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The onset of oscillatory convection in binary fluid mixtures in a two-dimensional domain with realistic
boundary conditions on all boundaries is determined as a function of the fluid parameters and the aspect ratio
I' of the container. The first unstable mode has either odd or even parity under left-right reflection. Depending
onI" and the separation rati§ this mode has the form of a standing wave, or a “chevron,” consisting of a
pair of waves propagating outwards from the cell cefierin some cases, inwards towards @odimension-
two points at which odd and even parity modes are simultaneously marginally stable are determined, as are
various Takens-Bogdanov points. For fix8d S;g, all mode interactions among modes of like parity, arising
as I' varies, are of the nonresonant Hopf-Hopf type; however, the details of the modal interchange are
organized by resonant Hopf bifurcations with 1:1 resonance. Particular attention is paid to the asymptotic mode
structure asl'—x, and to the gapin Rayleigh number and oscillation frequendyetween successively
unstable modes. The results quantify the parameter regime in which the weakly nonlinear dynamics of the
system can be described in terms of the interaction of the first odd and even parity oscillatory modes.
[S1063-651%9906706-9

PACS numbg(s): 47.20.Bp, 47.20.Ky, 47.27.Te, 41.20.Jb

I. INTRODUCTION possible cases, that of Neumann boundary conditions at the
sidewalls[6]. These boundary conditions describe stress-free
Binary fluid mixtures with a negative separation ratio ex-sidewalls with no sideways concentration and heat fluxes.
hibit a wide variety of behavior when heated from below. They are special because the resulting eigenfunction can be
Particular attention has focused on the transition to variougeflected in the sidewall without introducing a discontinuity
types Of trave”ng waves W|th increasing Ray|e|gh number_in derivatives. As a result, itis pOSSible to generate an eigen'
The experimenta| situation is summarized in Rdfsrz:l function of the domain of twice the size by a Simple reflec-
Some of these experiments have been carried out in narrofion, and thereby embed the problem in a periodic boundary
gap annular containers, others in rectangular boxes. The twgPnditions problem with a period twice that of the original
experimental arrangements differ in a fundamental way. Irflomain(cf. [7]). Consequently, the eigenfunctions for Neu-
the former, the system is periodic and consequently the inimann boundary conditions are also harmonic with a single
tial instability can develop into a uniform pattern of traveling Wave number in the horizontal direction. These take the form
waves. This is no longer so when sidewalls are present. Thef uniform amplitude standing waves. However, aside from
presence of sidewalls destroys the translation invariancBlis special case, one expects eigenfunctions of more com-
present in the annuldor unboundefisystem, with the result Plex spatiotemporal behavior, subject only to the require-
that the finite system has only a left-right reflection symme-ment of odd or even parity. These are the eigenfunctions that
try. Consequently, the eigenfunctions of the latter system ar@’® computed in this paper. These calculations are done for
either odd or even under left-right reflection, but are otherParameter values of experimental interest. Transitions be-
wise unconstrained by the symmetr[&3. In contrast, in the ~tween different modes are studied in detail as a function of
annular(or unboundeficase the presence of translation in- the aspect and separation ratios, and their asymptotic prop-
variance with periodic boundary conditions forces the eigenerties for large aspect ratios are investigated. Of particular
functions to be sinusoidal functions with a single wave num-ignificance is the observation that for lafjehe maximum
ber in the horizontal direction. Such eigenfunctions take th&Jrowth rate and frequency differences between the first two
form of left- and right-traveling waves. In many cases themOdeS that set in both scale Bs?. This result supports the
system also has a midplane reflection symmetry. Howevegescription of the system in terms of an interaction between
when the initial bifurcation is oscillatory, this symmetry is the first odd and even modé4], and the subsequent inter-
equivalent to evolution in time by half a period and hencepretation of experimentally observed bursting behavior given
has no effect on the dynamics. in [8].
The difference in symmetry between the bounded and un-
bounded systems is crucial, and is present regardless of the Il LINEAR STABILITY PROBLEM
aspect ratio of the system. It suggests that while unbounded
systems are best described in terms of amplitude equations We consider a two-dimensional binary fluid mixture in a
for the amplitudes of left- and right-traveling waves, rectangular containerD={x,z| - ;[ <sx<3I',—3<z<3}
bounded systems should be described in terms of odd artkated uniformly from below. In the Boussinesq approxima-
even modedcf. [4]). However, at present, the structure of tion appropriate to the experiments, the resulting system is
such modes is unknowft], except in the simplest of all described by the nondimensionalized equati@is
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du+(u-V)u=—VP+oR[6(1+S)— Sy]z+ oV2u The conditions=0 defines the onset of instability and yields
(2’_13 a complex condition that can be solved f@rand w as a
function of the aspect ratib for various values ofr, 7, and

8,0+ (u-V)o=w+ V29, (2.1p  the separation rati&. In the following section we summarize
our results for two sets of parameters=0.6, 7=0.03
am+(u-V)p=1V25+V?20, (2.10  (typical of 3He/*He mixture$, and o=18.0, 7=0.012
(typical of water-ethanol mixturgésThese choices are moti-
together with the incompressibility condition vated by the experiments of Sullivan and Ahl¢i®] and

Steinberget al. [2], respectively.
V.u=0. 2.1d get al. [2], respectively

Here u=(u,w) is the velocity field in &,z) coordinatespP, ll. RESULTS
¢, andC denote the departures of the pressure, temperature, In this section we describe the results obtained for two
and concentration fields from their conduction profiles, andsystems,®He/*He and water-ethanol mixtures, as functions

n=6—C. The system is specified by four dimensionless paof both the separation ratio of the mixture and the aspect
rameters: the separation rathe Prandtl and Lewis num- ratio of the container.

berso, 7, and by the Rayleigh numb@&, in addition to the

aspect ratiol'. The boundary conditions adopted will be A. 3He/*He mixtures

those relevant to experiments performed in finite containers.
Thus the boundaries will be no-slip everywhere, with the : N
temperature fixed at the top and bottom, and no sideway§e'S:o=0.6, 7=0.03. We begin by describing the results
heat flux. The final set of boundary conditions is provided by!0f Mmodest aspect ratios, 40°<12.0. Figure 1 shows the

the requirement that there is no mass flux through any of th§/9envalue(I') andw(I') for two values of the separation
boundaries. The boundary conditions are thus ratio, S= —0.001 andS=—0.01, in each case for the first

even(solid line) and the first odddashed ling mode. For
u=n-Vy=0 on D (2.2 S=-0.001, Fig. 1 reveals an oscillatory approach of both
sets of curves towards the critical Rayleigh numBegrand
and frequencyw., for an unbounded domain. The braiding of the
N neutral stability curve®R(I'), seen in Fig. (a), is familiar
6=0 atz==1/2, 50=0 at x==3I. (2.3  fom studies of stationary Rayleigh-Bard convectiofi11—
13], and is found in other systems as wglH]. Because of
the braiding, the neutral stability curves for the first odd and
. first even modes cross repeatedly. Such mode crossings in-
duce the stream functiog such that dicate the presence of codimension-two bifurcations. Figure
U= (= a1 o) (2.4) 1(b) shows that at these points the frequencies of the com-
z X ' peting modes are distinct. Consequently, these mode interac-
The nonlinear problent2.1) can be written in the abstract tion points correspond to nonresonant double Hopf bifurca-
notation tions. However, whers= —0.01, the situation changes: for
large enough aspect ratiok ¥ 10.0) the two neutral curves
Le=N(¢,o), (2.5 develop cuspgFig. 1(c)]. The presence of these cusps is
reflected in the discontinuous jumps in the corresponding
where frequency curvegFig. 1(d)]. Figure 2 shows the develop-
5 ment of these cusps with decreasBdocusing on the range
Ve—é, x 0 10.0<I'<12.0. The figure shows the firstvo even (solid
L=| oR(1+S)d, VX0V2-3) —0Si, |, (2.6 lines) and odd(dashed linesmodes atS= —0.005 [Figs.
v2 0 V2 g 2(a) and 2b)]; S=—0.008[Figs. 4c) and 4d)], and S=
t —0.01[Figs. 2e) and Zf)]. In Fig. 2a) thick (thin) lines are
used to indicate the firdsecond mode of each parity and
this coding is used to identify the corresponding modes in
Figs. 4c) and Ze). In the latter the dotted and dashed-dotted
y=n-Vy=n-Vyp=0 on 4D (2.7) ~ curves indicate even and odd modes originating from yet
higher modes in Fig. (). Observe that in Fig. (@) the neu-
and Eq.(2.9). In this paper we focus our attention on the tral stability curves for the two odd modes avoid one another,
linear stability properties of the conduction state=0, i.e., ~as do the corresponding curves for the two even modes. At
the solutions of the linear problem¢=0. The nonlinear the same time the two sets of frequency curves intertwine.
problem will be the topic of a future paper. As S decreases the two odd modes come together Rear
To determine the critical values of the Rayleigh numBer =10.5 and their frequencies coalesce, apparently with the
at which the conduction state loses stability to overstabldrequency of the primary even mode; similar behavior in-
convection and the corresponding frequergywe look for ~ volving the two even modes takes place nEar11.5[see
solutions to the linearized equations of the form Fig. 2(d)]. At somewhat smalle$ the two Rayleigh number
A curves cross transversdliig. 2(e)] as the first and second
d=1(x,z)elSH1t, (2.8  modes of each parity trade places,

We describe first the results for typicAHe/*He param-

Here oD denotes the boundary @f.
To reduce the number of equations involved, we intro-

N denotes the nonlinear terms, agd=(#6,, ). Equation
(2.5 is to be solved subject to the boundary conditions
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FIG. 1. Onset of convection ifHe/*He mixtures ¢=0.6, 7=0.03) in moderate aspect ratio containéas Neutral stability curves and
(b) corresponding frequencies for the first eveswlid line) and odd(dashed ling modes as a function of the aspect raliofor S
=—0.001.(c) and(d) are the same as) and(b) but for S= —0.01.

forming the cusps seen in Fig(cl. In the range of aspect nances located at discrete poin®Y,I'(®,S{*)) in the
ratios shown this happens first for the even modes, closelthree-dimensional parameter spa@I{,S) as we now de-
followed by the odd modes. At the same time the corre-scribe.

sponding frequency curves separate and thereafter no longer At each 1:1 resonance the linear problem takes the form
cross. The same interchange mechanism is also responsible

for the appearance of the cusp in the second even mode ) iw‘c3) 1 Z;
neutral stability curve nedr =10.3 with a yet higher order = 0 ie® ( )
even mode involveddotted ling, with similar behavior oc- ¢
curring for the second odd mode ndar 11.3 as wellFig. ) ]
2(0)]. wherez; andz, are the complex amplitudes of the first two

This type of behavior can be understood as follows. Conlike-parity modes. He_f@’(cs) is the resonant frequency. This
sider first the case of stationary convection in a finite box. InJordan block form arises because both modes havsaine

this case the neutral stability curves for the first odd and evefymmetry. In contrast, a 1:1 resonance between an odd and
modes are braided much as in Figa)] and so are the cor- an even mode would have a diagonal linearization; the inter-
responding curves for the second odd and even modes, eggction of the corresponding neutral curves is then robust
These families do not interact, i.e., the primary instability isunder perturbationgunfolding of the normal form. This is
always to either an odd or an even mode from the first famhot so when both modes have like parity. Since the 1:1 reso-
ily. In this case it is known that aE— the gap between nance is a codimension-three phenomefibis necessary to
adjacent families i€)(I'~2), while the amplitude of the os- chooseR(¥, T'{¥) to locate the crossing of the neutral sta-
cillations in the neutral curves is on(I' %), i.e., when the  bility curves, and vary a third parametérereS) to match
aspect ratio is large enough a gap opens up between the fii§e frequencies at the crossing pgdirthe most general de-
family of neutral curves and the neit1,13,13. In the case formation of the Jordan block appearing in E8.1) depends

of oscillatory onset the situation is more complex. For fixedon three real parameters. The resulting linear systefhak

S however small, the braiding behavior continues for mod-

erate aspect ratios, but with increasiighe different fami- ( z

(3.1

Z, Z;

iw(CB)-I— a 1

lies of neutral curves begin to interact and the even and odd
modes that come in first can be traced to successively higher
families. The necessary crossing between modes of like par-
ity originating in adjacent families is mediated by 1:1 reso-and leads to the characteristic equation

Z;
5

witin, i0®+a

Z3



6733

FIG. 2. Details of the recon-

nection process between two
modes of like parity for(a) and
(b) S=-0.005, (c) and (d) S
=—-0.008, and (e) and (f) S
=-0.01, wheno=0.6, 7=0.03.
In (a) solid (dashed lines denote
even (odd modes, while thick

(thin) lines denote first(secondl
modes of each type.
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(s—a—iwM)?—pu—ip,=0 (3.3

for solutions of the form expt To find the neutral curves we
sets=iw and obtain the two real equations

(w— w(cs))z-f- L1 a?=0, Za(w—w(cs'))-l—,uz:O. (3.4

It follows that

1
a?=5 (1t Vit u)) (3.5
and
1
(0= 0f)2=5 (= pa+ Vuitud). (3.6

=+3| | Y?u,, with the same* \u,[/2 behavior for| u,)|
>|u4|. Thus when|uq| is small the slope of the lines
through the origin is large. This type of behavior can be seen
near the crossing of the two odd modes in Fige) AT’
~10.5). Together these observations suggest that we identify
a, my, and pu, with Ag=(R—RP)/RP), As=(S
-3 /s®) andAr=(T'-T3)/T, respectively, in place

of the more general linear relation

(t1,m2,0) =M (Ag,Ap, Ag) T+, (3.7

whereM is a constant ¥ 3 matrix. We return to this point
below.

This identification is supported by the behavior of the
frequencyw as a function ofu,. When u,>0, Eq. (3.6

We now examine these relations in turn. It is convenient toshows thatw—w’® takes the form of two straight lines

think of Eg. (3.5 as describing the dependenceabn u,
for fixed w,. When u,>0, |a(,u2)|>\/z with zero slope

at u,=0, and a~= | u,|/2 for |u,|> .. Consequently,
when uq is small, the curve|a(u,)| has a narrow but

crossing at the origin, and convex away frgp=0. The
slope of these lines at the origim, u; *2, is large whenu,
is small, with the result that the two positive branchesvof

— o form a cusp at the origin, as do the two negative

rounded minimum af,=0, but rapidly becomes convex as branches, i.e., the curves crogsee Fig. 2d)]. When u,
| o] increases away from zero. A tendency towards this type<0, |o— o¥)|= V= u; at u,=0 with zero slope there and

of behavior can be seen in Fig(c2 nearI'=11.5 and be-

convex behavior folu,|>|u4|. In other words, the cusp

comes more and more pronounced as the two even modits off the axis and becomes differentiable as the two fre-

neutral curves approach one another. Moreover, when
<0 and|u,| <|u4|, one finds that locallyx(u,) takes the
form of a pair of straight lines through the origiry

guency curves cease crossing and defdéh. 2(f)]. This
process is the reverse of what happens indlg,) curves,
and accounts for thélocal) resemblence between the Ray-
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leigh number plot fors>S{® and the frequency plot fo i.e., the 1:1 resonances are alwayselded Nonetheless, as
<sf:3), and vice versa. The origin of the frequency jump indicated above, these resonances provide the key to modal
seen in Fig. {d) for S=—0.01 is now clear: if one follows exchange between like-parity modes as the aspect ratio of the
the neutral stability curve for théirst even mode to set in system is increased and hence to the fact that different modes
[Fig. 2(e)], one must switch at the mode crossing point fromultimately set in as primary modes &sincreases. Loosely
the thick solid frequency curve to the thin one. Such fre-speaking, these modes differ in the number of “rolls”
quency jumps are thus the result of the detachment of thpresent, although in the present system this number is not
frequency curves at the 1:1 resonance. Note that away froronstant along any continuous neutral curve. This is a con-
S=S2 the two odd and the two even neutral curves cross irsequence of the non-Neumann boundary conditions at the
a structurally stable way. This is because the frequencies aidewalls(cf. [13]).
the mode crossings are now nonresorjahtFig. 2f)]. The above theory apparently provides a complete descrip-
Note also that the critical frequenay?) of the two odd tion of the transformation of the neutral stability curves at
modes appears to coincide with the frequency of one of théhe 1:1 resonance. In fact, a careful examination of the reso-
even modes, and vice versa. Despite this coincidéwbé&ch ~ nance neal’=10.5 reveals an unexpected surprise. Figure 3
we do not understandthis even mode is not in resonance summarizes what happens: as the resonance is approached,
with the two odd modes; it sets in at a lower valueRodnd  the first odd mode develops a cusp before the mode “cross-
is therefore already unstable. Consequently, all of the coming” takes place. This cusp is associated with a hysteresis
plex dynamics associated with the odd-odd 1:1 resonancéifurcation” in its frequency. As|S| increases the cusp
[16] are unstable to even parity perturbations and vice versadurns into a loop that grows in size as the two neutral stabil-
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odd mode temperature

ity curves approach one another. At the 1:1 resonance the gyen mode temperature
two neutral curves touch, and so do the corresponding fre- o
quency curves. However, in contrast to the theory described
above, both do so with an orientation that is opposite of that
predicted. With further increase 8| both sets of curves
reconnect and move apart, eventually producing the mode
crossing shown in Figs.(8 and Zf). Thus at the actual 1:1
resonance no mode crossing in fact takes place; the mode
crossing seen in Fig.(8 is in fact formed when the neutral
stability curve first develops the loop. This type of mode
interaction can also be described by the above theory, but
requires a conversion from the unfolding parameters to those
used in the calculations. This conversion is nonlinear. If we |
suppose thatXs,Ar,Agr)=0(e), €<1, and examine the
relations(3.4) we are forced to conclude that at leading order
w12=0(€?), while @ andw— ®) are bothO(€). Thusu; »
are in fact bothquadratic functions ofAg,Ar,Ag, in con-
trast to the naive relatio3.7). It follows that the relation
between u,, and « given by Egs.(3.4) is quartic in
Ag,Ar,Ar. WhenAg=0 the resulting relation betweek even mode temperature odd mode temperature
andAr has either two or four real roots, describing the two
types of mode crossings that can occur in these variables, but
the detailed appearance depends on the coefficients. It is|
likely that a similar nonlinear relation between the unfolding
and physical parameters is also responsible for the formation
of the cusp seen in Fig. 3 even though the normal f8rd)
is not an unfolding of this degeneracy.

We have used Fig. 3 and similar figures to locate three 1:1
resonances:

R{®=1855.80, I'¥=10.4816, S{¥= — 0.00994,

(3.83
R{®=1803.80, I'¥=19.8062, S{*)= — 0.006028,
(3.8H
R®)=1784.15,T¥=34.2444, ¥ = —0.00403. FIG. 4. Space-time diagrams, with time increasing upwards,

(3.80 showing the evolution of the midplane temperature as a function of
location x in a I'=10.0 container,—5.0<x=<5.0. Top panelsS
The resonant frequencies at these points are 1.318, 0.976,~0.001; bottom panels3=—0.01. The eigenfunctions in the
and 0.76, respectively. The first of these resonances is showWfmer case are standing waves, but become chevronlike states in
in Fig. 3; the next is also associated with loop formation,the latter.

although the loop is much smaller. Specifically, if we char- i
acterize the loop in thd'~10 container by its sizeAR  Wherez. denote the complex amplitudes of the even)(

~1.5, and extentAS~10"%, in the I'~20 container the and odd () modes, respectively. The unfolded linear prob-
corresponding quantities aR~0.5 andAS~1076. For  |em is then given by

the third resonance, nelir= 34, the loop(if it exists) is too . )
small to be resolved. Thus the loops apparently disappear as Ze| _[Hetloy 0 Z+ (3.10
I' increases. 7 0 u_Fio_J\z_)’ '

In contrast to the codimension-three bifurcations just dis-
cussed the codimension-two odd/even interactions are n@there u.. represent the growth rates of the two modes and
shielded. Consequently, the dynamics arising from the inters) , — (2= O(u.). These growth rates vanish at the mode
action between the first odd and even modes is observable E}ossing_s, hereafter denoted @(C’zp ,F(CZ)). As already men-

; . i . ; _ _ _ o s
the nonlinear problem. At these bifurcations the linear probyigned these results remain valid evendf? = 0?®

) l.e,
lem takes the form ¢

even at resonance.
In Fig. 4 we show the first even and odd temperature

zZ, io? 0 z, modes forI’'=10.0 whenS=—0.001 (top panel and S
. =( i (2)) ( ) , (39 =-—0.01(lower panels The modes are shown in the form of
z_ 0 loc-)\z- space-time diagrams, with time increasing upwards. When



6736 BATISTE, MERCADER, NET, AND KNOBLOCH PRE 59

a) b)
1775
o 0.271
=]
E770F ="~~~ —+ ¥
= 8
I 3 0.27
= g
% 1765 =
o 0.269
1760
33 338.5 34 34.5 35 33 33.5 34 34.5 35
aspect ratio aspect ratio
c) d) FIG. 5. Neutral stability curves
1795 0.78 : and onset frequencies for convec-
3 : : tion in S3He/*He mixtures ¢
£ 1790 50-77 =0.6, 7=0.03) in large aspect
2 5 ratio containers when(a) and
5 g7 (b) S=-0.001, (¢) and (d) S
%1785 = 0.75 =—-0.004, and(e) and (f) S
i R _ ’ =-0.01. In (a) solid (dashed
78—~ ——=-—~ 0.74 lines denote ever(odd) modes,
33 335 34 345 35 33 335 34 34.5 35 while thick (thin) lines denote first
aspect ratio aspect ratio (second modes of each type.
e) f)
1815 14
@
Ke]
E 1810 &1.35
£ 5
ey =]
=/ g
2 1805 £ 13
)
o
1800 1.25
33 335 34 345 35 33 335 34 345 35
aspect ratio aspect ratio

S=—0.001 both eigenfunctions take the form of standingthe amplitude of the eigenfunctions still peaks in the center
waves, with the dynamics either in phase at the two sidewalland that the wavelength of both modes remains essentially
(even modgor out of phas€odd mode¢. The amplitude of constant across the container.
the standing oscillations peaks in the middle of the contain- Itis of interest to compare the above results with those for
ers and decreases towards the sidewalls. There is a considér=34.0, the aspect ratio used by Sullivan and Ahle1g].
able phase laghot shown between the temperature and con-In Fig. 5 we show the neutral stability curves and corre-
centration oscillation, a consequence of the small value of sponding frequencies for the first four modes in the range
In both cases the wavelength of the standing waves is almo83.0<I'<35.0 forS=—0.001, S= —0.004, ands= —0.01.
uniform across the cell, in contrast to the amplitude. A comparison with Figs. 1 and 2 reveals that the frequencies
As S decreases the eigenfunctions gradually develop int@f the dominant modes are evidently determined primarily
“chevronlike” states, as indicated in the space-time dia-by the fluid parameters and not the aspect ratio. This is be-
grams forS=—0.01. Both even and odd modes consist ofcause the oscillations are bulk oscillations that are modified
waves propagating outward from the container center anflut not caused by the presence of sidewalls. Figus 5
modulated in amplitude at the Hopf frequensyIn particu-  shows that whenS| is sufficiently small the first two fami-
lar, away from the center of the container the node lines ardies of neutral curves are separated by a gap that is much
now defined for all time and these propagate slowly wherarger than the amplitude of the braids within each family.
the amplitude is large and rather more rapidly when it isThis is typical of what happens in Rayleigh+®Bed convec-
small. Thus the resulting oscillation has the form of a large-tion with non-Neumann boundary conditiofis3]. However,
amplitude near-stationary state followed by a shorteiin the case of overstability this behavior changeg3isin-
smaller-amplitude propagative phase during which the noderease$Fig. 5(c)] and begins to look like that shown in Fig.
translates outwards by half a wavelength, followed by anb(e). This figure shows the neutral curves & —0.01 but
other large-amplitude near-stationary phase, etc. Despite ithe same range df, and reveals the crossing of adjacent
complexity the resulting oscillation is of course sinusoidal ineven modes. This mode crossing involvesn@nresonant
time. Also of interest is the fact that nodes are continuallydouble Hopf bifurcation[Fig. 5(f)] and is the result of a
born in the middle of the container. This is necessary ifresonant 1:1 mode crossing & — 0.00403[see Figs. &)
waves continually propagate outwards, but it indicates thaand 5d)], i.e., it is formed by the same process as that lead-
quite complex behavior with sourcdsr sinkg is readily ing to the nonresonant crossings shown in Fige) and Zf).
described bylinear eigenfunctions, i.e., there is nothing in- The fact that the frequency curves in Figf)zare essentially
trinsically nonlinear about such features. Note, however, thaparallel “straight lines” confirms that this mode crossing is
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“far” from the 1:1 resonance &= —0.00403. The figure is odd mode temperature odd mode temperature
also in agreement with the plausible hypothesis that in large
aspect ratio systems the frequencies of the first few modes
must take the form

op~w,t+C M e, 7%+, n=1,2,..

(3.11)

where the indexn specifies the order in which the modes
become primary a¥' increases. Thus theth mode is pri-
mary in the intervall',_;<I'<I",, etc. It follows thatn
=O(I"). The results of Fig. 5 suggest that,~c,, C,,
~nc,, wherec,; andc, areO(1) constants independent of
andl'. Then, at anylarge T", there is arO(I' 1) correction
t0 w.., while A yw=w,;1—w,=O "?). Thus near any
particularT” the quantityA ,w takes the form, as a function
of I', of a set of equally spaced, almost horizontal, lines. We
have checked that similar behavior occurs $e+ —0.021 as
well. Figure 5 therefore suggests that for lafgéhe splitting
Aw in frequency andAR in Rayleigh number between the
first odd and even modes are both of temeorder asl’
—oo. As discussed in Sec. IV, this conclusion implies that
the normal form describing the interaction between odd and
even modes in the large aspect ratio limit has approximate
D, symmetry, as argued by Landsberg and Knoblggh
Figure 6 shows the first odd temperature eigenfunction for
S=—0.001 andS= —0.021, again in the form of space-time
diagrams. In the former case the eigenfunction now consists X X
of a pair of waves travelinghwards with the center of the

tai . ink. O in th | i FIG. 6. Space-time plots of the midplane temperature, with time
con amgr Serving as a sink. .nce aga'?‘ € waveleng Iﬁcreasing upwards, showing the evolution of the first unstable
very uniform across the container despite the fact that the, e as a function of locatior in a I'=34.0 container—17.0

amplitude varies substantiallifower left panel. WhenS — —, 170 Top left panel, S=—0.001; top right panel,S

= —0.021 the direction of propagation is outwards with the— _ ¢ 021. The lower panels show the corresponding midplane tem-
center of the container h_aymg become a source. The amplperature profiles at=0.3T, t=0.5T, respectively, wherd is the
tude now has a local minimum at the center and increasesopf period.

outwards, peaking near the sidewallswer right panel

This type of eigenfunction was anticipated by Cr$4g], 0(x,2,t)=p()f_(x,2)+ - - - . (3.13
and is characteristic of eigenfunctions in systems \pibisi-
tive group velocity. In our finite system we cannot, strictly The Takens-Bogdanov point is of codimension two and its
speaking, define a group velocity since the allowed wavgnfolding is given by
number is quantized by the sidewalls, as well as being non-
uniform. However, for the purposes of the present paper the P 0 1\/p
most important observation is that for aspect ratios this large ( :( )( ) (3.14
the odd and even eigenfunctions are essentially indistin- o} IR AN
guishable, as hypothesized by Landsberg and Knolléth

As is well known, oscillations in binary mixtures are whereu and v are real unfolding parameters relatedRo
present only for sufficiently largkS|. We have examined the — Ryg andS—S;g. ForI'=9.8 the situation changes. AS|
effect of sidewalls on the transition from oscillatory onset todecreases an oscillatory odd mode is now superseded by a
steady onset afS| decreases. FoF ~10 these results are steady even mode &~ —0.000532, while the oscillatory
summarized in Fig. 7. A$S| is decreased foF =9.7 the  mode still has a finite frequency. The resulting transition is a
frequency(not shown of the first mode(an odd modede-  Hopf steady state interaction, and is also of codimension
creases smoothly to zero &= S;g~ —0.000516 and, there- two. A similar transition occurs wheli=9.9. Finally, when
after, a steady mode of the same parity is preferred. The zedd=10.0 the even mode is preferred on either side of the
frequency point is known as a Takens-Bogdanov point; affakens-Bogdanov transition and remains so uhit# 10.7

such a point the linearization takes the form where an odd mode begins to take over again. The transition
atI'=34.0 is also an interaction between an oscillatory odd
( p) 0 1\(p mode and a steady even mode, and occurs Sat
. =( )( ) (3.12  =-—0.000555 ancR=1761.55. It is of interest to compare
q 0 0/\q these results with those for an unbounded layer with periodic

boundary condition$18]. Here the Takens-Bogdanov point
wherep(t) is a real amplitude and is alwaysshielded by an oscillatory instability that precedes
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FIG. 7. Transition between oscillatory and steady onsets as a function of the separation ratio for the fifsole/&neg and first odd
(dashed linesmodes for aspect ratios neBr=10 ando=0.6, 7=0.03.(a) I'=9.7,(b) '=9.8, (c) '=9.9, and(d) I'=10.0. The lines to
the left (right) of the break in slope correspond to steddsgcillatory) onset.

it. Specifically, Rg=~1758.2 and S;g~ —0.000530 with  water-ethanol mixtures o{=18.0, 7=0.012) for 4.6<T

wave numbekg=3.0754, but the transition to steady con- <12.0 andS= —0.001[Figs. §a) and 8b)] S= —0.01[Figs.
vection takes place already &~ —0.000544. At thisS  8(c) and 8d)]. Except for quantitative differences, the behav-
steady convection sets in &=1758.18 and has the wave ior of these curves resembles strongly that shown in Fig. 1
numberk=23.1420. However, in contrast to the finite con- for He/He* mixtures. In particular, we see again the forma-
tainer situation this transition cannot be described by a finitetion of cusps with increasing aspect ratio, indicating the pres-
dimensional Hopf steady state normal form because th&NC€ of mode crossing. The resulting eigenfunctions are
wave numbers at this transition are effectively incommensydualitatively similar as well. Indeed, a stable chevronlike
rate. Although the shielding effect is evidently small it doesPatern has been observed near onset in an ethanol-water

imply that in an unbounded system the dynamics associat%‘ixture with these parameter values<0.012, 0=18) at

- ] - =—0.014 [2]. Weakly nonlinear calculations in an un-
with the Takens-Bogdanov point may be unobservable. | ounded domain with these parameter values show that

Coaet I e JSer our cacatons nccate Ut Siaie chevions are s resent wibeceeds- 0 010],
0 . in close correspondence with the experimental observation.

oceurs for abqut 18% O.f the aspect ratios nEarrlO) and  The fact that these states occur stably in such a limited range

indeed _dynamps associated with such a point hav_e been dg; g may explain why they have been observed in so few

tected in experimentfl9]. The Hopf steady state interac- experiments.

tions are also, in principle, observable. Note that by varying

the aspect ratio it should be possible to locate several

codimension-3 bifurations. A double Takens-Bogdanov bi- V. DISCUSSION

furcation at which the first odd and even modes both have In this paper we have described in detail the onset of

zero frequency simultaneously may be accessible. As of nowscillatory convection in a two-dimensional container with

this codimension-three bifurcation has not been studied angalistic boundary conditions applied on all four boundaries.

specific predictions about the resulting dynamics cannot b&hese results indicate that the sidewalls introduce a number
made. of complications into the system even if the aspect ratio is

quite large. We have seen that the competition between odd
and even modes in such a system takes one of two basic
forms, depending on the separation and aspect résies

In Fig. 8 we show the critical Rayleigh numbers and as-Fig. 9. When|9| is small(i.e., close tdS;g) andI is not too
sociated frequencies for the first even and odd mode folarge, the mode interaction takes the form familiar from

B. Water-ethanol mixtures
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FIG. 8. Onset of convection in water-ethanol mixtures=(18, 7=0.012) in moderate aspect ratio containdes. Neutral stability
curves andb) corresponding frequencies for the first eusnlid line) and odd(dashed lingmodes as a function of the aspect rdfidor
S=—-0.001.(c) and(d) are the same a®) and(b) but for S=—0.01.

Rayleigh-Bmard convection with non-Neumann boundary basis of our calculations we have made several conjectures
conditions: the neutral curveR(I") divide neatly between about the behavior of the neutral stability curves and corre-
different families and there is no intermingling among themsponding frequencies and eigenfunctions for large aspect ra-
[see Fig. Ba)]. Each family consists of a pair of braided tios. These bear out the picture of large aspect ratio systems
neutral curves, one for an odd mode and the other for aput forward by Landsberg and Knoblo¢#] with two sig-
even mode, with each family well separated from the next, anificant clarifications. First, we have found that if the sepa-
least for the low-lying families. The crossings between oddration ratio is small there is a substantial range of aspect
and even modes within each family are structurally stablegatios within which the first odd and even modes to set in are
because of their different parity. At fixdd and large enough separated from the next pair by a significant gap in Rayleigh
|S| the situation is quite differeriisee Fig. &c)]. There are number. In this range the existence of the gap justifies the
now no distinct families of neutral curves and all modesreduction of the partial differential equations to amplitude
(including like-parity modescross. These mode crossings equations for the first odd and even modes only. We have
are all structurally stable, either because the modes have opresented examples of what these modes look like. However,
posite parity, or because their frequencies at the mode crosker sufficiently large aspect ratios or sufficiently large sepa-
ings are nonresonant. The transition between these two typeation ratios this gap disappears, and odd and even modes
of behavior occurs via 1:1 resonant mode interactions as ilfrom different families are selected in succession. In this case
lustrated in Fig. 2. These interactions allow mode crossingghe reduction to a pair of amplitude equations continues to be
between like-parity modes belonging to different familiesvalid near all crossing points between odd and even modes,
and hence are responsible for the transition between the nebwt it is no longer clear whether such a description captures
tral stability curves in Figs. &) and 5c). Likewise, at fixed the behavior of the system for all intervening aspect ratios.
S the neutral stability curves are braided when the aspecdbecond, we have found that the frequency difference be-
ratio I' is not too large, but with increasing nonresonant tween the competing odd and even parity modes scales as
crossings between like-parity modes appédr Fig. 2, as ' "2 for largeT” instead of the expecteld™! behavior. This
anticipated by Hirschberg and Knoblofh3]. We have also observation strengthens the argument in favor of Rfas
seen that in a finite system the Takens-Bogdanov point igve now describe.

likely to be accessible to experimental study if the aspect In Ref. [4] Landsberg and Knobloch suggested that
ratio is chosen appropriately, and likewise for Hopf steadyweakly nonlinear overstable systems in large aspect ratio
state interactions between opposite parity modes. Both olsontainers are properly described by the normal form equa-
servations may shed light on the experimdii3,20. On the tions for a double Hopf bifurcation with brokdd, symme-
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' : ' stability curve for an unbounded system is parabolic near the
\ . minimum Au=0O(I'"?) for large I', but anticipate that
\ Aw=0(I'"1) on the grounds that the frequency is typically
not at a minimum. In this case it is possible to use averaging
\ /,,——-“"‘ to eliminate the last cubic term in each equation in Egs.
P i (4.3, (cf. [4]). However, this simplification is only possible
aspectato >~ when Aw>Apu. In the present paper we have found, by
~. explicit calculation, that in fach w=O(I' ~?). This result
has two important consequences. First, it implies that the
frequenciesw.. stop oscillating withI" for large enough’
and hence that there are no 1:1 resonances in containers of
sufficiently large aspect ratio. Once this is the case all mode
wpectato crossings become structurally stable with the like-parity
crossings always shielded by an opposite parity instability at
, , , , , , a lower Rayleigh number. If this is true then the structure of
1 1 aspei? atio %0 % a0 the neutral curves for an overstable system in a large enough
container resembles that for a large aspect ratio steady state
FIG. 9. The (,S) plane showing the approximate location of mode system with Neumann boundary conditions at the sidewalls,
avoidance(hatched regionand mode crossinfunhatched region  as hypothesized by Hirschberg and Knobl$&B]. This dis-
cussion suggests that, given a separation gtithere is an
try, and used this approach to suggest an explanation for thaterval inT" in which there is a substantial gap between the
intermittent bursting observed at the onset of convection birst two modes to set in and the next pair. This interval is
Sullivan and Ahlerg10]. The details of the bursting mecha- |arger for smallefS| but not infinite. In particular, for an$
nism are described in Rdi8]. The mechanism relies on the there is an aspect ratio such that, for larderthe gap is
presence of approximat@, symmetry for the formation of absent and nonresonant crossings between modes from dif-
global connections to “infinity” and back again; excursions ferent families take place. Second, it indicates that no sim-
along these connections are identified with the observedglification of Egs.(4.3) will take place since the frequency
bursts. TheD, symmetry arises naturally in these systems.difference and growth rates of both modes will typically be
Recall that the amplitude equations describing the interactiogomparable, i.e., the dynamics near the codimension-two
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of the first odd and even modes must be equivariant wittpoints will be
respect to described by a pair of complex amplitude equations with
brokenD, symmetry.
(z4,2-)=(24,—2-), (4.) It is of interest to rewrite Eq94.3) in terms of traveling

owing to the reflection symmetry— —x, (6,4,7)—(6, wave coordinatesu,w), wherez, =v+w, z_=v-w

— i, ) of the original systeniEqs.(2.5—(2.7)]. Landsberg ) L 5 5 —
and Knobloch argued that in the large aspect ratio limit there? = (1 +i0)v+ 3 (Au+Aw)w+alv[“v +blw|*v +cw,
is, in addition, an interchange symmetry between the odd and (4.49
even modes since these are effectively indistinguishable

throughout most of the domain. Thus the normal form shouldy= (+iw)w+ (A p+ A w)v +a|w|?w+b|v| 2w+ cv?w,
also be equivariant under (4.4b

(24,2-)=(2-2). “.2 where u= 3 (u;+pu_), w=3(w,+w_), anda=A+B
These two reflections generate the symméy However, +C, b=2A—-2C, c=A—-B+C. Inthis form it is possible
since the interchange symmetry is not exact for any fiite to compare Egs(4.3) with the corresponding ones for an
(at any finiteI" the first mode is either odd or even, except@nnular system in which the initial instability is a Hopf bi-
for a discrete set df) this D, symmetry is broken. Since the furcation with Q2) symmetry:
dominant interchange-breaking terms are lingef. Eq.
(3.10], the system is described by the amplitude equations 1}:(#+iw)v+a|v|zv+b|w|2v, (4.539
[4]

_ _ o ; 2 2
7. =(p,+iws)z, +Alz, %2, +B|z_|?2, +Cz, 2, w=(u+iw)w+a|w|*w+b|v|*w. (4.5b

(4.33 These equations describe the competition between traveling
'z,=(,u,,+iw,)z,+A|z,|zz,+B|z+|22,+CZzi. waves (;,V\_/)=(z_;,0), and_ standing WayeSU(W)=(v,v),_
both of which bifurcate simultaneously in such a container
(4.30 and have frequencies near This interpretation of the am-
HereA, B, C are complexO(1) coefficients and the small plitudes ¢,w) follows from the expression for the tempera-
interchange-breaking parametersAu=u,—u_, Aw  ture perturbation,
=w, — w_ capture the effects of a finite aspect ratio. Lands-
berg and Knobloch further argue that because the neutral 0(x,z,t)=Rg {ve®™+we ¥ f(2)+...], (4.6
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wheref(z) is thevertical eigenfunction. by Renardy[21], equations of the forn4.3) can be derived,
There are two notable differences between E4gl)) and  via center manifold reduction, from a pair of coupled com-
(4.5). The first difference, the presence of the terms(), is  plex Ginzburg-Landau equations with generic boundary con-
to be expected and represents the effect of breaking translditions.
tion invariance at linear order; it is responsible for the split-
ting of the Hopf bifurcation with @) symmetry into two
consecutive Hopf bifurcation]. We have seen such split-
ting in Fig. 5, for example. However, the second difference, e are grateful to Jeff Moehlis for discussions. This work
the presence of the terma/fv,v?w) is nonperturbative and was supported by the National Science Foundation under
indicates that the sidewalls play an important role in theGrant No. DMS-9703684, and by DGICYT under Grant No.
near-onset behavior of the system. Indeed, as demonstrateéB97-0683. Computer time was provided by CEPBA.
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