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Effective Hamiltonian for liquid-vapor interfaces
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Starting from a density functional theory for inhomogeneous fluids we derive an effective Hamiltonian for
liquid-vapor interfaces of simple fluids which goes beyond the common phenomenological capillary-wave
description. In contrast to other approaches we take into account the long-ranged power-law decay of the
dispersion forces between the fluid particles which changes the functional form of the wave-vector-dependent
surface tension qualitatively. In particular, we find two different forms of the bending rigidity for the capillary
waves, a negative one for small wave vectors determined by the long-ranged dispersion forces and a positive
rigidity for large wave vectors due to the distortions of the intrinsic density profile in the vicinity of the locally
curved interface. The differences to the standard capillary-wave theory and the relevance of these results for
the interpretation of scattering experiments are discugSddl63-651%99)10406-9

PACS numbes): 68.10—m, 82.65.Dp, 61.25.Bi

I. INTRODUCTION At low temperatures, i.e., far below the critical point of
the two coexisting bulk phases, the intrinsic thickness of the
The distinction between the liquid phase and the vapointerface is of the size of the particles and the dominant
phase of a given substance is facilitated only by bringindfluctuations are capillary waves which are promoted entropi-
them into spatial contact under appropriate thermodynamigally but opposed by gravity and by the surface tension
conditions so that a liquid-vapor interface can form. In spitewhich penalizes the increase of the interfacial area generated
of this significant conceptual and practical importance thepy the capillary waves. Upon raising the temperature the
structural properties of fluid interfaces are still unresolveddensity fluctuations in the bulk phases become more and
due to the dearth of rigorous theoretical results for realistianore important, yielding an intrinsic interfacial thickness
systems in spatial dimensioms=3 [1-3]. The reason for proportional to the increasing bulk correlation length. Thus a
this uncomfortable situation is the fact that at fluid interfacesconsistent picture of the fluid interface, in particular for criti-
two types of fluctuations occur simultaneously which requirecal phenomen#6], should be one which includes both ap-
both the same careful statistical analysig:fluctuations in  proaches and clarifies the crossover from one to the other.
the bulk, which are present also in the absence of the inter- |n an effort to reconcile the two approaches one may ar-
face and cause, e.g., the temperature dependence of the flgjde that the CW theory describes fluctuations of the interface
densities, andii) capillary waves of the interface position. larger than the bulk correlation lengéhwhereas the van der
Whereas the spatial extension of the bulk fluctuations variegvaals theory takes into account fluctuations below this scale,
between the molecular diameteg of the species and the yielding a smooth density profilg7,8]. In this picture the
bulk correlation lengthé, the wavelengths of the capillary vdw theory provides a smooth planar interface, the so-
waves span the range betwegmnd the capillary length,  called intrinsic interface, whose undulations are described by
=\ a/(ApmG) whereo is the macroscopic surface tension, the CW theory. Although this view is appealing, it suffers
Ap=p,—pq the difference between the number densities offrom the problem of specifying the length scale which sepa-
the liquid and vapor phase, respectivatythe mass of the rates both regimes. This length scale is expected to be pro-
species, and the gravitational constant. portional to the bulk correlation length. However, there is no
In view of the absence of rigorous results the structure oflgorithm which would lead to an accurate determination of
fluid interfaces has been investigated by approximatehis length scale. In addition to this uncomfortable quantita-
schemes. To this end two approaches have emerged. The fitste ambiguity this unified approach is burdened by a more
one, developed originally by van der Wad&lalW) [4], in-  fundamental problem, which is the identification of the fluc-
troduces a laterally flat intrinsic density profile across thetuations which are dominant in either regime. One has to
interface interpolating smoothly between the densities of thensure that one does not count fluctuations twice, i.e., as
bulk phases. The second approach, put forward by Buffcontributions to the intrinsic density profile and as capillary
Lovett, and StillingerBLS) [5], describes the actual smooth waves. Furthermore, this unified approach neglects bulk den-
profile as the thermal average of a fluctuating steplike intersity fluctuations at scales larger than the correlation length,
face between the phases. The main difference between tlier which only capillary waves are taken into account. The
two approaches resides in the assumption what the releva@W approach does not allow one to take into account bulk
fluctuations are. Whereas the van der Waals theory identifiedensity fluctuations which are well separated from the inter-
the density fluctuations in the bulk phases as the relevarface, i.e., bubbles on scales larger than the correlation length.
mechanism for the formation of a smooth profile, the It seems that a more consistent way of reconciling the two
complementary BLS approach invokes the capillary wavespproaches consists of distinguishing the different types of
(CW’s) of the interface, which have no counterpart in thefluctuations at all length scales, i.e., for both the undulations
bulk. of the interface and the bulk density fluctuations. This means
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that the intrinsic density profile should take into account onlytheory for inhomogeneous fluidSec. 1l A). In Sec. Il B we
bulk fluctuations but no undulations of the interface position,introduce normal coordinates in order to obtain an appropri-
which are described in a second step by a statistical theorste description of the interface configurations.

for capillary waves on all scales even for wave vectors larger
than the inverse correlation length.

To this end we start from a microscopic density functional o ] ] )
theory for inhomogeneous simple fluids, which is a success- Our analysis is based on a simple version of density func-
ful approach for the description of nonuniform fluig. we  tional theory for one-component fluids which consist of par-
separate the different kinds of density fluctuations—bulkticles with a rotationally symmetric pair interaction potential
bubbles and interface undulations—by determining the inWW(r). Within this approach the interaction potentiai(r)
trinsic density profile via minimizing the functional under =Ws(r) +w(r) is split into a short-ranged repulsive part
the constraint of a locally prescribed interface position; i.e. Ws(r) and a long-ranged attractive partr) [17]. The grand
the location of the isodensity contour of the mean density iganonical density functional reads
given as a function of the lateral coordinates. Thus, by con-
struption the profi_lt_e does not take into account fluctuations Oh[p(r)]=J d3rfh(p(r))+,uj d3rp(r)+J d3rp(r)V(r)
the interface position. In the second step the complete struc- v v v
ture of the interface is obtained by weighting the unfreezing
of these interface fluctuations by the cost in free energy to + }f d3rf d3r'w(|r—r'|) '

e GRS : . . p(Np(r"), (2.1
maintain a given interface configuration as determined from 2)v %
the density functional. For this separation of the fluctuations,
density functional theory is particularly suited because thavhereV is the volume of the sample(r) the number den-
forms of the density functional which are actually availablesity of the fluid particles ar=(x,y,z), and f,(p) is the
do not contain these large interface fluctuations which lead teeference free energy of a system determined by the
the roughening of fluid interfaces in the absence of gravity.short-ranged contribution to the interaction potential

The usual approach to derive an effective Hamiltonian ofw(r=|r—r’|) [17]. Considering particles which interact via
an interface is the expansion of a free energy into powers afispersion forces for the attractive part of the interaction po-
curvatures of the interface with the leading terms determinegential w(r) we adopt the fornj14]
by special interface configurations, i.e., spherical and cylin-

A. Density functional theory

derical one$10,11]. This approach yields the so-called Hel- Wor$
frich Hamiltonian[12,13. Here, we derive—without using w(r)=— m—wAr’(dﬂ), r—ow, (2.2
such a gradient expansion—a nonlocal and non-Gaussian ex- 0

pression for the effective Hamiltonian of the bending modes ) , i s
of a fluctuating liquid-vapor interface. Due to the long- reflecting the correct Iar%e distance behavigr)~r" for
ranged dispersion forces, nonanalytic contributions occufd:7)=(3,3) andA=worg [18]; wq is the depth ofW(r)
and therefore a gradient expansion of the Hamiltonian breakist8] andd denotes the spatial dimension. The lenggfor-
down. responds to the diameter of the partidi&8] and thus serves
The Hamiltonian derived here improves a previous ver-2s @ lower limit for the length scale of the density fluctua-
sion [14] in three respects. First, we take into account ations and of the capillary waves considered below. Since we
smooth variation of the intrinsic profile instead of a steplike@re interested in length scales larger thgnwe treat the free
one. Second, we incorporate the deformation of the intrinsi€nergy functional for the inhomogeneous density in the local
profile due to curvatures. Third, in analogy to the derivation@Pproximatiorf,(p=p(r)) [17,19. Actually w(r) should be
of the drumhead model starting from a phenomenologicaleplaced by the direct correlation functiar®(r) which,
Landau theory15] we introduce normal coordinates in order however, reduces t8/(r) and thus ton(r) for larger. This
to use an appropriately adapted parametrization of the derﬂeplacement does not alter our main results. However, we
sity profile near the interface. These improvements put u§mphasize that most of our results do not depend on the
into the position to make quantitatively reliable predictionsactual form ofw(r). This form only matters for the quanti-
for scattering experiments. tative results presented at the end of Sec. Ill. For these cal-
In Sec. Il we derive the effective Hamiltonian and discussculations we adopt the Carnahan-Starling expression for
its main features which can be inferred already within thefn(p) [17]:
Gaussian approximatiofsec. Ill). In particular we obtain an
expression for the momentum-dependent surface tension 4n—37
o(q) which in the limit g—0 is consistent with the (1-nZ|
Triezenberg-Zwanzig formulfl6]. In Sec. IV we summa-

rize our results and discuss their implications for the interyynere N is the thermal de Broglie wavelength ang
pretation of scattering experiments. _ (W/G)pl'g the packing fraction.
Within this approach the equilibrium density profile mini-
Il. EFEECTIVE INTERFACE HAMILTONIAN mizes _the densny functional in E(_Q.l) and_ylelds the grand
canonical potential. The equilibrium profile depends on the
In this section we derive for arbitrary intrinsic density temperaturel, the chemical potentigl, and a possible ex-
profiles an effective Hamiltonian for the local interface po-ternal potentiaM(r). For our purpose we consider a fluid in
sition by starting from a microscopic density functional a gravitational fieldG with

2

fn(p)=ksTp{In(pA®) —1+ 2.3
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physical quantities do not depend on our choice of the defi-
vapor (p,_) nition of the interfacg¢Eq. (2.5)]. This serves as an important
? g check of consistency.
We use the abbreviation
L2 G
p(1)=pim(r:{f(R)},p*) (2.6)

in order to keep in mind the dependence of the density pro-

file on the chosen interface positidiut without indicating
z=0 the dependence qif except in cases where it is essential. In

particular we define

po(2) =pindr;{f(R)=0},p*) (2.7

-L/2

as the intrinsic density profile of a flat interface which de-
FIG. 1. Schematic picture of an interface configuration betweerpends only on the distanceperpendicular to the mean in-
the coexisting liquid and vapor bulk phases with number densitieserface position az=0. Thus the density profiley(z) is
pi andpg, respectively. The interface does not contain overhangsletermined by the equatidsee Eq.(2.1)]
or bubbles. Thus the local position of the liquid-vapor interface can
be described by a single-valued functioh(R), where R
=(Rx,Ry) denote§ the lateral coordinateg. The Qashed curves indi- 0=pun(p(r)+p+ mGz—I—f d3r’W(|r—r’|)p(r’),
cate the intersections between the two-dimensional manffgR) v

and the planez= R, =const and/= R, = const, respectively. Grav- (2.8
ity G leads to a mean interface positionzat0. The volume of the ) ] )
sample isV=AL. with po(z=0)=p*, where we have introduced the chemical
potential
V(r)=mGz (2.4)
dfh(p)
mn(p)= (2.9

wherem is the mass of the fluid particles. The sample vol-

umeV provides a lower bound fov(r) such thatz=0 cor- )
responds to the mean interface position. of the reference system determined by the short-ranged con-

We describe the local position of the liquid-vapor inter- tributions of the interactions. We would like to mention that

face byZZf(R), WhereRz(x,y) with R:|R| is the lateral it WI" turn OU'[_ i_n the f_oIIOWing that we (_jO not ne_ed an
reference point in thay plane parallel to the mean interface €duivalentexplicit equation for the constrained density pro-
atz=0 (see Fig. 1 There are various possibilities to define fil® p¢(r) for f#0. It is important to note that as long as
the local position of such an interface from a given densitydraVvity and a finite sample volume are not important the
distribution p(r). We choose a crossing criterion, i.e., a con-Profile po(z,p*) for a flat interface depends transparently on
nected isodensity contow((R, f(R)))=p* wherep* is an the definition of the interface, i.e., gst". o

arbitrary, fixed density. A natural choice would be the mean FOrG=0 andV=R? Eq.(2.8) has an infinite number of

L e solutions with the same free energy. These solutions differ
QEns!typ _.p'_(p'+p9)/2 of the bu_lk phases, but we do not by a translation in thez direction. The requiremenpq(z
fix this choice. Overhangs of the interface are neglected s0’ ., = & . . % .
; . ; =0)=p* selects uniquely one solutigiy(z,p*) out of this
that we can proceed analytically by treating a single-valued .. k . . .
. S ._infinite set. The solution corresponding to a different choice
function f(R). Bubbles of one phase inside the other, i.e.— " . . N _
domains topologically separated from the interface, are ag?” Insteéad ofp™ is obtained frompo(z,p™) according to
sumed to give rise to a smooth intrinsic density profilepo(z,p*)=po(z+2z,p*) wherez is determined implicitly by
pint(r;{f(R)},p*) which depends not only onbut which is  the relationp(z=2,p*)=p*.
also a functional of the prescribed positib(R) of the in- The effective Hamiltonian of the interface is defined as
terface. We defing;.(r;{f(R)},p*) as that density profile the difference
which minimizes the grand canonical potentidp(r)] un-

der the constraint

ap

HIF(R)]=Q[pt(r)]— QL po(2)], (2.10

. which describes the cost in free energy for deviations of the

p(r=(R,z=1(R)))=p", (2.9 configurationf (R) from a flat one and therefore represents

the effective free energy associated with the capillary waves.

with a given fixed interface positiof(R). This minimum It is necessary to subtract the free energy of a flat interface

depends parametrically difR) andp* yielding the intrinsic  before an expansion in terms of the local curvature of the
profile pi(r;{f(R},p*). In this way we separate operation- bent interfacef (R) can be performed. This subtraction can
ally in a well-defined manner the different types of densitybe accomplished explicitly by carrying out a partial integra-
fluctuations, i.e., bulk bubbles and undulations of the intertion in Eq.(2.1) for the grand canonical functional. It leads

face. Of course it remains to be proved that measurable the following expression for the effective Hamiltonian:
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aps(r)
0z

H[F(R)]=— fAdZRJ:dz[z,w mTGz }

1
—EffdszZR’ff dzdZw®(|R-R’'|,z—
A

WO fdz f Z(apf (r)

F7Po(2)>
iz |’

The projected area of the interfacef(R) onto the plane
=0 is the lateral cross section of the container voluvhe
=AL. The constanw(? is the integrated strength of the
attractive part of the interaction potential,

wO=— | drw(|r)=-2| d’RWI(R,z=%)>0
3 R2

(2.12

[W©O=72wyr3/4 for Eq.(2.2)], and the functionsv(*) and
w? are defined as

R

w(|R|,2)= f:dZ’W( VR2+7'2) (2.13

and

z 2
W(Z)(|R|,z)=f dz’f dZ’w({R2+272), (2.14
0 0

respectively. Due tovY)(|R|,z=0)=0 and the rotational
symmetry ofw(r), the functionw®(|R|,z)=—-wd(|R],
—z) is antisymmetric andw®(|R|,z2)=w?(|R|,—2) is
symmetric.

The validity of Eq.(2.11) is based on two conditions.
First, we have assumed that at the tap-(+L/2) and at the
bottom = —L/2) of the containerg(r) and py(z) have

the same values so that the corresponding boundary terms i
the partial integration drop out. Since gravity prevents large

excursions off (R) which come close t@=*L/2, this as-

sumption seems to be justified. Only the last contribution in
Eq. (2.11 stems from boundary terms of the partial integra-
tion which appear in the course of the derivation of Eq.

(2.12) as follows:

Z— —®

| aRWIIR=RY 22 po(2)fz "

+ _—
WO LML SO py

(2.19

We note that although in E¢2.15 we have taken the limit
A—R?, the last term in Eq(2.11) still contains a finite area
A of integration. Rather generally for large the effective

Hamiltonian scales withA. Accordingly the line contribu-
tions due to the difference between(r) and py(z) at the

lateral boundaries drop out in the thermodynamic lirit
—o envisaged in Eq(2.17).
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fdzRf dz ZMh(pf(r)) (r)— Zpn(po(2)) O(Z)
aps(r) dps(r’ ) dpo(2) dpo(zZ')
iz 97’ 9z gz
(2.1

The second condition entering E&.11J) is that the limits
*L/2 of thez integrations can be shifted to infinity. In the
absence of gravity(z) andp:(r) approach the bulk values
pg and p; for |z]—e according to vdW tails~z~2 [20]
which render the integrals in EqR.11) finite. Furthermore,
we consider only sample volumes which are sufficiently
small so that the influence of gravity on the shape of the
profiles p;(r) and py(z) can be neglected and the above
convergence arguments for the integrals remain valid. There-
fore in the following we takepg(z) as the solution of Eq.
(2.8 with G=0 and the boundary conditiongy(z— )
=pg and pp(z— —») = p, wherepy and p; are the coexist-
ing bulk densities in the absence of gravity.

B. Normal coordinates

In the next step we derive a formula for the intrinsic den-
sity profile p¢(r) which enables us to express the effective
interface Hamiltonian given by E@2.11) explicitly in terms

Z ...,.(:I.SHZ; _____
____,QS]};, ------
ds <
fR) R
B N o
ds = g1/2 d R R ‘:ll
. o
0 dR R o) o)

FIG. 2. Intersection of the manifolfi(R) with a plane whose
normal lies in thexy plane. The normal coordinate®Ru) of a
point P=(xp,Yp,Zp)=(Rp,zp) are defined by the minimal dis-
tanceu to the interfacef(R). We emphasize that the lateral coor-
dinatesxp andyp of P are not identical to the lateral interface
position R of that point of the manifold which has the minimal
distance tdP. The dashed lines are the corresponding intersections
with parallel surfaces distances and u, apart fromf(R). The
normalized Jacobiaf takes into account the variation of the area
elementdS,=TdS between parallel surfaces given EFy=|T|/J§
=[d(x,y,2)/d(Ry,Ry u))/Vg=(1+6T), whereg=1+[Vf(R)]?
is the metric of the interfac&(R). If the pointP is far apart from
f(R) the minimal distancai and R reduce to~z=zpff(RP) and
Rp, respectively.
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of f(R). The physical picture is that the minimization pro- to the interfacef(R). In accordance with the problem under
cedure based on E@.5) leads to an intrinsic density profile consideration the manifolf( R) is not closed but asymptoti-
pi(r) of three variablex,y, andz which is locally similar to  cally flat.

the intrinsic profile of the flat configuration provided the den-  In order to proceed one needs to knisee Eq(2.16)] the

sity variation is measured along the local normal of theexplicit dependence af; on f(R) [see Eq(2.21)] as well as
manifold f(R). More generally we approximate the actual the explicit dependence pf(u) on f(R). With regard to the
density profileps(r) depending omr=(R,2) by a function |atter dependence we expand the intrinsic density profile into
p:(u) which for a fixed configuratiori(R) depends only on powers of curvatures of the interface:

a single variable u given by the minimal distance(r) ~

:=u(r;{f(R)}) of the pointr from the interfacef (R), i.e., Pi(R) (W) = po(U) +2Hpy(U) + Kpy (U) + (2H)?ppz(u) + - - -

PN =piu=u(N=puNT(RY. (216 ~polt)+ PPty (1): (217

With the abbreviationd;:=df(R)/dj, j=x,y, K denotes

We note that not only the variablebut also the form of the 3
the Gaussian curvature,

function[)f(u) depends on the shape of the manifé{@R) as
indicated by the indek(see Fig. 2. For large distances from 1
the interface the variabla;(r) reduces to the vertical dis- K= Z_gz[fxx(R)fyy(R)_fyx(R)fxy(R)]a (2.18
tancez=z—f(R) whereas for smaik the coordinateu is

normal to the interface and thus is the distance perpendiculdd the mean curvature,

fox(R{1+[f (R ]+ 1, (R{1+[f(R)]Z—2f (R)f(R)f,(R) 1 K\ 2
o PRI (R P R+ (R = 26 (RIFy (R o )=—Af(R)+O((—k—) ) 1 (219
2g%?2 2 J;
|
andg the metric nates §,y,z) and the representatiof( R) of the interface
according to(see, e.g., Ref.15] and Fig. 2
_ 2
g=1+[V(R)] (2.20 « R,
. y|l=| Ry |+un(R). (2.21)
of the interfacef (R). 7 f(R)

In principle, the distortionspgy(u) of the density profile

due to the bending of the interfat€R) can be inferred from  tha normal is given by the vectar(R) = (- Vf(R),1)/\/g

considering spherical and cylindrical interfacB®R) (see, g4 the Jacobiaffr| of this transformation is
e.g., Ref[10]). However, whereas it is known that the pro-

file pg(u) is positive for all values ofu and interpolates d(X,y,2) _
smoothly between the bulk densitips for u— — and p, IT|= JR.R W gT=:\g(1+6T), (222
for u— oo, there are no explicit results for the profiles(u), Xy

pk(u), and py2(u). We expect that the correction term with [based on Eq(2.21)]

pn(u) due to the mean curvatuté of the interface aR is

also positive. This means that there is an increase of the ?:(14. U(?Rxnx)(l-i-ur?Ryny):|1—2uH+u2K|.

density[)f(u) compared withpg(u) if the interface is bent (2.23
locally towards the vapor phase, i.e., fAr>0, and a de-
crease forH<0. The reasoning for this sign is that for a Whereas this transformation in E@.21) is correct for small
given distancal below (above the interfacef (R) the corre-  values ofu, it does not hold for large values of due to
Sponding point appears to be effective|y dedﬂms deepin Singularities in the transformation given by quj.) These
the liquid (vapop phase due t¢i(R)>0 as compared with singularities are caused by the intersection of hormal vectors
po for a flat interface evaluated at the samén the follow- ~ UN(R1) andun(Ry) at different interface positionR; and
ing we make no further assumptions about the functionaRz2. Thus for a given point=(x,y,z) there can be more than
form of the correction termg, (u), A=H,K,H2. But it is  one corresponding tupeR{,Ry,u). The approximate char-
important to note that in contrast pg(z,p*) the distortions ~acter of this transformation shows upter alia, at large
pr(u,p*) depend less transparently on the choice of thedistancesu from the interface for which the variable re-
crossing criteriorp™ . duces toz=z—f(R) and the normal vecton(R) becomes
According to the concept introduced at the beginning ofvertical. In this limit the foot point{R, f(R)) of the normal is
this subsection the profilgg,(u) andp,(u) are evaluated at given by the point nearest tx(y) where the interfacé(R)
the minimal distancelr as determined by the normal coordi- has a maximum, i.e., whergR) is horizontal withVf(R)
nates R,,R,,u). They are related to the Cartesian coordi- =0. Therefore one hag(R(u—=))=1. Thus the Jacobian
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|T| of this latter transformation is equal to 1 in contrast to the The second term in E¢2.24) contains contributions pro-
largeu behavior given by Eq92.22 and(2.23. However, portional to the mean curvatukd, to the Gaussian curvature
since the integrands of the Hamiltonian in E@.11) are K, and to the square of the mean curvature of the interface
proportional to the first derivatives of the profilpg(r) and  and thus collects the local bending energies:

po(2), they are peaked arounz=f(R) or z=0, respec-
tively. Thus the main contributions to these integrals stem _ 2 T

from small values ofu. Therefore the aforementioned defi- HT(R)]= fAd R{xOIF(R1+ kL (R)T},
ciency of the transformation for large values wis effec- (2.29
tively suppressed. A more detailed account of this mecha-

nism is given below. with

C. Explicit form of the effective interface Hamiltonian K(T)[f(R)]: _ j_ du wn(po(u))

According to Secs. Il A and Il B the dependence of the
Hamiltonian? in Eq. (2.11 on the interface positiofi(R) . _dpo(U)
stems from two sources. First, one obtains terms which de- +u—w@p+ mGu]uSTa—
pend onf(R)—f(R") due to the nonlocality of the potential u
w®(|R—R’|,z—2’) as a function o andz’. Second, there oo
appear terms involving7f(R) and higher derivatives of :f f dUdU’f zdzRv\/l)(R,u—u’)
f(R) due to the transformation in E€R.21) and, in particu- o :
lar, due to the metrig and the JacobialT|. We keep the full _ape(U) dpo(u’)
dependence ofi(R) —f(R") in the first type of terms but in _
accordance with Eqs2.16 and (2.17) we expandp(r), & au’
which enters into Eq(2.11), into powers of first derivatives
and of curvatures, i.e., higher derivatives f¢R), keeping
terms @*f/9j%)" with |, k<2. .

Accordingly in the thermodynamic limit for larga the «P[f(R)]= _J du(
HamiltonianH consists of three contributions, one due to —o
gravity (G) as well as locall) and nonlocal 1) terms:

(2.30

and

7*fr(po) ( déps(U)

udps(u
—2—01)0 ps(U) ou

L 1 7°nlpo) W r(w]27P0W)
H[f(R)]=He[f(R)]+H|[f(R)]+Hm[f(R)]-( 4 2 dp; & Ju
2.2
, : . _ _ 1 (=  &fn(po) 5

In the field of gravity the displacement of the interface posi- ) dU—az—WPf(U)]

tion relative to the reference plaze-0 leads to the follow- o Po

ing energy contributions: 1

ZEK(ZH)Z-F o (2.3)

Hel f(R)]= 5 p [ AR{CT(RIE+ 5L F(R] N
wi
+2f(R) sV f(R)]}, (2.29
[ou(W]Z>0. (232

with the moment
p=po(u)

_ fw i)
K w &pz

ST[f(R)]= iJ dué‘?uzapo—(u) (2.26  The second equation in E€.30) follows from the first one
ApJ - au by using Eq.(2.8). The relations in Eq(2.31) can be ob-
tained by partial integration. The occurrence of these local
bending rigidities reflects the smoothness of the intrinsic
‘density profile. As one can see from E¢2.30—(2.32 they
vanish within the sharp-kink approximatiopgs'()(u)=p|
1 [« —Ap®(u) with the Heaviside functior® (u) used in Ref.
6(P)[f(R)]:A—f dudpe(u)=:2Hoy+Kd+(2H)?842  [14] which leads todp{¥(u)/au=—Aps(u). As one can
Jo 2 M . .
see from the second equation in E8.31) the bending rigid-
+..n (2.27 ity « is always positive, ensuring the stability of the interface
against perturbations with large wave vectors. This positive
with bending rigidity is linked to the presence of the distortion
L pn(u) of the flat intrinsic density profile induced by the cur-
B * _ 2 vature of the interfacEsee Eq(2.17)]. This demonstrates the
5>\—A—pJ_dep}\(u), A=H.HEK, (228 importance of keeping track of the change of the local den-
sity near the interface due to its curvature in order to obtain
stems from a shift of mass across the interface due to tha reliable expression of the cost in free energy of bent inter-
distortion ép¢(u) of the bent interface profile. faces.

due to the change of the ar€ of the parallel surface and
thus of the mass distribution. The second gravity contribu
tion [see Eq(2.17)]
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Equations(2.26 and (2.30 contain moments of the de- Here, we have introduced the abbreviatiatfs=5f(R,R’)
rivative of the flat intrinsic profile multiplied by the deviation =f(R)—f(R’) and SR:=R—R’. All derivatives, if not in-
ST=T-1 of the Jacobian divided byg from its value fora  dicated otherwise, are evaluated Rt With the notations
flat interface[see Eq.(2.22]. For small values ofu, for ~ du:=u—u’ and\=H,H? K the integrands in E¢2.37 are
which Eq.(2.23 is valid, 5T(u)=—2uH+u2K consists of 9iven by
a term linear inu and of a term quadratic in. On the other
hand, as discussed in the paragraph following B3, for _ 1f f“ 9po(U) dpo(u’)

- h(6R,8f)=— = dudu———-
largeu one hagT|=1 andg(R(u—x=))=1 so thatsT(u 2) )= du au’
—o)=0, a value not captured by E¢(R.23. This leveling ) 5
off of 6T(u) for large u ensures the convergence of the X (W (SR, du+ 1) ~w@(6R, u)
integrals in Eqs(2.26 and (2.30 even in the presence of —w(SR, su) 81, (2.39
dispersion forces which cause an algebraic decay of
dpo(u)/du~|u|~* for |u|—< [20]. Regrettably there is no w
explicit formula available which covers the full dependence (SR, 6f)= —J j dudu [wH (SR, su+ 8f)
of 6T(u) for all values ofu. However, sincelpq(u)/du is o

peaked aroundi=0, the main contributions t&'V[f(R)] Ipo(U) dpo(u’)

and (D[ f(R)] stem from small values afi for which the ~wh(8R, ou)Ju—-— ———,
explicit form of 6T(u) is given by Eq.(2.23. The width of u

this relevant region of values faris set by the bulk corre- (2.39

lation length& [20] so that we obtain the following explicit

albeit approximate expressions f6f" and «(™: N > L
kM(6R,6F)= dudu[wWH (SR, su+ of)

STf(R)]=—2H8;+K 3y, (2.33
dpo(u’
with —w(SR, 8u)]p, () p;l(y ), (2.40
1 (¢ dpo(u)
_ n -
5n_AP 7§duu au 0 Ap=piTrg 234 and
and » . .
D[1(R)]=—2H ey + Krca + ez~ (R0~ [ [ auduw®oR o+ o1
- 2 37T, . —x
i Iow(U) Fpy(u’)

X

_ ¢ ou ou’
anf f dudu’f PRWO(R,u-u') u
By R

, =—f fw dudu wlv(8R)?+ (Su+ 6)?]
n?Po(W) dpo(u’) (2.36 -

au X pr(U)py(u’). (2.41)
For asymptotically flat interfaces as considered her

[ Ad?RK=0 so that the term& 5, andK 3 have not to be
considered in the following.

The third term in the Hamiltonian in E§2.24) takes into
account the nonlocal contributions mentioned above:

eI'hese terms take into account the nonlocal effects caused by
the interaction potentiaw(r). We emphasize that Egs.
(2.37—(2.41) capture thefull dependence of the interface
free energyH on the differencesf =f(R) — f(R’) for small
values ofu so that the resulting Hamiltonian is non-Gaussian
and nonlocal.

Hm[f(R)]=f f d’R dZR’[h(5R,5f) The derivation of Eq(2.24 uses explicitly the equilib-

A rium condition in Eq.(2.8) for the flat intrinsic profile which
leads to the cancellation of all terms proportionaf {&) in
the Hamiltonian in Eq(2.24). This is necessary for obtaining

1
+ E[Vf(R)]Zo(éR,éf)
an equilibrium mean interface position &t 0, i.e.,(f(R))

) , ) =0. Here, (-) denotes the thermal average with
+f f d’R o’R'[2H M (4R, 5f) exp(—BH) as the statistical weight.
A . .
It is pleasing to see that the general form of the nonlocal
+(2H)2K(HZ)(5R’5]¢)+KK(K)(ﬁR,af)] contribution in Eq.(2.37) is also given by an expansion in

terms of local derivatives of the interface posititfR). But
1 2e Doy I\ (HH) in contrast to the local contribution in ER.29), the expan-
_EJJAd RAR'AF(R)AF(R")«T (4R, 6f) sion coefficients depend nonlocally on the interface position
f(R) due to the nonzero range of the pair potentidl) in
+e (2.37  the density functional in Eq2.2).
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In the special case of the sharp-kink approximationp* induces such a dependence of the bending rigidities
pS(u)=py®(u)+p®(—u) for the intrinsic density pro- «, «™(8R,sf), andx")(sR, 5f). So different choices of
file the Hamiltonian in Eq(2.24) reduces to p* result in different functions and the rigidities must be
regarded as being specific to the chosen isodensity contour as
interface location. However, as mentioned already in Ref.
[21] this dependence is not a defect of the present formalism.
Instead it remains to be proved within our approach that for

Apzf f 4R ER'TW( SR, 5f measurable quantities such as correlation functions this de-
2 ) Ja [W(oR, o) pendence op* drops out. Moreover, as described in Ref.

[22] the dependence gst* can be exploited in order to con-
~wA(sR,0-w(6R,0)5f], (242  struct the lateral structure factor for normal positiaisz,
#0.

H<sk>[f(R)]=%mGApf d’R[f(R)]?
A

which coincides with the expression derived in Rif4].
Inter alia, as mentioned above, within this sharp-kink ap-
proximation the contributions proportional to curvatures of . GAUSSIAN THEORY
the interface vanish. Thus the sharp-kink approximation is
not applicable for the description of bendings of the interface
with short wavelengths. One gains important insight into the structure of the
Since the equilibrium profiley(u) is independent of the Hamiltonian in Eq.(2.24 by truncating all contributions
choice of the crossing criteriop*, the functionsh(8R, 6f) nonlinear inf(R):H[f]1=H ©[f]+ O(f3). In view of cal-
ando (SR, 8f) and therefore the surface tensiog [see Eq. culating later on thermal averages with the statistical weight
(3.12] are independent of it, too. But the dependence of thexp(—BH[ f]) we call this a Gaussian approximation within
distortion 5p(u), i.e., of p,(u,p*), on the crossing criterion which we obtain

A. General expressions

H(@[f(R)]:%mGApf dZR{f(R)Z—zaH[Vf(R)]2}+%Kf d?R[Af(R)]?
A A

+f JAdZR dzR’[ho(éR)(ﬁf)erKSH)(ﬁR)Af(R)éf—%KBHH)((SR)Af(R)Af(R’) , (3.0

with x>0 given by Eq.(2.32 and with the positive definite dynamic limitA— oo, because the interface is asymptotically
functions flat. Therefore, they are omitted from E@®.1). [The contri-
butions~K are zero as noted after E(R.36]. As already
1 o ) 5 5 indicated at the end of Sec. Il the energy tdipiSR) does

ho(6R)=— Zf f_mdudu W[V(6R)“+(6u)7] not depend on the definition of the interface position. Ac-
cording to the paragraph following E(R.9) the various pos-

Ipo(U) dpo(u’) sible definitions of the interface position can be mapped onto

X >0, (3.2 each other by suitable shifts of the argumeinf the intrinsic
Jau au’ interface profilepo(u). Since the integrand in Eq¢3.2) de-

pends only orsu=u—u’, such shifts do not alter the value

* ] of ho(8R) because they can be compensated by correspond-

KSH)(éR):J f_dedu WLV(SR)*+(8u)7] ing g(hifts) of the integrgtion variable:?andu’. In)::ontrast[,)
the coefficients«{™ (SR, p*) and «{'")(5R,p*) depend on

dpo(u’) p* throughpy(u,p*) describing the distortion of the intrin-

Xpu(u) ——— >0, (3.3 sic profile.

It is transparent to study (®) in Fourier space in which
the bending modes decouple. To this end we introduce the
Fourier transformed functions

2

KSHH)(éR)=—f J:dudU’W[V(éR)ZH&)Z] "f(q)szzdzRe“q'Rf(R), f(R)=LZ(qu)2

and

el4Rf(q),

3.
X pu(U)py(u’) >0, (3.4 =9

_ = _ 2p o i0-Ry( (B2 112
The local energy term-2H«, [Eq. (2.35] and the gravity W(q,U)—fde Re™9 w(VR+u?)
terms —2H 83 [Eq. (2.33] and 2H 4 [Eq. (2.27)] propor-

tional to the mean curvaturel(R)~Af(R) can be inte- -2 fdeR R R+ U2 36
grated, yielding boundary terms which vanish in the thermo- "o HaRW( w. 38
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with the Bessel functiody(x),
Ro(a) = J Jd*Re™4 Rhy(R)
R

dpo(U) dpo(u’)

1 » ~
:_ZJ f dudu'w(qg,du)

au T
(3.7
}g*”(q):deZRe—iq'ﬁRKgme)
w _ dpo(u’
=ff dudu'w(q,dou)py(u) pol ),
e ou’
(3.9
and
K= [ R R Ry
:-j fﬁdedU’VV(q,5U)PH(U)PH(U’)-
(3.9

In terms of these functions the Hamiltonian(®) reads

©)F dq 1. 5
HOT = | , 572 3 T@FIMGAp(1-25407)
+0o(9)9?], (3.10

with the momentum-dependent surface tension

ho(0)—ho(q)
2

oo(q)=4 +2[k{(a) - %M (0)]

+[ k= x§"M() 192+ O(g%). (3.10)

K. R. MECKE AND S. DIETRICH
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governed by dispersion forces with=3, the momentum-
dependent surface tensiamny(q) attains a finite positive
value forg—0:

1 o ~
ooi=0(q=0)= Ef f_ duduw’(Ou—u’)

Xﬁpo(u) dpo(u’)

. Py >0, (3.12

where

- Pw(q,u *

w”(0,u) = % =— fo d ' RRw(VR?>+u?)>0
gq=0

=—wfdeR3w(\/R7+u7), d=3. (3.13
0

Due to the rotational invariance of(r), one hasw'(0u)
=ow(q,u)/dq|q=0=0.

Sincew(r) is smooth forr—0 and vanishes for— o,
one has Iinaﬁw\7v(q,5u)=0. Together with Egs.(3.7)—

(3.17) this implies

k>0.

oo(q—=)=xkq*+0(q"), (3.14
Since the bending rigiditye>0 is always positivdsee Eq.
(2.32], Eq. (3.14 states that the interface is stable with re-
spect to perturbations with short wavelengths. The range of
validity of Eq. (3.11) reaches up to the microscopic cutoff at
qmax=r51 set by physical considerations according to which
the concept of capillary wavelike fluctuations is valid at most
up to wavelengths comparable to the diameter of the fluid
particles. Equatior{3.14 has the pleasant feature to render
this momentum cutoff superfluous. If thermal averages are
evaluated with the statistical weight €xp8H (®[f(q)]} the
increase ofoy(q) for large g implies that the unphysical
fluctuations withq>q,.x are penalized with such a small

The index O indicates that these expressions refer to thet@tistical weight that the momentum cutoff,,, can be re-

Gaussian approximation. Equatio3.10 and (3.11) de-

placed by infinity without significant quantitative errors. As a

scribe the cost in free energy for bending an interface witfFonsequence our approach does not require a quantitatively
wave vector in terms of the microscopic interaction poten- Precise value fofm,,. We emphasize that this valuable as-
tial w(r) [Eq. (2.2] [or the direct correlation function pect of the present theory depends on its rather detailed de-

c®(r)], the intrinsic density profilgg(u) [Eq. (2.8)] of a
flat interface, and its distortiopy(u) [Eqg. (2.17)] due to the

mean curvaturéd of f(R).

Since we have truncated higher derivativesf R), the
expression foroy(q) in Eq. (3.11) is valid up to, but not
including, terms of the order of*. This implies that the
effective interface Hamiltoniaf () in Eq. (3.10 captures,
within the Gaussian approximation, all contributions up to,

but not including, terms proportional .

B. General properties

scription. The positivity of the bending rigidity is linked to

the distortion of the intrinsic density profile due to the cur-
vature of the interface configuration, i.py(u) # 0 [see Egs.
(2.16 and (2.31)]. Therefore previous theoretical ap-
proaches, which are based only on the intrinsic prgfjieu)

for a flat interface, miss the important increaseog{q) for
large q [14]. According to Eq.(3.14), oo(q) may contain
terms which increase fog— even stronger thamg?.
These terms correspond to higher-order contributions to the
expansion ofp;(u) into curvatures of the interface configu-
ration f(R) [Eqg. (2.16] and to additional terms which arise
from the transformation to normal coordinates but are not

If the interparticle potential decays sufficiently rapidly, captured by Eq(2.21). Although knowledge of these terms
i.e., w(r—o)=—Ar"@*7 with 7>1, which covers the O(g*) in oo(q) would be highly welcome in order to im-

physically relevant case of fluids in spatial dimenstba3

prove the quantitative reliability of the effective interface
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Hamiltonian for large values daf, the suppression of fluctua- —)=—Ar"@"7 =1 the latter nonmonotonic behavior is
tions with small wavelengths is already accomplished by thehe rule. Moreover, algebraically decaying interaction poten-

term kg2 in ao(q).

C. Long-wavelength limit

Whereas the approach of,(q) towards a finite positive
valueo, atq=0 and the increase of,(q) ~ xq? for largeq

are, to a large extent, independent of the structure and t

form of the interparticle potential, the way in whiefy(q)

interpolates between these limiting behaviors depends sendi(r—=)

tively on the analytic properties af(r).
If w(r—o) decays exponentially or fastary(q—0) is

tials induce anonanalyticbehavior ofa(q) for g—0. This
follows from the fact that the momenfsad® r "w(r) do not

exist for n=r so thatw(?)(0,5u) [Eq. (3.17)] and thusk,
[Eq. (3.16] diverge for 7<3. Therefore the expansion of
oo(q—0) into powers ofy? [Eq. (3.15] breaks down for the
H&hysically interesting case of three-dimensional fluids gov-
erned by dispersion forces, i.e.d,¢)=(3,3) for which
~r~°, Based both on the analytic analysis of the

asymptotic behavior of the functiom(q, su) and on numeri-
cal evaluations of Eq(3.11) for specific interaction poten-

an analytic function ofj and thus it can be expanded aroundtials (see below, we find thato(q—0) is the sum of ana-

g=0 into even powers ofj:

o(q—0)=0o+ koq?+0(q*), short-ranged forces,

(3.15
with

” 1~ dpo(U) dpo(u’)
= N =W ou—u’) ——=
Ko K+f f_mdudu (24W (Ou—u’) e Py

dpo(u’)

!

+W(0u—Uu")py(u)

+WOuU—u")py(u)py(u’) ) , short-ranged forces,

(3.16

where ind=3

Vv(iv)(O,u): %wadeF?w( JR?>+u%)<0. (3.17
0

We emphasize that the amplitudg of the g? term of the
smallq behaviol{Eq. (3.15] differs from the amplitudex of
the g2 term of the largey behavior[Eq. (3.14)] of o(q).

This indicates that even for short-ranged forces there is a

nontrivial crossover between the asymptotic behavigrs
—0 andq—o. Whereask is positive[Eq. (2.31)] all three

lytic (a) and nonanalyticrfa) terms:

00(q—0)=0P(q—0)+ 0¥ (q—0), (3.18

with

()

2i
Ko d

:(To+ K0q2+ K(()z)q4+ ety

(3.19

o6’ (q—0)=

i=0

where we have used the abbreviatio§®= o, [Eq. (3.12]
and «{Y=k, [note that for <3k, is not given by Eq.
(3.16); see Eq(3.29], and

o_gna)(q_>0): 2 )\(()i)qT*lJrZi:)\(()o)qT*l_’_ )\gl)q‘rJrl_’_ -

i=0

T#2n+1, (3.20

for ne Ny. If 7 happens to be an odd numben21, reso-
nances between the corresponding analytic and nonanalytic
terms generate nonanalytic contributionsq®™Inqg with
2m=2n,2n+2, . .. ,which replace the power law singulari-
ties, yielding

a0 (g—0)=

i=0

Xg)qfflJrZi In q:XE)O)qrfl Ing+---,

terms forming the integrand of the double integral in Eq.

(3.16 are negative so that, can become negative. Thus the

r=2n+1. (3.2))

sign of ko depends on the details of the interaction potential

w(r) and of the resulting profilego(u) and py(u). This

The types of singularities described by E(&20 and(3.21)

implies that, in marked contrast to the usual ansatz in phedre the same as those obtained within the sharp-kink approxi-

nomenological capillary wave theof23], «, in Eq. (3.16
can benegative Also in this case they dependences of
ho(a), «{(q), andx{"(q) in Eq. (3.11) yield a smooth
crossover towards the increasexq? >0, for large q.
Thus for negative values of,,0(q) exhibits alocal maxi-
mumat q=0 followed by aglobal minimumat q,,,;,>0 and
an unlimited increase fog>q,,,. Such a nonmonotonic

mation for the intrinsic interface profilgl4(a)]. The first
case[Eq. (3.20] is important for retarded dispersion forces
decaying algebraically wittw(r—o)=—Ar"", ie., r=4.
For nonretarded = 3) interactions, one finds that the lead-
ing term Xg(’) is positive for an attractive potential, i.eA
>0. Therefore, the surface tension(q) exhibits always a
local maximum atg=0. This will be discussed in the fol-

form of a(q) is beyond the predictions of phenomenologi- 1OWiNg.

cal capillary wave theories.

Whereas for short-ranged forces(q) can be either a
monotonically increasing function with its minimum gt
=0 or a nonmonotonic function with its minimum g,
>0, for algebraically decaying dispersion forces wttir

For the case of three-dimensional fluids governed by dis-
persion forces, i.e.,d,7) =(3,3) these considerations yield

7=3.
(3.22

o0(q—0) =0+ kea?+ A5 g2 In g+ 0O(q*),



6776 K. R. MECKE AND S. DIETRICH PRE 59

oy is given by Eq.(3.12. The amplitudes<, and ") are Koo 1(&V) B _2(&2fh(p) ~ (0))_1 (3.2
determined byhy(q), «{M(q), and k{'")(q) [see Egs. ™ Viap TN_p W '

(3.7—-(3.9 and(3.11)]. With

_ ~ . o denotes the isothermal compressibility aft,,(p)/dp? is
ho(q—0)=hg(0)+ Ehg(O)qur vaq*+ v49% Inq evaluated at the equilibrium bulk densities at coexistence.
For T—T. the correlation lengthé=¢,t7", t=(T,
+0(q®%), =3, (3.23 —T)/T., diverges fort—0 wherev is a universal bulk ex-
ponent, whose value equals 0.5 for the present mean field
one has ¢=3) theory[Eq. (2.1)]. &, is a nonuniversal amplitude with,
=ry/2 for the model defined by Eq$2.2) and (2.3). For
1 % , temperatures well below, the correlation lengths in the
j fod“d“ liquid £ and vapor&® phases differ from each other and
from the limiting common valug=§,t™". Although it is
~ - - q® straightforward to determing) and &9 numerically, we
w(q, 6u)—w(0,6u)—w"(Ou—u’) j) have opted for the advantage of using the following analytic
expression:

AP=—4y,=lim —
g—09°Ing

X

dpo(U) dpo(u’)
Ju au’

X

(3.29

T v _T 1
ET)=a(m) 1-T_C) I R
and 20

KO:K_4y4+f f dudu where the amplitud@(T) exhibits a linear temperature de-
—o pendence. The expression in E®.29 has the virtue of
) fulfilling the relations &> £(T)>¢9) and will be used in
« ( W (0u—u’) dpo(u’) the following whenever an explicit expression for the corre-
y pu(U) : . ) .
au’ lation length is needed. Moreover, it has the appealing prop-
erty that at the triple point,=(2/3)T the correlation length
~ , , &(Ty)~0.58 is of the order of the microscopic cutoff
+w(Ou—u’)py(u)py(u )) : (329 lengthr, which is assumed to be larger than but comparable
to the diameter of the particles. For temperatures béelgw

K IS given by Eq(232 Thus for dispersion forces Eqs —where no fluid interface exists—the model defined by Eq

(3.22 and(3.25 replace Eqgs(3.15 and(3.16), respectively.  (2.1) ceases to be applicable because it does not capture the
freezing transition, which would require a more sophisticated

version of the density functional.

In the limit T— T th of
An accurate evaluation of Eq§3.11) and (3.22—(3.25 n the fimit T=T, Edependences %(X). onro/é ant_j
can be carried out only numericallgee beloy. However, it Wy /(kgT) drop out ancpo(x) reduces to a universal function

is very instructive to provide in addition explicit, albeit ap- Po(X) whose mean field approximation is given by
proximate, expressions for these quantities. To this end we

first introduce dimensionless functiopg(x) and p,(x) de-
scribing the two relevant density profiles:

D. Product approximation

;O(x)=tanh;. (3.30

— 1 _—|u —
po(U)=p— EAPPO(E>’ po(x==x°)==*1 (3.26  For a qualitative estimate this expression can be useful even

away fromT,; a quantitatively reliable expression requires
and to solving Eg. (2.8) numerically. Analogous information
about p,(u) is presently not available. In the spirit of the
—(u — above reasoning we adopt a similar scaling formdgi{Eq.
pH(U) = CHApng(E)v pu(x==x2)=0. (3.2  (3.27)]. The correct naive dimension is taken into account by
the amplitudes\ p and ¢, assuming that they set the relevant
Dimensional analysis shows that in gene@ depends scales. The dimerEionIess amplitudg>0 is fixed by the
on Ul§ rolé, and wy/(kgT) where ¢2=(1/2d) requirement/” . dxpy(x) = 1. Therefore, its value depends
X[ [d9rr2G(r)]/fdG(r) is the bulk correlation length de- ©On the definition of the interfacEEq. (2.5]. Regrettably,
fined via the second moment of the two-point Within the density functional used here, there are no explicit
correlation function  G(r=|ry—r,|)=(p(ry)p(ry)) results available for the profilpy(x) or for the amplitude
—(p(r)){p(r,)). ro andwy set the length and energy scale C . We assume thaty is temperature independent and that
of the interparticle potential, for example given by E.2). its value is smaller than 1 because the distortion due to the
For the density functional approach given in E8.1) one  curvature is expected to be not larger than the density differ-
finds £2= — p?K+Sd3r2w(r) where enceAp itself. For example, within the double-parabola ap-
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the product approximation in E3.35 yields a good overall

to proceed, for actual calculations we adopt the followingpicture of the behavior ofy(q). A more detailed compari-

form of the profile:

1 xsinhx/2

41 cosix/2’ (339

pH(X)=

son will be presented in Sec. Ill E. Along the same line of
arguments one finds

which is positive in accordance with the physical arguments

given in the paragraph following E2.20.

The functionsho(q), x4"(q), andx{'™(q) can be ex-

pressed in terms of these scaling functions. Starting from Eq.
(3.7) for the double integral one can apply the following—aswith the dimensionless integrals

we call it—product approximation which is valid in the case

£y

(@)=~ 75(4p)? °” dxdX(a,xrg)

X¢9;0(X'+X(ro/§)) Ipo(x”)
ox’ ox’

Ap)2 Jf dxdx w(q,xro)

_
x(ap"(’f )) +O((ro/6))
IX

1 1 (» -~ = [ape(x))?
=—E(Ap)zg< fmduvv(q,U))fde( v )

+0((ro/€)%). (3.32

For the second equation we used the property\Ha,u) is
an even function ofu peaked atu=0. With the three

dimensional Fourier transform(Q)=w(|Q|) of the inter-
particle potentialwv(r),

w(Q)= Lsd3re“Q"W(r), (3.33

one has, folQ=(q,0) [see Eq(3.9)],

0 - - 477 ©
f duvv(q,u)zw(|Q|:q)=—f drrw(r) sinqgr.
o q Jo

(3.39

This leads to the approximation
ho(a) = — —=Tow(aq) +O((ro/§)"),  (3.39

16¢
with the dimensionless integral
— 2
[ dpo(X)

o= fwdx( o ) >0. (3.36

The comparison of the product approximation with the full

numerical evaluation ofy(q) [Eq. (3.7)] reveals that the
difference between them is less than 10% for the full tem-

perature range and typically less than 1% §or10ry. Thus,

- 1 -
kb (a)=—5Cu(Ap) &l 4W(q) (3.37
and
kM (q)=—CZ(Ap) 2 yuw(q), (3.39
B f —  9po(x)
IH— 7ooprH(X) X >0 (339
and
|HH:fich[;H(X)]2>O. (3.40

For the functional forms opy(x) and py(X) as given by
Egs. (3.30 and (3.31), respectively, one obtaind
=1/12, 1,=2/3, andl 4= 1/36+ 1/(37?).

Thus, within this product approximation, the momentum-
dependent surface tensipqg. (3.11)] is given as

oo(q)=(o9— kg 'q

1
W (0)g?
+ —KgH'“\iﬂ ?+0(q%  (3.4)
w(0)
with w”(0)>0, w(0)<0 [Eq. (3.33],
_ ”n " ( p)2
=—2h}(0)= —w (0) ; 1,>0,  (3.42

~ n 1,-.,
k== (0)=SW"(0)(Ap)°Crél >0, (3.43

kG ="k (0)=—wW(0)(Ap)*CEEN >0,

(3.449
and, without invoking the product approximati¢see Eg.
(3.32],

*fn(p)
ap°

>0.
p=po(u=x¢)

(3.45
Within this product approximation the momentum depen-
dence of oy(q) is determined by thethreedimensional

Fourier transformw(Q) of the interparticle potential(r)
evaluated for the absolute value of the lateral momengum

For short-ranged forceﬁ(q) is analytic around)= 0 so that

qO)Z

k=(Ap)2C 3 f A (012

w®)(0)g?, short-ranged forces,

(3.46

(2I)'
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with The most important feature of the above results is that for
the generic case of fluids governed by dispersion forces de-
W (0)=(—1) _477 fxdrrz”zw(r) (347 caying ~r~% the coefficient7{? is alwa);lys negative Re-
2i+1)Jo markably, to a large extent the valuear;ﬁ0 depends only on
the amplitudeA of this asymptotic decay becausg/w”(0)

is independent ofv”(0) [Eq. (3.42]. The actual form of
w(r), besides its asymptotic behavior for o, enters only
indirectly viaAp, &, andpq(x). The negative value of7§)°>
implies that within the product approximatiam(qg) attains
linearly a local maximum atj=0, exhibits a minimum at
Fam0)] — Aqdiztip-Tqgr Omin=>0, and crosses ?O\)/er to the increase de(sl():ribed by Eq.
W(A—0) [ha= S . (3.14. In contrast tony’ the signs ofxy and Ay~ are not
si(r/2+ DIF(r+ /AT (72 (132 48 fixed so that it depen&s on the specific syste?’n whether the
' terms~q? and ~qg° or only even higher ones accomplish
The subdominant nonanalytic terms depend on the subdomikhe formation of the minimum oéy(q). As mentioned after
nant decay ofv(r). For 7=2n resonances with the analytic Eq.(3.53, for values—qrg In gro<<ro/& the product approxi-
terms lead to singularities-q?"Inq instead of algebraic mation[Eq.(3.50] is no longer valid and there is a crossover
ones. Together with Eq3.41) these results show a remark- to the ultimate asymptotic behavior—0 as given by Eqg.
able difference to Eqs(3.19-(3.23. For the cased,7) (3.22.

in d=3. If w(r) decays algebraically asv(r—x)=
—Ar~ @7 the expansion ofv(q—0) contains analytic
terms~qg?, i €N, whose amplitudes are, however, given

by [1/(2i)! Tw?)(0), only for 2i < r, and nonanalytic terms.
The leading nonanalytic term is given by

=(3,3) one has For the interaction potential in Eq2.2 one hasA
L 2 =Wol§ andVv(q)zV!(O)(lJrqio)e’qu with gv(0)~= —w©®
w(g—0)=w(0)+ EV\/"(O)qZ— EAq3+ W,q%+wsq® =— frgvxﬁ)/4<o, w”(0)=—w(0)r3>0, w4~=w(0)r6‘/8
<0, ws=w(0)rg/30<0, andfd3rr?w(r)=—3w"(0). The

+0(q%), 7=3. (3.49  signs of ko and 7{" depend on the shape of the profiles

The first two terms are given by E¢3.47) whereas similar po(X) andpy(x), the amplitudeCy, and temperature:

explicit formulas forw, andws are not available. Inserting ~ ré e\ 1 £\2 1
Eq. (3.49 into Eq.(3.4]) leads, in contrast to E¢3.22), to Ko= —W(O)(Ap)zz[cal,((—) - ECH<_) ly— 3—2|0},

) )
the form (3.54
_ ©) 24 (143 4 _
70(q—0) =00+ 70"q+ rod™+ 767G+ O(q), 7(335;@ with the dimensionless integral
of o(q—0) with the following explicit expressions for the 3 » ~ 7*fn(p) —
corresponding coefficients as obtained within the product ap-' <~ ~ = A w(0)+—" Lpn(x)]7>0.
roximation: w(0) Po(xé)
P ' (3.59
2 _
7= — W—ANUO <0, (3.51)  For the form of the profile(x) as given by Eq(3.31) and
6 w(0) by using Egs(2.1) and(2.3) it turns out numerically that for
temperatures above the triple poiiit=(2/3)T. the integral
o9 ~ in Eq. (3.55 can be approximated b
ko= r— kS — k{1 + 2 0 Wy, (3.52 9.(3.59 PP Y
w”(0) 1/ro)2
and IK:2 E lhH » (3.56
2 (H) : . . ~
o9 ~ T K which amounts to replacing in the factow(0)
75 = (353

+[%Fn(p)ldp?]= & 2(T,p)W"(0)/2 entering the integrand

in Eq. (3.59 the actual correlation length by its aprroximate
[see Eqs(3.41)—(3.45, (3.47), and(3.49]. Thus the product form &(T,p)=a(T)t™ ¥2 with the amplitudea(T)=¢&, T/T,
approximation yields a stronger singularity of,(g—0)  which depends oif but not onp [see Eq(3.29]. The error
[~q, Eg. (3.50] than the full theonf ~qg?Inq, Eq. (3.22]. of the approximation is less than 20% and is well within the
As discussed below the full result fory(q) exhibits a linear upper and lower bounds which one obtains by using the cor-
behavior~q for g—0 which ultimately crosses over to the relation length in the liquid and vapor phases, respectively,
behavior~qg?In g. For increasing values @&, for which the  in the formula(3.56. Thus, we regard the numerical error of
quality of the product approximation improves, this cross-this approximation to be smaller than the uncertainty induced
over to the behavior-g?In g occurs for smaller values @f by the definition of the profile,(u/é) itself.

In this sense the product approximation is a valuable ap- Using the same kind of reasoning leading to the expres-
proximation although it misses the ultimate singular behaviosion in Eq.(3.56 one finds, for the bending rigidityEq.
~g?Inq for g—0. (3.49],

= Ws+ —A=
WH(O) 5 6 WH(O)
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[see Eq(3.49)].
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1r3 oo(Q) 1 0.74
k=r" 145 32 (3.57 =14 5 (0.74CH~ Cy) 2+ —-Che*
2 1 0.74 r ro\?
—|Z¢-Zcu+ —CﬁgS) —°+o( (—0) )
From Egs.(3.549—(3.56 and from the values fory,I, 3 3 3 £ §
andl 4y given below Eq(3.40 as well as from Eq(3.29 it (3.6

follows that the coefficienk, in Eq.(3.54) is negative for all

temperatures ifCy<Cj=1/(1244)=1.35. For C;>C} o o
the coefficientx, is negative for temperatures between the!n the limit é—oo the contributions~ro/& and O((ro/)?)
triple point T,=3T, and a temperaturg@* (C,) and «, is
positive within the temperature rangé (Cy)<T<T,. (For
the model fluid considered here the critical point is givenas function of¢ for C,;>1.35(Cy<1.35). The ultimate in-

within

=0.0Wr;3=0.22v, and p.r3=0.249.) The coefficient

the present density functional theory bigT,

Ko changes sign at

T* 1

—=——u——(1-1-2Cy+2C3/CY),

Cy>Cl~1.35. (3.59

vanish ando(q)/oy reduces to a function of only, i.e.,
1+ 2(0.74C3— Cy) L2+ O(¢*) which increasegdecreasgs

crease for large values dfin the caseC<1.35 is accom-
plished by termg0(¢%) not captured by the present expan-
sion. Although we neglect contributio®(¢*) in Eq. (3.61),
we keep all terms~/* resulting from the expansion of the
terms given explicitly in the first part of E43.60 in order

to maintain the qualitative functional form ofy(q), in par-
ticular, the increase fof>1, even if 0.7€,<1. We note
that in the limitro/§—0 oo(q) turns into ananalytic limit-

ing function of {=q¢&. This is not only true within the prod-
uct expansiofEq. (3.61)] but also for the full theory, be-

This result demonstrates that independent model calculationsause the latter reduces to the product approximation in the

for the hitherto unknown amplitud@, would be highly wel-

limit ro/é—0.

come because its actual value has significant repercussions We emphasize that, inspite of the fact that within the

on the

Within our model the coefficient{" [Eq. (3.53] reduces

to

behavior otr(q).

3

o

8(AP)2
Wolog—%—

3

2
w_T
7o 12

2 1
CHIH( )_4_0'0} (3.59

Equation(3.59 implies that forC,;> 7 the coefficientz{"
is positive forT,<T<T,. ForCy < the coefficient;{" is
positive within the temperature range{£C,)T.<T<T,

but negative forT,<T<(1—3Cy)T.. From this analysis
we infer that typically the formation of the minimum of
oo(Q), i.e., the increase ofrg(q), for large q is accom-

plished by the term-qg? [see Eq(3.50] and providedC is
sufficiently large and the temperature sufficiently high.
Finally, for the interaction potential discussed abpke.

(2.2] we quote the full expression fary(q) as obtained

from the product approximation given by E@®.41):

ao(Q)

Og

2 11— -y
lo y2
£\? £\?
+o.74ca<—) v s+ =] [1-(1+y)e Y]
o 2 \rg

5)2

o

4 2 1 2
+0(y)=1-3y+ 5| (074}~ Cy)

£\2 1
CH(r_) —§y3+0(y4), y=4Qro.
0

(3.60

This result can be written in terms of the varialfle ¢ so

that

product approximation fory/¢ finite oo(q—0) does not
exhibit the correct singular behavigf In g, Egs.(3.60 and
(3.61) represent useful analytic expressions which provide a
good overall account of the behavior @(q).

E. Numerical analysis and temperature dependence

The explicit results given above allow one to obtain a
transparent view of the overall behavior of,(q), of its
parametric dependence on various features of the intrinsic
profile, and of its temperature dependence. This advantage is
based on the product approximation described in(B&2.

By carrying out a full numerical analysis for the model con-
sidered above we are able to assess the reliability of this
approximation. To this end we compare Eg§.12 with Eq.
(3.42 and Eq.(3.295 with Eqg. (3.54. We find that the full
numerical results agree with the product approximation to
within 10% as long as>r,, i.e., for T>0.83T; [see Eq.
(3.29] which is slightly above the triple poink,=0.67T.

In Fig. 3 we compare the full form a¥,(q) as described
by Eq.(3.11) with its approximate form given by E@3.41)
for two limiting casesry/é=1 (i.e., T>0.83T,) close to the
triple point andry/¢=0.1 (i.e., t=2.5-10"3) close toT,.

We find that in both cases the qualitative functional form of
oo(q) is captured well by the product approximation. In par-
ticular, the positiorgy,;, of the minimum and the increase of
oo(q) for qro=2 are in good agreement with the numerical
evaluation of the full form, although the product approxima-
tion overestimates the depth of the minimum. This overesti-
mation is linked to the fact that the product approximation
yields a behaviorro(q—0)— o= 70)q, 7{’<0, instead of
the actual behavioroo(q—0)—oo=Ag?Ing, \Q>0,
which leads to a less pronounced decreasedff]) and is
the same kind of singularity aj=0 as predicted by the
sharp-kink approximatiofl4].
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3.0 y T i
—— full theory //
——- product appr. /
2.0 /
> / =
© r,/£=0.1 L
P ~
o / =
\'/o // Iy / E., - 1 ~3
o) ;70 ©
1.0 1
C,=05
0.0 . L L
0 1 2 3 4
(@) qa€ (b) ar,

FIG. 3. (@) Normalized momentum-dependent surface tensig(q)/o(0) as given by Eq(3.11) (solid curve$ and its product
approximationdashed curvegiven by Eq.(3.41) for r,/é=1 close to the triple point and fog/£=0.1 close to the critical point. The data
correspond to the model defined by E(&1)—(2.3) wherer ; denotes the diameter of the fluid particles &rttie bulk correlation lengtfsee
Eq. (3.29]. The interface profilepo(u) andp,(u) are given by Eqs(3.26), (3.27), (3.30, and(3.31) with C,;=0.5. The numerical results
for the full theory are in accordance with the behaviorog{q—0) as given by Eq(3.22 and of oo(q— <) as given by Eq(3.14). For

g—0 to leading ordewr(q) decreases aEg”qZ In g whereas the product approximation predicts a decreas%%;. However, forqé
sufficiently large the actual decreasey? In q crosses over to the linear decreasq (see the data fory/¢=1). As expected, in the limit
ro/é—0 the full expression fooy(q) reduces to the one predicted by the product approximation, which in this limit turns irstoadytic
limiting function of /=q¢ [see Eq.(3.61)]. Accordingly the termy{”q=(7{"/£)¢ vanishes in the limit—o. The opposite limitr,/&
—oo corresponds to the sharp-kink approximation which leads to the singugrityg. For any finite value of o/ £ the full expression for
oo(q) has the same leading singularity as predicted by the sharp-kink approximation. Whereas the full expressjtm) foontains the
sharp-kink approximation as a limiting case, the product approximation cannot capture this case because it is constructed to capture the
opposite case. Both the full theory and the product approximation render a minimagia)f whose temperature dependence is shown in
Fig. 4 as a function of o/¢. (b) Normalized momentum-dependent surface tensigfq)/o(0) forro/é=1 andCy=0, 0.3, and 0.5 as
function of qry within the full theory (solid lineg and the product approximatiofashed lines For increasing amplitude€,, of the
distortionpy(u) of the density profile due to its curvature the location of the minimum is shifted towards smaller valjesaibecomes
more shallow. For finite values @ the behavior ofoy(q) at smallq is numerically dominated by the quadratic curvature contribution
ko9° [see Eqs(3.22 and(3.50]; for C,;<<1.35 the coefficient is always negative. On this scale the leading singular bekayfdn(qrg)
becomes visible only fo€,=0 (inse). The inset shows the behavior of the full expressiondgtq) for rq/é=0 (dotted ling, ry/¢
=0.02(dash-dotted ling ro/&=0.1(solid line), andr,/é=1 (dash-double-dotted lineFor —qrq In(qrg)>ry/& one can clearly see a linear
decrease ofry(q) as predicted by the product approximation whereas -fayr In(qrg)<ro/¢é there is a crossover to the singularity
~q?In(gro) of the full theory.

Figure 3a) corresponds to a fixed amplitudg,= 0.5 of
the profilepy(u). For smaller values of, the minimum is
deeper and located at larger valuesigf, [Fig. 3(b)]. Figure
3(a) demonstrates that in the limity/£—0, o(q) reduces
to ananalytic limiting function of {=qé&, which is propor-
tional to ¢? for small  with a negative coefficient fo€
<1.35[see Eq(3.61)]. In the limitry/£—0 the full expres-

sion for o5(q) reduces to the one obtained within the prod-

uct approximation. On the other hand, as functiomnf the

inset of Fig. 3b) shows the crossover from the linear mo-
mentum dependence, as predicted by the product approxima-

tion, to the asymptotic behaviog?Inqry for g—0. For
ro/é=0 the linear decrease afy(q) is valid for all values
of g whereas forry/¢>0 it can be observed only for
—qrolnqgrg>rgl/é.

From Fig. 3 one infers thatry(q) is a nonmonotonic
function forming a minimum ag,;,. Figure 4 shows the

for the model studied in Fig. 3. Within the product approxi-
mation (dashed ling upon approaching . the minimum of
oo(q) disappears by shifting its position towards-0 ac-
cording to

T
t=1- ——0,

Amin~ ?wta&, T. (3.62
and by becoming more shallow, i.e.,
1= 0o(Qmin)/ oo~ 12" (3.63

The exponent is given bg=1 with 1— oo(Amin)/0o=0(1)
for C4y<C}y=1.35 anda=2 for Cy>C} This disap-
pearence of the minimum imy(q) for T—T, is in accor-
dance with the expectation that neBg not only the bulk
properties but also the interfacial properties can be described

temperature dependence of the position and of the depth &y a local theory (i.e., based on the Landau-Ginzburg-
this minimum in terms of the inverse correlation length Wilson Hamiltonian which does not provide a nonmono-
within the physically accessible temperature range betweetonic behavior ofog(q).

the triple point atT,=3T. (i.e., ro/é€=1.73) andT, (i.e., The product approximation describes the location and the
ro/é=0). The datasolid line) correspond to the full theory depth of the minimum remarkably well f&,<C},. How-
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F. Comparision with other theories

It is instructive to compare the present theory with previ-
ous efforts to determine the effective interface Hamiltonian.
To this end we do not consider the full form &f[f] as
derived in Sec. Il C but confine the discussion to the various
corresponding Gaussian approximations.

In the so-called sharp-kink approximation the intrinsic
density profile is taken ap*Y(u)=p,— Ap®(u) with the
Heaviside function®(u) so thatapgs'()(u)/au= —Apd(u)
(see Sec. Il Candpy(u)=0. In this special case the present
theory reduces to the Hamiltonian given in EQ.42 as
obtained in Ref[14]:

qumin

H(s")[f(R)]=;mGApf d2R[ f(R)]?
A

1 o0
——(Ap)fodszZR'f dz
100 2 A 0

(a)

xff(R )_f(R)dz’w(|r’—r|). (3.65
0
-1
5 10 Within the Gaussian approximation this result leads to
~x
% B B
(o) w(q,0)—w(0,0
T, oa)=(ap) 2 ———5—, (3.66
- 10 q
with ¢{¥(q—)=0, and, for the model potential given by
Eqg. (2.2, to
10°
g0 ot wrSam2 g2 in a0 (3l g2
(b) ro/g oy (q—0)=0g+ 32W0ro(AP) g°in 2 <4 Clas|,

(3.67

FIG. 4. Temperature dependence(a¥ the position,q,,,, and
(b) the depth, T a¢(gmin)/oo(0), of the minimum ofoy(q) for the
same model as in Fig.[Eq. (3.11)] with C;=0.5 andC=2. The
full theory (solid line) is described remarkably well by the product
approximation(dashed ling for C,;<C};, whereas forC,=2 the
asymptotic behavior-g?Inq of oo(q) yields an exponential be-

havior for the vanishing of these quantities instead of an algebrai . ield ic d d thus fail
one. Fort=(T.—T)/T.—0, ie., &, the position of the mini- mation yields a monotonic decreasemf(q) and thus fails

mum g, vanishes- ¢~ and the depth  oo(q)/0o(0) reaches to preghct the increase afo(q) for large q and thus the

a constant value fo€,< C},~1.35 whereas fo€y;>C}, both van- ~ formation of & minimum ag,,>0. Therefore we conclude
ish exponentially as function df. The disappearence of the mini- that the smooth variation of the intrinsic density profile and
mum fort—0 is in accordance with the expectation that upon ap-its distortion due to the capillary waves are responsible for
proaching T, the interfacial structures attain universal propertiesthe formation of a nontrivial minimum.

which can be described bylacal theory within which the range of The present theory differs qualitatively from the classical
the forces is zero on the scale of the correlation length so that theapillary wave theory which in its simplest and most com-
phenomenological capillary-wave theory is applicable which doesnonly used version corresponds to a square-gradient theory,
not provide a nonmonotonic behavior @(q). In (@ and(b), due  i.e., H=20,[d’R[Vf(R)]? so thatoy(q) is constant. A

to T>T,, the physically accessible range fo§/¢ is given by  more sophisticated but phenomenological ansatz follows
(ro/&)ma=V3=1.73. from expanding the Fourier transformed Helfrich Hamil-

. _ - . tonian into powers ofq [12,13, leading to oy(q) =0y
ever, for instance, fo€,,=2 within the full theory there is a + kq2+0(g%) with k>0 [23]. If one assigns the proper

crossover to an ex_p(_)nentlal vanishing of the position and O{/alues ofor and « as obtained by the present theory, this
the depth of the minimum,

phenomenological capillary-wave theory agrees with the
Ain~€ %, 1= oo(Quin) o ~ oGt (3.64 present theory for large, i.e., g> &, However, this ansatz
mn ' 0t Hmin7T 0 ' fails to capture the formation of the minimum of,(q) at
in accordance to the asymptotic behaviorog{q) given by  gmin>0 as well as the singularity-g?In(qr) of oo(q) at
Eq. (3.22. g=0. Therefore, as shown in Fig. 5, the Helfrich Hamil-

whereC~0.5772 is Euler’s constant. The present theory and
its sharp-kink approximation have in common that for fluids
governed by dispersion forces they predict a maximum of
oo(q) atg=0 which is attained via the singular momentum

gependencequln(qro). However, the sharp-kink approxi-
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4.0 ‘ ‘ 7 for the fluctuating semi-infinite liquid phase bounded by a
—— presenttheory / planar, nonfluctuating liquid-vapor interface. These contribu-
- :‘;;‘f;é;‘;‘;ﬂg;‘;“t‘;:;‘r‘;“ / tions must be separated off in order to obt&g(q) in Eq.
30} square gradient theory // ] (4.2)]. The non-Gaussian cont_rlbutlons«taéq) giverise to a
temperature dependence, which goes beyond that induced by

the temperature dependences of the intrinsic density profiles
po(u) andpy(u) and of the direct correlation function, to a
more complicated dependence on the gravity constaaud
to a modification of the momentum dependence. Prelimary
results indicate that the central results presented above for
oo(Q) in systems with long-ranged forces remain valid for
o(q) [26], in particular the singularity of-(q) atq=0, as
well as the presence of a local maximumgat 0 and of a
0.0 ‘ ‘ global minimum atg,,>0.

0.0 1.0 2.0 3.0 4.0 From Egs.(2.27), (2.28, and(3.27 and due to the nor-

qr, malization [ ,dxpy(x) =1 one finds

0y(q)/o,,

FIG. 5. Comparision of the present theory fay(q) [Eq. (3.11), Su=Cués 4.3
solid curve as shown already in Fig] ®ith the predictions of the )
simple square-gradient theorf{=30ofd?R[Vf(R)]?> (dotted  Ihus from studying the momentum dependence of the grav-
curve, the phenomenological capillary-wave thedigd] corre- ity termin Eq.(4.2), which can be varied independently, e.g.,
sponding to ao(q)/oo=1+(x/oy)q? (dashed curve and the by changing the isotopic composition of the fluid, one can
sharp-kink approximatioil4] of the present theorydash-dotted infer the amplitudeC,; directly and independently. This is
curve). The parameters are the same as in Fig. 3,&g=0.5and  very useful because at present there is no reliable theoretical
ro/¢é=1. The phenomenological capillary-wave theory does notvalue forC,, available, but this value enters sensitively into
yield a specific value fok/o . Here it is chosen such that this ratio the expression fory(q) at various places. In particular, the
has the same value as the one predicted by the present theory febmparision with the largeg behaviora(q— =)= qu [Eq.
large g. Only the present theory predicts the formation of a mini- (3.45] can provide an interesting consistency check.
mum of o7o(q). In recent experiments thiateral surface correlations of

) o . __an oil-water interfacg27] and of the liquid-vapor interface
tonian turns out to be qualitatively incorrect for describing of ethanol[28] and wate[29,30 were studied using x-rays
the long-wavelength limit of capillary waves on fluid inter- nqer grazing incidenck81]. So far these experiments have
faces. _ been focused on the very vicinity of the specular beam prob-

In p'rlnqpleo(q)'can be inferred from the structure factor ing the leading qdependence fog—0 in Eqg. (4.2). These
of a liquid-vapor interface(see below as obtained from eyperiments demonstrated that this leading behavior
5|m|_JIat|ons. However, the accuracy of such data as pre_sentl;L 00(0)g? is in agreement with the expected roughening of
available[24] does not allow one to extract a discernible he fluid interface in the limit of microgravity, i.eG—0.

deviation of the surface tensian(q) from its valueoo at  oyr present theory is in accordance with these findings.

q=0. However, the main thrust of the present analysis predicts a
nontrivial behavior of theext-to-leadingerm ~g*Inq in the
IV. PREDICTIONS FOR SCATTERING EXPERIMENTS denominator ofGy(q) [Eq. (4.2)]. Its nonanalytic behavior

and its sign contain the fingerprints of the dispersion forces
pn the fluctuations at the fluid interface. Although the mea-
sured off-specular diffuse x-ray intensities of a bare water

The momentum-dependent surface tensigyiq) is ex-
perimentally accessible by x-ray or neutron scattering a
grazing incidence which probe the two-point correlation

function [25] surface are not inconsistent with a constant surface tension
oo [29,30, the data for large values ofare too noisy as to
F(@F(q))=6(q)(2m)28q+q’) (4.1) allow one to analyze them in terms of a momentum-

dependent surface tension. Nonetheless, there are first hints
whereq is the lateral momentum transfer. Within the Gauss-hat at larger values af the scattered intensity is larger than
ian approximation one has the one corresponding to E4.2) for a constanto [30].

This observation means thag(q) decreases as a function of

kgT g, in accordance with the present theory.
Go(a)= ApmG(1—28,40°) + oo(q)q? (4.2 Recently, by using small-angle neutron scattering in the

bulk the expected nonanalytiy® momentum dependence in
This means that the analysis of ttiéfusescattering intensity the static structure function of simple liquids as induced by
around the specular beam of x rays or neutrons, which ardispersion forces has been confirmed experimentally for Ar
totally reflected at the liquid-vapor interface, allows one to[32](a), Kr [32](b), and Xe[32](c). The present theory pre-
retrieve the full functional form ofo(q) whose Gaussian dicts its counterpart-g2Inq at fluid interfaces The bulk
approximation is given byy(q) [Eq.(3.1D and Figs. 3—-h  experiments revealel82] that the strength of the bulk sin-
[However, one should keep in mind that this diffuse scattergularity ~q* is determined by the sum of the long-ranged
ing intensity in addition contains contributions which steminteraction given by the dipole-dipole dispersion energy plus
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a triple-dipole contribution of the Axilrod-Teller type. Con- concept of the intrinsic density profile we have introduced
cerning the quantitative comparison between future experinormal coordinategFig. 2). Close to the interface position
ments at interfaces with the present theory one should bthe distortion of the planar intrinsic density profile due to
prepared to include also three-body interactions not yet coveurvature is taken into accoufgee Eq.(2.17)].
ered by Eq.(2.2). The three-body interactions are expected (3) The approach described 8) allows one to derive the
to influence the density dependence «&f(q) but not its  explicit functional dependence of the effective interface
temperature and momentum depender3& Hamiltonian H[f(R)] on the interface configuratiof(R)
Since it is a demanding experimental task to determingSec. Il Q. H[f(R)] consists of local functionals, due to the
o(q) from the diffuse scattering of x rays and neutrons atgravity contribution and due to the curvature-induced distor-
grazing incidence, it is worthwhile to note that with reducedtion of the intrinsic density profile and of nonlocal function-
experimental efforts one is able to infer at least averagedils stemming from the nonzero range of the interaction po-
informations aboutr(q). Reflectivity (=0) and ellipsom-  tential between the fluid particlé&qg. (2.24].
etry (i=1) experiments allow one to determine the moments (4) Within the Gaussian approximatick[ f(R)] can be
[23,28,33-38 expressed in terms of a momentum-dependent surface ten-
sionoy(q) [Egs.(3.10 and(3.11)] whose behavior is shown
5 [ Cmax A in Fig. 3. Its salient features for fluids governed by disper-
Fi :f dag™'G(q). (4.4 sion forces are a local maximum @t=0 which is attained
0 linearly ~q followed, via a crossover, by a singularity
~@?Inq, a global minimum at|,;>>0, and an increase g2
Since ao(q—=) increases ascg® with k>0, one has for largeq. The latter property is caused by the distortion of
Go(q—*)~q~* so that in Eq(4.4) the momentum cutoff  the intrinsic density profile due to curvatufés. (2.17)] and
Omax= 1/r o can be replaced by infinity without encountering arenders an upper momentum cutoff in correlation functions
convergence problem even within the Gaussian approximaof f(R) effectively redundant. In systems governed by short-
tion. This improves the theoretical results of Réf] which  ranged forces,(q) is analytic and the global minimum may
are valid only for smallq and thus cannot capture the in- pe shifted toq=0. These results differ qualitatively from
crease ofoo(q) for largeq. Although it is convenient to be those obtained from the phenomenological capillary wave
able to remove the cutoffy,ain Eq. (4.4) and thus to getrid  theory. This means that the Helfrich Hamiltonian is not ap-
of an additional fitting parameter, one has to keep in minglicable for describing fluid interface&ig. 5).
that on physical grounds the theoretical description of inter- (5) The appearance of the minimum of the momentum-
face fluctuations in terms of local height variables requiresgependent surface tension is most pronounced near the triple
the cutoff gmax conceptually. Therefore in analyzing such point of the fluid. Upon approaching, the depth of the
experiments one should test the importance of the contribuminimum vanishes-t*~2, t=(T.~T)/T.—0, and the po-
tion [3 dqq'G(q) for the interpretation of the data. Also sition of the minimum shifts towardg=0 proportional to
for this reason it would be very important to proGg{q)  t¥?where the exponert= 1,2 depends on the amplitu@
directly as described by Eq$4.1) and (4.2) because the [EQs.(2.17 and(3.27)] of the distortion of the intrinsic den-
interpretation of the diffuse scattering intensity does not resity profile due to curvature&ee Fig. 4 NearT. as a func-
guire a momentum cutoff. This would not only provide muchtion of q¢, where £ is the bulk correlation length,
more detailed information but it would also allow one to o¢(q)/oo(0) reduces to an analytic limiting functiorEq.
assess the importance of the aforementioned contributions 18.61) and Fig. 3a)].

G(q) for large values ofy. (6) The momentum-dependent surface tension can be
probed experimentally either directly through the diffuse
V. SUMMARY scattering intensity around the specular beam of totally re-
flected x rays or neutrorf€qgs.(4.1) and(4.2)] or indirectly
We have obtained the following main results. via averaged moments obtained from reflectivity or ellipsom-

(1) Based on density functional theory for inhomogeneousetry experiment$Eq. (4.4)].
liquids we have derived an effective Hamiltonian for gas-
liquid interfaces in simple fluids which takes into account

bo.th the presence of ang—ranged djspgrsjon forpes in.the ACKNOWLEDGMENT
fluid and the smooth variation of the intrinsic density profile
[Eq. (2.1D)]. It is a pleasure for us to thank M. Napkmwski for nu-

(2) In order to achieve an optimal implementation of the merous discussions.
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