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Droplet formation by rapid expansion of a liquid
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Molecular dynamics of two- and three-dimensional liquids undergoing a homogeneous adiabatic expansion
provides a direct numerical simulation of the atomization process. The Lennard-Jones potential is used with
different force cutoff distances; the cluster distributions do not depend strongly on the cutoff parameter.
Expansion rates, scaled by the natural molecular time (abibut a picosecondare investigated from unity
down to 0.01; over this range the mean droplet size follows the scaling behavior of an energy balance model
which minimizes the sum of kinetic plus surface energy. A second model which equates the elastic stored
energy to the surface energy gives better agreement with the simulation results. The simulation results indicate
that both the mean and the maximum droplet size have a power-law dependence upon the expansion rate; the
exponents are-2d/3 (mearn and —d/2 (maximur), whered is the dimensionality. The mean does not show
a dependence upon the system size, whereas the maximum does increase with system size, and furthermore, its
exponent increases with an increase in the force cutoff distance. A mean droplet size;6f Rl#re is the
expansion rate, describes our high-density three-dimensional simulation results, and this relation is also close
to experimental results from the free-jet expansion of liquid helium. Thus, one relation spans a cluster size
range from one atom to over 40 million atoms. The structure and temperature of the atomic clusters are
described[S1063-651X99)07406-1

PACS numbg(s): 68.10.Cr, 05.70.Ln, 02.70.Ns, 36.40.Qv

[. INTRODUCTION information about the atomic clusters. We start with a
Lennard-Jones fluid in equilibrium in the liquid phagbe
Atomization of a diesel fuel jet occurs over microsecondtemperature is near, or above, the critical temperature, and
time scalegqtransit time through the orifigeand over sub- the density is near the triple point vajuét time zero of the
millimeter distancegorifice diameter of a few hundred mi- expansion, every atom is given an impulse proportional to its
crong. The breakup of the liquid jet may depend upon cavi-distance from the origin of the system; the velocity change
tation and does involve the creation of a new liquid surfacdor the x component is given byx, where 5 is the initial
area(formation of droplets from the bulk liqujdneither of  strain rate, and the other componentszgyand 5z (in three
these effects is well described by continuum models of fluiddimensions The system periodic length develops in time
dynamics. In order to obtain a direct numerical simulation oflike L(t)=Ly(1+ nt), where Ly is the initial periodic
the atomization process, the method of molecular dynamickength, and the periodic boundary velocity g, (which
(MD) has been selected. MD assumes classical dynamics amemains constant throughout the simulajiofhe expanding
a known potential energy function between atoms, fromliquid cools down, and temperatures approach the triple point
which one then directly computes the atomic motion. Onevalue. As the system expands and doubles and triples its
disadvantage of simulations at the atomic scale is their smalinear extent, there is a rapid change in the number of atomic
size and short time scale. Using the atomic mass, size, ardusters. At the instant of examination, we define a cluster to
the potential energy well depth, the natural time scale ide all atoms which are within a selected distance of at least
about one picosecorithe numerical time step is a femtosec- one other atom. The selected distance corresponds to the
ond). Thus, an MD simulation at nanoscal@mnometers and location of the minimum force, that is, where the force is the
nanosecondsrepresents a huge task, and simulations at thenost attractive, beyond which the attractive force diminishes
microscale is a task for future computer hardware. Thereforep zero. After the periodic length of the system is more
at this time we do not simulate the complete fuel jet breakupthan four times its initial value, further change in the number
but instead use MD to investigate the rapid, homogeneousf clusters is a slow one, so that at some larger expansion
adiabatic expansion of a liquid and follow the expansionratio, we stop the simulation and gather information about
process into the formation of clustefise., droplets. the clusters. The larger clusters are hotter than the smaller
The problem configuration in this work is the rapid ex- ones, and it is expected that they would continue to evapo-
pansion of a liquid in a system with periodic boundaries inrate until the whole system changes into a gaseous ghase
each direction(both two- and three-dimensional systems arewe do not simulate that aspect of the probjeifhe initial
examinedl. From the simulation results we obtain statistical strain rate(normalized by the molecular unit of time, equal
to about one picosecohtas been varied from unity down to
0.0125 in three dimensions and down to 0.05 in two dimen-
*Electronic address: ashurs@ca.sandia.gov sions. The number of atomic clusters depends upon the ini-
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tial strain rate, being larger with larger strain rates. This is (d+2)r y\

reasonable, because a strain rate a little above unity has R= —Z | 1)
enough impulse to separate a pair of atoms connected by the

Lennard-Jones potential. We now must estimate the number of broken bonds at the

Our MD simulations first repeat the work by Holian and droplet surface. In the dense state the number of nearest
Grady [1], in which two-dimensional systems were exam-neighbors is equal tal(d+1) and the number of broken
ined and compared with the energy balance model of Gradonds may be half of the nearest neighbors or as few as only
[2]. Grady had proposed a model in which the local expand neighbors(cleave along §111) plane in three dimensions
sion velocity provides the energy to create a free surfacand along the line of close-packed atoms in a two-
within the bulk liquid, that is, the local kinetic energy from dimensional hexagon crysjaWe assume the smaller esti-
the expansion provides the energy needed to break the bondsate and let the surface energy term pede/2m. This
between liquid atoms, and thus allow the formation of a lig-estimate does not have any temperature or density depen-
uid surface. As the expansion rate decreases, there will b&ence, and thus it is meant for low-temperature, dense lig-
less energy available unless the domain size increases, aHifls. We also assume that the droplet density is close to the
thus lower expansion rates will create larger dropletsoriginal density and that.~o. This yields the number of
Grady’s model results in the scaling of sigie number of atoms in the droplet ag="5.9/7*? in two dimensions and
atoms,u) versus expansion ratg asu~ 7 2%, whered is w=27/p% in three dimensions. These numerical estimates
the number of space dimensions. Thus, the droplet size wifre four and ten times larger than our simulation results to be
scale asy~*?in two dimensions and ag~ 2 in three dimen- ~ given below. If we had not minimized the sum of the ener-
sions. Holian and Grady did find approximate agreemengies but had just equated them instead, we would obtain an
with this model in their two-dimensional simulation results €ven larger estimate, larger by a factor ¢f2
using a modified Lennard-Jones potential. We extend that The second model of fragmentation does not minimize the
work by using longer-range Lennard-Jones potentials. Mor&xpansion plus the surface energy but just converts the elas-
recently, Toxvaerd[3] has examined two- and three- tic potential energybq.gic, stored up as the system expands
dimensional systems and compared different procedures féfom its initial state into surface energygyqace required to
establishing the expansion. Both of these previous studiggreak bonds and form free surfaces. Under homogeneous
found a bimodal distribution for the cumulative number of adiabatic expansion at linear strain raje-d(eg)/dt, con-
clusters versus the size of the clusters. These distributiordensed mattefeither fluid or solid will fragment when
depend upon the average cluster giaee exponential terim =~ Pejasic= Psurface FOr simplicity, consider that the material
and the number of monomefthe second exponential teym fragments into average-sized cubes in 3Quares in 2Dof
Our current simulations yield the same bimodal distribution.side lengthL after attaining a critical linear strain in timeof
However, these distributions are also found in the equilib-
rium fluid structure, and so by themselves do not indicate es=nt=L/Lo—1, (2
that fragmentation has occurréd]. Earlier work by Blink
and Hoover[4], in which two-dimensional heated liquids wheree; is the strain and the volumetric strain ghdimen-
were allowed to expand into a vacuum after the removal of #i0ns isdes. The stored elastic potential energy in the aver-
confining wall, also suggested an agreement with the Gradgge fragment of mas is
model. L g 5

In the next section we present two continuum models of D epastic= 2 BoL o(des)”, 3
fragmentation, Grady’s and a strain energy one. This is fol-
lowed by a description of the MD procedure and our two-WhereBo=poc is the bulk moduluspo=M/L{ is the initial
dimensional results, which is then followed by our three-density, anct, is the bulk-wave speed. The surface potential
dimensional results, and a comparison with experimenta@nergy is
results.

D yrace= p2d Ldilro% (4)

Il. CONTINUUM MODELS OF FRAGMENTATION wherep— M/L® is th%jllnal d.ensny of t_he average fragment
with surface area@L"" ", r is the equilibrium bond length

We present two continuum models of fragmentation(the skin depth of broken bonds at the surfacand y
which include estimates of the surface energy based on the de/2m is the surface energy per unit mass; the bond en-
atomistic nature of the potential energy at the cluster surfacesrgy ise and the atomic mass ia. Only half the energy per
The first model follows Grady’s idea of an equilibrium bal- broken bond at the surface is associated with the given frag-
ance between the expansion kinetic energy and the drop sument, and there aré missing neighbors at each surface
face energy2]. The expansion kinetic energy per unit massatom. At the critical fragmentation timg ® ¢j.stic= P surface
is [d/(d+2)]R?%%/2, where R is the radius of the so that
d-dimensional droplefl]. The surface potential energy per
unit mass idyr./R, wherevy is the surface energy per unit L(mcot)?=2rqe/m. 5)
mass and . is the thickness of the shell of broken bonds.

In terms of the surface to volume rati®=d/R, the minimi-  Notice that the dimensionality factors have vanished. We
zation of the sum of these two energies yields a droplehow suppose thdtis the time it takes for a bulk sound wave
radius of to cross the distanck of the fragment—a communication
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time, or event horizon, between density fluctuations that holinear expansion rate ag The expansion ratg is constant
mogeneously nucleate the fragmentation process; that is, throughout a particular simulation and the periodic domain
=cot. Hence, edge length grows liké(t) =Ly(1+ nt). At the start of the
3 0 expansion process—time zero—the velocity of each atom is
L°n°=2roe/m. (6) given an impulse equal to its distance from the system origin.

Consequently, the average fragment size decreases with i-rl;hus’ the atom velocity at that instant is enhancedsity

creasing strain rate by the2/3 power, regardless of dimen- 77y|' a_nd.m :\hree d|m|ens||_0ns l:gyz. Th? periodic bom;]ndar);]
sionality: velocity is thus equal tajL, and remains constant through-

out the simulation. The boundary velocity at the origin is
L= 5 232rye/m)*3, (7)  considered to be zero, and so the jump velocity across the

system equalsylL, in each coordinate direction. Hence,
As long as the critical strain to fragmentation is not too largewhen the atomic location is adjusted because of a boundary
(that is, the strain is small compared to unity so thatp,),  crossing, its velocity corresponding to that coordinate direc-

the average fragment mass is then given by tion is also adjusted by adding or subtractinlyy. We have
o4 43 only used systems with equal values pfand L, for all
M~pon “(2roe/m)™™. (8)  coordinate directiongToxvaerd[3] has investigated the use

of this initial impulse method by comparing with systems in
which the boundary confinement is just moved at a fixed
rate. When the expansion rate is small compared to the time
required for sound waves to communicate from the boundary
the interior of the system, he finds that the initial impulse
fnethod is an efficient way to achieve a homogeneous expan-

on)

In Lennard-Jones unitso( e,m), wherer,=26, this be-
comes M=27918, /5243 |In 2D, py=0.75 and M
=1.3/»*3 in 3D, py=0.85 andM =1.9/5?. These elastic
energy estimates are much closer to our simulation results: i
two dimensions we have agreement with the long-rang
Lennard-Jones resultgorce cutoff at 2.5 and &) and in
three dimensions the estimate is about 70% of the simulation ",/ | \se the pairwise-additive Lennard-Jones potential as a
results. Replacing the cubical shape assumption with R

herical its in reducing th timates by a fact presentative interaction between molecules. While not an
spherical one resufts in reducing these estimates by a Tact@g , 4 potential of any material, it does exhibit the transition

of 7/4 in 2D and by=/6 in 3D, but even these values are in(fetvveen the liquid and gaseous phases, which is the impor-

fair agreement_wnh the S|mulat|0n_ results._ In the SECONGant feature in the atomization process. Thus, droplet surface
model, the available energy per unit mass is larger than i,

T ) nsion will be an outcome of the simulations. The Lennard-
the kinetic energy-balance model, and with more energy pey nes(LJ) potential energy is
mass available, there can be more surface atoms created?
hence, smaller clusters are formed in the elastic energy- _ 12 6
' . . i . r=4 [r)*“—(alr)®]. 9
balance model. Two assumptions required in the continuum #(r)=4el(a/r)™=(a/r)7] ©

models are the surface shape and the number of missingne value of the minimum energy ise, which occurs at
bonds that surface atoms have in comparison to the interiqr _ 516 This is also the location whe’re the force changes

. . 0
atoms. From the clustgr S|mulat|on results we opserve th"‘ﬂom repulsive to attractive. The force between two atoms is
surface shape, and radius of gyration, change their characg%r

X ) ven by the negative gradient of their potential enefgy,
over the range of examined expansion rates. Hence, we y 9 g P fgy

¢ claim that th deli i d ab Vé(r). The atomic positions are advanced using the
not claim that the modeling assumptions used above areé t.gtoermer-VerIeES] time-centered finite-difference equation
be taken as a detailed picture of actual clusters at specific

expansion rates. (L4 88)=2r (1) —r(t— 8+ f(1) StIm+O(8t%), (10)

Ill. MD PROCEDURE AND TWO-DIMENSIONAL and the time-centered velocity is found frofm(t+ ot)
RESULTS —r(t—é8t)]/(26t); typical time-step values arét=0.01,

While our future interest is the atomization in a fuel jet and 0.004;, wherety=o\m/e is the LJ unit of time. The
like that used in a diesel engine, we have focused this workRarmonic frequency associated with the force at the location
on the much simpler problem of a homogeneous expansiofp is the fundamental frequency obtained fromwr§
of a liquid into a collection of droplets surrounded by its own =r3e" (ro) = 72¢. This frequency isooto=7.56. The poten-
vapor. Thus we can examine the atomization process in #al inflection point is the minimum force location, beyond
very simple configuration and obtain guidance about possiblerhich the attractive force diminishes with increasing dis-
behavior in the inhomogeneous fuel jet configuration. tance. The minimum force occurs at (26/9%y~1.240

Following Holian and Grady1], we use periodic bound- ~1.10,. The force interaction is truncated at a finite dis-
ary conditions in the molecular-dynamics simulations. Thetance in order to reduce the computational work in calculat-
use of periodic boundaries reduces the dependence upon timg the atomic motion. A popular force cutoff distance is
number of atoms used in the simulation. A simulation of a2.5¢. In addition to truncating the force interaction, the po-
periodic system in equilibrium maintains all the atomic co-tential is also shifted so that it is exactly zero beyond the
ordinates within the range of (0) by adding or subtracting cutoff distance. This truncation and shifting affects the phase
the system edge length whenever an atom coordinate ex- diagram of the system. For example, in three dimensions, the
ceeds this range. To simulate an expanding system, thall Lennard-Jones potential has a critical point value that is
atomic velocity must also be adjusted when the atom crossesstimated to b8 =1.316/k, whereas truncation of the po-

a periodic boundary. As in the previous work, we define thetential to 2.% reduces the critical temperature to 1.088e



PRE 59 DROPLET FORMATION BY RAPID EXPANSION OF A LIQUID 6745

75 = 7 o
(®)
K o)
o) 0 o ) 5 (é
O O O
Je]
© 50 : ©
= 80 =
P 5]
7 o ; QB0 9 7]
2 3 5 2
=] £ o 3 0 i o a
25 0 % (%) § oS Q & 5!
O O )
0. [oy
59 3 o0 & e )
9 S 5 ]
0 Ot Ie) ra o =t
0 25 50 75 0 100 150
Distance x/c Distance x/c

FIG. 1. An initial two-dimensional liquid configuration with a ~ FIG. 2. Clusters formed by expanding in 2D at the rate

reduced density of 0.75 and a reduced temperature of 0.6; Lennard=0.01 until the domain size has doubled.
Jones potential with a force cutoff at2

mum force distance yields results which have little depen-
Smit[6] and Johnsort al.[7]). In two dimensions, the full dence upon the cutoff distange.
Lennard-Jones potential has a critical density of 0.355 and a Holian and Grady obtained distributions of cluster size
critical temperature of 0.515, but when the potential is truniwhich are bimodal exponentials:
cated at 2.6 and the potential is shifted to be zero at the
cutoff, then the critical temperature is reduced to 0.459 while %
the density does not chang®mit and Frenke[8]). The es- C(”)If dn’S(n’)=Nye "+Nee "*, (11
timated triple point temperature is 0.42D) and 0.69(3D); "

units of e/k will be used in the following. h is th ber of at in the cluste is th
Holian and Grady not only truncated the Lennard-Joned/€r€n IS the numpber of atoms In the clus (n) is the
umulative number of clusters of size greater tinaatoms,

potential, but they also changed its shape between the mink, ~ T .
mum force location and a cutoff location by using a cubic (n) is the spectral distribution, or number of clusters of size
n, N, is the number of monomers\. is the number of

spline function. In this way they impose the condition that lust is th ber of at ; lust
the potential goes smoothly to zero at the cutoff distance USters, angu is the average number ot aloms in a cluster.
Excluding the monomers from consideration, then the

estraightforward determination of the average number of at-

oms in the clusters is given y=(N—N,,)/N.. This aver-

using the LJ potential truncated at 2, 2.5, awd we do find age number includes the contributions from the small clus-
Lt ters, that is, the dimers, trimers, and so forth, which are also

some small differences in the cluster behavior. determined by th distribution. Theref Holl
We now present our two-dimensional results. Using the® S efmin€d by the monomer distribution. Theretore, Hofian

same Lennard-Jones/cubic potenlal/cubig as Holian and and Grady determine the average cluster gizgy examin-
Grady, as well as the same number of atoMs-@4200), we
examine the range of linear strain rate from 0.0535 to 0.856,
using a time step of 0.@4. A snapshot of the initial liquid
configuration is given in Fig. 1 and the resulting clusters
formed by different expansion rates are shown in Figs. 2—4
(our Fig. 3 compares well with Fig. 4 in Holian and Grady;
they give the volume strain rate, which is twice the linear
value in 2D. The cluster distributions are determined when
the bulk density equals 0.17& linear expansion of 2.07
from the initial density of 0.75 A cluster is composed of all
those atoms which are connected to at least one other aton
by a prescribed distance, namely, a bond length correspond-
ing to the minimum force distance,= 1.240. The selection

of this distance can be considered to be following the guid-
ance of the Lindemann melting law; that is, when the root-
mean-square displacement of the atomic motion exceeds ¢
small distance compared to the nearest-neighbor separation
a solid is likely to melt{10]. (We note here that use of the
force cutoff distance to determine the clusters yields results FIG. 3. Clusters formed by expanding in 2D at the rate
which vary with the cutoff distance, whereas using the mini-=0.1 until the domain size has doubled.

compare simulations using their potential with simulations
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FIG. 4. Clusters formed by expanding in 2D at the rgte 1

until the domain size has doubled.

ing the distribution and selecting a value @fwhich allows
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FIG. 6. 2D mean cluster sizgy dependence upon expansion
rate, », and upon the potential: LJ/cubie® ), LJ truncated at @
(+), at 2.5 () and at 4 (X).

a match with the results in the region beyond the influence ofrom the cumulative distribution we estimate the maximum

the monomer distribution. We use

N
C(n)=N e "+

where the number of atoms that are in clusterlisN,,,

—N
mefn/pd,

(12

cluster size by settingC(n,,,,0=1, and assuming that the
monomer contribution is zero, we have an approximation for
the maximum cluster size as

Nmax= M IN[(N—=Np)/w]~ w In(N/ ), (13

and u is the average cluster size as determined by fitting thevhere in the last approximation the monomers are ignored
distribution. Typical cumulative distributions are given in andN; is replaced byN.

Fig. 5.

We now describe the two-dimensional results using dif-

Of interest is the dependence @fupon the potential, the ferent force laws and different force cutoff distances. The
dimensionality, and the amount of expansion. From thanitial equilibrium state is created frold=4200 atoms on a
Grady model of converting expansion kinetic energy intoregular lattice of density 0.7%near the triple point valye
surface energy, we have the concept that the average clusteith randomly drawn velocity components; enforcement of
size will have a power-law dependence upon the expansiotihe desired temperature of O(&bove the critical tempera-

rate, namely that il dimensions the average cluster sjze

ture) is achieved by velocity rescaling during an equilibra-

will be given by ux 7293, We also examine the maximum tion time of 1@, prior to expansion. Different realizations
cluster size and its dependence upon the expansion ratere created by changing the random number seed for the

100

Cumulative Number of Clusters

N
\
1 . . . 8 °© h 3
0 20 40 60 80 100 120
Cluster Size N

FIG. 5. 2D cluster distribution with expansion rate=0.107,

velocity selection. Three realizations have been used for
most conditions(and checked with five realizations at low
expansion rate

We find that the average cluster size does change with the
force cutoff distance; see Fig. 6. The shortest cutoff, the
LJ/cubic with r ,=1.740, yields the lowest exponenj
=1.35/7*1¢ (indicated by the short dashed lineThe
Lennard-Jones potential with., =20 gives u=1.26/5%2
(dotted ling, while r .= 2.50 gives u=1.3/7*% but a fur-
ther increase i, to 40 does not cause a further change
(bold dashed line The maximum cluster size, as observed in
five realizations using the LJ potential truncated ab2&an
be approximated by 1/ but as discussed below, we suspect
that the maximum cluster size is restricted by the finite sys-
tem size when the expansion rate is small.

Based on these 4200-atom two-dimensional results, we
conclude that the range of the force has a small effect,
namely, increasing the range also increases the exponent of
average cluster-size dependence upon the expansion rate.

using the LJ/cubic potential. Three realizations are shown alond he two larger cutoffs with the LJ potential produce results

with the estimated fit to the mean res(itashed ling Notice that
the maximum cluster size ranges from 80 to 120 atoms.

which agree with the Grady model of cluster-size variation
with expansion rate, namely that the average cluster size will
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have a dependence like”*2 in two dimensions. The trun-

cation of force in the Lennard-Jones cases causes a finite 10000 LN |
jump in the force at the cutoff location. This force jump does \\ SN 3K
not occur in the LJ/cubic model, and since its results agree RN +N=32K
with the trend of the LJ results, we conclude that the force 1000 | 3 ON=4K ]

jump is not a serious blemish in the dynamics.

IV. THREE-DIMENSIONAL MD CLUSTER RESULTS 100 ¢ N 3
Three system sizes have been used in three dimensions:
N=4000, 32 000, and 256 000 atoms; they will be denoted as
4, 32, and 256 K. In all systems the maximum expansion rate AN
is 7= 2 and the minimum values are 0.16K), 0.0125(32 N
K), and 0.05256 K). Computational cost restricted the mini- 1r \(Ka ]
mum expansion rate in the largest system while the creation o1 0
of too few clusters restricted the minimum rate in the smaller Expansion Rate 1
systems. Five realizations were created at each expansion
rate value. Most of the simulations had an initial density of FIG. 7. The mean cluster size in 3D increases with decreasing
0.85(triple poiny and an initial temperature of 1(the criti- expansion rate; the dashed line equals 726/these results are
cal temperature is estimated to be 1.085 when the potential Rased on five run averages, domain size lig,6and the initial
truncated at 2.5 and the potential is also shifted to be ex- density is 0.85.
actly zero beyond the force cutoff; see Srf). A few
simulations have also been made with a force cutoff ®f 4 The five realizations at each expansion rate are pooled
which has a critical temperature of 1.246. The full potentialiggether to obtain a mean and standard deviation of the num-
critical temperature is 1.316, and the estimated triple poinher of clusters at each possible cluster size. In each realiza-
temperature is 0.6p7]. The time step is 0.0Q4. tion, linear interpolation is used between the actual clusters
We observe that the expansion changes the average pgr that realization to generate information at integer values of
tential energy, with diminishing change as the expansion ratg| ster size. To determine the mean cluster sizat a given
becomes small. The initial liquid state has a potential energgypansion rate, a plot of the mean cumulative cluster distri-
which is negative(from —5.24 atT=0.7 to —4.28 atT  pytion is made along with the functidne ™. The values
=1.7), reflecting the many neighbors which are located neaps y and » are adjusted to match the distribution in the clus-
each atom. The expansion process creates fragments, and {ge sjze region just beyond the tail of the obvious monomer
atoms near the surface of a fragment will have a potentiagjistribution. Note that extension of these fits on the linear-
energy higher than the initial liquid-state value, becausqog plot does not always coincide with the observed mean
these surface atoms now have fewer neighbors. To descriRgue of the maximum cluster size.
the change in the average potential energy, we compare the figyre 7 presents the mean cluster size determined from
energy when the domain size has expandedlig, 30 its  the graphical procedure described above; there is no obvious
initial value, when the domain size isy. We find that sys- dependence upon the system size. The 21 values in Fig. 7
tems with initial temperatures of 0.7, 1.4, and 1.7 have alyayve a relative rms error of 0.17 with respectue: 2.6/7>
most the same reduced potential energy change with respegfashed ling The initial temperature of these results is 1.4,
to the expansion rate, namely( — ¢s. )/ ¢ ,~0.87"". and to determine a possible temperature influence, simula-
From these simulations the cluster information was ob4ions with initial temperatures of 1.7 and 0.7 were also gen-
tained at integer increments of the initial domain sikzg, erated using a 32 K system. Single run realizations produced
Detailed information was studied at domain sizes 6§ 3 mean cluster sizes that are in agreement with those shown in
6Ly, and 13 . At 2L, with low expansion rate, the largest Fig. 7. Because the mean cluster size increases with decreas-
cluster was essentially equal to the system size. Beyanpd 3 ing expansion rate, we suspect that the lower expansion rates
the number of clusters has reached a quasisteady value. ptoduce results which are less reliable than those produced
large expansion rate, about two-thirds of the atoms arevith the higher rategwithin a system of the same sjze
monomers, and this value is almost constant over the expan- Using the 32 K system size, other initial densities were
sion duration. On the other hand, at low expansion rate, thexamined, with 0.028 »<1. Simulations with an initial
number of monomers grows with the increasing domain sizelensity of 0.94 are described hy=2.8/7? (with relative
at a rate independent of the strain rate. Ag@he number of  error of 0.07. Thus, as in the continuum models, the prefac-
monomers is 21% of the total number of atoms; dt.3the  tors appear to have a linear density dependence. With lower
fraction of atoms that are monomers has grown to abouinitial densities of 0.76 and 0.68, the mean cluster size is
one-third. As discussed by Toxvaefd], at very small ex- given by u=2.2/»*8" and by 2.04*"% Using an exponent
pansion rates, the adiabatic expansion becomes a reversilié 2 with these two densities produces a much larger error
one, and the structure of the system is that of the equilibriunthan that observed in the two higher density cases. We find
state. However, we note that an expansion of a two-phasthat these low-density cases are sensitive to the force cutoff
system would produce monomers at a rate proportional to thealue. By changing the cutoff from 25to 4o, the 0.68
cube of domain length, which is far larger than what wedensity result changes from 2" to u=2.2/3'85 an in-
observe in our simulations. crease of 10% in both the exponent and the prefactor. Thus,

Mean Cluster Size |

I
£
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FIG. 8. Droplet mean size from liquid helium free-jet experi- force cutoff distance. 32 K_ result§ with a cutoff of &.%re de-
ments(circles and trianglésand from 3D MD simulations: initial ~ scribed by 224"® (dashed ling while a larger cutoff of & pro-

density of 0.85(starg and 0.94(filled circles vs expansion rate;,  duces results with a larger exponent, 227* (circles. These results
the dashed line ig.=2.8/5%. are based on five run averages. Error bars correspond to one stan-

dard deviation. The dotted line is the mean cluster size from Fig. 7.

with even larger cutoff value@s suggested by Meclat al. K system with in two directions and with no expansion in
[11]), these low-density cases may also approach morehe third direction. Based on volume strain rate, the expected
closely the expected quadratic dependence upon strain rat@ean cluster size would bg=2.6/(25/3)?=5.85/? (the
but, due to the increased computational cost, we have nafensity is 0.85 and the force cutoff is 2)5 the observed
pursued this issue. At high density, however, a similar in-result is a numerical prefactor which is 20% larger than the
crease in the cutoff distance, with an initial density of 0.85,expected one.
produces no change in the mean cluster size from that given While the mean cluster size does not show a dependence
above. We conclude that in order to observe the exponenipon the system size, this is not true for the behavior of the
that is predicted by the continuum models, the lower initialmaximum cluster size; we obtain larger values in larger sys-
densities require a larger force cutoff value than that needetéms. The results, with a force cutoff of 2:5appear to ex-
by the higher initial densities. The numerical prefactor con-ibit a size dependence that can be described by Xor
stants predicted by the continuum models, with an initialthe 32 K results, with numerical prefactors of 18.5 for the 4
density of 0.85, are 27kinetic surfacg versus 1.9(elastic K and 25.2 for the 256 K results. This exponent value is
surface with cubical shapes dependent upon the force cutoff distance. Figure 9 presents
The elastic-surface model and the MD results also agreg2 K results using a cutoff of 2dand 4, with an initial
with experimental information obtained by Knuth and density of 0.85. We see that the maximum cluster size is
Henne. Knuth and Hennld 2] have used free-jet expansion clearly larger at low expansion rates with the use of a larger
of liquid helium to create liquid fragmentation, and from force cutoff.
their data they have estimated the mean cluster size as a From the cumulative distribution of clusters, it is possible
function of the jet diameted* and the jet sound speedf;  to estimate the maximum cluster size, using EB); this
these two parameters define a strain rate. Using the Gradystimate leads t,,~u In(N/w). This logarithmic depen-
model (kinetic surfacg Knuth and Henne determine the dence orN yields a factor of 4 increase between the 4 and
mean cluster size gs=(80m/3)®, where® = y(d*/a*)?is  the 256 K results, whereas the actual increase is a much
their dimensionless fragmentation parameter althe sur-  lower ratio of 1.36. Thus, while the cumulative cluster dis-
face tension per unit mass. However, by comparison withribution does offer a guide to the maximum cluster-size de-
their data, they note that this numerical prefactor is almost 3¢endence upon the expansion rate, the distribution estimate
times too large; a prefactor of 3 describes their data over thgastly overpredicts the magnitude of tNedependence. The
range of one million to 40 million atoms. This approximate apparent crossover of the mean cluster size and the maxi-
expression is also consistent with our MD results based omum size(dotted and dashed lines in Fig) i8 probably an
systems with only a quarter of a million atoms in which theartifact of the finite-system size, as well as the effect of the
mean cluster size is #@&nd less. Using®=u=2.8/5%, we finite force range upon the maximum cluster size.
compare the two results in Fig. 8. A strong caution must be In Appendix A, we describe the observed cluster tempera-
given with regard to this comparison: the flow-induced straintures. The results show that the smaller clusters are colder,
rates created in the jet are more complex than the unifornwhile the larger ones are hotter. In Appendix B, we discuss
expansion rates in the MD simulations; indeed, it is possibleluster shapes and show that clusters become more spherical
that additional factors as large as 3 could enter into the comat lower strain rates. In Appendix C, we discuss the bonding
parison given above. To illustrate possible effects of differ-in clusters and show that the larger clusters at low expansion
ent volume strain-rate compositions, we have expanded a Jates exhibit densities near the triple point value.
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V. CONCLUSIONS 0.8 . . .

A liquid will flow under the action of an applied force,
and a liquid cannot sustain a tensile load for a long time. -
With these properties, how does a liquid fracture? We have
used molecular-dynamics simulations to study the atomiza-
tion process when a liquid is rapidly expanded into the
gaseous-phase region. We find that as long as modifications
to the interatomic pair potential are restricted to the attractive
region beyond the inflection point, there is minimal effect on
the nonequilibrium process of fragmentation in the dense
liquid.

Under homogeneous expansion, with linear expansion
rates# ranging over two orders of magnitude, we show that
the average cluster size is given py= constfP®, where the
exponenp=2d/3 in d dimensions appears to agree with two 0.3 1o 2 30 20 50 50
simple continuum models: the first model, developed by Cluster Size
Grady, minimizes the sum of expansion kinetic energy and
surface energy, and overestimates our simulation results; the FIG. 10. 3D cluster temperature in 32 K system at0.5;
second model equates the stored elastic energy to the surfa@nslational temperatur@iamond symbols with error bars which
energy, and gives more reasonable agreement. In both caségnote one standard deviation based on five realizafiorasla-
expansion energy goes into creating new liquid surface, SBor_lal plus rotational tem_pgratu(_élled circles, and atempgrature
that the average size of the clusters decreases when mdf&imate based on restricting six degrees of freedopen circles
energy is available. connected by a dashed line

We observe that the cluster behavior is quasisteady while

the expanding domain in the simulation grows from 3 to 10°" for CIUSterS bigger than monomers, relative to' the mean
times its initial linear extent. The cumulative number of cIus—mOtIcm of their clustefthe resulting temperatures differ by a

ters is well described by a bimodal distributi¢gum of two few percent. The temperature glefined by all the atoms with
exponentials Starting with the largest clusters, the first respect to the expansion motion ranges from @26L,

mode governs the average large-cluster size, while the sed.” 2) t0 0.5 (=0.25); the temperature of the monomers is

0 . )
ond governs the number of monomers. The distributions arg.bout 60% of these valudwhile the fraction of monomers

based on cluster mass and number of atoms; at low expaP{?”es from 0.6 down to 0.2 over this; range. Thus, the

sion rates, a distribution based on cluster diamg@ebe root monomers do not exhi_bit a very large velocit_y variation
of mass3 appears to provide the same mean cluster size. WB0OUt the mean expansion motion; they are quite cold. The

have studied the cluster temperature, and find that it ing:\tomic velocities ¢,v,w) with respect to their cluster mean

creases gradually with cluster size. At sufficiently low ex-VEIOCity are used to define ”;e CIZUSteg translational tempera-
pansion rates, we note that the average cluster size begins 4§ Using 30— 1)kT=mX (u+vi'+w;), where the sum-
approach the maximum size; that is, the distribution deJmation is over then atoms in the cluster, and the factor
scribes large monodisperse droplets surrounded by vapor, 1 reflects that the velocities are with respect to the mean
which could be symptomatic of the beginnings of system-mass motion of the cluster. If there is more than one cluster
size limitations to our MD simulations. We have not ex- Of @ given size in the realization, the temperatures are aver-
plored below this apparent limit of very slow expansionaded. Then these cluster temperatures are gathered over the
rates, but note that the MD results and liquid helium resultdive realizations at that expansion rate in order to determine a
are both well described by an average cluster size of;2;8/ Mean cluster temperature and an estimate of its standard de-

the helium results involves clusters which are a hundrediation (see Fig. 10, diamond symbols with error haiBe-
times larger than any of the MD clusters. cause there are very few large clusters, the deviation of the

large cluster temperature is greater than that of the small
cluster temperature, about 5% compared to 1%.
The largest clusters have temperatures near the triple

This work was supported at Sandia Livermore by the U.Spoint value(estimated to be 0.%nd the smaller clusters are
Department of EnergYDOE), through the Office of Basic much colder, approaching values near 0.35. However, the
Energy SCienCES, Division of Chemical ScienceS, and at Logma”er clusters have a Significant amount of rotational
Alamos by the U.S. DOE, through the LDRD CD Thrust €nergy. We define a rotational temperature as
“Multiscale Science.” We acknowledge helpful discussions Tr=L-L/(knl), whereL is the angular momentum ards
with Bill Hoover, Alan Kerstein, Eldon Knuth, and Dennis the moment of inertia of a cluster with atoms. Figure 10

Grady. Permission to reproduce the Knuth and Henne data @resents the sum of the rotational and translational tempera-
appreciated. ture (filled circles along with the estimate given by restrict-

ing six degrees of freedom in the cluster: n3{2)kT,
=m3 (u?+v2+w?). The values off, are shown by circles
connected with a dashed line in Fig. 10. The estinTatés

The translational temperature can be based on either theo large when the cluster has fewer than five atoms, and too
atom velocities with respect to the mean expansion motiosmall for larger clusters. Since the clusters are defined by

o
o

0.5

Cluster Temperature

o
'S
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FIG. 11. Projected view of two clusters. The larger one has 535 F|G. 12. Radius of gyration versus cluster size has a fractal
atoms and was formed with an expansion rate of 0.125, while thgharacter when the expansion rate is larger than 0.125; here
smaller one, created by=0.5, has only 56 atoms. =0.5 and the dashed line indicates a fractal dimension of 2.5; re-

sults from 32 K system size.
their geometric arrangement at the instant of examination,
and not over a finite time interval, then the overprediction forsmaller, elongated cluster by a large ratg=0.5). These
the smallest clusters may reflect cases in which the atoms at@ages were formed by filling in cells on a grid if they are
undergoing a collision process rather than being bound towithin a certain distance of any atom center in the projected
gether with a negative total energy. ThUS, on the Whoie’ reVieW. The selected distance is O(ﬁZhalf of the cluster-
stricting six degrees of freedom offers a good estimate of théefining distanceand the cell sizes are 0.16;¢ 0.125) and
cluster temperature. In the two-dimensional expansion work-08- In addition to these projected views, we also examine
of Blink and Hoover[4], the rotational temperature was ex- the cluster moments of inertia and compare with other stud-
amined and found to be of insignificant value. ies of equilibrium clusters. Yoshii and Okazdki3] have

Using a 32 K system, we examine the cluster temperaturg€rformed molecular-dynamics studies of cluster structure in
in low-density equilibrium systems. A density of 0.0315, @ Lennard-Jones fluid which is just above its critical tem-
Corresponding to a domain size OL@ in an expanding perature. They used 10976 atoms with a force cutoff 0§4.9
simulation, was used at two different temperatures: 0.5 an@nd defined the clusters based on the bond length ofs].24
1.4. The initial atom locations are on an fcc lattice with ran-as in our work. They examined the cluster structure at den-
dom velocities drawn from a Maxwell-Boltzmann distribu- Sities below the critical density, since above the critical den-
tion based on the desired temperature. The mean temperatuiéy the clusters tend to be connected throughout the periodic
is enforced during the simulation by rescaling all the atomdomain. The components of the inertia tensor are given by
velocities at each time step, over a time period oftg00n  terms likel =2 (X = Xcm) (Yi —Ycm) . Where the summation
the colder simulation the atoms condense into clusters durint§ 0ver then atoms in the cluster, which has a center of mass
the simulation and the average potential energy continues @t (Xem:Yem:Zem). The radius of gyratiorRy is the square
decrease with increasing time. We pick a time when thgoot of the mean-square average distance from the center of
maximum cluster size is similar to that of an expandingmass,Rg=/(Ixx+1,,+1,,)/n. Yoshii and Okazaki present
simulation at a low expansion rate. The variation of clustetthe radius of gyration as a function of cluster size and find
temperature is similar to the expanding system: the largethat it has a fractal character. Using the relatiaflfzn,
clusters are hotter than the smaller ones. In the equilibriunvheren is the cluster size an®; is the fractal dimension
simulation with a temperature above the critical point, thedetermined from a log-log plot of radius versus cluster size,
average potential energy reaches a constant value early in tiigey obtain a value of 2.2&arlier work by Heyes and Mel-
simulation, and the number of clusters also reaches a conose reports a value of 2.3%.1[14]). We find a range of
stant value. The maximum cluster size is much smaller thagalues: from an exponent of 3.0 when=0.125 to a value
the cold cas¢8 compared to 63 and these small clusters are of 2.15 whenzn=2. Hence the fractal nature of our clusters
colder than the mean temperature. In this warm system, gepends upon the rate at which they have formed. Figure 12
cluster can maintain its structure if it has low enefgglder  presents the radius of gyration in the casepafqual to 0.5.
than the mean while in the cold systentbelow the triple  The line indicates thab;=2.5; when the expansion rate is
poiny the rare larger clusters have more energy than averag@nity, D;=2.25 (not shown, but similar to the results of

Yoshii and Okazaki, except that our cluster-size range is
APPENDIX B: CLUSTER SHAPES much smallex. , ,
The changing fractal nature with expansion rate also af-

Figure 11 presents a projected view of two clusters: ondects the distributions of cluster size. The cumulative cluster
appears circular and the other elongated. The circular oneistributions, which are used to determine the mean cluster
was created with a low expansion rate=0.125) and the size, have been based on cluster mass, that is, the number of
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atoms. At low expansion rates in the MD simulations, a dis- 0.0 . ' ' .
tribution based on cluster diamet@ube root of magsap-
pears to provide the same mean cluster size as those based ¢ _y 5
mass, but, when the expansion rate is larger than 0.25, thers,
the diameter-based distribution does not have any Constan'%‘J
slope region from which a mean size can be selected. AS
discussion of mass- versus diameter-based distributions i<g
given by Holian and Gradjl] and by Grady and Kipp15]. & _15
Further information about the cluster shape can be found g
by examining the shape of the inertia tensor. We form the i;
complete inertia tensor and then diagonalize the matrix to €
obtain the eigenvalues. The eigenvalues are arranged in the3
ordera=b=c; the radius of gyration equalga®+ b+ c?. & 25
A rodlike object will havea>b,c and a pancake shape has
a,b>c. We have formed the ratids/a and c/a; the first 30 : ‘ : : :
ratio can be in the range from zero to unity and the second 0 10 20 30 40 50 60
ratio from zero to the value of the first ratio. At=0.5, the Cluster Size N
average values of these ratios &e@a~0.7,c/a~0.5; aty FIG. 13. The average cluster potentia) and total energy
=0.125 both ratios have larger values>~0.8 and~0.6.  (solid line indicate that almost all clusters have a negative total
Thus, at low expansion rate, the clusters exhibit more of &nergy, and thus are likely to remain as a cluster; results from 32 K
spherical character in comparison to the shapes produced Isystem size in 3D with an expansion raje=0.5. Here the largest
large expansion rates, where the maximum moment is morelusters have about half of the initial liquid state potential energy,
than twice the minimum inertia moment. which is equal to—4.5.

>
-1.0

sion rates, the very large clusters have a potential energy
value close to the initial liquid state value, implying that the
The clusters are defined by the bonds between atom@uster density is approximately the initial triple point den-
which have a smaller separation distance than the inflectiofity-
point of the Lennard-Jones potential, 102 oshii and Oka- Figure 14 presents distributions of the number of bonds in
zaki[13] find that within a cluster each atom has on averagesmall clusters formed at large expansion rates and in large
a low number of these cluster-defining bonds; about threeclusters formed at small expansion rates. In accumulating the
fourths of the atoms have three or fewer of these bonds. IRonds of each atom, only those with a length of less than
our clusters we find similar behavior, but notice that thesel.61o were consideredthis gives a bond energy less than
bonds account for less than half of the atom potential energy-0.2¢ and provides most of the atom potential energy when
When we examine all bonds of the atoms within a clustell bond lengths out to a distance of &.%re considered
(separations up to the distance of the force cutoffgR.9ve The dashed line is the histogram of the number of bonds
find that the number of bonds approaches the number dpund in 28 clusters created by=0.5 (there are a total of
atoms in the small clustefshe maximum number of bonds
is about 60 at low expansion rate and 18 at large expansion  0.20 . . . . . . . .
while over this same expansion range the maximum number
of the cluster-defining bonds changes from 12 joVWhen
we compare the energy given by all the bonds of an atom
(giving half of the potential energy to each atom forming the
bond with just those bonds defined by atoms within the
same cluster, we obtain an energy difference of only a few
percent. Thus, most of the potential binding energy is be-
tween the atoms within the defined cluster; this would be the
intracluster potential energy. Adding the atomic kinetic en-
ergy (with respect to the cluster center-of-mass velgcity
the intracluster potential energy, we find that almost all clus- 005 1
ters have a total energy less than zésee Fig. 1R At 7
=0.5, the clusters which have only three or four atoms have
less than 1% of their population with total energy greater 0.00
than zero(remember the clusters are defined only by their 0 2 4 6 8 10 12 14 16 18 20
geometry at the instant of inspection, and those few clusters Number of Bonds
with positive energy may represent a collision between a F|G, 14. Probability of the number of bonds in a 3D cluster. In
monomer and a smaller cluster, and thus at earlier and lat@4rge clusterg,=0.125, cluster size from 500 to 710, filled cirdles
times they may not be counted as the same clusfgrthe  the most probable number of bontk?) is equal to the number of
low expansion rate of 0.05 and the cluster size of three, thergearest neighbors in the liquid state while in small clusteys
are 7% of the clusters with positive energy; the rest of the=0.5, cluster size from 50 to 72, dashed )itiee most likely num-
clusters have negative total energy. And at these low exparber of bonds is only seven; results from 32 K system size.

APPENDIX C: CLUSTER BONDING
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1510 atoms in the examined cluster§hese clusters repre- the fraction of atoms which are surface atoms with the
sent the largest cluster size formed at this expansion rate, amthange in spherical volume. Packing spheres with dianeeter
their most likely number of bonds is about half that of theinto a volume with radiuf results in the fraction of surface
initial liquid state value, 7 compared to 12, and only 22% ofatoms being equal tod@2R. The largest cluster in Fig. 11
the atoms have more than nine bonds. At low expansion ratdas a radius of abouts5 which gives 30% of the atoms at
7n=0.125 (filled circleg, the most probable number is the the surface, and implies that these are the atoms with fewer
same as the number of nearest neighbors in the liquid statean nine bonds. The other, smaller cluster in Fig. 11 is not
with 30% of the atoms having fewer than nine boritfeere  spherical, but using a radius obr2as representative of its
are nine clusters in this sample with a total of 5175 afoms size, it leads to about 20% interior atortend those have
One reason for the shift in these distributions is the change imore than nine bonds each
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