
). If the resolution of an experimental setup is high enough C. Long chains: Y4 p(x) for x— o
to observe these effects quantitatively, the corrections due to

. ; . Figure 2 shows in thed,D) plane the dashed lind
the presence of the EV interaction of the polymer chains as:l/v(D) [42]. It separates generalized cylindésvhich are

compared to the behavior for ideal chains should be de.teCFelevant perturbations for long polymer chains with EV in-
able. Specifically we consider the experiments for Ves'de?eraction(such as the strip i =2 or the plate inD =3)
reported by Dbereineret al.[29]. The intrinsic spontaneous from those which are irrelevant and for which Ed.11

c_u_rvatu_re ene_rgycl of _the b|Ia1er membrane is to be |_den- applies. The latter are located in the shaded region above the
tified with their quantity —2«co/R, [compare Eq.(9) in  |ine and comprise the disk iB=2 and the sphere and the
Ref. [29]]. The differenceA«, [see Eq.(2.42] should be  cyjinder in D=3 and are of main interest here. For the
added in the presence of polymers in the solution. The 'enthphere and the cylinder iD=3 we show within an expan-
Ry is of the order of the sEe of the vesicle. Upon insertinggion ins=4—D that the first-order result fory p(X) given

the valuesk~101° J andcy~10 (compare Fig. 9 in Ref. by Egs. (2.30 and (2.1) is consistent with the expected
[29]) one infersk;Ry~—2Xx10"18 J. On the other hand, power law(1.8) and we determine the corresponding univer-
for T=300 K andnpr of order unity, which means that sal amplitudeA, p to first order ine for d=D, 3, and 2.
the polymer solution is still in the dilute regime so that the These results in conjunction with the known value Agr, in
result(2.42) is valid, one had\ k; R ,~2x10 %! J. The size D=2 are used in order to derive improved estimatesAipg
ratio R, /Ra is of the order of 1/10&1 for realistic values and A, 3 corresponding to a sphere and a cylinder, respec-
Ra~10 wm andR,~0.1 um. We conclude thahk; can tively, in D=3.

reach a value up to about 10% af, in a quantitatively The lined=1/v(D) itself corresponds to marginal pertur-
controllable way. This can be expected to lead to observablbations leading to a behavior which in general is different
effects near a shape transition of the vesicle. [43] from Eq. (1.8). We shall discuss neither this nor the

Ideal chains lead to the behavior that all contributions incrossover from marginal to power-law behavior which may
curly brackets on the rhs of the expansidn7a of second arise for points close above the line. Instead, in the chse
and higher order in the curvatusanishfor the case of a =2 andD<4 we shall obtain the expansion ofA, by
generalized cylinder witid=3 and D=3 arbitrary[com-  analytic continuation ird from the corresponding value for
pare, e.g., Eq93.9) and(3.1)) in |]. This encompasses, in d>2.
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84:0,

1
B;~001047, Bp=——. (250

w

The result in the second line of E@.48 for the behavior of
Yq4,0(Xx—) is consistent with the power la¢l.8) since

In7y

> +0(e?) (2.5))

&
771/(21/) — 2—1/(2V)X1/V: 7][ 1— Z

[see Eq.(2.24 for N=0]. The universal amplitudé, p is
determined by Eq92.48 and (2.49 to first order ine=4

FIG. 2. Diagram of generalized cylindeks which behave—in
the renormalization-group sense—as relevant or irrelevant perturba-
tions for nonadsorbing polymers. The paramelterD characterizes
the shape oK, andD is the spatial dimensiofsee Eq(1.3)]. The
point (d,D)=(2,2) corresponds to a disk D=2 and the points
(3,3) and (2,3) correspond to a sphere and an infinitely elongated
cylinder in D=3, respectively. The line witld=D =4, and ar-
bitrary d represents the upper critical dimension where the polymers
behave like ideal chains and from which the perturbative expansion
in e=4—D starts in order to study the effects of the EV interaction.

— D with the results

In2 3Cg

1_2"”7_7_TH

&
= 2 + —
AD,D 2 [1 4

~19.7391-0.62%) +O(&?), (2.523
Agp=2m{ 1+ Z 877263+%+ In72+ %H

~6.2831+0.49¢)+ O(&?), (2.52b

Ayp=e2mB,~0.78% + O(&?), (2.520

The open circles indicate pointsl,©) for which d—1/»(D)=0.

These points are connected by the dashed line so that within thghere Eq.(2.50 has been used.

shaded regioraboveit, the power law(1.8) applies anK repre-

From Eq.(2.529 it is evident thatA, vanishesin the

sents an irrelevant perturbation. The paths indicated by the arrows it D 4 which reflects the fact that for ideal chains, for

are discussed in the main text.

In the following we setd to an arbitrary value with 2
<d=D. By insertingQq p(7) from Eq.(2.30 in Eq. (2.1
one finds

+O(82), 7]=X2/2,

(2.47

&
Yap(x—%) =0yl 2an—7Ca()

where a=(d—2)/2>0. The first term in square brackets

stems fromP!(#) in Eq. (2.30b and C4(7) is given by
Eq. (2.31). Both the termQ 4/d on the rhs of Eq(2.1) and
the sum of the terms following- C4(#) on the rhs of Eq.

(2.309 are subdominant to the leading behavior in Eg.

(2.47). According to Appendix A this leads to

In7n
Bt

&
4

18E 1s|n77
it

Ygp(X—*)—=0Q42an 1— +0(&?)

=0q42a +0(&?).

(2.48

The constank is given by

472 3 Y (d/2)
Ed:_TBd_E+|n2+ > ,

(2.49

where ford=D we have to consideE, only. The corre-
sponding number$, are

which 1/v=2 and the conditior{1.9) is violated, the power
law (1.8) does not applyf43]. However, we succeeded in
calculating the amplitudé\,, for D<<4 to first order ine
=4-D by following a path in the ¢,D) plane which cir-
cumvents the point (2,4) as indicated by arrows in Fig. 2 and
along which the power lawl.8) doesapply with a positive
amplitudeAy p . Accordingly, first one has to exponentiate
Eq. (2.48 with respect te for «>0 fixed in order to obtain
the power law(1.8), and then one has to perform the limit
d—2=2a\,0 for the resulting amplitudédy p, for D=4
— ¢ fixed.

We note that the values fok; 3 and A, 3 which follow
from EqQs.(2.52) by settinge =1 are estimates which depend
on the path taken. Far=1, e.g., Eqs(2.523 and (2.52h
lead to the different estimates 7.39 and 9.36, respectively, for
the same quantitis 5 [the corresponding paths in the,D)
plane are indicated by the two upper arrows in Fify.This
discrepancy is caused by the present perturbative calculation
of Agp-

This unpleasant feature can be cured. As mentioned in
Sec. | B, the power lawl.8) is a special consequence of the
small radius expansiof8RE in Eq. (1.11). Via the polymer
magnet analogy, this operator expansion is related to a cor-
responding SRE in a field theory. This allows one to under-
stand not only the mechanism behind the SRE in terms of
perturbative field theoretic methods fbr slightly below 4
(as demonstrated in AppendixX But also to use nonpertur-
bative methods foD =2 [44] which incorporate the result
A, ,=3.81(see the end of Appendix)BImproved estimates
for the amplitudesA; 3 and A, 3 can be deduced by combin-
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FIG. 3. The universal amplitudé&, , corresponds to a two-
dimensional surface over the base pladgl)) (compare Fig. 2
The full dot corresponding t8, , and the thick solid lines represent
the known parts of this surface. The solid parts of the dashed and

the dotted lines indicate the slopes of these lines at their end poin

D=4 according to Eq(2.52. The dashed lines themselves includ-
ing the desired estimates 8 ; andA; 3 (open squargglisplay the
corresponding mean valudg,(¢)=[f,(e)+f,(e)]/2 of the two
interpolation schemes described in EB.53. The same holds for
the dotted lines and for the two values @ for (d,D)

=(2.5,3.5), which have been calculated for a seIf-consistenc;P
check. These two values are connected by the short full line in ordée®
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+fy(e)])/2 for e=1 and use the difference between the two
valuesf,(1) andf,(1) as an estimate for the error. For the
sphere this leads to

A33=9.82£0.3 (2.59
and for the cylinder to

So far thee expansion ofAzp in Eq. (2.52B has not been
used. Now it can serve as a check for the reliability of the
interpolation method leading to Eq&.54 and (2.59. In
combination with the known curveAy,=27%4T[(d
—2)/2], Eq.(2.52D determines the plane tangent to tep
surface at §,D)=(3,4) which leads together with the value
for A,z in Eq. (2.55 to approximations of the forni2.53
for the curveAp_; . Corresponding approximations for the
curve Ag_pp follow from the known tangent plane at
(d,D)=(2,4) and the value foA; 3 in Eq. (2.54. The re-
sulting mean value$,(¢) are shown as dotted lines in Fig.
3. A satisfactory self-consistency check for the accuracy is
provided by the observation that at the particular point
(d,D)=(2.5,3.5) at which the two exact dotted lines should
ross, the approximate ones in Fig. 3 are only slightly off by
ﬁwe small amount of 0.3.

D. The complete scaling functionY 3 (x)

The full scaling functionYy p(x) describes the crossover
between its analytic behavior fox=R,/R—0 and the
ower law(1.8) for x—cc as discussed in Secs. IIB and Il C,
spectively. Here we consider the complete funciigr(x)

to indicate the deviation caused by the fact that the two dotted line§0rresponding to a sphere ih=3. The global behavior of

miss each other slightlffor the exact surfacéy p, of course, the
two dotted lines do intersect at this pginfThe smallness of the
deviation underscores the reliability of the interpolation scheme.

ing the ¢ expansion ofA4p in Eq. (2.52 with the above
value forA,,. To this end we assume thag  is a smooth
function ofd andD. We consider the following interpolation
schemeqd45] for the functionsf(e=4—D)=App, Azp,
Ap_1p, andAg_p p, Which appear as curves in thg p
surface shown in Fig. 3.

(&) Pure polynomial,

f(e)="f,(e)=f(0)+ae+aye. (2.53a
(b) (1,1)-Padeform,
b]_S
f(e)=fole) =T(0)+ 1 —. (2.530

For Ap p and A, the coefficients on the rhs of Egs.
(2.53 are fixed by Egs(2.523 and(2.529, respectively, in
conjunction withf(2)=A,,. Note that the corresponding
paths in the §,D) plane are straight lines, i.e., in particular
smoothpaths, so tha# p behaves smoothly as a function of
¢ along these pathsee Fig. 3. We obtain estimates fdk; 3
and A, 3 by the corresponding mean valueg(e)=[f(¢)

Yq4.0(X) is conveniently characterized in terms of the func-
tion

Qa.n(7)

=x%/2,
X

(2.56

where Q4 p(7) is defined in Eq.(2.2). According to Eq.
(2.40, the value®4 (0) is related to the surface tension
Ao in the Helfrich-type expansiofl.7) and the first and
second derivatives @D 4 p(x) atx=0 are related to the cor-
responding first- and second-order curvature contributions,
respectively(compare Sec. IIB In the opposite limitx

— oo the function®,4 p(x) exhibits the power law

1
O4p(X)= X Yq,0(X)— q Q4

g

1v-1

(2.57

d’D(XHOO)—)Ad’DX

as implied by Egs(2.56) and(1.8).

In order to derive an estimate f@r; J(x) we consider the
pathd=D [compare the derivation of E¢2.54)] and intro-
duce a functior-(x,&) by

Op.p(X)=Ap p[F(x,&)]*" L. (2.58
Both the leading behavior for large i.e., F(Xx—®,g)—X,
and the smallx behavior of F are determined bynteger
powers ofx. Due to the corresponding absence of terms
~ Inx in the ¢ expansion
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10° ' + fixed and for smalix the dependence dd3p(Xx) on e=4
—D is fully captured by thes dependence of the surface
"""" quadratic polynomial tensionAo and of the curvature energiesk,, Ax,, and

---  power law A© Akg as given by Eqs(2.41)—(2.44). Discarding contribu-
—~ 3 X

tions of ordere? in Egs.(2.41)—(2.44 and settinge=1 in

the first-order terms leads to the dotted line in Fig. 4. The
dotted line and the lower full line deviate only slightly from
each other and should both provide a rather accurate estimate
for the scaling functiorl; i(X).

Figure 4 shows both the behavior for chains with EV
interaction and for ideal chains. It is evident that the power
law (2.57) not only determines the asymptotic behavior of
the scaling function fox—o but it also influences the be-
havior down to values ok of order unity. This implies that
for a quantitative analysis it is indispensable to take the be-
havior (2.57) into account, in particular the accurate value of

X the amplitudeA; ;. Note that® ; 5(x) exhibits smaller values

FIG. 4. Scaling functior®s x) =x~ [ Y3 £x) — 4/3] for the for chains Wi.'[h EV interaction than for ideal chains. This is
solvation free energy of a sphere in three dimensjoompare Egs. ~ consistent with the exponent i+ 1~0.70 for chains with
(1.5) and (2.56) with Q3;=47]. The lines labeled “ideal” corre- EV interaction being smaller than the exponeny+/1=1
spond to ideal chains and the lines labeled “EV” correspond tofor ideal chains. This difference in behavior is in accordance
chains with excluded volume interactions between the monomergvith the general observation that the EV interaction effec-
The dashed lines display the power I4&:57). For ideal chains tively reduces the depletion effect of the immersed particle
03 Ax) =4(2m) Y2+ 2mx happens to be a linear functionfcom-  (compare the related discussions in Secs. 1B and.ll C
pare Egs(3.9 and(3.1J) in I]. For chains with EV interactions the
dashed line represents the power l&b67) with the accepted ex- ||| DEPLETION INTERACTION BETWEEN PARTICLES
ponentv=0.588 in three dimensions and our best estimag
=9.82 for the amplitude. The dotted line displays the polynomial First, we consider the effective interaction between a thin
quadratic inx, characterizing® 3 J(x—0) for chains with EV inter-  rod and a planar wall confining the polymer solution. This is
actions[see Eqs(2.40 and(2.56]. The small difference between another example which demonstrates the importance of the
the lower full line and the dotted line for values wfof order 1 qualitative difference between the behavior for ideal chains
reflects the remaining degree of uncertainty contained in our exand chains with EV interaction which we have discussed in

102 4

X[ Yaa(x) - 4n/3]

10" 10° 10’ 10°

trapolation of thes expansion to three dimensions. Sec. I B. Then, we consider the effective interaction between
) two or three small spherical particles in the unbounded solu-
F(x,e)=Fo(x)+eF(x)+0(e%), (259  tion. WhenR is small compared witlR, and the distances

] ) ] between the particles, the small radius expansiohl) ap-
a reasonable first estimate f(x,1) is to truncate Eq2.59 plies. On the other hand, if botR and some of these dis-

after the second term and to set1. By using Eq.(2.58  tances are small compared ®, and the remaining dis-
this leads to the estimate tances, operator expansions slightly more complicated than
- Up—1 Eq. (1.11) are expected to hold. In particular, we shall con-
O35~ Asd Fo(x) +Fa(X)] ’ (2.60 sider a “small dumbbell” expansion for two spheres. Fi-
with A, ;=9.82 from Eq.(2.54 and the exponent value nally, we compare our results with those of the PHS model
=0.588 in three dimensions. The functidag(x) andF ;(x) (5]
can be inferred from Eq42.30 and (2.31), where the in-

verse Laplace transforms can be carried out numeri¢sélg A. Interaction of a thin rod with a planar wall
Table Il in Appendix A, and from Eq.(2.52. In particular In view of the depletion-driven adsorption of colloidal
one needs the first two terms of theexpansion rods onto a hard wal[46], it is of interest to consider a
) cylinder with radiusk and lengthl immersed parallel to and
01, .\ _ plo] _ i [Kof \/;)] at a distancé of closest approach surface-to-surface from a
" 272 [Ky (VD) TP planar wallW in a dilute polymer solutiofcompare ). We

5 consider the special case<D, R, andD,R,<I. Using Eq.
+0(&9) (26D (4.19 in | we obtain the corresponding effective free energy
_ of interaction in three dimensions,
of P9 () in Eq. (2.30b.

The expression on the rhs of BQ.60 is shown in Fig. 4 AF 4o0(D) = — npkBTAz'SlRZ(Rx/R)l’V[l— MG(DIR)],
as the lower full line labeled “EV.” By construction it re- 3.1
produces forx—oo the power law(2.57) with the accepted
exponent and our best value in HG.54 for the amplitude  with the number density,, of the polymers in the bulk so-
Az 3. To judge the degree of accuracy of Ef.60 for gen-  lution and the bulk normalized density profiléﬁ),"’)(z/Rx)
eralx we compare it with the behavior of E.56) for small ~ of chain monomers in the half-spaéeithout the cylindey
x as predicted by Eqsi2.40—(2.44). Note that ford=3 as a function of the distancefrom the wallW. This univer-
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TABLE I. Numgrical values Qf the small ;pherg ampli.tmdgz,D Fag<Ry.|rc— (ratrg)/2|. (3.6)
and of the short-distance amplitudefor chains with EV interac-
tion and for ideal chains. Here o is a universal bulk amplitude. For ideal chains,

= ¢4 js only defined for spatial dimensiofs> 2 for which
D 4 3 2 1
) . D

Ao 19.739  9.820.3 3.810 (margina) o = 77-PP21 > -1/ (3.7
Al 19.739 6.283 @margina)
o 0.101 0.13 0.278 1 For chains with EV interaction, howeves; remains finite
o i) 0.101 0.318  (marginal) down to D=1. Numerical values otr for severalD are

summarized in Table I. In Appendix C we show how these
values can be obtained.

sal density profile can be determined experimentally, e.g., by For ideal chains the correlation functio@s andC; can
neutron reflectivity47] (compare also Fig. 5 inINote that be calculated in closed form. For the pair correlation, one
Eq. (3.1), in which the universal amplitud8, ; enters[see  finds for arbitraryD,
Eqg. (2.59], is only valid for chains with EV interaction.

Equation(3.1) gives rise to arattractiveinteraction between (id) _, —Di2p2.2-D E _ 2)

the rod and the wall. The rhs of EB.1) is fixed by well- C27(TaTe) = "Rl e F( ;L

defined quantities and is independent of nonuniversal model D

parameter$48]. — 07| =— 2,92) (3.9
For a dilute solution of long rods witlR<R,<l, Eq. 2

(3.1 determines the enrichment of the rod number density ih T the i | f — d o2
¢(D) which occurs at a distand® from the wall of the order wit the incomplete gamma functiofi38] and ¢

_ 2 2y _ 2 —
of R,. Arguing as in the derivation of Eq11) in Ref.[46],  —'A8/(2R})=2Zxg/2. ForD=3, Eq.(3.8) reduces to
one finds Citn 1) =7 HA R I2a)S(ZasD, (3.9
c(D)=~2(cyDI)exd — AF gep( D)/ KgT], (3.2 Where
)[/ivgnerecb is the number density of the rods in the bulk solu- S(Q2)=(l+292)\/;erfCQ—ZQ exg—0?) (3.10
is the Fourier transform of the Debye scattering function
B. Depletion interaction between spherical particles [15,17,18. For the triple correlation one finds D=3
In Egs. (1.16—(1.18 the interaction between small 1 4 2/7
spherical particles is expressed in terms of the universal Cl(rp,rg,re)= A (Zsat Zac)/2]
small sphere amplitudép p and the monomer density cor- 2752 ZgpZac
relation functionsC,, of a polymer chain in unbounded infi- 5
nite space. Numerical values of the former for several spatial +S[(ZAB+ Zgc)/2]
dimensionsD are summarized in Table I. For the latter we ZppZpC
note the relations 2
ZactZep)/2
+S[( AZC ch) ]} (311
j DdDrACZ(I’A,I’B)=R>2(/V (33) ACSCB
: One can verify that the expressiof®9) and(3.11) obey the
and short distance relation8.5) and(3.6) with (@ =71 from
Eq. (3.7).
b " The limiting behavior(1.16) ceases to apply if the mutual
RDd rcCs(rare,fc)=Ry"Caraire), (34 distance between the small spheres becomes comparable

with the order of their radii. As an illustration we consider
which follow from the defining Eqs(1.13 and (1.17.  two spheredA andB with equal radiiRy=Rg=R. While for
Simple limiting behaviors arise if the relative distancg; R<r 5g,Ry the reduced free energy of interactin!;uf(Az’)B is
=|r,—rg|—albeit being large on the microscopic scale—isgiven by Eq.(1.163 and, in particular, foR<r ,g<R, by
much smaller than other mesoscopic lengths. For the pair 2) 2 2(D— /v Upe —(D—1)
correlation [15,17,18,49 this limiting behavior takes the fh— —(Ap p)?aR2ZC MR Iy (3.12

form
due to Eq.(3.5), one finds forR, r,g<<R, with arbitrary

Cofa,fe)— ot sl IRY | rag<R,. (35 Tfas/Rthat

(2) . _(o_ D-1/vg 1lv
For the triple correlation, one finds fae——(2=M)AppR Ry (3.13

ratrg
2

Here
1rC) 3

ca<rA,rB,rc)eréD””)Cz( M= M(DIR) (3.14
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is independent R, and is a universal function @P/R with fgz)B D1 1
lim ﬁ—w(l—ln 2)+ = 6( In2— —), DIR—0,
D=r,5—2R 315  Rre= 2f4 R 4

(3.19
the distance of closest approach surface-to-surface between _ )
the two sphereg and B. Equation(3.13 holds because on which determines not only the solvation free energy of, but
the large length scale set By, the “dumbbell” composed also the depletion force between, two small touching spheres
of the two spheres with smaﬂ)l( andD can be considered in 1N @ dilute solution of ideal chains id = 3. Numerical evalu-
leading ordef50] as a pointlike perturbation as in Eq.11)  &tion of Eq.(3’(.21)8) for(grbltrary DIR in D=3 shows that the
in conjunction with the lower part of Eq1.12, but with the ~ Crossover off {/(2f,”) from the behavior given on the rhs

(3.12 requires that point. Since this holds also for the crossover frétreD

<R, t0 RER,<D as implied by Eqs(3.9) and(1.163, one
2— M—Ap po(DIR) "~ DIR—w. (3.1¢  finds that upon increasing the distanPethe reduced free
' energy of interactiompfﬁfg between two small spheres is
In the opposite limitD/R—0 of two touching spheres monotonically increasing and the attractive force
[19](b) the functionM(D/R) approaches a constant larger (9/dD)n,f{ZL is monotonically decreasing in the whole
than 1 because the dumbbell is a stronger perturbation thanrange ofD.
single sphere. This small dumbbell operator expansion can This is different from the behavior of a particle with small
be used for a calculation not only of the solvation free energyadius interacting with glanar wall (compare Sec. Il A and
of the dumbbell but also of other observables such as thg. In this case the attractive forced/D)AF ye is not
monomer density profile at distances from the dumbbelimonotonically decreasing with increasifig but exhibits a
which are much larger thaR and D. maximumat a distancé,,,, of the orderR, since the mono-
Similar to the small radius expansidqi.11) the small mer density profilel\/lf\)l"’) in Eg. (3.1) has a point of inflec-
dumbbell expansion has—via the polymer magnet analogy—tion. This qualitatively different feature applies not only to a
its counterpart in thé/-component field theory. An easy way thin cylinder but also to a small spherical particle near a wall
to obtain the explicit expression fokAp p is to calculate [52]. Another remarkable difference between the two cases is
the energy density profile—®%(r) ), i at the critical point  the behavior of the force in the limR, D<R,.. While in the
of the field theory in the presence of the two spheres withcase of two spheres?(aD)npf(AZ’é increases a® 1 for R,
radiusR and Dirichlet boundary conditions which represent .« the force 0/ 9D) AF gep between the particle and the
the dumbbelldb) centered at the origin, and to compare thewal| exhibits afinite limit for R,— . This is plausible since
result with the corresponding result as derived from the smalihe particle eventually moves into a region which is already

dumbbell expansion in the form depleted due to the presence of the wall.
It is interesting that for two touching spheres in a solution
MA. Iim<_q)2(r)>db’ Cm—(—fl)z)b,cm (3.17 of ideal chains inD=3 the form of the normalized interac-
D,D_ 1 . . 1
. RPV <‘I’(0)‘I>2(f)>b,crit tion free energy

a
Here ¥ is the normalized energy density introduced in Eq. f@LI(2R)%= — E(RX/R)Z, R<R,, (3.203
(C7) and the rhs of E¢(3.17) is taken in the limitA"\,0. The
evaluation of the numerator is simplified by means of a cons ; P
formal transformation relating it to the corresponding quan-rs(rid)s 21; I rzd\l/uesr a;r'nni]lzlr'?g Itt)g (i?lﬁélrg)éril's)’ (1.8), and
tity between twoconcentricsphereg 34](b). 3 & y P
For ideal chains—corresponding to a Gaussian field

b
theory—the latter quantity is known and leads to f@LI(2R)%=— E(RX/R)Z, R>R,, (3.200
“ (D=3+I ; i i2qui imati
M=2(9 Y- 01/2)D—22 for large radius following from the Derjaguin approximation
=0 | [53], which is supposed to be exact in this limit. Both forms

_ _ _ display the same power in the length rafiy /R and their
x[o I E=2EL 1], (3183  amplitudesa=(1—In2)=0.964 andb=(/2)In2=1.09
are nearly the same. Although we do not have an explicit
expression for the normalized interaction free energy for

2 R« /R of order unity, we expect that either of the two limit-

2+£ 2) (3.189 ing forms (3.20 provides a reasonable approximation even
R R in the intermediate regime. This is confirmed by the com-
puter simulation results of Ref12] in which the chain is
Equation(3.18 provides an explicit expression fdf2} in  modeled as ahl-step random walk on a simple cubic lattice
Eq. (3.13. In particular, one can check E(B.16 by using  with N=10 or 100 and the diameteiRof each of the two
the relationsASL o' =2 andw~ =2 valid for ideal chains. touching spheres equals 10.5 lattice constants. This corre-
In D=3 one finds the leading behavib1] sponds to the values 0.06 or 0.60 of(R,/R)?

whered is related to the dumbbell paramet®fR via

1
5 (0+ o H=1+2
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=1N/(410.5 and each of our two forms leads to estimates'®main finite for the rigid polymers of the PHS model.
which are fairly closg54] to the simulation results 0.04 or ~ Our analysis is based on the polymer magnet analogy
0.50 displayed in Fig. 3 of Ref[12] for the quantty Which maps the polymer problem with interactions within a
053 there. which is to be identified with single polymer chain and between a polymer chain and a
f(z)/(zggg here. particle onto a Ginzburg-Landaubf)? field theory in the
- AB : . f th icle with th |
In order to be able to appreciate the results for the deple\c—/);;?;hsiggcgnothte %a?r?i::tllg it]l\rlflgctéez oRrgfe [rlg]a r?rr;%erszd
:'r?lg lang;ae((::ttIi?; oift ?Sarlﬂgltfjc\g\'/tg fomfcilrr:zg?eatshgtr)r:a\:\r/}?hdtwos Il A). This allows us to resort to basic field-theoretical tools

&uch as the renormalization-group and short-distance expan-
of the PHS mode[5] extrapolated to the case of sm&ll . 'zation-group \ XP

551 A f displavi . t a dist ¢ sions which turn out to be extremely useful for the under-

[S5]. A force disp aying a maximum at a dis an@“@x 0 standing of the polymer conformations in the presence of the
orderR, for the effective interaction between a particle and article(s)

a planar wall and a monotonical decrease of the force wntﬁ) In the following we summarize our main results starting

increasingD for two particles of equal size are also found

o with the case of a single particle. The evaluation in | of the
within the PHS model when extrapolated Re<R,. How- o5y ation free energy for immersing the particle in a theta

ever, the PHS model does not produce the decrease of th@engi.e., ideal chainshas been generalized to the generic
absolutg values of the fregz ener_gy_of interaction and of th%ase of a good solverite., chains with EV interactionby
f_or.ce with qgcreas[ngz but in the limitR— 0 rather leads to calculating the universal scaling functiofy (Ry/R) [see
finite quantities \./vh|ch' are independentRfFor example, in Eq. (1.5)]. For estimates based on a systematic perturbative
the case of a thin cylinder or a small sphere near a wall the rq4ch it is useful to introduce the particle shape of a
mﬁX;mUT/VtOlI'Ce in the PHS modgl Is not propdo[tlmnal to“generalized cylinder”[see Eq.(1.3)] which is character-
RTHPRS™ " as for a flexible chain but rather ®, ~. N jzeq py the space dimensidh and an internal dimensiod
the particle-wall case the PHS model also fails to predict thaéncompassing cylinder, sphere, and wall as special cases.
the force becomes independent7f for R,D<7R,. _ The general results fofy p(x) to first order ins=4—D are
~ Even for the ml_Jch studied case of_aage_ sp_here radius, given by Egs(2.1) and(2.30.
I.e.,R>R,, for which the PHS approximation is expected to ~ (i) Our investigations in Sec. I B of generalized cylinders
work best, the deviation of the PHS approximation from theyith small curvature, i.e.R>R,, provide strong evidence
Derjaguin result is considerable. The PHS approximation imfq; the validity of the local and analytic Helfrich-type expan-
pllzesb= 1 in Eq.(3.200 [56], i.e., it leads to a free energy sjon conjectured in Eq1.7). With the help of Eq(2.39 this
fiZ} for two large touching spheres of equal size whose abexpansion can be generalized to arbitrary spatial dimensions
solute value is too small by about 10 %. The same rati so that we were able to obtain explicit expressions for the
(w/2)In 2 between the Derjaguin result and the PHS approXiuniversal coefficientd o, Ak, Ak,, andA kg appearing in
mation appears in the case of a single large sphere touchingie Helfrich Hamiltonian to first order is =4—D. While
a planar wall(compare footnot¢28] in Ref.[57]). the results for the spontaneous curvature enérgy in Eq.
(2.42 and the mean and Gaussian bending rigidites,
andA kg in Egs.(2.43 and(2.44) are new, the result in Eq.
(2.47) for the surface tensiod o has implicitly been noted
We have studied the interaction of mesoscopic particle§efore[see Eq.(4.7) in Ref. [58]]. All coefficients have ab-
(spheres, cylinders, and planar walgith a dilute solution ~ solute values smaller than those of their ideal chain counter-
of long, flexible, free, and nonadsorbing polymer chainsparts. The latter are given by the above expressions: for
which are depleted by the particles in good or theta solvents=0. The decrease of the depletion effects due to the EV
The properties for a single particle as well as the effectivénteraction can be traced back to a corresponding behavior of
interaction between two or more particles have been considhe profileMg of the end densitysee Eqs(2.1) and(2.2)].
ered. The simplest case is the surface tensiom which follows
One topic of main concern has been to investigate in d&rom the profileMg near a planar wall and for which the
systematic and quantitative way how the excluded volumelecrease is consistent with a corresponding decrd#§6)
(EV) interaction between the chain monomers modifies thef the surface exponer#z in the behaviorMg~(z/R,)%
ideal chain behavior. Our results are in line with the plau-for distances from the wall much smaller thaR, .
sible conjecture thatveaker depletion effects arise from (i) For small particle radius, i.eR<R,, our results for
chains with EV interaction than from ideal chains with the Y4 p(x) to first order ine confirm the validity of the power
same Flory radius. Another main topic has been the descridgaw (1.8) within the region(1.9) and allow us to determine
tion of situations in which the particle radiésis small com-  the ¢ expansions of the universal amplitudg p [see Eq.
pared with the Flory radiu®k, so that the chain will coil (2.52]. The region(1.9) is shown shaded in Fig. 2 and in-
around the particlécompare Fig. Land in which the classic cludes the interior pointd,D)=(2,3) which represents a
PHS treatment ignoring chain flexibilifyp] is clearly of no  cylinder in three dimensions. This is different from the case
use. For example, consider the linRfR,— 0 in which the of ideal chains in which Eq91.8) and (1.9) are not valid
spherical or cylindrical particle degenerates to a point or delow and on the linel=2. Reliable estimates for the am-
thin needle, respectively, on the scale Bf: for flexible  plitudesA;; andA, 3 corresponding to a sphere and a cylin-
polymers both the solvation free energy of the particle andler, respectively, for chains with EV interaction in three di-
its polymer-mediated free energy of interaction with othermensions have been obtained from the plausible assumption
particles vanishes in this limit, whereas these two quantitieshat the amplitudeAy p as a function ofd and D forms a

IV. SUMMARY AND CONCLUDING REMARKS
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regular surface over the base plang,D) (see Fig. 3 The  scale of R, and can in leading order be considered as a
combination of the value ol , corresponding to a disk in pointlike object. This gives rise to an expansion similar to
two dimensiongsee Table) with the e expansions of\4 p Eqg. (1.1 in conjunction with the lower part of E¢1.12) in
in Eq. (2.52 leads to the estimates in Eq8.54 and(2.55  which, however, the amplitud8p p is replaced by an am-
for AgzandA, ;. plitude function MA 5 depending orR andD. This is an-
(i) An estimate of the full scaling functiol's f(x) for ~ other type of a short-distance-like operator expansion which
the solvation free energy of a sphere in three dimensions igan be used not only for the effective free energy of interac-
shown in Fig. 4 in terms of the functio®; x) [see Eq. tion but also for other polymer properties—such as the
(2.56). This shows the crossover from the small curvaturgmonomer density profile—induced by the two spheres. Both
regimex<1 with the coefficient® (0), ®'(0), and®”(0) cases overlap in ';he reg|®<D<Rx in which thg mtgrac-
of its Taylor expansion about the regular point 0 being  ton free energyf} per unit bulk pressurepkgT is given
simply related to the surface tensiaw, the energyx, of ~ PY EQ.(3.12. Numerical values of\p p and the universal
spontaneous curvature, and the bending rigidifies, and bulk amplitudes in Eq.(3.12 are summarized in Table | for

A kg, respectivelysee Eqs(2.40 and(2.56)], to the small vari_ous space _dimensjons and both fqr ideal chqins and
ragti;us repgime x;'{l Wit?\ (theO)powér Ig)v]v @4 o(X— ) chains with EV interaction. The value forin D=2 derived
3,

) . ; . in Appendix C is a new result for a self-avoiding chain in the
_>A3~3.X - As expected, the curve for chams_ with EV '"* unbounded plane. Fdb =3 and ideal chains we explicitly
teraction isbelowthe corresponding curve for ideal chains

hich imoli I vati For chai .thcalculate the two function€, and MAp p [see Eqs(3.9)
which implies a smaller solvation energy. For chains with, g (3.18] and thus present a complete and explicit expres-
EV interaction the exponent i+ 1 is not a positive integer

) sion for the free energy of interaction between two small
and the expansion d;(x) or Y3 x) aboutx=0 cannot  gpherical particles to leading order in the small quantity
be a polynomial with a finite number of terms. This is in g, |y contrast to the polymer-mediated force between a
contrast with the solvation free energy of a sphere in a solug | sphere and a wall, for two spheres of equal size the
tion of ideal chains in which cade(x) is a linear function of ¢ -q is monotonically decreasing in the whole rangeDof
x (see Ref[11] or I). For the case of two touching spheres and arbitrary values of

We continue by summarizing our results for the mterac—R/RX we consider an approximative form bf)s [compare

in Eqs. (2.54 and (2.59 of the amplitudesAs s and A, 5 %q. (3.20] and compare it with the resulf42] of simula-

completely determine the Boltzmann weight in Ef.11) of
a small sphere and a thin cylinder, the interactions of theS(ae

particles with other distant particles or walls are Completelyexplicit analytic expression for the three-particle interaction

determined, to934,36,37,52,5 : . . . _
(iv) We havg studied the in_?eraction between a wall and JSS)B’C in the case of small spherical particles and ideal chains

long thin cylindrical particle a distanc® apart with radius in three dimensions. The expression follows by inserting the

and length for the caseR<R,,D<|. The dependence i triple correlation function in Eq(3.11) of the monomer den-

of the polymer-mediated free energy of interaction is propor-.Slty in the unbounded solution in E¢1.16D and using that

tional to that of the monomer densii /"’ of a dilute solu- i?altiglsincisee[r)e ilc:;Rér?n;jzA?/(/lij'ch 'r% der1207tTi.nThtﬁer$Z:Ja|\tti\llse
tion of chains in the half-spacsithout the particle[see Eq. 9 1T . 9

. © distancesrpg, rac, Or rgc between the spheres and is
(3.1]. The same applies for a small sphere near a fealin complementary to the three-body results presented in Ref.

i (W) ] i i ~
pare D: SinceMy™ has a point of inflection &D . Ry 'the 12] with R of the order ofR, . In order to convey an idea of
attractive mean force between a wall and a thin cylinder o he relative importance of one-, two-, and three-particle con-

between a wall and a §ma|| sph_ere somewhat S.urprlsmg%butions, we summarize the results
passes through a maximum &% increases. The increase

(vi) As an illustration for the nonpairwise character of the
pletion interaction between particles, we have evaluated an

~DY1 of the force per unit length®~9 and unit bulk - , R
pressuren,kgT with the distanceD in the regionR<D (FO 12}, 13 o) =27RR ] 1-2—,
<R, is a consequence of its length dimensiba 1, its in- AB
dependence oR,, and of the fact that the particle radigs raptrectrca

. 2
enters the force only in the form of the power l&R{~ " 2R —rABrBCrCA (4.9

according to Eq(1.11). Our study of the situation of long
chains is complementary to that of short chains, i%,, for the special cas®<r;;<R,. For three small spheres
<R, considered in Ref46]. In the latter case the attractive configurated on an equilateral triangle with edge lengthe

mean force of depletion is monotonically decreasinglas interactionfﬁfgc is related tofg%g for two spheres at a dis-

increases. tance 2 via
(v) The interaction between two small spherical particles
A, B of equal size and with a distancgg=D+ 2R between (ffj)s,c)rifr I(—f2h);, —2r=6RII. 4.2

their centers has been studied in Sec. IlIB both Rr

<D,R, and forR,D<R,. In the former case we use Eq. This relation holds for an arbitrary ratid’R, provided R
(1.163 expressing the interaction in terms &f p, R, and  <r,R,.

the universal monomer density correlation functiop of a Another interesting type of three-body depletion interac-
single chain in unbounded space. In the latter case thton arises for two spherical particles near a planar wall. If
“dumbbell” composed of the two spheres is small on thetheir radii are small, this situation can again be systemati-
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cally investigated by means of E(l.11 and the lower part ACKNOWLEDGMENTS
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which the distance between two of the sphe@sbetween  giience Foundation through Sonderforschungsbereich 237
one of the spheres and the wdlecomes of the order & or “Unordnung und groRe Fluktuationen.”

smaller by means of the “small dumbbell” expansitr an
expansion which applies to a sphere close to a planar wall
[52)).

Finally, we summarize some of the field-theoretic devel- The results of Sec. Il are based on the behavior of the
opments on which our treatment of the particle-chain interfunctionQq p(#) in Eq.(2.30, in particular on the behavior
action is based. of C4(7n) in Eq. (2.3)). The difficult part of the correspond-

(vii) After a brief outline of the polymer magnet analogy ing calculation consists in performing the sum omend the
in Sec. Il A we relate for a generalized cylindéimmersed double integral overg and ¢ in order to calculateCy(7)
in a dilute polymer solution the density profig of chain ~ according to Egs(2.15h and (2.31h. Here we derive the
ends to the local susceptibility in the corresponding magneti@symptotic expansions afy(7) for large and smallr, re-
system[see Eq.(2.27)]. For nonadsorbing chains the corre- SPectively, and give numerical values@f() for the cross-
sponding order parameter fiedbl vanishes at the surface of OVer region Gs 7=<3.
the particle. With the Gaussian order parameter correlation
function outsideK as the unperturbed propagator we use 1.Cy(7) for 7>

renormalized perturbation theory with respect tolf)? in- We calculate the coefficientd(!) andC{? in Eq. (2.32
teraction in order to obtain a systematic expansion in the EMor =D, 3, and 2 by expanding the rhs of EQ.31b for
interaction of the polymer quantities below the upper criticaljarge 7. To this end we need the behavior of the integrand in
dimensionD .= 4. The behavior of our one-loop expressionsgq. (2.31h for Ruyt=7 large and ¥, —R)ut= (¢
[see the functiorCy(7) in Eq. (2.3D] in the limits corre-  _ 1) /7=s arbitrary. This is consistent with the expectation
sponding to larg&k and smallR is discussed in Appendix A. that for the small curvature expansion the important regime
(viii ) We verify to first order in the EV interaction that the in terms of polymer variables iR/R, large and ¥,
samesmall radius amplitude appears fdifferentproperties  —R)/R, arbitrary.
of a generalized cylinder with a small radiRsIn Appendix (@ d=D. Since¢{® and ¢{® belong to the one-loop
B we write Eq.(1.11) in terms of fluctuating densitie®p-  contribution ofQp p(7), we need to consider ontg{* and
erators in the equivalent field theory. The universal small ¢{*) [compare the remarks below Eq.20 and (2.31b].
radius amplitudeAy p for polymers is obtained from a cor- The central part of the calculation consists in expanding
responding critical amplitudéd,D in the field theory by mul-  g<(#,7,e=0) in the integrand on the rhs of E®.31b for 7
tiplying with a universal noncritical bulk amplitude. In the large ands arbitrary. Since\/\/§11)(0)=(n+ 1)%/(27?) for a
two-point correlation function with distances of the two =1 in Eq. (2.15h, the quantitygs(#,7,0) is, apart from a
points from the generalized cylinder much larger thHan factor — ?/(272), given by

there appears the same amplitlfd)eD at the critical point of ®

the field thgory—wherg the corrglation Iengtp is infinitely > n2 ln(\) [K,(s+ VD2 (A1)

large—as in the behavior of the field-theoretic excess suscep- =0 Ky(\/7)

tibility of the generalized cylinder fof, /R>1. The latter is

related to the power-law behavidil.8) of the function A first hint on how to evaluate the suf1) for large r can

Y4p(X) for x=R,/R>1. These considerations are impor- b€ gained from recognizing that its leading behavior corre-

tant to understand that the mechanism behind the small r&Ponding to a vanishing curvature must describe the half-

dius expansion is basically of the same type as that behingiPace bounded by a planar wall. This is discussed after Eq.

the well-known short distance expansions in field theoried2.150 and shows that the ratio/R has the meaning of the

without boundaries[37,59. Moreover, in the case of a lengthof awave vector parallel to the wall and that all values

sphere our result foAp p to first order ine confirms that Of N are important for which '(/R)/(H‘ﬁ):n/\/;zw or

this amplitude can be reduced to bulk and half-space ampli"/R)(Y. —R)=ns/\/7 are of order unity. Thus for the gen-

tudes as predicted from a conformal mapp[6g] (see the eral expansion for large a large number of t(_—:trms will con-

penultimate paragraph in Appendi®.B tante and the sum can be replaced by an integral plus cor-
(ix) By studying the energy density profile in a Gaussianfections according to the Euler-MacLaurin form{id]:

field theory with boundaries, we explicitly verify that not - L B

only a single sphere but also a “dumbbell” composed of two [ 2,

spheres of equal size can be considered as a pointlike pertur- nzo F(n)= Jo dnF(n)+3F(0) =57 F'(0)

bation on sufficiently large length scales. At bulk criticality

the profile for the dumbbell can be obtained by means of a B4

conformal transformation from the known profile between 4

two concentric spheres. For ideal polymer chains we thus

find the explicit form[see Eq(3.18] of the amplitude func- HereB, are Bernoulli numbers and the functiéiin) can be

tion MAp p addressed in paragrag) of this Summary. read off from the expressiofAl). For caseg(a) the analysis

APPENDIX A: THE FUNCTION C4(7)

F7(0)+ - -. (A2)
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of this expression shows that all contributions on the rhs of

Eq. (A2) apart from the integral lead to orders of 12
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2.Cy(7) for 7—0
The leading behavior of4( 77— ) in Eq. (2.47) can be

higher than needed for the first three terms on the rhs of the torad from the behavior for—0 of the quantity

expansion(2.32 of C4(7) [but compare cas¢b) below].
Upon introducingw instead ofn as the integration variable,
the expressiorfAl) turns into

s+\7
a
w\7

with a= w /7. For larger the integral(A3) can be simplified
by employing theuniform asymptotic expansion for large
ordersa of the modified Bessel functiorlg andK, which is
provided, e.g., in Eqg99.7.7 and(9.7.8 of Ref.[38(@)]. In
addition to the leading terrhcompare the discussion after

2Ia(a/w)
Ka(a/w)

a

o0
7_3/2[ do w
0

2
] (A3)

Eq. (2.150], now also the correction terms containing the

functionsug, uq, andu, given in section 9.3.9 of the above

2

Zy(7)= — ——Co(7) (A6)
8

with Cy4(7) from Eq. (2.31). The behavior ofZy(7—0) ex-
hibits two types of leading terms. The first is the logarithmi-
cally divergent contribution— a/(472)In(1/\/7) which fol-
lows from the behaviogg(y,7,0)— — al(47?) for 1<y
<1/\/7- as mentioned below E@2.159. The second contri-
bution is independent of and requires special care. Its
evaluation is facilitated by splitting4(7) according to

reference have to be included. By inserting this simplifiedwhere

integral intogs in Eq. (2.31h, one finds that the first three
coefficients on the rhs of the expansit132 of C4(7) are
determined by a number of double integrals ogseand w

which can all be calculated in closed form. This reproduces
the expressior§2.35 for C;—and thus checks the assump-

tion leading to it—and yields the expressions ") and
¢ in Eq. (2.36.

(b) d=3. Due to the additional integration overin Eq.
(2.15b, the expression corresponding (81) now reads
>7_oF(n+1/2) where, usingW{"2(0)=(n+1/2)/(2)
and substitutinge=q7~ 2 in Eq. (2.15h),

e [Fy TR T) 2
F(n)—\/;nfo dx m{K,{(S'F \/;) K +1]} .
(A4)

From the Euler-MacLaurin formul@A2) one infers that, in

contrast to casé), apart from the integral on the rhs also the

terms proportional td-(1/2) and toF’(1/2) have to be in-

Ty(7)=Hy(7)+ Ty(7), (A7)
. K0
_ 1 _ a
Hd(T)_fl dl//lff [ 1 lv[/ Ka(\/;) l gs(va!O)
- géas’wﬁ,O)] , (A7h)
J(7)= fdw v 9@y \r,0). (A7c)

Here we have used Eg.9) and(2.12 and we have added
and subtracted the functiag{®\(y\/'7,0), which is defined
as in Eq.(2.159, and represents the behavior @f «, 7,0)
for 1<y, 7 Y2 In H4 one can interchange the order of the
integration overy and the limit7— 0 [62], which results in
the finite limit

Hy(7—0)— By= L dy ¢t

cluded in order to obtain the first three terms on the rhs of the

expansion2.32 of C3(7). Proceeding in the same way as in

case(a), one is led to consider modified Bessel functidgs
andK, with ordera=w+/7\/x?>+1 and triple integrals over
s, w, and k. One reproduces again the expresdi135 for
Co and finds, using,= 1/6, the expressions far{*) andc
in Eq. (2.37).

(c) d=2. In this case the procedure is quite similar to that

in case(b). The expression corresponding(®1) now reads
F(0)/2+=}_,F(n), where

N S F Ry 2
F(n)—Tfo dk Kn(\/;\/m){Kn[(SwL JoVKZ+ 1712
(A5)

The analysis shows that only the integral on the rhs of the

Euler-MacLaurin formulaA2) contributes to the first three
terms on the rhs of the expansi¢h32 of C,(7) [compare

X [ [1- ¢ 2 Pys(¢he=0)+ YY)
41

where the function

Ys(#h,€)=0s(4f,7=0s) (A9)
can be read off from Eq2.15h. The integral in Eq(A8) is
well-defined sincey(,0) tends to— a/(4?) for large

so that the logarithmic singularity is removed. The integral in
Eq. (A7c) can be carried out explicitly and leads in conjunc-
tion with Eqgs.(A7) and(A8) to

o [Inr w(d2) Ce
Id(T—>0)—>Bd+4—W2 7—In2+1 2 +7 ,

(A10)

cases(a) and (b) abovg. One finds again the expression whereW is the psi function an€g denotes Euler’s constant.

(2.39 for Cy and in addition the expressions E)iz) andC(zz)
in Eq. (2.38.

Inserting Eq.(A10) in Eq. (A6) and carrying out the inverse
Laplace transform in Eq(2.319 leads to the result for
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TABLE II. Numerical values of I€4(7) [see Eq(2.31H].

Inr d=2 d=3 d=4
—10 18.816 21.308 22.223
-9 16.795 19.175 20.108
-8 14.773 17.027 17.980
-7 12.755 14.865 15.835
-6 10.744 12.692 13.672
-5 8.748 10.511 11.488
—4 6.773 8.328 9.282
-3 4.830 6.160 7.057
-2 2.931 4.024 4.836
-1 1.085 1.946 2.640
0 —0.700 —0.054 0.504
1 —2.422 —1.966 —1.540

Yq4p(X—) in Eq. (2.48. We conclude this subsection by
calculating the numbeB, for d=D, d=3, andd\,2 [see
Eqg. (2.50].

(@) d=D. SinceZp belongs to the one-loop contribution
of Yp p, we need to considef, only [compare the remarks
below Egs.(2.20 and (2.31h]. This amounts to inserting
a=1 into Eqg.(A8) and the functiony, corresponding to a
sphere inD=4 which is given byys(#,0)=—(47%) 1
— 2] 2 [63] yielding B,=0.

(b) d=3. For 2<d<D the quantity3; does not vanish
and can be evaluated numerically. bt 3 this leads to the
value for B3 given in Eqg.(2.50.

(c) d\,2. In this limit B4 can be calculated exactly. It is
useful to substituter= 2% in Eq. (A8) and to carry out the
limit a=(d—2)/2\,0 for fixed o in the ensuing integrand.
One finds that only the term for=0 in Eq.(2.15b survives
this limit with the result

L[]
2_8,”-2 1 g o

o—1
-——+1
T

8n?

(A11)

3. Cy4(7) in the crossover region G <3
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sion because we shall find tlsamesmall radius amplitude
Agp asin Sec. lIC.

Keepingu and e=4—D as independent variables, the
SRE can be written in the form

exp(—AHg) < 1— A uR ue,d)u? 9Ziwc+ - -
(B1)

with

f dng(I)Z(TLZO,I'H), d<D
wg=1 JR (B2)
P2(0), d=D.
Here u?~9Z,w is a renormalized and dimensionless opera-
tor and

F(uR,ue,d)=—AL(uR) 2 [1+UF (uR;e,d)

+0(u?)] (B3)
has an expansion in terms aofwith the coefficient— A
=277 (a) = af)y of the leading term corresponding to
the Gaussian modgsee Eq(4.6) in |]. The functiond=; can
be expanded in terms efwith coefficients which depend on
uR only via powers of IngR). In particular, we shall find
from the critical two-point function that

472
INn(uR)+f,+ ed+78d +0(e),

(B4)

N+2
Fi(uR;e,d)= 3

where

Inm  W(d/2)
C=lt 5 5

(B5)
the quantity3; has been introduced in EGA8). The ellipses
in Eq. (B1) stand for contributions in which higher powers of
R are multiplied by powers of IR. Standard renormalization
group arguments imply that for largeR the functionF is
proportional toRY~ " and that the rhs of EqB1) can be

For the convenience of the reader, in Table Il we givewritten as .4 R Y w,, where

some numerical values @fy(7). From these values an ap-
proximation for the full functiorCy(7) can be constructed by
using its asymptotic behaviors far—o and —0 as de-

—Ax=p?"Y"ZD (U) F(Lu*;e,d) (B6)

rived in the above subsections and by appropriate interpolawith D, from Eq. (2.28. The universal polymer amplitude

tion.

APPENDIX B: SMALL RADIUS EXPANSION
TO ONE-LOOP ORDER

The relation (1.11) for polymers is—via the polymer

Agp in Eq. (1.1 is related toAx = Ag(N) via [64]
Agp=—Ax(0)2u 2Z LR M. (B7)

By using Eq.(2.28 one finds that the nonuniversal quantities
m,Zi,D ,f, cancel and

magnet analogy—closely related to a corresponding small

radius expansiofSRE) in a (®?)? field theory with the Bolt-

zmann weight exp{ AH{®}) which describes the presence

of the generalized cylinddf (compare Sec. Il A and Appen-

dix C). Here we shall illustrate the SRE by considering the

two-point correlation functiomt the critical point of the field

theory in one-loop order. This is particularly well suited to

_279? " 47> 3 In2 W¥(d/2)
VP R e A R S
+O(82)}, (B8)

reveal the mechanism behind the SRE. Moreover, it providewhich indeed reproduces the first-orderesults ofAq p in
a significant check for the operator character of the expankqg. (2.52).
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We now verify Egs.(B1)—(B5). Consider the two-point
correlation function(®;(r)®,(r’)) of the field theory de-
scribed by Eq(2.6) at its critical point. Fou=0 the SRE
follows from the explicit expressions in Eq2.7) for the

Gaussian propagator which by using Wick’s theorem lead to

(k@) Dy(r"))p (0]
5, d’p
:2—7'1|_(d(rlri)ajRa(zﬂ_)(s exdiP(rj—rj)]

X (P12)%K (Pr )K(Pr))

=(AQ) " Him R™2*{(D;(NPy(r") o)
R—0

(D@ Dy(r"))p, (0]}

Here( ) is a cumulant average with the subscifipf] indi-

(B9)
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G, g (11"
T T
A=1
A=0
r o r r y r
Egs. (B.18), (B.22) Eq. (B.17)

FIG. 5. Representation dlwx®,(r)®4(r'))y ) appearing on

the right-hand side of Eq$B17), (B18), and(B22). The solid lines
correspond to the bulk Gaussian propaga®y =Gy, and A

=0,1 denotes the loop order. The wiggly lines indicate the insertion

of the operatoiwy located at the “axis” of the generalized cylinder
K.

catingu=0 and withb denoting the unbounded bulk space With

in the absence df. Obviously Eq.(B9) verifies the SRE for
the Gaussian model.
Consider now the first order in contribution:

’ N+2 2 & 2 (v ’
(Pj(r)Py(r')) = — i 3 8 fu®uR=J(r,r'),
(B10)

where

J(r,r’)=J d°y G(r,y;R)G(r",y;R)I(y, ,R),
Y1 >R
(B12)
I(y. ,R)=R™%*G(y,y;R)

—2a
TN
The first order expression given in E@10) has the same
structure as the one in E¢2.11) and we have used Eq.

{D?(Y)) 10— (PXY))b oy} (BLD)

(2.163. Note that in the present dimensional regularization

scheme and atty=0 the bulk quantity Gy(y,y)

=<<I)2(y)>b,[o] /N vanishes. We have exploited this in order

to write the last expression in EgB12) in such a form
which allows us to make contact with EB9) and which
implies
AR
I(y,,0)= T<WK®2(y)>b,[0]

_ _,—d+e @ 2
=-y] —{1+eey4+0(&%)}. (B13)
472

The functionl (y, ,R) is related toys(i,¢) in Eq. (A9) by

yo7eI(y, ,R)=ye(y. IR,8), (B14)

and Eq.(B13) is consistent withy,(=,0)=—a/(47?) as
mentioned below EqA9). In order to verify Eqs(B1)—(B5)
we decomposé(r,r') according to

‘]:‘](i)+‘](ii)+‘](iii) (815)

Iy = [ L8 GyrYIGr W1y, R=0),
| (B163

J(ii)(r,r'):—f

o<y, <

RdDy Gp(r,y)Gp(r’, )1 (y, ,R=0),
(B16b)

J(iii)(f,f')ZJ >RdDy {G(r,y;R)G(r",y;R)I(y, ,R)

Y1

—=Gp(r,y)Gp(r',y)l(y, ,R=0)}.  (B169

In the following we analyze the behavior of the rhs of Eq.
(B10) for R—0 which arises from each of these contribu-
tionSJ(i) s ‘J(ii) , andJ(m) .

Rewriting I(y, ,0) in the integrand on the rhs of Eq.
(B16a by means of the first equality in EB13) one finds
(see Fig. b

<q)j(r)q)k(r,)>[l],(i)—>~A(K0)R2a<wK<Dj(r)(bk(r,)>b,[1] -
(B17)

In order to evaluate the leading contribution &f;y for
small R, one can sety, =0 in the two bulk propagators
Gp(r,y) and Gy(r’,y) in the integrand on the rhs of Eq.
(B16b). Its remaining dependence gn as given by the last
expression in Eq(B13) leads to a pole irx. This results in
(see Fig. %

(Pi(r)Py(r")) 1,6
— AQR? @ (NP (r"))p o]

N+2
X (Zt)[1]+Tu[In(,uR)+fl+ed] , (B19)

where €);1=(N+2)u/(3¢) is the contribution toZ; of
first order inu [see Eq.(2.16b].

For the leading contribution of; for R—0, it is suffi-
cient to confine the integration over, on the rhs of Eq.
(B160 to the restricted regiolR<y, < \/er(<) with r(f)
=min(r, r}). The reason is that in the remaining integration
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region not only the ratio®/r, andR/r| but alsoR/y, are Qyq

small so that in leading order one can insRr 0 into the J(m)(f,f')—>7R8<wK‘b1(f)‘D1(r’))b,[O]ﬂd, (B19
first term in curly brackets, which is then canceled by the
second term. In particular, in the restricted regipn is

— ” -1+ _ .~ 2a72 _
smaller tharr, andr | . By inserting the representatid8.7) Ba= L dy L= ys(dhe) = ys(=,e)}

for the external leg& andG,, in Eq. (B160¢), one finds that (B20)
only the terms fon=0 contribute to the leading behavior of with vy, from Eq.(B14). The quantityB4 arises as the limit
Jgiiy for which one obtains for R—0 of the expressiofi65]

NS RPy| ~2« | (RP 2
f . 'Rdt//wl”[F(aJrl)]Z(Tlﬂ) HIQ(RPI#)—K ((RP))KQ(RPI#)} ys(w,s)—[la(RPdf)]zys(oo,s)]-
1 @
(B21)

Of course,B4— By for e—0 and the present procedure latr(f)ﬂo at the critical point of the field theory leading to Eq.
(B20) should be compared with the procedure RIE, —0 leading toBy in Eq. (A8). Equation(B19) implies (see Fig. %

N+2 472
<(bj(r)q)k(r,)>[l],(iii)*’A(KO)RZ%Q’K(Dj(r)(Dk(r,)>b,[0]TUTBd+O(US)- (B22

Equations(B17), (B18), and (B22) corroborate the SRE in which characterizes the temperature dependence of the bulk
Egs.(B1)—(B5) to first order inu in the case of the critical energy density. From Eq$B1)—(B6) and from the depen-
correlation function. Note the recurrent character of the SRElence ofBg2(N) on & one obtains the following explicit
which is typical for operator product expansidrid¥(b)]. A expressions:
graphical representation of the bulk correlation function with
insertion of the operatawb is shown in Fig. 5. . 1

Apart from particles in a polymer solution, there are other Ap p(M)=—=+0(&?), (B263
physical systems the SRE can be applied to such as spherical V2
or cylindrical particles in liquid*He near thex point and

nonmagnetic inclusions in a ferromagnet of Ising or Heisen- R B € +
berg type near the Curie point. For these systems the param- Azp(N)= _\/577 1+ 5 CetlInm+ Nt8
eter N takes the values 2, 1, and 3, respectively. A useful
characterization of the small sphere or the thin cylinder in ) 5
these cases is provided by the universal amplitude X (16m“Bs+2In2—1)| 1 +0O(e?),
B26b
Ago(N) = — Ac) /22 (823) o
d.D K N and
with the amplitudeBg2 of the bulk correlation function A _ N+ 232 B 4 O(s2 B260
(D2(r)®?(0)),=Bg2r 2P~ at the critical point. For ex- 2p(M) = efzg2 Byt 0(e%). (B269
ample, the change in free energy per unit “lengti"which _ . _
arises upon immersing the generalized cylindemto the The first-ordere result(B26a, which we have obtained
bulk system displays a singular dependence ten(T by carrying out the calculatiodirectly in the outer space of
—T.)/T,; given by a sphere, confirms the predicti¢84]
KT Ao o (M) = V(AT (ANBy2), (B27)
——In(e" ),
! sing which follows from relating the half-spacéhs) profile
2 _ AP? ~(D-1) with the di f la-
— _Kk.T.RI"1 4 P2 _ (®(2))ns=Ap (22) with the distancez from a pla
Ble KMIPD.tsing nar wall with Dirichlet boundary condition® at the bulk
=kgT R Ve C7IMA, (ME(N) (B24)  critical point to the profilg®?(r)) in the outer space of the

sphere by means of a conformal transformatfié@] [for A/

=1 compare the explicit result in the first EQ0) of Ref.
[34(a)]. The consistency of the above results is expected but
. remarkable since the finite conformal map changes the ge-
EM=[{DPp Jsingt® ¥ (Bp2/N)"¥2,  (B25)  ometry under consideration.

with the universal bulk amplitude
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It is helpful to summarize the relationship between theis expressed in terms of cumulant averagesof the field

universal amplitudé\y p for polymers and the universal am-

plitude Ad'D for the field theory in terms of the symbolic
equation

Ag oW =Aq o VNIBg2®?, (B28)

which applies inside averages or correlation functions for I

N\0 with ¥ defined in Eq. (C7). Since ¥
= by IBpz®?, with by=[R/(2L,)]°By2 from Eq.
(C10, one has

Ago=(AgpVNby) A o- (B29)

theory. Here £L=L(t;—Ly) denotes an inverse Laplace
transform defined as in EQ.5) and relates the strengthin
the thermal perturbation

Hin= %DdDr T(r), (C5)

T(n=2a(r), (8

of the Hamiltonianat the critical point of the field theory to

For a spherical particle, in particular, the polymer amplitudethe bare “chain length'L, which—apart from a nonuniver-
Ap p can be expressed in terms of the critical universal amsal proportionality factor—equals the number of monomers

plitude ratio on the rhs of EqB27) and the noncritical uni-
versal bulk amplitudeby. In D=2 both are explicitly
known[19(b)] and lead to the valué, ,=3.81 in Table I.

APPENDIX C: SHORT DISTANCE AMPLITUDE
FOR POLYMER DENSITY CORRELATIONS

Here we calculate the universal amplitugden Egs. (3.5
and (3.6). While for D=4 it coincides with the correspond-
ing ideal chain valuer(!Y = 7~2 from Eq.(3.7), inD=3, 2,
and 1 the amplitude is different froma (9.

(a) D=3. In this case results are available,49 for the
normalized scattering form factét(Q) which is defined for
generalD by

D

cz(r,0>=R§’”f QeXp(iQ-r)H(Q), (o3}

RD(Z’IT)D

whereH(0)=1 as implied by Eq(3.3). The amplitudéh,, in
the power law

H(Q—%)—h,(Q*R2/2) @

/i) e

From the acceptefll8,49 approximate valud,,~1.1 inD
=3, one infers via Eq(CJ) the valuec=~0.13(see Table)l

(C2
is related too by

D—-1/v
2

o= hwzl/(Zv),n_DIZF(

in the polymer chain. The scaling dimension of the quantity

qf(r)zvzl’% T(r) (C7)

X

equals its inverse length dimensibn-1/v. HereE=tyLq is
the exponent which appears ih [compare Eq(2.5)]. The
rhs of Eq.(C4) has the normalization property that by inte-
grating the numerator over, say,, one can replace
JdPraw(r,) by RY” [compare the discussion related to Eq.
(189) in Ref.[57]]. This is consistent with the corresponding
normalization property d°r xp(r,) =R X" for the |hs of Eq.
(C4) as implied by Eq(1.13.

Short distance properties such as those in E8%) and
(3.6) follow from the operator product expansi¢@PE

V(ra)¥(rg)—or ot W[ (ra+rg)/2],  (CH

which is equivalent to the well-known OPE of energy den-
sity operatorg37(b),59]. The amplituder is expressed as

o= &/E (C9Y
Here by is the universal bulk amplitude in
(W(r)®(0))p=byr 2O (C10

(b) D=2. In this case one can obtain a fairly accurate

estimate foro by combining a numerical estimate for a ratio
of gyration radii of ring- and open-chain polymers with con-

formal invariance and Bethe ansatz results for@{gV) vec-
tor model by invoking the polymer magnet analo@MA)

with ()¢ denoting the average at the critical point of the
field theory and{ is the amplitude which replaces in the

corresponding OPE for the normalized energy dendity

[15,17. By using the language of the Ginzburg-Landau field="¥/\by. By using results of Ref§66,67 one finds that in
theory (compare Sec. Il Athe necessary relations of the D=2 for A\,0,
PMA can be written in a way which makes the generaliza-

tion to D=2 obvious. The polymer average

{p(ra)p(rg)p(re)ly

£<W(VA)W(FB)W(rc)¢1(y)f dDy'¢1(y')>
- (Ca)

£<<I>1<y) f dDy'<I>1<y')>

r'(2/3)\ 92
N1/2§—>(21677)1/2<%) ~1.21 (C1)

[compare Eq(7.16)) in Ref.[19a)], where{ is denoted by
C,]. The amplitudeby, has been calculated in the Appendix
of Ref. [19b)] by using results of Refl68] so that inD
=2 for N\,0 one has
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k(5 _, ) 213 same number of monomers. Equatidi@9)—(C12) lead to
Y2 oy — ( Rnng) . (C12  the valuec~0.278 in Table I.
(c) D=1. In this case the behavior of a chain with ex-

P ) . cluded volume interaction is that of a rigid rod of lengi.
WhereK 0.226 630 andR / Ryiny~6.85[69] is the ratio of  Thysy=1 andC,(r,0) equalsR,—|r| for |r|<R, while it

Ry of an open polymer chain and the mean square radius afanishes for|r|>R,. The assumption that Eq3.5) still

gyratlon Ring=Ri.ring* Ry 1ing OF @ 1ing polymerwith the  holds forD=1 leads to the value=1 in Table I.
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