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Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group

Itai Arad, Victor S. L’vov, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 14 October 1998!

The theory of fully developed turbulence is usually considered in an idealized homogeneous and isotropic
state. Real turbulent flows exhibit the effects of anisotropic forcing. The analysis of correlation functions and
structure functions in isotropic and anisotropic situations is facilitated and made rational when performed in
terms of the irreducible representations of the relevant symmetry group which is the group of all rotations
SO~3!. In this paper we first consider the needed general theory, and explain why we expect different~uni-
versal! scaling exponents in the different sectors of the symmetry group. We exemplify the theory context of
isotropic turbulence~for third order tensorial structure functions! and in weakly anisotropic turbulence~for the
second order structure function!. The utility of the resulting expressions for the analysis of experimental data
is demonstrated in the context of high Reynolds number measurements of turbulence in the atmosphere.
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I. INTRODUCTION

Experiments in fluid turbulence are usually limited to t
measurement of the velocity field at one single spatial po
as a function of time. This situation has begun to impro
recently, but still much of the analysis of the statistical pro
erties of Navier-Stokes turbulence@1# is influenced by this
tradition: the Taylor hypothesis is used to justify the iden
fication of velocity signals at different times with differenc
of longitudinal velocity components across a spatial len
scaleR. Most of the available statistical information is ther
fore about properties of longitudinal two-point differences
the Eulerian velocity field and their moments, termed str
ture functions:

Sn~R!5 K U@u~r1R!2u~r!#•
R

RUnL , ~1!

where^ & denotes ensemble averaging. In isotropic homo
neous turbulence, these structure functions are expecte
behave as a power law inR, Sn(R);Rzn, with apparently
universal scaling exponentszn .

Recent research@2,3# has pointed out the advantages
considering not only the longitudinal structure functions, b
tensorial multipoint correlations of velocity field difference

w~r,r8,t ![u~r8,t !2u~r,t !, ~2!

given by

F̂n
ab . . . d~r1 ,r18 ,t1 ;r2 ,r28 ,t2 ; . . . ;rn ,rn8 ,tn!

5^wa~r1 ,r18 ,t1!wb~r2 ,r28 ,t2! . . . wd~rn ,rn8 ,tn!&,

~3!

where all the coordinates are distinct. Even when the co
dinates fuse to yield time-independent structure functions
pending on one separation only, these are tensorial quan
@4# denoted as

Sab . . . ~R![^@ua~r1R!2ua~r!#@ub~r1R!2ub~r!#•••&.

~4!
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Needless to say, the tensorial information is lost in the us
measurements leading to Eq.~1!. One of the main points of
the present paper is that keeping the tensorial informa
can help significantly in disentangling different scaling co
tributions to the statistical objects, contributions that are h
to distinguish when quantities like Eq.~1! are considered.
Especially when anisotropy implies different tensorial co
ponents with possible different scaling exponents charac
izing them, careful control of the various contributions
called for.

To understand why irreducible representations of
symmetry group may have an important role in determin
the form of correlation functions, we need to discuss
equations of motion which they satisfy. We shall show th
the isotropy of the Navier-Stokes equation and the inco
pressibility condition implies the isotropy of the hierarchic
equations which the correlation functions satisfy. We w
use this symmetry to show that every component of the g
eral solution with a definite behavior under rotations@i.e.,
components of a definiteirreducible representationof the
SO~3! group# has to satisfy these equations by itself
independently of components with different behavior und
rotations. This ‘‘foliation’’ of the hierarchical equations ma
possibly lead to different scaling exponents for each com
nent of the general solution which belong to a differe
SO~3! irreducible representation.

In Sec. II we describe the general mathematical fram
work of the theory by discussing the structure of tenso
fields from the point of view of SO~3! irreducible represen-
tations. In Sec. III we then show that the hierarchy equati
are indeed isotropic, and as a result foliate into differe
sectors of the SO~3! irreducible representations. In the ne
sections we demonstrate the utility of the theory. In Sec.
we revisit Kolmogorov’s four-fifth’s law, emphasizing th
rule of the SO~3! irreducible representations in its derivatio
Then, in Sec. V, we present some experimental evidenc
the importance of an anisotropic exponent in the second
der structure function, in atmospheric measurements. Sec
VI offers conclusions and some comments about the r
ahead.
6753 ©1999 The American Physical Society
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II. TENSORIAL CORRELATION FUNCTIONS AND SO „3…
IRREDUCIBLE REPRESENTATIONS: GENERAL

THEORY

The physical objects that we deal with are the moment
the velocity field at different space-time locations. In th
section we suggest a way of decomposing these objects
components with a definite behavior under rotations. We w
show below that components with different behaviors un
rotation are subject to different dynamical equations, a
therefore, possibly, scale differently. Essentially, we
about to describe the tensorial generalization of the w
known procedure of decomposing a scalar functionC(r )
into components of different irreducible representations
ing the spherical harmonics
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C~r !5(
l ,m

alm~r !Ylm~ r̂ !. ~5!

A. Formal definition

Consider a typical moment of the velocity field,@Eq. ~3!#.
Fn

a1 . . . an(r1 ,r18 ,t1 ; . . . ;rn ,rn8 ,tn) is a function of 2n spatial
variables andn temporal variables. Physically, it is atensor
field: if Fn is measured in two framesI and Ī which are
connected by the spatial transformation~say, a rotation!,

x̄a5La
bxb, ~6!

then the measured quantities in each frame will be conne
by the relation
F̄n
a1 . . . an~ r̄1 , r̄18 , t̄ 1 ; . . . ;r̄n , r̄n8 , t̄ n!5La1

b1
•••Lan

bn
Fn

b1 . . . bn~r1 ,r18 ,t1 ; . . . ;rn ,rn8 ,tn!

5La1
b1
•••Lan

bn
Fn

b1 . . . bn~L21r̄1 ,L21r̄18 , t̄ 1 ; . . . ;L21r̄n ,L21r̄n8 , t̄ n!. ~7!
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to
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We see that as we move from one frame to another,
functional formof the tensor field changes. We want to cla
sify the different tensor fields according to the change
their functional form as we make that move. We can omit
time variables from our discussion since under rotation t
merely serve as parameters.

Consider coordinate transformations which are pure ro
tions. For such transformations we may simplify the disc
sion by separating the dependence on the amplitude or i
from the dependence on the directionality ofr i :

Ta1 . . . an~r1 , . . . ,r p!5Ta1 . . . an~r 1 , . . . ,r p ; r̂1 , . . . ,r̂ p!.

For pure rotations we may treat the amplitudesr 1 , . . . ,r p as
parameters: the transformations properties ofTa1 . . . an under
rotation are determined only by the dependence ofTa1 . . . an

on the unit vectorsr̂1 , . . . ,r̂ p . Accordingly it seems worth-
while to discuss tensor fields which are functions of the u
vectorsonly. Notice that in the scalar case we follow th
same procedure: by restricting our attention to scalar fu
tions that depend only on the unit vectorr̂ , we construct the
spherical harmonics. These functions aredefinedsuch that
each one of them has unique transformation properties u
rotations. We then represent the most general scalar func
as a linear combination of the spherical harmonics w
r-dependent coefficients; see Eq.~5!.

The classification of the tensor field
Ta1 . . . an( r̂1 , . . . ,r̂ p) according to their functional chang
under rotations follows immediately from group represen
tion theory@5,6#. But in order to demonstrate this, we mu
first make some formal definitions. We defineS p

n to be the
space of all smooth tensor fields of rankn which depend on
p unit vectors. This is obviously a linear space of infin
dimension. With each rotationLPSO(3), we may now as
sociate a linear transformationOL on that space via the re
lation ~7!:
e
-
n
e
y

-
-

it

c-

er
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h

-

@OLT#a1 , . . . ,an~ r̂1 , . . . ,r̂ p!

[La1
b1
•••Lan

bn
Tb1 . . . bn~L21r̂1 , . . . ,L21r̂ p!.

Using this definition, it is easy to see that the set of line
operatorsOL furnishes a representation of the rotation gro
SO~3! since they satisfy the relations:

OL1
OL2

5OL1L2
,

OL
215OL21.

General group theoretical considerations imply that it is p
sible to decomposeS p

n into subspaces which are invariant
the action of all the group operatorsOL . Moreover, we can
choose these subspaces to beirreducible in the sense tha
they will not contain any invariant subspace themselves~ex-
cluding themselves and the trivial subspace of the zero te
field!. For the SO~3! group each of these subspaces is co
ventionally characterized by an integerj 50,1,2, . . . , and is
of dimension 2j 11 @5,6#. It should be noted, that unlike th
scalar case, in the general spaceS p

n , there might be more
than one subspace for each given value ofj. We therefore use
the indexq to distinguish subspaces with the samej. For
each irreducible subspace (q, j ) we can now choose a bas
with 2 j 11 components labeled by the indexm:

Bq jm
a1 , . . . ,an~ r̂1 , . . . ,r̂ p!, m52 j , . . . 1 j .

In each subspace (q, j ), the group operatorsOL furnish a
(2 j 11)-dimensional irreducible representation of SO~3!.
Using the basisBq jm

a1 , . . . ,an( r̂1 , . . . ,r̂ p), we can represen

each operatorOL as a (2j 11)3(2 j 11) matrix Dm8m
( j ) (L)

via the relation
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@OLBq jm#a1 , . . . ,an~ r̂1 , . . . ,r̂ p!

5La1
b1
•••Lan

bn
Bq jm

b1 . . . bn~L21r̂1 , . . . ,L21r̂ p!

[ (
m852 j

1 j

Dm8m
( j )

~L!B
q jm8

a1 , . . . ,an~ r̂1 , . . . ,r̂ p!.

It is conventional to choose the basisBq jm such that the
matricesDm8m

( j ) (f), that correspond to rotations off radians
around the 3 axis, will be diagonal, and given by

Dm8m
( j )

~f!5dmm8e
imf.

TheS p
n space possesses a very natural inner product:

^T,U&[E dx̂1 . . . dx̂pTa1 . . . an~ x̂1 . . . x̂p!

3ga1b1
. . . ganbn

U
b1 . . . bn~ x̂1 . . . x̂p!* ,

wheregab is the three-dimensional Euclidean metric tens

gab5S 1

1

1
D .

By definition, the rotation matricesLa
b preserve this metric

and, therefore, it is easy to see that for eachLPSO(3) we
get

^OLT,OLU&5^T,U&,

so thatOL are unitary operators. If we now choose the ba
Bq jm to be orthonormal with respect to the inner produ
defined above, then the matricesDm8m

( j ) (L) will be unitary.
Finally, considerisotropic tensor fields. An isotropic ten-

sor field is a tensor field which preserves its functional fo
under any arbitrary rotation of the coordinate system.
other words, it is a tensor field which is invariant to th
action of all operatorsOL . The one-dimensional subspac
spanned by this tensor field is therefore invariant under
operatorsOL , and therefore it must be aj 50 subspace.

Once the basisBq jm has been selected, we may expa
any arbitrary tensor fieldFa1 . . . an(r1 , . . . ,r p) in this basis.
As mentioned above, for each fixed set of amplitud
r 1 , . . . ,r p , we can regard the tensor field
e

os

n
n

:

s
t

n

ll

s

Fa1 . . . an(r1 , . . . ,r p) as a tensor field which depends on
on the unit vectorsr̂1 , . . . ,r̂ p , and hence belongs toS p

n . We
can therefore expand it in terms of the basis tensor fie
Bq jm with coefficients that depend onr 1 , . . . ,r p :

Fa1 . . . an~r1 , . . . ,r p!

5 (
q, j ,m

aq jm~r 1 , . . . ,r p!Bq jm
a1 , . . . ,an~ r̂1 , . . . ,r̂ p!. ~8!

The goal of the following sections is to demonstrate the u
ity of such expansions for the study of the scaling proper
of the correlation functions.

B. Construction of the basis tensors

1. The Clebsch-Gordan machinery

A straightforward~although somewhat impractical! way
to construct the basis tensorsBq jm is to use the well-known
Clebsch-Gordan machinery. In this approach we consider
S p

n space as adirect product spaceof n three-dimensional
Euclidean vector spaces withp infinite-dimensional space
of single-variable continuous functions on the unit sphere
other words, we notice thatS p

n is given by

S p
n5@S 0

1#n
^ @S 1

0#p,

and therefore every tensorTa1 . . . an( r̂1 . . . r̂ p) can be repre-
sented as a linear combination of tensors of the form

v1
a1 . . . vn

anw1~ r̂1!•••wp~ r̂ p!.

v i
a i are constant Euclidean vectors andw i( r̂ i) are continuous

functions over the unit sphere. The three-dimensional
clidean vector spaceS 0

1 contains exactly one irreducible rep
resentation of SO~3!—the j 51 representation—whileS 1

0,
the space of continuous functions over the unit sphere, c
tains every irreducible representation exactly once. The st
ment thatS p

n is a direct product space may now be written
a group representation notation as
uct a

ri-
ht-
We can now choose an appropriate basis for each spac
the product.

~i! For the 3-dimensional Euclidean space we may cho

e15
1

A2 S 1

i

0
D , e05

1

A2 S 0

0

1
D , e215

1

A2 S 1

2 i

0
D .

~ii ! For the space of continuous functions over the u
sphere, we may choose the well-known spherical harmo
functions.
in

e

it
ic

Once these bases have been chosen, we can constr
direct-product basis forS p

n :

Ei 1 . . . i n( l 1m1) . . . (l pmp)
a1 . . . an ~ r̂1 , . . . ,r̂ p!

[ei 1

a1
•••ei n

an
•Yl 1 ,m1

~ r̂1!•••Yl p ,mp
~ r̂ p!.

The unitary matrix that connects theEi 1 . . . i n( l 1m1) . . . (l pmp)

basis to theBq jm basis can be calculated using the approp
ate Clebsch-Gordan coefficients. The calculation is straig
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forward but very long and tedious. However, the abo
analysis enables us to count and classify the different i
ducible representations of a givenj. By using the standard
rules of angular-momentum addition,

s^ l 5us2 l u % •••% ~s1 l !,

we can count the number of irreducible representations
given j in Sp

n. For example, consider the spaceS 1
2 of second-

rank tensors with one variable over the unit sphere. Using
angular-momentum addition rules, we see

S 1
251^ 1^ ~0% 1% 2% 3% ••• !

5~0% 1% 2! ^ ~0% 1% 2% 3% ••• !

5~330! % ~731! % ~932! % ~933! % ••• . ~9!

We see that there are exactly threej 50 representations
sevenj 51 representations, and nine representations for e
j .1. It can be further argued that the symmetry proper
of the basis tensors with respect to their indices come fr
the 1^ 150% 1% 2 part of the direct product~9!. Therefore,
out of the nine irreducible representation ofj .1, five will be
symmetric and traceless, three will be antisymmetric, a
one will be tracefull and diagonal. Similarly, the parity of th
resulting tensors~with respect to the single variable! can be
calculated. Once we know how many irreducible represe
tions of eachj are found inS p

n , we can construct them ‘‘by
hand’’ in some other, more practical method which will b
demonstrated in Sec. II B 2.

2. Alternative derivation of theBqjm

The method we wish to propose in this subsection
based on the simple idea that contractions withr a,dab, and
eabg and differentiation with respect tor a are all isotropic
operations: isotropic in the sense that the resulting exp
sion will have thesametransformation properties under ro
tation as the expression we started with. The proof of the
statement follows directly from the transformation propert
of r a,dab, eabg.

The construction of allBq jm that belongs toS 1
n now be-

comes a rather trivial task. We begin by defining a sca
e
-

a

e

ch
s
m

d

a-

s

s-

st
s

r

tensor field with a definitej ,m. An obvious choice will be
the well-known spherical harmonicsYjm( r̂ ), but a better one
will be

F jm~r ![r jYjm~ r̂ !.

The reason that we preferF jm(r ) to Yjm( r̂ ), is thatF jm(r )
is polynomial in r @while Yjm( r̂ ) is polynomial in r̂ #, and
therefore it is easier to differentiate it with respect tor . Once
we have definedF jm(r ), we can construct theBq jm by ‘‘add-
ing indices’’ to F jm(r ) using the isotropic operations men
tioned above. For example, we may now constr
r 2 jdabF jm(r ), r 2 j 12dab]t]gF jm(r ), r 2 j 21xaF jm(r ), etc.
Notice that we should always multiply the resulting expre
sion with an appropriate power ofr, in order to make itr
independent, and thus a function ofr̂ only.

The crucial role of the Clebsch-Gordan analysis is to
us how many representations from each type we sho
come up with. First it tells us the highest power ofr̂ in each
representation, and then it can also give us the symm
properties ofBq jm with respect to their indices. For exampl
consider again the irreducible representations ofS 1

2, Eq. ~9!.

The C-G analysis shows us that for eachj .1 we are
going to have nine irreducible representations. The indi
symmetry of the tensor comes from theS 0

1
^S 0

151^ 150
% 1% 2 part of the direct product. This is a direct product
two Euclidean spaces, so it is a second rank constant ten
We can mark the representation number in this space w
the letters, and the representation number of theS 1

050% 1
% 2% 3% ••• space with the letterl. This way each represen
tation in S 1

2 of a given j will have two additional numbers
(s,l ), which actually serve as the indexq that distinguishes
irreducible representations of the samej. The s index will
determine the indices symmetry of the tensor, while thl

index will determine the highest power ofr̂ in the tensor. If
we now recall that in the space of constant second rank
sors,S 0

1
^S 0

150% 1% 2, thes50, and 2 representations ar
symmetric while thes51 representation is antisymmetric
we can easily constructBq jm :
~s,l !5~0,j !, B1 jm~ r̂ ![r 2 jdabF jm~r !,

~s,l !5~1,j 21!, B2 jm~ r̂ ![r 2 j 11eabm]mF jm~r !,

~s,l !5~1,j !, B3 jm~ r̂ ![r 2 j@r a]b2r b]a#F jm~r !,
~10!

~s,l !5~1,j 11!, B4 jm~ r̂ ![r 2 j 21eabmr mF jm~r !,

~s,l !5~2,j 22!, B5 jm~ r̂ ![r 2 j 12]a]bF jm~r !,

~s,l !5~2,j 21!, B6 jm~ r̂ ![r 2 j 11@eamnr m]n]b1ebmnr m]n]a#F jm~r !,
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~s,l !5~2,j !, B7 jm~ r̂ ![r 2 j@r a]b1r b]a#F jm~r !,

~s,l !5~2,j 11!, B8 jm~ r̂ ![r 2 j 21@r beamnr m]n1r aebmnr m]n#F jm~r !,

~s,l !5~2,j 12!, B9 jm~ r̂ ![r 2 j 22r ar bF jm~r !.
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It should be stressed that theseBq jm are not exactly the sam
ones we would have obtained from the Clebsch-Gordan
chinery. For example, they are not orthogonal among th
selves for the same values ofj and m ~although they are
orthogonal for different values ofj or m). Nevertheless, they
are linearly independent and thus span a given (j ,m) sector
in S 1

2 space.

III. ISOTROPY OF THE HIERARCHY OF EQUATIONS
AND ITS CONSEQUENCES

In this section we derive the equations of motion for t
statistical averages of the velocity and pressure fields dif
ences. We start from the Navier-Stokes equations and s
that their isotropy implies the isotropy of the equations
the statistical objects. Finally, we demonstrate the foliat
of these equations to different sectors ofj ,m.

Consider a Navier-Stokes incompressible turbulence
bounded domainV. The equations of motion describing th
flow are

] tu
a1um]mua52]ap1n]2ua,

]aua50.

As is well known, the relevant dynamical time scales a
revealed only when the effect of sweeping is removed. In
work we use the Belinicher-L’vov transformation@7#, in
which the flow is observed from the point of view of on
specific fluid particle which is located atr0 at time t0. Let
r(r0 ,t0ut) be the particle’s translation at timet:

r~r0 ,t0ut !5E
t0

t

dsu@r01r~r0 ,t0us!,s#. ~11!

We then redefine the velocity and pressure fields to be th
seen from an inertial frame whose origin sits at the curr
particle’s position:

v~r0 ,t0ur ,t ![u@r1r~r0 ,t0ut !,t#,

p~r0 ,t0ur ,t ![p@r1r~r0 ,t0ut !,t#.

Next we define the differences of these fields:

W a~r0 ,t0ur ,r 8,t ![va~r0 ,t0ur ,t !2va~r0 ,t0ur 8,t !,

P~r0 ,t0ur ,r 8,t ![p~r0 ,t0ur ,t !2p~r0 ,t0ur 8,t !.

A straightforward calculation shows that the dynamic
equations forW are
a-
-

r-
w

r
n

a

e
r

se
t

l

] tW a~r ,r 8,t !52~]a1]8a!P~r0 ,t0ur ,r 8,t !

1n~]21]82!W a~r0 ,t0ur ,r 8,t !

2]mW m~r0 ,t0ur ,r0 ,t !W a~r0 ,t0ur ,r 8,t !

2]m8W m~r0 ,t0ur 8,r0 ,t !W a~r0 ,t0ur ,r 8,t !,

]aW a~r0 ,t0ur ,r 8,t !5]a8W a~r0 ,t0ur ,r 8,t !50. ~12!

By inspection,t0 merely serves as a parameter, and theref
we will not denote it explicitly in the following discussion
Also, in order to make the equations easier to understand
us introduce some shorthand notation for the variab
(r k ,r k8 ,tk):

Xk[~r k ,r k8 ,tk!,

Xk[~r k ,r k8 ,tk!,

X̂k[~ r̂ k , r̂ k8!.
Using Eqs.~12!, we can now derive the dynamical equ

tions for the statistical moments ofW, P: Let ^ & denote a
suitable ensemble averaging. We define two types of sta
tical moments:

F n
a1 . . . an~r0uX1 , . . . ,Xn![^W a1~r0uX1!•••W an~r0uXn!&,

H n
a2 . . . an~r0uX1 , . . . ,Xn!

[^P~r 0uX1!W a2~r0uX2!•••W an~r0uXn!&.

Equations~12! imply

] t1
F n

a1 . . . an~r0uX1 , . . . ,Xn!

52~] (r 1)
a1 1]

(r
18)

a1 !H n
a2 . . . an~r0uX1 , . . . ,Xn!

2]m
(r 1)Fn11

ma1 . . . an~r0uX̃,X1 , . . . ,Xn!

2]
m

(r 18)Fn11
ma1 . . . an~r0uX̃8,X1 , . . . ,Xn!1n~] (r 1)

2

1] (r
18)

2
!F n

a1 . . . an~r0uX1 , . . . ,Xn!, ~13!

X̃[~r0 ,r 8,t !, X̃8[~r ,r0 ,t !, ~14!

]a1

(r 1)F n
a1 . . . an~r0uX1 , . . . ,Xn!50,

]
a1

(r 18)F n
a1 . . . an~r0uX1 , . . . ,Xn!50. ~15!

Equations ~13! and ~15! are linear and homogeneou
Therefore, their solutions form a linear space. The most g
eral solution to these equations is given by a linear com
nation of a suitable basis of the solutions space. To const
a specific solution, we must use the boundary conditions
order to set the linear weights of the basis solutions. We s
now show that the isotropy of these equations implies t
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our basis of solutions can be constructed such that e
solution will have a definite behavior under rotations~that is,
definite j and m—see Sec. II!. But before we do that, note
that in many aspects the situation described here is simila
the well-known problem of Laplace equation in a closed d
main V:

“

2C50,

Cu]V5s.

The Laplace equation is linear, homogeneous, and isotro
Therefore, its solutions form a linear space. One poss
basis for this space is

C l ,m~r ![r lYlm~ r̂ !,

in which the solutions have a definite behavior under ro
tions @belong to an irreducible representation of SO~3!#. The
general solution of the problem is given as a linear com
nation ofC l ,m(r ):

C~r !5(
l ,m

al ,mC l ,m~r !.

For a specific problem, we use the value ofC(r ) on the
boundary@i.e., we uses(r )# in order to set the values o
al ,m .

To see that the same thing happens with the hierar
equations~13! and ~15!, we consider an arbitrary solutio
$Fn ,Hnun52,3, . . .% of these equations. According to Se
II we may write the tensor fieldsFn ,Hn in terms of a basis
Bq jm :

F n
a1 . . . an~r0uX1 , . . . ,Xn![ (

q, j ,m
Fq jm

(n) ~r 0 ,X1 , . . . ,Xn!

3Bq jm
(n)a1 . . . an~ r̂0 ,X̂1 , . . . X̂n!,
ry

to
-

ic.
le

-

i-

y

H n
a2 . . . an~r0uX1 , . . . ,Xn![ (

q, j ,m
Hq jm

(n) ~r 0 ,X1 , . . . ,Xn!

3Bq jm
(n21)a2 . . . an

3~ r̂0 ,X̂1 , . . . X̂n!. ~16!

Now all we have to show is that pieces ofFn andHn with
definite j and m solve the hierarchy equationsby
themselves—independently of pieces with differentj andm.
The proof of the last statement is straightforward, thou
somewhat tedious. We therefore only sketch it in gene
lines. The isotropy of the hierarchy equations implies th
pieces ofFn andHn with definite j and m, maintain their
transformation properties under rotationafter the linear and
isotropic operations of the equation have been perform
For example, ifF n

a1 . . . an(r0uX1 , . . . ,Xn) belongs to the ir-
reducible representation (j ,m), then so will the tensor fields

]a i

(r k)F n
a1 . . . an , ] (r k)

2 F n
a1 . . . an , etc.,

although they may belong to differentS p
n spaces~i.e., have

one less or one more indices!. Therefore, if we choose the
bases$Bq jm

(n) % to be orthonormal, plug expansions~16! into
the hierarchy equations~13! and ~15!, and take the inner
product with Bq jm

(n) , we will obtain new equations for the
scalar functionsFq jm

(n) andHq jm
(n) :
] t1
Fq jm

(n) ~r 0 ,X1 , . . . ,Xn!52(
q8

^~] (r 1)
a1 1]

(r
18)

a1 !Hq8 jm
(n)

~r 0 ,X1 , . . . ,Xn!Bq8 jm
(n21) ,Bq jm

(n) &

2(
q8

^]m
(r 1)Fq8 jm

(n11)
~r 0 ,X̃,X1 , . . . ,Xn!Bq8 jm

(n11) ,Bq jm
(n) &

2(
q8

^]m

(r 18)
Fq8 jm

(n11)
~r 0 ,X̃8,X1 , . . . ,Xn!Bq8 jm

(n11) ,Bq jm
(n) &

1n(
q8

^~] (r 1)
2 1] (r

18)
2

!Fq8 jm
(n)

~r 0 ,X1 , . . . ,Xn!Bq8 jm
(n) ,Bq jm

(n) &, ~17!

(
q8

^]a1

(r 1)Fq8 jm
(n)

~r 0 ,X1 , . . . ,Xn!Bq8 jm
(n) ,Bq jm

(n21)&50,

(
q8

^]a1

(r 18)
Fq8 jm

(n)
~r 0 ,X1 , . . . ,Xn!Bq8 jm

(n) ,Bq jm
(n21)&50. ~18!
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Note that in the above equations,^ & denotes the inner prod
uct in theS p

n spaces. Also, the sums overq8, j 8, andm8 from
Eqs. ~16! was reduced to a sum overq8 only—due to the
isotropy. We thus see explicitly from Eqs.~17! and ~18! the
decoupling of the equations for differentj andm.

Rescaling symmetry and anomalous exponents

The hierarchical equations simplify somewhat in the lim
of infinite Reynolds number Re→`. This limit is equivalent
to n→0, in which the last term in Eq.~17! can be neglected
with impunity. It was pointed out before@3# that this is the
main advantage of using ‘‘fully unfused’’ correlation func
tions in which all the coordinates are distinct: there is no
ing to compensate for the vanishing of the viscosity in
n→0 limit. Once the viscous term is discarded, the rest
the equations exhibit invariance to rescaling under the
lowing rescaling group:

r i→lr i , t i→l12ht1 , Fq jm
(n) →lnh1Zj (h)Fq jm

(n) ,

Hq jm
(n) →l (n11)h1Zj (h)Hq jm

(n) , ~19!

as can be verified by direct substitution. In Eqs.~19!, l and
h are arbitrary scalars, andZj (h) is an arbitrary
n-independent scalar function. We endow it with an indej
since we expect, and see below, thatZj (h) will differ in
different j sectors, but not in differentm-sectors.

As a consequence of the rescaling symmetry we can s
solutions that do not mix values ofh. We defineF̃q jm,h

(n) and

H̃q jm,h
(n) as quantities that solve the equations of motion on

h slice, which are the same as Eq.~17! without the viscous
term. The important property of the solution on anh slice is
that it is a homogeneous function of all its arguments in
sense that

F̃q jm,h~lr 0 ,lr 1 ,lr 18 ,l12ht1 , . . .lr n ,lr n8 ,l12htn!

5lnh1Zj (h)F̃q jm,h~r 0 ,r 1 ,r 18 ,t1 , . . . r n ,r n8 ,tn!. ~20!

It should be stressed that the quantityFq jm
(n) itself is not ho-

mogeneous in its arguments. It was discovered in Ref.@8#
and stressed in Ref.@3# that time-correlation functions in
turbulence do not satisfy dynamic scaling in the sense of
~20!. Indeed, the solution of Eq.~17! is a sum over contribu-
tions onh slices,

Fq jm
(n) ~r 0 ,X1 . . . ,Xn!5E

hmin

hmax
dm~h!F̃q jm,h

(n) ~r 0 ,X1 , . . . ,Xn!,

~21!

with m(h) some unknown measure that needs to be obta
from boundary conditions. Equation~21! can be endowed
with further meaning by rescaling coordinates and times
cording to

r j[r j /Rn , r j8[r j8/Rn , t j[t j /tRn ,h , ~22!

whereRn and tRn ,h are defined as the typical scale of sep
ration of the set of coordinates and the typical times scale
that scale on anh slice:
t

-
e
f
l-

ek

n

e

q.

d

c-

-
n

Rn
2[

1

n (
j 51

n

ur j2r j8u
2, ~23!

tRn ,h[
R

U S L

RD h

. ~24!

HereU is the typical velocity on the outer scale of turbulen
L. Now defining

J j[~r j ,r j8 ,t j !, ~25!

Eq. ~21! can be written, using the rescaling property on anh
slice, as

Fq jm
(n) ~X1 , . . . ,Xn!5UnE

hmin

hmax
dm~h!

3S Rn

L D nh1Zj (h)

F̃q jm,h
(n) ~J1 , . . . ,Jn!.

~26!

This form is known as the ‘‘multifractal’’ form@9–11#. The
scaling exponents characterizingaq jm

(n) are obtained from a
saddle-point calculation in the limitR/L→0 as minh$nh
1Zj (h)%.

It was explained in Ref.@3# thatZj (h) is obtained from a
solvability condition of the hierarchy of Eq.~17!. In particu-
lar the numerical value of the functionZj (h), and conse-
quently of the scaling exponents which are determined by
saddle-point integral, depend on thecoefficientsin Eq. ~17!.
We found that the scalar functions associated with the
ferent j -irreducible representations,Fq jm

(n) (X1 , . . . ,Xn), sat-
isfy equations with different coefficients, depending on inn
products of the basis functionsBq jm . Accordingly we expect
the scalar functionZj (h) to change from sector to sector.
the functionsFq jm

(n) are characterized by anomalous exp
nents, they may be different for differentj. On the other
hand, for the samej the equations mix differentq compo-
nents, and unless there is an additional symmetry to SO~3!,
we do not expect different contributions with the samej to
exhibit different exponents. In Sec. IV we will demonstra
explicitly in the context of third order correlation function
how the existence of an additional symmetry, in that ca
parity, brings about a foliation of aj sector into two subsec
tors which exhibit two different scaling exponents.

IV. EXAMPLE: KOLMOGOROV’S ‘‘FOUR-FIFTH LAW’’
AND THE FOLIATION TO DIFFERENT j ’S

One of the best known results in the statistical theory
turbulence is Kolmogorov’s ‘‘four-fifth law,’’ which was
discovered in 1941@12#. This law pertains to the third orde
moment of longitudinal velocity differencesdul(r ,R,t)
[@u(r1R,t)2u(r ,t)#•R/R whereu(r ,t) is the Eulerian ve-
locity field of the turbulent fluid. The four-fifth law state
that in homogeneous, isotropic, and stationary turbulence
the limit of vanishing kinematic viscosityn→0,

^@dul~r ,R,t !#3&52 4
5 ēR, ~27!
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where ē is the mean energy flux per unit time and massē
[n^u“aubu2&. The only assumption needed to derive th
law is that the dissipation is finite in the limitn→0.

In this section we revisit this law by finding the full ten
sorial form of thej 50 component of the third order corre
lation function. Wedo not needto assume isotropy of the
turbulence at any stage of the development; the isotrop
the equations of motion suffices to decouple thej 50 contri-
bution from all the rest, and in this case we have enou
equations to determine thej 50 component of the tenso
completely. We will also show that thej 50 component has
two subcomponents with different scaling exponents. Th
subcomponents have different parities, and therefore are
ther decoupled in the equations of motion. The usual fo
fifth law pertains to components that have odd parity. O
can derive an additional exact relation that pertains to
even parity components@13#.

Defining the velocityv(r ,t) as v(r ,t)[u(r ,t)2^u&, we
consider the simultaneous third order tensor correlation fu
tion which depends on two space points:

Ja,bg~R![^va~r1R,t !vb~r ,t !vg~r ,t !&. ~28!

We show @13# that in the limit n→0, under the same as
sumption leading to the four-fifth law, this correlation fun
tion reads

Ja,bg~R!52
ē

10S Rgdab1Rbdag2
2

3
RadbgD ~29!
ss

’s
he

t.
s

of

h

e
r-

r-
e
e

c-

2
h̄

30
~eabdRg1eagdRb!Rd . ~30!

The quantityh̄ is the mean dissipation of helicity per un
mass and time,

h̄[n^~]aub!~]a@“3u#b!&, ~31!

Result~30! ~derived first in Refs.@13# and @14#! can be also
displayed in a form that depends onh̄ alone by introducing
the longitudinal and transverse parts ofu: the longitudinal
part is ul[R(u•R)/R2, and the transverse part isut[u
2ul . In addition we havedul(r ,R,t)[dul(r ,R,t)R/R. In
terms of these quantities we can propose a ‘‘two-fiftee
law’’ that pertains to thej 50 component of the following
correlation function:

^@dul~r ,R,t !#•@ut~R1r ,t !3ut~r ,t !#&5 2
15 h̄R2. ~32!

We note that this result also holds when we replaceu by v
everywhere.

To derive result~30!, we start from the correlation func
tion Ja,bg(R), which is symmetric with respect to exchang
of the indicesb andg as is clear from the definition. Using
the symmetry the most general form of thej 50 component
of this tensor can be written by observation~Sec. II B!:
Ja,bg~R!5a1~R!@dabR̂g1dagR̂b1dbgR̂a# ~33!

1a2~R!@dabR̂g1dagR̂b22dbgR̂a#

1a3~R!@dabR̂g1dagR̂b1dbgR̂a25RaR̂bR̂g/R2#

1a4~R!@eabdR̂g1eagdR̂b#R̂d . ~34!
n-
eds

ple
ion

e-
e-
This form is precisely of the type(qaq jmBq jm for the isotro-
pic sectorj 5m50.

Not all the coefficients are independent for incompre
ible flows. Requiring]Ja,bg(R)/]Ra50 leads to two rela-
tions among the coefficients:

S d

dR
1

4

RDa3~R!5
2

3F d

dR
2

1

RG@a1~R!1a2~R!#,

S d

dR
1

2

RD @5a1~R!24a2~R!#50. ~35!

As we have two conditions relating the three coefficientsa1 ,
a2, anda3, only one of them is independent. Kolmogorov
derivation @12# related the rate of energy dissipation to t
value of the remaining unknown. Here the coefficienta4
remains undetermined by the incompressibility constrain
belongs to a component of odd parity; since the equation
-

It
of

motion and the incompressibility constraint are invariant u
der parity transformation, it decouples altogether and ne
to be determined separately.

Kolmogorov’s derivation can be paraphrased in a sim
manner. Begin with the second order structure funct
which is related to the energy ofR scale motions,

S2~R![^uu~R1r ,t !2u~r ,t !u2&. ~36!

Computing the rate of change of this~time-independent!
function from the Navier-Stokes equations, we find

05
]S2~R!

2]t
52D2~R!22ē1n“2S2~R!, ~37!

whereD2(R) stems from the nonlinear term (u•“)u, and as
a result it consists of a correlation function including a v
locity derivative. The conservation of energy allows the d
rivative to be taken outside the correlation function:
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D2~R![
]

]Rb
^ua~r ,t !ua~r1R,t !@ub~r ,t !2ub~r1R,t !#&.

~38!

In terms of the function of Eq.~28!, we can write

D2~R!5
]

]Rb
@Ja,ba~R,t !2Ja,ba~2R,t !#. ~39!

Note that Eq.~28! is written in terms ofv rather thanu, but
using the incompressibility constraint we can easily pro
that Eq. ~38! can also be identically written in terms ofv
rather thanu. We proceed using Eq.~33! in Eq. ~39!, and
find

D2~R!52
]

]Rb
R̂b@5a1~R!12ã1~R!#. ~40!

For R in the inertial interval, and forn→0, from Eq.~37! we
can readD2(R)522ē and therefore have the third relatio
that is needed to solve all the three unknown coefficients
calculation leads to

a1~R!522ēR/45, a252 ēR/18, a350. ~41!

The choice of the structure functionS2(R) leads to Eq.~39!,
in which the odd parity components disappear, leav
a4(R) undetermined. Another correlation function is need
in order to remedy the situation. Since the helicity
u@“3u# , we seek a correlation function which is related
the helicity of eddies of scale ofR:

T2~R![^@u~R1r ,t !2u~r ,t !#3@“3u~r1R,t !2“

3u~r ,t !#&. ~42!

The proper choice of this correlation function is the cruc
idea here. The rest is a straightforward calculation. Using
Navier-Stokes equations to compute the rate of chang
this quantity, we find

05
]T2~R!

2]t
52G2~R!22h̄2n“2T2~R!, ~43!

which is the analog of Eq.~37!, and where

G2~R!5ˆ^u~r ,t !•$“R3†u~r1R,t !3@“R3u~r1R,t !#‡%&‰

1$term R→2R%. ~44!

The conservation of helicity allows the extraction of tw
derivatives outside the correlation functions. The result
be expressed in terms of our definition~28!:

G2~R!5
]

]Rl

]

]Rk
ealmembnenkg@Ja,bg~R!1Ja,bg~2R!#.

~45!

Substituting Eq.~33!, we find
e

A

g
d

l
e
of

n

G2~R!52
]2

]Rl]Rk
b2~R!@R̂lR̂k2dlk#, ~46!

which is the analog of Eq.~40!. Using Eq.~43! in the inertial
interval in the limitn→0, we find the differential equation

d2a4~R!

dR2
15

1

R

db2~R!

dR
1

3a4~R!

R2
52

h̄

2
. ~47!

The general solution of this equation is

a4~R!52h̄R2/301a1R231a2R21. ~48!

Requiring finite solutions in the limitR→0 means thata1
5a250. Accordingly we end up with Eq.~30!. We restate
again that, in the preceding derivation, we did not assu
that our turbulence was isotropic. Other terms ofJa,bg(R)
with j Þ0 can possibly contribute to the totalJa,bg(R).
However, under the assumptions of homogeneity and fi
energy and helicity dissipations, theR dependence of the
isotropic part ofJa,bg(R) is necessarily as stated in Eq.~30!.

It should be noted that a parallel calculation can be ea
carried out for thej .0 sectors of the third order correlatio
functionJa,bg(R). In these sectors, however, there are mo
irreducible representations than there are in thej 50 sector
~to be exact, there is a total of 18 representations for e
j .2, ten of them with (2) j 11 parity and eight of them with
(2) j parity#. As a result, forj .0 we obtain more unknown
functionsaq jm(R) than equations, and hence we cannot o
tain a full solution. Our failure in obtaining a complete set
equations for j .0 sectors can be attributed to the ina
equacy of a turbulence theory that involves only mome
which are simultaneous in time. Thej 50 sector is indeed
unique in the sense that its low number of irreducible rep
sentations makes a full solution possible.

V. EXAMPLE: ANALYSIS OF ANISOTROPY
IN ATMOSPHERIC TURBULENCE

In this section we present experimental evidence for
utility of expansion~8! in terms of the irreducible represen
tations. The analysis of the experimental data was don
collaboration with B. Dhruva, S. Kurien, and K. R
Sreenivasan, and the reader is referred to the details of
@15#. In that work we focused on the second rank ten
structure functions of velocity differences

Sab~R![^@ua~r1R!2ua~r !#@ub~r1R!2ub~r !#&,
~49!

where thehomogeneityof the flow is assumed, but not th
isotropy. This object is symmetric in its indices, and h
even parity inR. In addition, it is expected to scale withR in
the inertial range, with possibly different scaling expone
characterizing contributions of differentj. We demonstrated
in Ref. @15# that one can usefully representSab(R) in the
form

Sab~R!5(
q jm

aq jmuRuz2
( j )

Bq jm
ab ~R̂!, ~50!
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whereaq jm are some numerical coefficients,Bq jm
ab (R̂) are the

tensor basis ofS 1
2 with a definitej and m, andz2

( j ) are the
exponents associated withj ’s irreducible representation. Th
isotropic exponentz2

(0) will be referred to briefly asz2. We
note that the coefficientsaq jm are not arbitrary numerical
coefficients, because of the constraints imposed by the
compressibility of the flow. In the Appendix we derive th
explicit form of Bq jm

ab (R̂) and the necessary relations amo
the aq jm’s. The theoretical development of the Append
serves as a basis for the data analysis; we leave it in
Appendix since it is somewhat lengthy. Nevertheless the
terested reader may find it useful for situations that dif
from the one treated below.

The data that we want to consider were taken at Tay
microscale Reynolds numbers of about 10 000@15#. The data
were acquired simultaneously from two single-wire prob
separated byD555 cm, nominally orthogonal to the mea
wind direction. The two probes were mounted at a heigh
6 m over a flat desert with a long fetch, see Fig. 1. T
Kolmogorov scale was about 0.75 cm. Details of the exp
mental setup can be found in Ref.@15#. In that reference one
can find details of another data set that was analyzed in
same fashion, leading to results in agreement with those
viewed here.

FIG. 1. Diagrammatic illustration of the experimental setu
Shown is the positioning of the probes with respect to the m
wind, and how the Taylor hypothesis is employed.
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First we tested the isotropy of the flow for separations
the order ofD. Using the standard Taylor hypothesis, defi
the ‘‘transverse’’ structure function acrossD as ST(D)
[^@u1(Ūt)2u2(Ūt)#2& and the ‘‘longitudinal’’ structure
function asSL(D)[^@u1(Ūt1ŪtD)2u1(Ūt)#2&, where tD

5D/Ū. If the flow were isotropic, we would expect@16#

ST~D!5SL~D!1
D

2

]SL~D!

]D
. ~51!

In the isotropic state both components scale with the sa
exponent,ST,L(D)}Dz2, and their ratio is computed from
Eq. ~51! to be 11z2/2'1.35, wherez2'0.69 ~see below!.
The experimental ratio was found to be 1.32, indicating t
the anisotropy at the scaleD is small. We expect that the
effects of anisotropy should be most pronounced on
larger scales. Next we found the functional form of the ba
tensorsBq jm

ab (R̂) and the algebraic relations among the co
ficientsaq jm according to the discussion in the last paragra
of the Appendix.

Since the anisotropies are not huge, we focused on
lowest order corrections to the isotropic (j 50) contribution.
In other words, we wrote

Sab~R!5Sj 50
ab ~R!1Sj 51

ab ~R!1Sj 52
ab ~R!1Sj 53

ab ~R!.
~52!

We defined the coordinate system such that the mean w
direction was along the 3 axis, and the separation betw
the two probes was along the 1 axis. Byassumingaxial
symmetry along the mean wind direction, the tens
Sj 50

ab (R),Sj 51
ab (R), andSj 52

ab (R) were to containonly the m
50 components. In addition, since the two probes measu
the velocity field only in the mean wind direction, we ha
only the values ofS33(R) in the 1–3 plane. In such a case,
turns out that only the evenj ’s have a nonvanishing contri
bution. We therefore used the trial tensor:

Sab~R!5Sj 50
ab ~R!1Sj 52

ab ~R!,

Sj 50
ab ~R!5c0S R

D D z2F ~21z2!dab2z2

RaRb

R2 G ,

Sj 52
ab ~R!5aSj 52,q51

ab ~R!1bSj 52,q52
ab ~R!.

whereSj 52,q51
ab (R),Sj 52,q52

ab (R) are given by

.
n

Sj 52,q51
ab ~R!5S R

D D z2
(2)F ~z2

(2)22!dab2z2
(2)~z2

(2)16!dab
~k•R!2

R2
12z2

(2)~z2
(2)22!

RaRb~k•R!2

R4
1~@z2

(2)#213z2
(2)16!kakb

2
z2

(2)~z2
(2)22!

R2
~Rakb1Rbka!~k•R!G ,
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Sj 52,q52
ab ~R!5S R

D D z2
(2)F2~z2

(2)13!~z2
(2)12!dab~k•R!21~z2

(2)22!
RaRb

R2
1~z2

(2)13!~z2
(2)12!kakb1~2z2

(2)11!~z2
(2)22!

3
RaRb~k•R!2

R4
2~@z2

(2)#224!~Rakb1Rbka!~k•R!G . ~53!

The vectork was taken to be along the mean wind direction.z2 is the isotropic exponent, whilez2
(2) is the j 52 exponent.

c0 , a, andb are the nonuniversal weights of the components ofSab(R). In order to reduce the number of unknown quantiti
the exponent of the isotropic part ofSab(R) was assumed to be known:z250.69. The values ofc0 ,a,b, z2

(2) were to be found
from the experimental data.

Using spherical coordinates, the trial tensorS33 in the 1–3 plane took the following form:

S33~R,u,f50!5Sj 50
33 ~R,u,f50!1Sj 52

33 ~R,u,f50!

5c0S R

D D 0.69

@210.6920.69 cos2u#1aS R

D D z2
(2)

3@~z2
(2)12!22z2

(2)~3z2
(2)12!cos2u12z2

(2)~z2
(2)22!cos4u#1bS R

D D z2
(2)

@~z2
(2)12!~z2

(2)13!

2z2
(2)~3z2

(2)14!cos2u1~2z2
(2)11!~z2

(2)22!cos4u#, ~54!
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whereu is the angle betweenk andR. The fitting of the trial
tensor to the data was done along two paths in the (R,u)
space:u50, a single probe measurement, andR sinu5D, a
two probe measurement.

Figure 2 shows the best fit to the data. For each type
data, two fits were performed: A fit of the isotropic part on
@panel~a!#, and a fit of both isotropic andj 52 components
@panel~b!#. The excellent fits in panel~b! is a good support
for the present mode of analysis.

In Ref. @15#, Fig. 3, we showed the determination ofz2
(2)

from a least-square fit. The optimal value of this expon
and the uncertainty determined from that plot isz2

(2)51.38
60.15. The other coefficients were computed with the
sults c050.02360.001(m/sec)2, a520.0051

FIG. 2. The structure functionsS33 @in units of (m/sec)2# for u
50 and for nonzerou computed for set I. The dots are for expe
mental data and the line is the analytic fit. Panel~a! presents fits to
the j 50 component only, and panel~b! fits to componentsj 50 and
2 together.
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-

60.0006 (m/sec)2, and b50.003360.0005 (m/sec)2. It
should be understood that the exponentz2

(2) ~and alsoz2
(1) ,

that is unavailable from the present measurements! are just
the smallest exponents in the hierarchyz2

( j ) that characterizes
higher order irreducible representations indexed byj. The
study of these exponents has only begun here, and cons
able experimental and theoretical effort is needed to re
firm conclusions regarding their universality and numeri
values. We expect the exponents to be a nondecreasing f
tion of j, explaining why the highest values ofj are peeled
off quickly whenR decreases. Nevertheless, the lower or
values ofz2

( j ) can be measured and computed. In Ref.@15#
we presented an additional set of experimental data,
demonstrated that the numerical value ofz2

(2) appears univer-
sal.

VI. CONCLUDING REMARKS

The aim of this paper has been to introduce an explora
of the scaling properties of turbulent statistics in the ani
tropic sectors. The main theoretical development is descri
in Sec. II B, III. It is explained there that the linearity of th
equations for the fully unfused correlation functions, t
gether with the invariance to rotations, foliates the solutio
into sectors characterized by thej andm designations of the
irreducible representations of the SO~3! symmetry group. As
a consequence we expect the different sectors to be cha
terized by different~anomalous! scaling exponents. This ob
servation opens up a new and interesting research aren
theory and experiments.

In Sec. V we used a recent experimental data analysi
an example of the utility and importance of the present
proach. The main result of this section, besides the theo
cal forms that can be used for further data analysis, is that
scaling range in turbulence is much larger than expec
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One just needs to acknowledge the existence of anisotr
contributions to obtain scaling ranges that go all the w
from the Kolmogorov scale to the outer scale of turbulen

It is our belief that this paper does not exhaust the issu
anisotropic contributions to turbulent statistics. It is only t
beginning of a rich research program that should be car
simultaneously by experimentalist and theorists.
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APPENDIX: THE INCOMPRESSIBILITY CONSTRAINT
AND GENERAL FORM OF THE SECOND

RANK TENSOR

In this appendix we discuss the general structure of
second rank correlation functions

Fab~R![^ua~r1R!ub~r !&. ~A1!

In Eq. ~A1!, homogeneityof the flow is assumed, but no
isotropy. Note that this object is more general than the str
ture functionSab in being nonsymmetric in the indices, an
having no definite parity. In light of the discussion in Sec.
when we expand this objects in terms of tensors with defi
j andm, we expect each component to have a distinct dep
dence on the amplitudeR[uRu. Accordingly, we wish to
find the basis functionsBq jm

ab (R̂), with which we can repre-
sentFab(R) in the form

Fab~R!5(
q jm

aq jm~R!Bq jm
ab ~R̂!, ~A2!

and derive some constraints among the functionsaq jm(R)
that result from incompressibility. We shall see that, due
the isotropy of the incompressibility conditions, the co
straints are amongaq jm(R) with the same jandm only.

We begin by analyzing the incompressibility conditio
An incompressible flow with constant density is charact
ized by the relation

]aua~r ,t !50;

as a result, one immediately obtains the following constra
on Fab(R):

]aFab~R!50,

]bFab~R!50.

Plugging the trial tensor~A2! into the last two equations, w
obtain two equations connecting the differentaq jm :
ic
y
.
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]a(
q jm

aq jm~R!Bq jm
ab ~R̂!50,

]b(
q jm

aq jm~R!Bq jm
ab ~R̂!50. ~A3!

We first notice that the differentiation action is isotropi
As a result, ifTab(R) is some arbitrary tensor with a definit
j andm transformation properties, then the tensor]aTab(R)
will have the same jandm transformation properties. Com
ponents with differentj and m are linearly independent
Therefore Eqs.~A3! should hold for eachj andm separately.

Next, we observe that Eqs.~A3! are invariant under the
transformationFab→Fba. As a result, the symmetric an
antisymmetric parts ofFab should satisfy Eqs.~A3! indepen-
dently. To see this, let us writeFab as a sum of symmetric
and antisymmetric terms:Fab5FS

ab1FA
ab , we then obtain

]aFab5]aFS
ab1]aFA

ab5]aFS
ba2]aFA

ba50,

]bFab5]bFS
ab1]bFA

ab50,

from which we conclude that

]aFS
ab5]aFA

ab50.

Finally, Eq. ~A3! are invariant under the transformatio
Fab(R)→Fab(2R) and as a result the odd parity and th
even parity parts ofFab should fulfill Eqs. ~A3! indepen-
dently. We conclude that a necessary and sufficient condi
for Eqs. ~A3! to hold is that they hold separately for par
with definite j and m, a definite symmetry in thea and b
indices, and a definite parity inR:

]a(
q

aq jm~ uRz!Bq jm
ab ~R̂!50,

where the summation is overq such thatBq jm
ab has a definite

indices symmetry and a definite parity. According to Eq.~10!
we can write theseBq jm

ab as follows.
~1! (2) j parity, symmetric tensors:

B1,jm
ab ~R̂![R2 jdabF jm~R!,

B7,jm
ab ~R̂![R2 j@Ra]b1Rb]a#F jm~R!,

B9,jm
ab ~R̂![R2 j 22RaRbF jm~R!,

B5,jm
ab ~R̂![R2 j 12]a]bF jm~R!.

~2! (2) j parity, antisymmetric tensors:

B3,jm
ab ~R̂![R2 j@Ra]b2Rb]a#F jm~R!.

~3! (2) j 11 parity, symmetric tensors:

B8,jm
ab ~R̂![R2 j 21@RaebmnRm]n1RbeamnRm]n#F jm~R!,

B6,jm
ab ~R̂![R2 j 11@ebmnRm]n]a1eamnRm]n]b#F jm~R!.

~4! (2) j 11 parity, antisymmetric tensors:
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B4,jm
ab ~R̂![R2 j 21eabmRmF jm~R!,

B2,jm
ab ~R̂![R2 j 11eabm]mF jm~R!.

In order to differentiate these expressions, we can use
identities:

Ra]aRzYjm~R̂!5zRzYjm~R̂!,

]a]aRzYjm~R̂!5@z~z11!2 j ~ j 11!#Rz22Yjm~ x̂!,

which give rise to

Ra]aF jm~R!5 j F jm~R!,

]a]aF jm~R!50.

From this point, it is a matter of simple~though somewha
lengthy! algebra to derive the differential constraints amo
aq jm(R). The results are as follows.

~1! qP$1,7,9,5%:

a1,jm8 ~R!2 jR21a1,jm1 ja7,jm8 2 j 2R21a7,jm1a9,jm8

12R21a9,jm50,

R21a1,jm1a7,jm8 13R21a7,jm1~ j 21!a5,jm8

2~ j 223 j 12!R21a5,jm50. ~A4!

~2! qP$3%:

a3,jm8 2 jR21a3,jm50,

a3,jm8 1R21a3,jm50. ~A5!

@Notice that these equations have no solutions other t
a3,jm(R)50.#
J.

tt.
he

n

~3! qP$8,6%:

a8,jm8 13R21a8,jm1~ j 21!a6,jm8 2~ j 222 j 11!R21a6,jm50.

~A6!

~4! qP$4,2%:

R21a4,jm2a2,jm8 1~ j 21!R21a2,jm50. ~A7!

There are obviously more unknowns than equations, si
we merely exploited the incompressibility conditions. Ne
ertheless, we believe that the missing equations that a
from the dynamical hierarchy of equations will preserve t
distinction betweenaq jm of different values ofj and m
~again, due to the isotropy of these equations!.

Note also that the above analysis holds also for
second-order structure function

Sab~R![^@ua~r1R!2ua~r !#@ub~r1R!2ub~r !#&.

Only that in this case we should only consider the repres
tationsq51,7,9, and 5 for evenj and the representationsq
58 and 6 for oddj. This follows from the fact thatSab(R)
is symmetric with respect to its indices, and has an e
parity in R. Also, in that case, it is possible to go one st
further by assuming a specific functional form for th
aq, jm(R). We know thatSab(R) is expected to scale in th
inertial range, and we therefore mayassumethat

aq, jm~R![cq, jmRz2
( j )

,

wherecq, jm are just numerical constants. If we now subs
tute this definition into Eqs.~A4! and ~A6!, we obtain a set
of linear equations amongcq, jm . These relations can be ea
ily solved and give us two possible tensors for evenj (q
51, 7, 9, and 5! and one tensor form for oddj ~from q
58 and 6!. This kind of approach was taken in the two
probes experiment described in Sec. V.
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