PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group
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The theory of fully developed turbulence is usually considered in an idealized homogeneous and isotropic
state. Real turbulent flows exhibit the effects of anisotropic forcing. The analysis of correlation functions and
structure functions in isotropic and anisotropic situations is facilitated and made rational when performed in
terms of the irreducible representations of the relevant symmetry group which is the group of all rotations
SQO3). In this paper we first consider the needed general theory, and explain why we expect different
versa) scaling exponents in the different sectors of the symmetry group. We exemplify the theory context of
isotropic turbulencéfor third order tensorial structure functionsnd in weakly anisotropic turbulen¢fr the
second order structure functiprThe utility of the resulting expressions for the analysis of experimental data
is demonstrated in the context of high Reynolds number measurements of turbulence in the atmosphere.
[S1063-651%99)09106-0

PACS numbds): 47.27—i

I. INTRODUCTION Needless to say, the tensorial information is lost in the usual
measurements leading to Eg). One of the main points of
Experiments in fluid turbulence are usually limited to thethe present paper is that keeping the tensorial information
measurement of the velocity field at one single spatial pointan help significantly in disentangling different scaling con-
as a function of time. This situation has begun to improvetributions to the statistical objects, contributions that are hard
recently, but still much of the analysis of the statistical prop-to distinguish when quantities like Eql) are considered.
erties of Navier-Stokes turbulen¢g] is influenced by this Especially when anisotropy implies different tensorial com-

tradition: the Taylor hypothesis is used to justify the identi- honents with possible different scaling exponents character-
fication of velocity signals at different times with differences izing them, careful control of the various contributions is

of longitudinal velocity components across a spatial length.gjied for.
scaleR. Most of the available statistical information is there- To understand why irreducible representations of the

fore about properties of longitudinal two-point differences Ofsymmetry group may have an important role in determining

the EuIen_an Yelocny field and their moments, termed Struc"[he form of correlation functions, we need to discuss the
ture functions:

equations of motion which they satisfy. We shall show that
R the isotropy of the Navier-Stokes equation and the incom-
[u(r+R)—u(N]- & n>, (1) pressibility condition implies the isotropy of the hierarchical
equations which the correlation functions satisfy. We will
where( ) denotes ensemble averaging. In isotropic homogeuse this symmetry to show that every component of the gen-
neous turbulence, these structure functions are expected @sal solution with a definite behavior under rotatidne.,
behave as a power law iR, S,(R)~R?®n, with apparently components of a definitereducible representatiorof the
universal scaling exponents, . SQO(3) groupl has to satisfy these equations by itself—
Recent researcf?,3] has pointed out the advantages of independently of components with different behavior under
considering not only the longitudinal structure functions, butrotations. This “foliation” of the hierarchical equations may
tensorial multipoint correlations of velocity field differences possibly lead to different scaling exponents for each compo-

nent of the general solution which belong to a different

Sn(R)=<

w(r,r',=u(r’,H) —u(r,b), 2 SQO3) irreducible representation.
given by In Sec. Il we describe the general mathematical frame-
work of the theory by discussing the structure of tensorial
AR (O S Pt U S L S LA ! fie!ds from the point of view of S(3) irredu_cible represen-
tations. In Sec. Il we then show that the hierarchy equations
=(W(ry, 1] t)WA(ro, 15, t0) . wWo(ry ) th), are indeed isotropic, and as a result foliate into different

3) sectors of the S@) irreducible representations. In the next
sections we demonstrate the utility of the theory. In Sec. IV
where all the coordinates are distinct. Even when the coorwe revisit Kolmogorov's four-fifth’s law, emphasizing the
dinates fuse to yield time-independent structure functions delule of the S@3) irreducible representations in its derivation.
pending on one separation only, these are tensorial quantitidd’en, in Sec. V, we present some experimental evidence of

[4] denoted as the importance of an anisotropic exponent in the second or-

der structure function, in atmospheric measurements. Section

S (R =([u*(r+R)—u*(r)J[uP(r+ R)—uh(r)]- - -). VI offers conclusions and some comments about the road
(4) ahead.
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Il. TENSORIAL CORRELATION FUNCTIONS AND SO (3)

IRREDUCIBLE REPRESENTATIONS: GENERAL W(r)="2 am(r)Yim(r). 5
THEORY hm
The physical objects that we deal with are the moments of A. Formal definition

the yelocity field at different space-tim_e locations. _In thi_s Consider a typical moment of the velocity fie[&q. (3)].
section we suggest a way of decomposing these objects '.npﬁl CEN(rg,ry b .., Ity is a function of 2 spatial
components with a definite behqvmr .under rotations. We W'"variables and temporal variables. Physically, it istansor
show below that components with different behaviors under, . . . I
rotation are subject to different dynamical equations, and€'d if Fn iS measured in two framesand | which are
therefore, possibly, scale differently. Essentially, we areconnected by the spatial transformatiGay, a rotatiop
about to describe the tensorial generalization of the well-
known procedure of decomposing a scalar functib(r)

into components of different irreducible representations usthen the measured quantities in each frame will be connected
ing the spherical harmonics by the relation

YQZA&'BX’B, (6)

F:l”.an(r—l!r_iat_l; e 1r—n 1r_lf] ’t_n):Aalﬁl' : 'Aanﬂanl.”Bn(r]Jrivtl; e ;rnvrr’wtn)

=A% A FRL P AT AT AT AT ). ()

We see that as we move from one frame to another, thFOAT]“l ..... an(Fl ST

functional formof the tensor field changes. We want to clas- ' P

sify the different tensor fields according to the change in =A%y - Ay TA1-Bo(A~ Yy, ... ,A*lfp).

their functional form as we make that move. We can omit the ! "

time variables from our discussion since under rotation the)(,lsing this definition, it is easy to see that the set of linear

merely serve as parameters. operatorD, furnishes a representation of the rotation gro
Consider coordinate transformations which are pure rota2P A Turni P : lon group

tions. For such transformations we may simplify the discus—so(?’) since they satisfy the relations:
sion by separating the dependence on the amplitude of

from the dependence on the directionalityrof OAloAZZOAlAZ’
Tor o an(ry, o rp) =T 0n(ry, o Ty, o ) 0,'=0,-1.

For pure rotations we may treat the amplitudes. . . r, as General group theoretical considerations imply that it is pos-
parameters: the transformations propertie3 %f - “n under  sible to decomposs g into subspaces which are invariant to
rotation are determined only by the dependenc&6f --“r  the action of all the group operato@, . Moreover, we can
on the unit vectors,, . . . ,fp_ Accordingly it seems worth- choose these subspaces toitseducible in the sense that

while to discuss tensor fields which are functions of the unithey will not contain any invariant subspace themseleas
vectorsonly. Notice that in the scalar case we follow the cluding themselves and the trivial subspace of the zero tensor

same procedure: by restricting our attention to scalar funcfield). For the S@3) group each of these subspaces is con-

tions that depend only on the unit vectgrwe construct the venyonally characterized by an integer 0,12 .. ., apd IS

spherical harmonics. These functions aefinedsuch that of dimension ,2+1 [5.6]. It should be noted, Fhat unlike the
each one of them has unique transformation properties undfalar case, in the general spag, there might be more
rotations. We then represent the most general scalar functidfi@" One subspace for each given valug We therefore use

as a linear combination of the spherical harmonics withth€ indexq to distinguish subspaces with the same-or
r-dependent coefficients; see EE). each irreducible subspaceq,{) we can now choose a basis

The  classification of the tensor fields With 2j+1 components labeled by the index

T“l"'“n(Fl, cen ,Fp) according to their functional change ~ ~

under rotations follows immediately from group representa- B Nry, . o)y mM=—j,...+].
tion theory[5,6]. But in order to demonstrate this, we must
first make some formal definitions. We defisg to be the
space of all smooth tensor fields of rankvhich depend on

p unit vectors. This is obviously a linear space of infinite T -
dimension. With each rotation € SO(3), we may now as- USing the basisB i \"""""(ry, ... rp), we can represent
sociate a linear transformatiadd, on that space via the re- each operato©, as a (34 +1)X(2j+1) matrix Dgﬁm(A)
lation (7): via the relation

In each subspaceq(j), the group operator®, furnish a
(2j+1)-dimensional irreducible representation of (80
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[O4Bgjm] ™+ *n(Fy, . .. ,Fp) Feaen(ry, ... rp) as a tensor field which depends only
:Aal . A% B,Bl oA~ 1T AT on the unit vectors,, ... r,, and hence belongs fbg. We
aim Lo P can therefore expand it in terms of the basis tensor fields

w o~ ~ Byim With coefficients that depend an, ... r,:
= Z DU (A)BLL My, L ). am pend o P

m'=-] FoL--n(ry, ... rp)
It is conventional to choose the badsy;, such that the
matncesD(') that correspond to rotations @f radians _ N . ., . \pol.--- A -
m(%), P o =S agm(fe, - BNy, ) ®)

around the 3 axis, will be diagonal, and given by

Dg?m(d’): Smm €M7 The goal of the following sections is to demonstrate the util-
The S}) space possesses a very natural inner product: ity of such expansions for the study of the scaling properties
of the correlation functions.
<T,u>zf dXg .. OXp T (X LX)
B. Construction of the basis tensors
By Bn 2

XQa,8, - - - Ga,8,U (X1 .. %p)*, 1. The Clebsch-Gordan machinery
Wheregaﬁ is the three-dimensional Euclidean metric tensor: A Straightforward(a]though somewhat impracti()ajvay
1 to construct the basis tensdsg;y, is to use the well-known
_ 1 Clebsch-Gordan machinery. In this approach we consider the
Gap ' SB space as airect product spacef n three-dimensional
1 Euclidean vector spaces with infinite-dimensional spaces

By definition, the rotation matrice&“; preserve this metric, of single-variable continuous functions on the unit sphere. In
and, therefore, it is easy to see that for edch SO(3) we other words, we notice thaﬂg is given by
get
_rel 0
(0,T,0,U)=(T,U), Sp=[Sol"®[S11,
so thatO, are unitary operators. If we now choose the basis
Bgjm to be orthonormal with respect to the inner product
defined above, then the matncB%q) (A) will be unitary.
Finally, considelisotropic tensor fieldsAn isotropic ten-
sor field is a tensor field which preserves its functional form

under any arbitrary rotation of the coordinate system. In , _ N )
other words, it is a tensor field which is invariant to the Vi are constant Euclidean vectors apdr;) are continuous

action of all OperatorQA The one-dimensional Subspace functions over the unit Sphel’e The three-dimensional Eu-
spanned by this tensor field is therefore invariant under alflidean vector spacé; contains exactly one irreducible rep-

and therefore every tens®ft -~ “n(ry .. .r,) can be repre-
sented as a linear combination of tensors of the form

U;T_ll e -v::n(Pl(rl)' T (Pp(rp)-

operatorsQ, , and therefore it must be ja=0 subspace. resentation of S@)—the j=1 representation—whiles?,
Once the basi8;, has been selected, we may expandthe space of continuous functions over the unit sphere, con-
any arbitrary tensor field“1-*“n(rq, ... rp) in this basis. tains every irreducible representation exactly once. The state-
As mentioned above, for each flxed set of amplitudesment thatSn is a direct product space may now be written in
ry, ....Ip, we can regard the tensor field a group representanon notation as
n t)i:nes p times

S'=1910...010(00162..)0...00162...)

We can now choose an appropriate basis for each space in Once these bases have been chosen, we can construct a

the product. direct-product basis fo‘Sn
(i) For the 3-dimensional Euclidean space we may choose
) 1 ) 0 . 1 Eill_.l.'.in(n|l,u,l)...(|pMp)(r1' C ,rp)
e=—=(1], e=—=|0]|, e;=—=|-1]. —e™...go. Fy. .. ;
1 \/E 0 € \/E ) 1 \/E 0 _eil ein Y|1,M1(r1) Y|p'Mp(rp).

(i) For the space of continuous functions over the unit! "€ unitary matrix that connects tH& . i (1 u)... 0
sphere, we may choose the well-known spherical harmonibasis to theB;, basis can be calculated using the appropri-
functions. ate Clebsch-Gordan coefficients. The calculation is straight-
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forward but very long and tedious. However, the abovetensor field with a definitg¢, m. An obvious choice will be

ana]ysis enables us to count qn_d classify the different irreghe well-known spherical harmoniosm(F), but a better one
ducible representations of a givgnBy using the standard || pe

rules of angular-momentum addition,
sel=|s—l|@- - @(s+1), Djm(N)=rYm(r).

we can count the number of irreducible representations of &he reason that we prefdr;,(r) to ij(f)' is that®,(r)

givenj in S,. For example, consider the SpaS%Of second- s polynomial inr [while Y;m(r) is polynomial inr], and
rank tensors with one va_n_able over the unit sphere. Using th@ o efore it is easier to differentiate it with respect tOnce
angular-momentum addition rules, we see we have define@;,(r), we can construct thBy;,, by “add-

S§=1®1®(0€a1@2@3@ . ing indices” to ®@;,,(r) using the isotropic operations men-
tioned above. For example, we may now construct
=(00le2)(00le2¢3®---) r16%d; . (r), r"+25a367(9’/d>jm(r), r 17 xed;(r), etc.
Notice that we should always multiply the resulting expres-
=(B3X0)a(7xX1)@(9x2)®(9X3)@---. (9  sjon with an appropriate power of in order to make itr

We see that there are exactly thrpe O representations, ndependent, and thus a function bnly. o

sevenj =1 representations, and nine representations for each 1he crucial role of the Clebsch-Gordan analysis is to tell
j>1. It can be further argued that the symmetry propertiet!S NOW many representations from each type we should
of the basis tensors with respect to their indices come fron§ome up with. First it tells us the highest powerrah each

the 191=0@® 1@ 2 part of the direct produd®). Therefore, representation, and then it can also give us the symmetry
out of the nine irreducible representationjof1, five willbe ~ properties 0By, with respect to their indices. For example,
symmetric and traceless, three will be antisymmetric, an@onsider again the irreducible representation§ BfEq. (9).

one will be tracefull and diagonal. Similarly, the parity of the

resulting tensorgwith respect to the single variablean be The C-G analysis shows us that for eagh»1 we are
calculated. Once we know how many irreducible representagoing to have nine irreducible representations. The indices
tions of eachj are found inS?, we can construct them “by symmetry of the tensor comes from theSi=121=0
hand” in some other, more practical method which will be ®1&2 part of the direct product. This is a direct product of

demonstrated in Sec. || B 2. two Euclidean spaces, so it is a second rank constant tensor.
We can mark the representation number in this space with
2. Alternative derivation of theBg, the letters, and the representation number of tﬁ%zO@l

The method we wish to propose in this subsection is?2®3®- - - space with the lettelr This way each represen-
based on the simple idea that contractions withs*#, and tation in §7 of a givenj will have two additional numbers
€*#7 and differentiation with respect to* are allisotropic ~ (S!), which actually serve as the indexthat distinguishes
operations: isotropic in the sense that the resulting expredtreducible representations of the sameThe s index will
sion will have thesametransformation properties under ro- determine the indices symmetry of the tensor, while fthe
tation as the expression we started with. The proof of the laghdex will determine the highest power ofin the tensor. If
statement follows directly from the transformation propertieswe now recall that in the space of constant second rank ten-
of re, 848, e*b7, sors,S{®Sg=0®1@2, thes=0, and 2 representations are

The construction of alBy;, that belongs taS] now be-  symmetric while thes=1 representation is antisymmetric,
comes a rather trivial task. We begin by defining a scalamwe can easily constru@,;n:

(s1)=(0j), Byjm(r)=r"15Pd (1),
(s)=(1j—1), Bym(r)=r1"1ery,d; (1),
(sD=(1j), Bajm(r)=r1[r*af—rfa*1®;.(r),
(10)
(s)=(1j+1), Byjm(r)=r"1"1e"Prr b (1),
(sD)=(2j—2), Bsju(r)=r"1"29Pd; (1),

(s)=(2j-1), Bgm(r)=r1" e’ 3,0+ €1 ,9,01Dm(r),
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(s,)=(2,),
(s.)=(2j+1),
(s.)=(2j+2),

It should be stressed that the3g,, are not exactly the same

ones we would have obtained from the Clebsch-Gordan ma-
chinery. For example, they are not orthogonal among them-

selves for the same values pfand m (although they are
orthogonal for different values gfor m). Nevertheless, they
are linearly independent and thus span a givemj sector
in S3 space.

lIl. ISOTROPY OF THE HIERARCHY OF EQUATIONS
AND ITS CONSEQUENCES

In this section we derive the equations of motion for the
statistical averages of the velocity and pressure fields differ:
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Byjm(N)=r I[rP+ P31 (1),
Bgjm(D)=r 171 [rPe™ 1 ,3,+1€P"r ,3,]® (1),

Bojm(1)=r"172rorhd,(1).

AW, 1)=—(3%+ 3 OIL(rg,to|r,r',b)

+0(+ 0 YW (1o, tolr,r 1)
— I, WH(rg,to| 1, Fo, )W (1o, tolr,r' 1)
=3, WH(ro,tolr’ 1o, YW (1o, tolr,r" 1),

AW (rg,tolr,r’ 1) =3, W*(rg,tolr,r’,t)=0. (12

By inspectionty, merely serves as a parameter, and therefore
we will not denote it explicitly in the following discussion.
Also, in order to make the equations easier to understand, let
us introduce some shorthand notation for the variables
Feor

! .
ences. We start from the Navier-Stokes equations and showk ' k 1)

that their isotropy implies the isotropy of the equations for
the statistical objects. Finally, we demonstrate the foliation

of these equations to different sectorsjah.

Consider a Navier-Stokes incompressible turbulence in a

bounded domaiif). The equations of motion describing the
flow are

U +UkJ U= — J*p+ viu®,

d u=0.

Xi= (N Tt
XkE(rk!rI,( vtk)v
XKE(Fk 1Fl’()
Using Egs.(12), we can now derive the dynamical equa-
tions for the statistical moments o, I1: Let ( ) denote a

suitable ensemble averaging. We define two types of statis-
tical moments:

Fo o on(r Xy, .

n

HE2(rol Xy, .

Xn) =(WL(ro|Xq) - - - Wn(ro|Xp)),
Xn)

As is well known, the relevant dynamical time scales are

revealed only when the effect of sweeping is removed. In our

work we use the Belinicher-L'vov transformatidr?], in
which the flow is observed from the point of view of one
specific fluid particle which is located at at timet,. Let
p(ro.to|t) be the particle’s translation at time

t
P(r01t0|t):ft dsulro+p(ro,tols),s]. (13)
0

We then redefine the velocity and pressure fields to be those

=(TL(ro| X)) W2(ro|X3) - - - Wn(ro|Xp)).
Equations(12) imply

seen from an inertial frame whose origin sits at the current

particle’'s position:
V(ro,tolr,t)=ulr+p(ro,tolt),t],
m(ro,tolr,t)=pLr+p(ro,tolt),t].
Next we define the differences of these fields:
W (g, to|r,r" ,)=v*(rg,tolr,t) —v*(ro,to|r’,t),

II(rg,tolr,r" ,t)y=m(rqg,to|r,t) — m(ro,tolr’,t).

O Fut (rol Xy, ... Xn)
:_(ag‘rll)m:’rlp)HﬁZ'"“n(r0|xl, X))
=V KX, LX)
— VPR Xy, LX)+ ()
) Fl (rolXa, - X, (13
X=(ro,r',t), X'=(r,ro,t), (14
agll)fr‘fl"'“n(rdxl, ... X)=0,
agli)fﬁl"'“"(rdxl, . X.)=0. (15)

Equations(13) and (15) are linear and homogeneous.
Therefore, their solutions form a linear space. The most gen-
eral solution to these equations is given by a linear combi-
nation of a suitable basis of the solutions space. To construct
a specific solution, we must use the boundary conditions in

A straightforward calculation shows that the dynamicalorder to set the linear weights of the basis solutions. We shall

equations fonV are

now show that the isotropy of these equations implies that
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our basis of solutions can be constructed such that every

solution will have a definite behavior under rotatidtisat is,
definitej and m—see Sec. )l But before we do that, note

that in many aspects the situation described here is similar to
the well-known problem of Laplace equation in a closed do-

main €):
V¥ =0,

V|0=0.

The Laplace equation is linear, homogeneous, and isotropi
Therefore, its solutions form a linear space. One possibl

basis for this space is

q’l,m(r)ErlYlm(F)y
in which the solutions have a definite behavior under rot
tions[belong to an irreducible representation of(S8Q. The

ITAI ARAD, VICTOR S. L'VOV, AND ITAMAR PROCACCIA
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HE M olX s X)= 2 Hi(To.Xa, - Xo)
n—Nay...«a
“Byjm '
X (Fg, X1y ... Xp). (16)

Now all we have to show is that pieces &}, and H, with

gefinitej and m solve the hierarchy equationdy
éhemselves—independently of pieces with differeptand m.

The proof of the last statement is straightforward, though
somewhat tedious. We therefore only sketch it in general
lines. The isotropy of the hierarchy equations implies that

apieces of 7, and H,, with definitej and m, maintain their

transformation properties under rotatiafter the linear and

general solution of the problem is given as a linear combi{SOtropic operations of the equation have been performed.

nation of ¥ (r):

\If<r>=;n a ¥ ().

For a specific problem, we use the value B{r) on the
boundary[i.e., we usec(r)] in order to set the values of
a|’m.

To see that the same thing happens with the hierarch

equations(13) and (15), we consider an arbitrary solution
{Fn Holn=2,3, ...} of these equations. According to Sec.
Il we may write the tensor field%,, ,H, in terms of a basis

qum:

fal...

prn(rg Xy, L

Xo)= > FM(ro.Xy, ...
q,),m

ng”j’nj’l“'“n(Fo,xl,...

I Fih(ro. Xy, - .. Xp) = —%‘, G

q’jm

=2 (R g, XXy,
q/
q’jm

=2 (RS D X X,
q/

2 2 (n) (n)
+ V% (G )+ ) Feim(TosXas -+ Xo) By,

() (n)
% (9 F im(To Xa, -

> <agll>Fg’)’jm(ro,x1, .
q/

ay
Iery)

For example, ifF 2 “(ro|Xq, . .. X,) belongs to the ir-
reducible representation,fn), then so will the tensor fields:

(ry) ~ay ...« 2 ag...a
&ai F, ", &(fk)]:n ", etc.,

Xlthough they may belong to differeﬁl’; spacedi.e., have
one less or one more indidesTherefore, if we choose the
bases{B{) } to be orthonormal, plug expansioi6) into
the hierarchy equationél3) and (15), and take the inner
product with B{}),, we will obtain new equations for the

i (n (m .
scalar functiond=;r, andH g, :

-1
Hg))jm(ro)(lv ree 1Xn)B(n ) B(n) >

q’jm *=qjm,

B(n+1)

1Xn) q’jm ’Bén?'n>

j

B(n+ 1) B(n?n>

Xn)Bgrim”+Baj

B{h (17)
Xn) Bg:)jm , Bg};]l)> =0,
Xn)BO) By =0. (18)



PRE 59 CORRELATION FUNCTIONS IN ISOTROPIC AND ... 6759

Note that in the above equatior{s, denotes the inner prod- 1l

uctin theS; spaces. Also, the sums owgf,j’, andm’ from R2= - 2 rj—r/|?, (23

Egs. (16) was reduced to a sum over only—due to the =1

isotropy. We thus see explicitly from Eq&l7) and(18) the h

decoupling of the equations for differenand m. to = B(E) (24)
Rn h= U R .

Rescaling symmetry and anomalous exponents ) ) )
. . . L ) ... HereU is the typical velocity on the outer scale of turbulence
The hierarchical equations simplify somewhat in the limit| Now defining

of infinite Reynolds number Recc. This limit is equivalent
to »—0, in which the last term in Eq17) can be neglected =.=(p;,p! 7 (25)
with impunity. It was pointed out beforg8] that this is the RS

main advantage of using “fully unfused” correlation func- Eq. (21 . : .
. ) . . S ) . can be written, using the rescaling property orhan
tions in which all the coordinates are distinct: there is noth- a. (1) 9 g property

: o : S slice, as
ing to compensate for the vanishing of the viscosity in the

r—0 limit. Once the viscous term is discarded, the rest of

h
the equations exhibit invariance to rescaling under the fol- Fg%(xl, . ,xn):U“f maxd,u(h)
lowing rescaling group: Pmin
1-h ") h+ 2;(h) = () R,\ M E M)
R T e T L a1 X(fn Fohn(EL - En)
1)h+Zi(h
Hg}zﬁx(ﬁ I+ Z( )Hg})m, (19 (26)

h are arbitrary scalars, andzj(h) is an arbitrary gcqjing exponents characteriziagj), are obtained from a

n-independent scalar function. We endow it with an inglex saddle-point calculation in the miR/L—0 as min{nh
since we expect, and see below, tig(h) will differ in +Z(h)}.
differentj sectors, but not in dlffergmsectors. It was explained in Ref3] that Z;(h) is obtained from a

As a consequence of the rescaling symmetry we can segkyyy apility condition of the hierarchy of E¢L7). In particu-
solutions that do not mix values &f We defineF )., and lar the numerical value of the functiog;(h), and conse-
qu%,h as quantities that solve the equations of motion on amjuently of the scaling exponents which are determined by the
h slice, which are the same as H47) without the viscous saddle-point integral, depend on tbeefficientsn Eq. (17).
term. The important property of the solution ontaslice is ~ We found that the scalar functions associated with the dif-

that it is a homogeneous function of all its arguments in theferentj -irreducible representationEé%(Xl, ... Xp), sat-
sense that isfy equations with different coefficients, depending on inner
B products of the basis functiofg;, . Accordingly we expect
qum,h()\ro,)\rl,)\ri,)\l‘htl, AT AT AT the scalar functiorg;(h) to change from sector to sector. If
the l‘unctionng}Zn are characterized by anomalous expo-

=NMEEOE G n(rou 1t ..M rhuty). (200 nents, they may be different for differejit On the other
hand, for the sam¢ the equations mix differend compo-
It should be stressed that the quan@f),, itself is notho-  nents, and unless there is an additional symmetry tB50
mogeneous in its arguments. It was discovered in R&Jf. we do not expect different contributions with the sajrte
and stressed in Ref3] that time-correlation functions in exhibit different exponents. In Sec. IV we will demonstrate
turbulence do not satisfy dynamic scaling in the sense of Ecexplicitly in the context of third order correlation functions
(20). Indeed, the solution of Eq17) is a sum over contribu- how the existence of an additional symmetry, in that case
tions onh slices, parity, brings about a foliation of psector into two subsec-
A tors which exhibit two different scaling exponents.
max ~
FO(ro. Xy ... Xp)= fh du(MFS (o X1, ... Xn), - )
min IV. EXAMPLE: KOLMOGOROV'S “FOUR-FIFTH LAW
(21 AND THE FOLIATION TO DIFFERENT 'S

with w(h) some unknown measure that needs to be obtained One of the best known results in the statistical theory of
from boundary conditions. Equatiof21) can be endowed turbulence is Kolmogorov's “four-fifth law,” which was
with further meaning by rescaling coordinates and times acdiscovered in 194112]. This law pertains to the third order
cording to moment of longitudinal velocity differencesu,(r,R,t)
=[u(r+R,t)—u(r,t)]- R/R whereu(r,t) is the Eulerian ve-
pi=1iIRy, p{=rjIR,, Tj=tjl/tg p, (22)  locity field of the turbulent fluid. The four-fifth law states
that in homogeneous, isotropic, and stationary turbulence, in
whereR, andtRn,h are defined as the typical scale of sepa-the limit of vanishing kinematic viscosity—0,

ration of the set of coordinates and the typical times scale on -
that scale on ah slice: ([8u(r,R,1)]?)=—2€R, (27)
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where € is the mean energy flux per unit time and mass h
=1(|V ,ugl?). The only assumption needed to derive this - %(EQB‘SR“F €*’RF)R;. (30
law is that the dissipation is finite in the limit—0.
In this section we revisit this law by finding the full ten- _
sorial form of thej =0 component of the third order corre- The quantityh is the mean dissipation of helicity per unit
lation function. Wedo not needto assume isotropy of the mass and time,
turbulence at any stage of the development; the isotropy of
the_equations of motion suffice_s to _decouple ftee0 contri- h= w{((3°UP) (99T V X u]P)), (31)
bution from all the rest, and in this case we have enough
gg%a;;gtﬁy,tci/viemggi ;r;]%:WOthc;Tr?;ng r;togpghnee;??]sac;r R"esult(SO)'(derived first in Refs[lB]_and[14]) c.an be a!so
two subcomponents with different scaling exponents. Thesélisplayed in a form that depends analone by introducing
subcomponents have different parities, and therefore are fufb€e longitudinal and transverse parts wfthe longitudinal
ther decoupled in the equations of motion. The usual fourPart is u=R(u-R)/R?, and the transverse part is=u
fifth law pertains to components that have odd parity. One—U; . In addition we havesu,(r,R,t)=éu (r,R,t)R/R. In
can derive an additional exact relation that pertains to théerms of these quantities we can propose a “two-fifteenth
even parity componenfd 3]. law” that pertains to thg =0 component of the following
Defining the velocityv(r,t) asv(r,t)=u(r,t)—(u), we  correlation function:
consider the simultaneous third order tensor correlation func-
tion which depends on two space points: ([8u(r,R,0]-[u(R+r,1)Xu(r,H)])=2hR2. (32)

J*BY(R)=(v*(r+R,t)vP(r,t)v(r,1)). (28
We note that this result also holds when we repladey v
We show[13] that in the limit »—0, under the same as- everywhere.
sumption leading to the four-fifth law, this correlation func-  To derive result30), we start from the correlation func-
tion reads tion J*A7(R), which is symmetric with respect to exchange
_ of the indicesB and y as is clear from the definition. Using

€ 2 the symmetry th t | f f the 0 t
@By Py — — | pysaBy pBsay_ SpasBy y y the most general form of the 0 componen
J (R) 10 RTGTHRES 3R & (29 of this tensor can be written by observati@®ec. Il B):

JUPY(R)=a,(R)[ 6*PRY+ 5*YRF+ 557R?] (33
+a,(R)[ 5*PRY+ 5*YRP— 2 6P 7R?]
+ag(R)[ PR+ §*"RF+ §P"R*— BR*RPRY/R?]

+ay(R)[ e*PPR7+ e*7°RFIR,. (34)

This form is precisely of the typE,a4;mBqjm for the isotro-  motion and the incompressibility constraint are invariant un-

ajm

pic sectorj=m=0. der parity transformation, it decouples altogether and needs
Not all the coefficients are independent for incompressio be determined separately.
ible flows. Requiringgd*#?(R)/dR*=0 leads to two rela- Kolmogorov’s derivation can be paraphrased in a simple
tions among the coefficients: manner. Begin with the second order structure function
which is related to the energy & scale motions,
4 1
=t g|/a(R=3 g5 g[aR+ax (R, S(RI=([u(R+r,t)—u(r,1)[?). (36)
) Computing the rate of change of thi§me-independent
(HQJF - [5a,(R)—4a,(R)]=0. (35) function from the Navier-Stokes equations, we find
0= SR __p (R)—2e+ vV2S,(R) (37)
As we have two conditions relating the three coefficients 29t 2 €TrVISR),

a,, andags, only one of them is independent. Kolmogorov's

derivation[12] related the rate of energy dissipation to thewhereD,(R) stems from the nonlinear ternu{V)u, and as
value of the remaining unknown. Here the coefficient a result it consists of a correlation function including a ve-
remains undetermined by the incompressibility constraint. [{ocity derivative. The conservation of energy allows the de-
belongs to a component of odd parity; since the equations aivative to be taken outside the correlation function:
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d 92 A n
=__ /o a B _ 1B — ADK_ Sh\k
Dy(R) aRﬁ<u (r,Hu*(r+R,H[UP(r,t)—uP(r+R,t)]). Gy(R) Z&RA&RKbZ(R)[R R*— 6], (46)
(39)
which is the analog of Eq40). Using Eq.(43) in the inertial
In terms of the function of Eq(28), we can write interval in the limity— 0, we find the differential equation
J o e d?ay(R) 1 dby(R) 3a4(R) h
DZ(R)—E[J PR t)—J*PY(—R1)]. (39 T R ar " 2 =% (47)
Note that Eq(28) is written in terms ofv rather tharu, but ~ The general solution of this equation is
using the incompressibility constraint we can easily prove o
that Eq.(38) can also be identically written in terms of a4(R)=—hR?30+ a;R 3+ a,R™ L. (48)
rather thanu. We proceed using Eq33) in Eq. (39), and
find Requiring finite solutions in the limiR—0 means thaty;

=a,=0. Accordingly we end up with Eq.30). We restate
J . ~ again that, in the preceding derivation, we did not assume
Dz(R)ZZ—BRB[531(R)+231(R)]- (400 that our turbulence was isotropic. Other termsJ6f°”(R)
IR with j#0 can possibly contribute to the totdfA”(R).
) ) o However, under the assumptions of homogeneity and finite
ForRin the inertial interval, and for—0, from Eq.37) We  gnergy and helicity dissipations, tHe dependence of the
can readD,(R) = —2e and therefore have the third relation jsotropic part of}*#?(R) is necessarily as stated in Hg0).
that is needed to solve all the three unknown coefficients. A |t should be noted that a parallel calculation can be easily
calculation leads to carried out for thg >0 sectors of the third order correlation
. L function J*#Y(R). In these sectors, however, there are more
a,(R)=—2€R/45, a,=-—¢€R/18, az;=0. (41 irreducible representations than there are in jtke sector
(to be exact, there is a total of 18 representations for each
The choice of the structure functi®(R) leads to Eq(39),  j>2, ten of them with ¢)!** parity and eight of them with
in which the odd parity components disappear, leaving —)! parity]. As a result, forj>0 we obtain more unknown
a,(R) undetermined. Another correlation function is neededfunctionsa,n(R) than equations, and hence we cannot ob-
in order to remedy the situation. Since the helicity istain a full solution. Our failure in obtaining a complete set of
u[VXxu] , we seek a correlation function which is related to equations forj>0 sectors can be attributed to the inad-

the helicity of eddies of scale ¢k equacy of a turbulence theory that involves only moments
which are simultaneous in time. THe=0 sector is indeed
To(R)=([u(R+r,t) —u(r,t) IX[VXu(r+R,t)—V unique in the sense that its low number of irreducible repre-
xu(r,H]). 42) sentations makes a full solution possible.
The proper choice of this correlation function is the crucial V. EXAMPLE: ANALYSIS OF ANISOTROPY
idea here. The rest is a straightforward calculation. Using the IN ATMOSPHERIC TURBULENCE

Navier-Stokes equations to compute the rate of change of |, yhis section we present experimental evidence for the

this quantity, we find utility of expansion(8) in terms of the irreducible represen-
tations. The analysis of the experimental data was done in

0= IT2(R) _ —GZ(R)—ZF— VV2T,(R), (43 collabpration with B. Dhruya, S. Kurien, and _K. R.
20t Sreenivasan, and the reader is referred to the details of Ref.
o [15]. In that work we focused on the second rank tensor
which is the analog of E¢(37), and where structure functions of velocity differences
Go(R)={(u(r,t) - {VeX[u(r+R,t) X[VgXu(r+R,t)]]})} S*A(R)=([u*(r+R)—u*(nN[uP(r+R)—uf(r)]),
49
+{term R— —RY}. (44) “9

_ . . where thehomogeneityof the flow is assumed, but not the
The conservation of helicity allows the extraction of two jsotropy. This object is symmetric in its indices, and has
derivatives outside the correlation functions. The result cayen parity inR. In addition, it is expected to scale wiRin

be expressed in terms of our definiti@8): the inertial range, with possibly different scaling exponent
characterizing contributions of differeptWe demonstrated

J 4d in Ref. [15] that one can usefully represe8t?(R) in the

GZ( R) = TN _Eoz)\,uS;LBVEVKy[Ja’B‘y( R) +‘Ja’B7( - R)] form
IR IR
(45) 0
@B(R) = 1RI%’B2B (R

Substituting Eq(33), we find STR) QJZm Bainl Rl Byjm(R), (50



6762 ITAI ARAD, VICTOR S. L'VOV, AND ITAMAR PROCACCIA PRE 59

v First we tested the isotropy of the flow for separations of
) _ hvgfsg the order ofA. Using the standard Taylor hypothesis, define
e~ 9 the “transverse” structure function acros§ as S;(A)
\\\\\ A=55cm =([u,(Ut)—u,(Ut)]?) and the *“longitudinal”’ structure
) + function asS_(A)=([u(Ut+Ut,)—u,(Ut)]?), wheret,
=A/U. If the flow were isotropic, we would expef16]
\ A 9S.(A)
S(A)=8(A)+ 5 —x—- (51

"Frozen" Pattern

In the isotropic state both components scale with the same
exponent,S; | (A)xA¢2, and their ratio is computed from
Eq. (51 to be 1+ {,/2~1.35, wherel,~0.69 (see below.
6m porossed. The experimental ratio was found to be 1.32, indicating that
the anisotropy at the scale is small. We expect that the
effects of anisotropy should be most pronounced on the
larger scales. Next we found the functional form of the basis
Rsinf=A tensorsB;f7(R) and the algebraic relations among the coef-
ficientsa,;m according to the discussion in the last paragraph
of the Appendix.
Since the anisotropies are not huge, we focused on the
lowest order corrections to the isotropic<0) contribution.
FIG. 1. Diagrammatic illustration of the experimental setup.In other words, we wrote
Shown is the positioning of the probes with respect to the mean
wind, and how the Taylor hypothesis is employed.

v

) S*(R)=SZy(R)+ S7£1(R) + SZH(R)+ S/Z4(R).

whereag;, are some numerical coefficienB{;jﬁm(R) are the (52
tensor basis o552 with a definitej andm, and ¢ are the
exponents associated witts irreducible representation. The We defined the coordinate system such that the mean wind
isotropic exponent'®) will be referred to briefly ag,. We  direction was along the 3 axis, and the separation between
note that the coefficientay;, are not arbitrary numerical the two probes was along the 1 axis. Bgsumingaxial
coefficients, because of the constraints imposed by the irSymmetry along the mean wind direction, the tensors
compressibility of the flow. In the Appendix we derive the S,-“fo(R),Sj“fl(R), and Sf‘fz(R) were to contaironly them
explicit form of Bglﬁm(@) and the necessary relations among =0 components. In ad_dmon, since thg two propes measured
the agj,'s. The theoretical development of the Appendix the velocity field osr;Iy in the mean wind direction, we ha_d
serves as a basis for the data analysis; we leave it in th@nly the values o68™(R) in the 1-3 plane. In such a case, it
Appendix since it is somewhat lengthy. Nevertheless the infurns out that only the eveyis have a nonvanishing contri-
terested reader may find it useful for situations that differPution. We therefore used the trial tensor:
from the one treated below.

The data that we want to consider were taken at Taylor BB — QB ap
microscale Reynolds numbers of about 10 008]. The data STRI=SZ(RITS=(R),
were acquired simultaneously from two single-wire probes
separated byA =55 cm, nominally orthogonal to the mean R\ %2
wind direction. The two probes were mounted at a height of sj“fo(R) =Co<_)
6 m over a flat desert with a long fetch, see Fig. 1. The A
Kolmogorov scale was about 0.75 cm. Details of the experi-
mental setup can be found in RgL5]. In that reference one

R*RA
(2+£2) 8P = {5 = |

can find details of another data set that was analyzed in the Sﬁzﬁz(R):ag’fZ,q:l(RHb$£2,q:2(R)'
same fashion, leading to results in agreement with those re-
viewed here. whereS®, _;(R),S,,_,(R) are given by

& (k-R)2 RRA(k-R)?
((89-2) 0" = (54 6) 07— — + 20— 2) ————+ ([P + 35+ 6 )kk”

a3 R
Sj:qu:l(R): K R2 R

((P-2)

= (R%kA+RPKk?) (k-R) |,



PRE 59 CORRELATION FUNCTIONS IN ISOTROPIC AND ... 6763

£

B R\ 2 RR#
Sj=2,q=2(R) = K

~(PH3)(+2) 0 (kR -2)

+(+3) (P + 2k kP + (247 + 1) (8- 2)

RRP(k- R)?
X—

[P HRIHRAK(K-R) |.

(53

The vectork was taken to be along the mean wind directignis the isotropic exponent, Whiléz) is thej =2 exponent.
Co, a, andb are the nonuniversal weights of the componentS®{R). In order to reduce the number of unknown quantities,
the exponent of the isotropic part 8##(R) was assumed to be know;=0.69. The values of,,a,b, ggz) were to be found
from the experimental data.

Using spherical coordinates, the trial ten&3? in the 1-3 plane took the following form:

S¥(R,0,6=0)=S2(R,0,6=0)+SZ,(R,0,¢=0)
R| &
A

0.69
= cO(K) [2+0.69-0.69 codd]+a

R| &
K) [(8+2)(£5+3)

X[(£82+2)2— (3782 + 2)co 0+ 272 (£~ 2)cod 6]+ b

— (372 + 4)cofo+ (28 +1) (8- 2)cod 6], (54)

whered is the angle betweek andR. The fitting of the trial
tensor to the data was done along two paths in tRed)
space:¢=0, a single probe measurement, &Rdiné=A, a  that is unavailable from the present measurenjeams just
two probe measurement. the smallest exponents in the hierarf}) that characterizes
Figure 2 shows the best fit to the data. For each type ofigher order irreducible representations indexedjb¥he
data, two fits were performed: A fit of the isotropic part only gy,dy of these exponents has only begun here, and consider-
[panel(a)], and a fit of both isotropic anfi=2 components  gpje experimental and theoretical effort is needed to reach
[panel(b)]. The excellent fits in paneb) is a good support  firm conclusions regarding their universality and numerical
for the present mode of analysis. values. We expect the exponents to be a nondecreasing func-
In Ref. [15], Fig. 3, we showed the determination & tion of j, explaining why the highest values pére peeled
from a least-square fit. The optimal value of this exponenipff quickly whenR decreases. Nevertheless, the lower order
and the uncertainty determined from that plotzf®=1.38  values of¢§? can be measured and computed. In R&§]
*=0.15. The other coefficients were computed with the rewwe presented an additional set of experimental data, and

+0.0006 (m/sed, and b=0.0033+0.0005 (m/sed. It
should be understood that the expong$it (and alsozS",

sults Co=0.023+0.001(m/sed), a=-0.0051  demonstrated that the numerical valuef? appears univer-
sal.
0.15 s <
%010 2 | o
KA / VI. CONCLUDING REMARKS
" 0.05 |4 The aim of this paper has been to introduce an exploration
/ / of the scaling properties of turbulent statistics in the aniso-
tropic sectors. The main theoretical development is described
0.16 f in Sec. I B, lll. It is explained there that the linearity of the
_ / P equations for the fully unfused correlation functions, to-
:30.12 ] // gether with the invariance to rotations, foliates the solutions
o // into sectors characterized by thand m designations of the
08— 7 irreducible representations of the @Dsymmetry group. As
Vi /| a consequence we expect the different sectors to be charac-
2 ‘;/ A(’ 8 100 2 ‘;/ A6 8 10 terized by differenfanomalousscaling exponents. This ob-

servation opens up a new and interesting research arena for
theory and experiments.

FIG. 2. The structure function$® [in units of (m/secj] for ¢ In Sec. V we used a recent experimental data analysis as
=0 and for nonzer@ computed for set I. The dots are for experi- @n example of the utility and importance of the present ap-
mental data and the line is the analytic fit. Pafalpresents fits to ~ proach. The main result of this section, besides the theoreti-
thej =0 component only, and pan@) fits to componentg=0 and  cal forms that can be used for further data analysis, is that the
2 together. scaling range in turbulence is much larger than expected.

(a) (b)
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One just needs to acknowledge the existence of anisotropic .
contributions to obtain scaling ranges that go all the way Ja agim(RIBGH(R)=0,
from the Kolmogorov scale to the outer scale of turbulence. am
It is our belief that this paper does not exhaust the issue of
anisotropic contributions to turbulent statistics. It is only the (952 agjm( R)ngﬁm(é):o, (A3)
beginning of a rich research program that should be carried ajm

simultaneously by experimentalist and theorists. We first notice that the differentiation action is isotropic.

As a result, ifT*3(R) is some arbitrary tensor with a definite
ACKNOWLEDGMENTS j andm transformation properties, then the tensgli “(R)
gwill have the same pndm transformation properties. Com-
ponents with different and m are linearly independent.
Therefore Eqs(A3) should hold for each andm separately.

We are indebted to K.R. Sreenivasan and his group, n
tably Susan Kurien and Brindesh Druvah, for the indispens
able collaboration that resulted in R¢l.5] and the results ) ,
mentioned in Sec. V. This work was supported in part by the N€xt, we observe that Eq§A3) are invariant under the
Basic Research Fund administered by the Israeli Academy 6far)3f°rmat'9n':aﬁ_>':ﬁa' As a result, the symmetric and
Sciences, the special Yale-Weizmann Collaboration Fund@ntiSymmetric parts o *# should satisfy EqSA3) indepen-
the German Israeli Foundation, and the Naftali and Anndiently. To see this, let us write*” as a sum of symmetric
Backenroth-Bronicki Fund for Research in Chaos and Comand antisymmetric terms:*#=F3*+F2#, we then obtain

lexity.
prextty 9, FP=0,FeP+ 0, Fab=0,FE"—9,Fa=0,
APPENDIX: THE INCOMPRESSIBILITY CONSTRAINT _ _
IgFP=FEP+agFaP=0,
AND GENERAL FORM OF THE SECOND
RANK TENSOR from which we conclude that
In this appendix we discuss the general structure of the _ _
pp g 9, F&F=9,FaP=0.

second rank correlation functions
Finally, Eq. (A3) are invariant under the transformation
FP(R)=(u*(r+R)UA(r)). (A1) FeB(R)—F*f(—R) and as a result the odd parity and the
even parity parts oF“# should fulfill Egs. (A3) indepen-
In Eq. (A1), homogeneityof the flow is assumed, but not dently. We conclude that a necessary and sufficient condition
isotropy. Note that this object is more general than the strucggy Egs. (A3) to hold is that they hold separately for parts
ture functionS*# in being nonsymmetric in the indices, and ith definitej and m, a definite symmetry in ther and 8
having no definite parity. In light of the discussion in Sec. Il jndices, and a definite parity iR:
when we expand this objects in terms of tensors with definite
j andm, we expect each component to have a distinct depen-

dence on the amplitud®=|R|. Accordingly, we wish to aa% agim(|R)Bg/m(R) =0,
find the basis functiontj"’m(IQ), with which we can repre-
sentF*A(R) in the form where the summation is oversuch thathfm has a definite

indices symmetry and a definite parity. According to Ed)
we can write thessgﬁn as follows.

aB(R) = . aB (R .
F(R) %‘11 agjm(R)Bgjm(R), (A2) (1) (—)! parity, symmetric tensors:
and derive some constraints among the functiagg,(R) BIfn(R)=R716%d(R),
that result from incompressibility. We shall see that, due to R .
the isotropy of the incompressibility conditions, the con- B‘7’f,]1(F2)ER‘J[R‘*aﬁvL Rﬁ&“]tbjm(R),
straints are amonggjm(R) with the same jandm only.
We begin by analyzmg_ the |ncompre55|p|llty condition. Bgfm(R)ER—J—ZRaRBQjm(R),
An incompressible flow with constant density is character-
ized by the relation Bg‘fm(fe)ER*”Zaaa%,-m(R)-
3 u*(r,t)=0; (2) (—)! parity, antisymmetric tensors:
as a result, one immediately obtains the following constraints Bgfm(ﬁ)z RTI[R*9#— Rﬁé)a]q)jm(R)_
on F*A(R): .
(3) (—)1 1 parity, symmetric tensors:
d,F(R)=0, '
Bgfm(R)ER‘J‘l[R“eﬁ””RMaVJr Rﬁé““”Rﬂﬁv]ijm(R),
&BF“[”(R)zo.

B (R)=RIT€f'R,0,0+ €"*'R,,3,0P1®n(R).
Plugging the trial tensafA2) into the last two equations, we ’ _
obtain two equations connecting the differegj,: (4) (—)'*1 parity, antisymmetric tensors:



PRE 59 CORRELATION FUNCTIONS IN ISOTROPIC AND ... 6765

Bf{,jﬁm(li)ER_j_leaﬁ”RMCDjm(R), (3) qe{8,6}:
A i1 agm+3R tagjm+(j—1)ag;m—(j°—2j +1)R agjm=0.
Bz,jﬁm(R)ER i+1, Bﬂaﬂq’jm(R)- j j j i 6
In order to differentiate these expressions, we can use the (4) qe{4,2:
identities:
i i R™ayjm—agm*(j— 1R apjm=0. (A7)
R0,RY jn(R) = {REYjm(R), . o
There are obviously more unknowns than equations, since
ey pRIV. (D) — i -2, (% we merely exploited the incompressibility conditions. Nev-
70 RYim(RI=LE(6H+ D) =]+ DIR T jm(), ertheless, we believe that the missing equations that arise
which give rise to from the dynamical hierarchy of equations will preserve the
distinction betweenag;, of different values ofj and m
R%9,®jm(R)=]Pjm(R), (again, due to the isotropy of these equatjons
Note also that the above analysis holds also for the
%9, Pm(R)=0. second-order structure function
From this point, it is a matter of simplghough somewhat SB(R)=([u*(r+R)—u“(r)J[uP(r+R)—uh(r)]).
lengthy) algebra to derive the differential constraints among
agm(R). The results are as follows. Only that in this case we should only consider the represen-
(1) qe{1,7,9,8: tationsq=1,7,9, and 5 for evepn and the representatioms
=8 and 6 for odd. This follows from the fact tha*#(R)
a1 jm(R) —jR ajm+jas;m—i’R™'azjm+ag;m is symmetric with respect to its indices, and has an even

parity in R. Also, in that case, it is possible to go one step
further by assuming a specific functional form for the
aq,jm(R). We know thatS*A(R) is expected to scale in the
inertial range, and we therefore magsumehat

+2R_la9'jm=0,

-1 -1 ;
R *ayjmtarjmt3R "azjm+(j—1agn

—(j*=3j+2)R 'agjn=0. (Ad) )
im agjim(R)=Cq jmR%2’,
2 3} . . .
@ qe{3} wherecg ;, are just numerical constants. If we now substi-
aé,jm_jRila&jm:Oa tute_z this defini'gion into EqsiA4) and (A6), we obtain a set
of linear equations among, ;,, . These relations can be eas-
aéjm+ R_lasijO- (A5) ily solved and give us two possible tensors for eyefq

=1, 7, 9, and 5 and one tensor form for odf (from g
[Notice that these equations have no solutions other thar8 and 6. This kind of approach was taken in the two-

azjm(R)=0.] probes experiment described in Sec. V.
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