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Quantum vortex sheets
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Vortex sheets can be viable defects present in quantum systems. In two dimensions, the vortex sheet is
represented by a line connecting a pair of branch points of half-integer phase rotation. A stationary vortex sheet
can exist in a finite system either with a pinning potential or without any pinning potential as long as the
rotational symmetry is broken. Despite the rotational symmetry breaking, an angular-momentum-like quantum
number is always required for the existence of a stationary vortex sheet. Such a property is closely related to
the integrability of a dynamical systerf51063-651X98)10012-0

PACS numbe(s): 47.15.Hg, 67.20+k, 67.57.Fg

I. INTRODUCTION tence of an angular-momentum-like quantum number as well
as the integrability of a dynamical system.

Topological defects in ordered systems are present on all Section Il gives the mathematical formulation of a par-
scales, from the microscopid—4], mesoscopid4—7], to  ticular type of stationary vortex sheet which has a zero en-
macroscopid8,9] scales. Line defects in three dimensionsergy and is infinitely extended in the third dimension. The
(or point defects in two dimensiopare the most commonly boundary condition is described in Sec. Ill. Two examples of
studied objects in microscopic scales. Such a defect pertaitBe zero-energy vortex-sheet solutions are numerically
to a singular line around which the displacement, velocity, osolved and given in Sec. IV. Although these solutions can
polarization vector rotates by an integral multiple ofr 2 exist in a system with boundaries of arbitrary shape, their
along any path in space. This singular line is often called th@xistence in fact requires specifically tailored external poten-
vortex line. In a crystalline solid, vortex lines often manifesttial wells, present at the sheets, in order to pin the quantum
themselves as dislocatiofis4,6]. In type-ll superconductors particles. In Sec. V, we discuss the natures of vortex sheets
[2,3], vortex lines are the sites at which the magnetic fieldsand explore the possibilities of other stationary vortex-sheet
are allowed to penetrate, and play the central role in limitingsolutions in the absence of pinning potentials.
the superconductivity in the presence of high fields. How-
ever, in mesoscopic and macroscopic scales, other types of Il. ZERO-ENERGY VORTEX SHEETS
defects are often present and have received much attention.

Noticeably, in liquid crystals, a variety of different defects  The Schrodinger equation reads

have been classified and studied in detail. These defects are

generally called texturegs]. Textures and defects are dy- K2 5

namically caused by the symmetry-breaking effects during ~omV )V () =EBy(r). (1)
phase transitions. Even in high-temperature field theory, their

S)r;g;intcrgnr;ii)r?f% ?ﬁ: gaelr; i'g;{\?g{;g]r.mg the Cosmc)IOQIC%onsider_ the situa_lti_on whergé=0 and the pot_entiaV(r)_

On the microscopic level, except for the quantum vortexgﬁo only in some finite volume. It follows that in the region
lines, few studies have been directed to addressing the geW—hereV(r):o’ we have
eral existence of quantum textures. Recently, the fluid for-
mulation of quantum dynamics has been examined and it is V2y(r)=0, 2
concluded that without dissipation, the topological defects
are bound to be frozen in the quantum fluid, much like thosend in the region wher¥(r) #0 we have
in the ideal classical fluid, and can preserve their integrity

throughout the evolutiofll]. An interesting texture is the 2m\(r)
vortex sheet in three dimensions. The sheet can be better V2y(r)= —z‘!’(r)' (3
described in two dimensions as a branch line. This line con- h

nects a pair of branch points of half-integer phase rotation;
the counterpart of such a quantum vortex sheet in liquicdFor the cases that are of interest to us, the poteitia
crystals has been observed and studied in defid#6]. In nonzero only within an infinitely thin sheet, which is to be
the present work, we will further elaborate on the existencddentified as the vortex sheet. In other regions, &.pre-
and structures of the quantum vortex sheets. Particularly, weails and it is no more than the Laplace equation, which must
will show that their existence is closely linked to the exis-be supplemented by a set of suitable boundary conditions to
yield viable solutions.
In the present work, the vortex sheet is assumed to be
*Electronic address: chiuehth@phys.ntu.edu.tw infinitely extended and has no structure in the third dimen-
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sion and we consider only its spatial structure in two dimen- To be specific, we let the boundary assume a constant
sions. To construct the vortex-sheet solution, we first expresfinite ¢, for the trial solutions, so tha& ¢, is always normal

the solution as to the boundary walls, implying that¢, is always parallel
] to the boundary walls. This completes the prescription of the
P(r)=explal p1(r) iga(r)]}, (4 outer boundary condition for the trial solutions. On the other

ith th | functi d tivelv. ch teri hand, for a stationary vortex sheet the velocity fi&le,
with the real functionsh, and¢,, respectively, characteriz- ., .+ he parallel to the vortex sheet; otherwise, the vortex

ing thg e_xmplitude andehase d(')f the col;nplex_ w?ve fllmcctiio%heet would be advected around by the self-induced velocity
¢, andais a constant. Demandinfy(r) to be a single-value field and a stationary state would not be possible. Conse-

function, we find that the constaatmust be chosen so that quently, much like the boundary walls discussed above, the

ad’Z(r_) bec‘?mes an ?”g'e”ke periodic function around thelnner boundary, i.e., the vortex sheet, must assume a constant
two-dimensional Euclidean space.

value ¢1= ¢g.
It follows from Eq. (2) that Combining Egs(2) and (3), we find that the problem of
V2¢,(r)=0 (5) solving for the trial solution is identical to an equivalent
problem of solving for the electric potential given by a
and charged sheet, with an unknown surface charge density that
equals InV(r)/a%?, i.e.,
V2¢,(r)=0. (6)
2mV(r)
If we further demand that V2¢1=? 9
Vé1-Vg,=0, (7)

Poisson’s equation now replaces the Laplace equation, Eq.
i.e., the orthogonal families ap; = const andp,=const, the (5). In addition, since the amplitude of the wave function is
functions ¢, and ¢, become conjugate functions in the arbitrary, we may arbitrarily choose a nonzero valueggr
theory of complex variables. It is therefore sufficient only to  What remains unknown is the functional form\éfr) on
solve for, e.g.¢1(r), from which ¢,(r) trivially follows by ~ the sheet. This problem is now reduced to an equivalent
virtue of the Cauchy-Riemann equations: problem where one seeks the charge distribution on a per-
fectly conducting sheet surrounded by a perfectly conducting
9Py dda  IP1 I box of a different electric potential. The charge distribution
ay  ox’' oax  ady can be determined only after the electric potential around the
conducting sheet has been determined. That is, one may fix
Of particular interest among the two conjugate functionsthe functional form ofv(r) only after one has solved for the
is the phase functiog,, wherea# V¢, can be identified as trial function ¢,. The phase¢, can also be easily con-
an irrotational velocity field of the quantum particle. A%,  structed oncep, is determined by using Eq8).
should be an anglelike variable, we find tHéax V¢,=0
except at the vortex sheets where E2).breaks down. That IV. NUMERICAL SOLUTIONS
is, ¢, is a multivalued function with a singular line located at
an infinitely thin vortex sheet. We may numerically solve for the electric potential given
by a perfectly conducting sheet of any arbitrary shape with
lIl. BOUNDARY CONDITIONS the proper boundary conditions discussed above. We adopt
the relaxation method to solve Poisson’s equation. A ficti-
For an isolated vortex sheet, we would like to have atious time dependence is introduced to Poisson’s equation so
solution where the densitye?**1—0 and current that it becomes a diffusion equation:
ae’®1V¢,—0 asr—o. In practice, both density and cur-
rent can only decay algebraically slowly for the zero- 2 -
eigenvalue state. Hence for any solution that obeys the form at —V7¢,=0, (10
given by Eg.(4), we can only place the numerical boundary

as remote as the computational memory allows, so remot@here the source term at the vortex sheet has been incorpo-

that the probability density can decay by several orders Ofated as the boundary condition, which sustains a constant
magnitude from the vortex sheet. However, such a solution iglectric potentiakp; = ¢, at the sheet.

still not an exact solution due to its failure in exactly satis-
fying the boundary condition. Nevertheless, it is possible to
circumvent this boundary problem if one gives up the func-
tional form required by Eq(4) for the eigenfunction. Our The computation is carried out in a square box with
strategy in dealing with the boundary problem involves a500x500 grid points. The vortex sheet is located in the
suitable linear combination of the trial solutions of E§) ~ middle of the box 50 grids long and one grid wide. We
given by two different “trial” potentialsV. The composite choose the boundary wall to be also a conducting wall which
solution can be made to satisfy the desired boundary condis an equipotential surface with another arbitrary vadbie

tion at the walls; moreover, once the composite solution is= ¢.

solved, the actual pinning potentidl, can also be self- A standard stable numerical scheme is adopted to solve
consistently determined in terms of the two trial potentials the diffusion equation. Independent of the initial conditions,

)

A. Planar vortex sheet
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. . FIG. 3. Contour plot of the actual wave-function amplitufda,
FIG. 1. Contour plot of the trial functiom¢, for the planar for the planar vortex sheet

vortex sheet. The actual velocity field has a magnitude equal to
flaVé,| and its direction is along the contour either clockwise or

anticlockwise. The spatial coordinate is in an arbitrary unit. quantum potential will need to be enhanced| tiymes.

In a finite system, a proper solution can be constructed,
, ) ) where ¢ vanishes at the system boundary, by the following
the solution of Eq(10) always settles to a unique stationary manipylations. We find that the proper wave function can be

state. The stationary solutiog; has no node. Depicted in gynressed as a linear combination of the trial functions
Fig. 1 is the contour plot of the resulting soluyambl(r). solved above,
Along the constants; contours are the flow lines of the
velocity field (@aVe¢,), whose magnitude is the same as y=[e3%1— Bedh1]e*1ad2 (11)
a|V¢4| according to the Cauchy-Riemann equations, and
Wh(_)se sense of rotati_on can be arbitrary. In orderm‘d)o_ be instead of Eq.(4), where 8 is a constant. Except for the
a smg!e-vglued function, the phaaebz must be .quant|zed. yet-to-be-determined pinning potential at the sheet, this com-
Quantization ofa¢, can be achieved by choosing a proper’ = . , 5 _ a4
value fora. We may fix this proper value af by integrating ~ Pination is a SO'““"/” t&“¢=0. Now, choosgs=e~"0. At
a|Ve,| along any constant; contour, so that the closed- the boundaryb,= ¢, such a solution can indeed satisfy the
contour integral off a|V¢,|dl assumesr 2l 7, wherel is an ~ boundary condition thag=0 and hence is the proper solu-
integer. The above contour integral has made use of th#on. The resulting amplitude of this wave function is shown
unity, the probability density will become thé B power of densqy must vanish due to the infinitely large velocity
that with| =1 and it decays outward more rapidly. Oreces (T ") at the line[12], the quantum particle has the largest
fixed, the trial potentiaV/(r) can be derived from Gauss’ law Probability at the vortex sheet. In addition, since the phase
by examining the amount of fluaVe, emerging from the a¢2 remains the same for this proper wave function, the
sheet locally. The resultingra\(r)/#2 along the sheet, for actua}l veIOC|t_y flelq |s_the same as that derived from the test
I =1, is shown in Fig. 2. Whehassumes other integers, the function ¢, given in Fig. 1. _ .

The velocity field, proportional to the gradient gf;, in
Fig. 1, is strongest around the edges of the vortex sheet,
since the incompressible flow must make sharp turns near the
edges. The associated centrifugal forces are larger than else-
. | where and hence it requires a deeper potential well at the
edge to pin the flow. In fact, the strength of vorticity in the
sheet is closely related td(r) shown in Fig. 2. Using Eq.

2mV
g

ot
-

o2 1 (8), we findV2¢,z=VX V¢,, and using Eq(9), we find the
vorticity aVX Ve, =2mVz/42.
03 The equivalence ta¢, of Eq. (4) for the proper wave

function, i.e., Ifiexp@p.) —expa(2¢— ¢1))1, is no longer
the analytical conjugate of the phaae,, and hence the
Cauchy-Riemann equations do not apply to them. Further-
more, the actual quantum potential must change accordingly
05 ‘ ‘ ‘ et s to reflect the new combination for the wave function. In fact,
e e sy 268 2 due to the choice of combination given in H41), the two
trial potentialsV of the two trial solutions have similar pro-
FIG. 2. Pinning potential &V/42 of the trial function ¢,  files although their signs and magnitudes are different. The
shown in Fig. 1. The pinning potentiah®V, /%2 of the actual so- actual potentialV,, can be expressed in terms of the trial
lution is greater than @V/%2 by a factor 1.016. potentialV depicted in Fig. 2 as
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FIG. 4. Contour plot of the trial functiora¢,, for the L-shaped (x:225) (x,275)
vortex sheet.
FIG. 5. Pinning potential &1V/#? along each siddabeled bya,
b, andc in Fig. 4) of the L-shaped vortex sheet. The raliq/V

equals 1.28.

V(r)=V(r) (12)

1+ pe 2%
1—Be~22%)’ . .

deeper in order to balance the enhanced centrifugal forces.
This expectation is consistent with Fig. 5.

with B=exd2a¢y]. This result is straightforwardly obtained
by applying Gauss’ law to Eq11). It follows that to yield a V. DISCUSSIONS

solution that ;atisfies the proper boundary condition One |y sum, we have obtained a particular type of stationary
needs the ratiov,/V>1 which approaches unity when yqrtex-sheet solution, which is an excited state and which
a(¢po— ¢o)>1. For the present case, we determine thahas a high probability density at the sheet due to the pinning
V,/V=1.016. of a quantum potential well at the sheet. Being an excited
The vortex-sheet state is in fact an excited state, since State is not a pr0b|em for the existence of quantum vortex
proper linear combination of the two oppositely rotating de-sheet in nature since a Fermi gas can often occupy excited
generate states reveals a nodal line in it. We may adopt th&ates. The major problem for it is that to yield a stationary
V,, given above to determine its ground state numericallywave function, the pinning potential welf must be fine-
The ground state has an amplitude peaking at where the peuned in order to guide the velocity along the sheet. Such a
tential well is deep near the two edges, and the ground-statthe-tuning does not seem able to arise either naturally or
eigenvalue is found to bE= —3x10"%*4%m as opposed to artificially in most physical systems. Hence, a quantum vor-
E=0 for the vortex-sheet state. tex sheet may seem most likely to be nonstationary, advected
by the self-induced velocity governed by Biot-Savart’s law.
For such a transient state, no specific pinning quantum po-
tential is required. If it is indeed so, the quantum vortex sheet
We use the same computational configuration as the pravould probably not be so interesting nor would it deserve
vious one, except that the vortex sheet is now distorted in amuch attention. However, as will be elaborated below, with-
L shape. The same relaxation method and boundary condgut any pinning potential there are possibilities for the exis-
tions are employed to solve for the solution of Eg).. The tence of stationary vortex-sheet states, much like the line
resulting trial solution¢; for =1 is shown in Fig. 4; the vortex states. Recall from Edql1l) that the wave function
trial potential associated with this trial solutionm®/(r)/#%  can be expressed as a linear combination of trial solutions.
(also forl =1), along each siddabeled by 1 and 2 in Fig.)4 We may adjust the value oB in such a way that3=
of the vortex sheet is shown in Fig. 5. The actual potejal —e??%. The wave-function amplitude has the property that
is found to be greater thav by a factor 1.28. For such a V(exda¢,]+exd—a¢,])=0 at ¢1= ¢o; that is, the prob-
potential, the vortex-sheet state is also an excited state. Waility density is a smooth function across the vortex sheet.
may also numerically determine the ground state. It has &rom Eq.(12), the singular quantum potentiImust vanish
higher probability amplitude near where the potential well isaccordingly. However, such a stationary vortex-sheet solu-
deep, and its eigenvalue B=—1.4x 10 342/m. tion does not satisfy the proper boundary condition of a
Revealed in Fig. 4 is also the velocity field induced by thefinite-size system wherg¢=0 at the boundary. This diffi-
vortex sheet along the contours. In the concave side of theulty is due primarily to our assumption of a vanishing
sheet, the flow is distinctly weaker than the convex side okigenenergyE in Eq. (2). When we relax the conditiok
the sheet since the former has a shorter distance to travel0, stationary vortex-sheet solutions can actually arise in
than the latter. Again, the largest velocity field occurs neathe absence of pinning potentials, provided that suitable
the edges of the sheet; in addition, immediately exterior tdoundaries are given.
the L-shaped corner there is contained a larger velocity field. A natural coordinate for describing a planar vortex
Near these locations the quantum potential well must baheet is the elliptic coordinate £{,£,), where x

B. Distorted vortex sheet
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=dcoshg§;)cos§,) and y=dsinhE)sin(E,), or x+iy The above change of coordinate employs a conformal
=2d coshg§, +i&,). The coordinateg,(x,y) andé,(x,y) are  transformation. We may proceed to employ the conformal
conjugate functions, and the constapteontours in thex-y ~ transformation to examine another type of stationary vortex-
plane trace confocal ellipses, whose focal points are sep&heet solution. Instead of using the elliptic coordinate, we
rated by a distancec®on thex axis. On the other hand, the may adopt the parabolic coordinateyi(xz2), wherex+iy
coordinatet, is similar to the angularlike variableg, con-  =(1/2)(x1+ix2)?. The constanf; curves trace a family
structed earlier, which changes by2l« around a closed of confocal parabolasy;=[x*+y*+x]"2 where y;=0
loop. The two-dimensional Helmholtz equation can be transdescribes a half-line running from the origir=0 to r =

formed into[13] along the negative axis. This half-line is exactly the branch
line associated with a half-infinitely extended vortex sheet.
Py Py Similar kinds of defects have been observed in the two-

e + (9—52+ k?d?[costf(&;) —coS(£,)]4=0 (13)  dimensional nematics of liquid crystals and are called
1 2 the wedge disclinations[5]. The conjugate variable
in terms of the elliptic coordinate, whekd is the eigenvalue X2l == (VX"+y —x)'?] runs from—c to e, which corre-
equal to 2nE/A2 for our quantum-mechanical problem. This SPONdS to the polar angle from to .
equation is separable. Let=f(£,)g(&,), and one finds that 1 e Helmholtz equation can be written @]
Eq. (13) becomes

Py 5
o R IR 16
g2+ [KedZeostf(¢) - 1211=0 (14) v
é wherek? is again proportional to the energy eigenvalue. This
and equation is also separable. The viable solution must satisfy
ayld(x1)?>=0 at x;=0 in order for it to be a smooth func-
d2g tion there without any pinning potential. A close scrutiny
— +[1?2—k?d?cog(¢,)]g=0, (15  shows that the only solution that can satisfy such a condition
dé; is the one with the separation constihiequal to zero. Let
) . . ) ébzf(xl)g()(z). It follows thatf satisfies the equation
where |- is a separation constant related to a generalize
angular momentum. Note that E@.5) is the Mathieu equa- 2
tion, to which Floquet's theorem applies. When the boundary W +k2x3f=0, (17
1

is remotely located, one may consider the low-energy states.

In the lowk?d? (or low-2mEd?/#2) limit, we can ignore - _
k2d?co(¢,) in Eq. (15), which then yields a solution andg also satisfies the same equation. Nega+ 0, we have

g(&,) =exp(*il&) with | being an integer. On the other &M €ven _SOIUtionf:00+C4k2X‘11[1,“_LO(X§)]' which meets
hand, the termk?d2cost(£,) in Eq. (14) can never be ig- the d_eﬁc,zlred 2boundary cor_1d|t|on. AsymptoUcaIny
nored, in spite of the smallness Id? due to its association —|x1l~"“coskxi+6) at large distances, whetis a phase
with the large factor co$t,) at largeé; . factor. On the other hand, negp=0, we haveg={c,+[1

For any given integel, Eq. (14) can be solved with the +O(k?x3)T}xi{civVkxa1+O(k?x3)1}. Apparently, there
boundary condition thadf/d¢é;=0 at £&,=0. When &  is a net “momentum” flux(=Im[g* (dg/dy,)]) aroundy,
<In(2l/kd), the solution is approximatelfi~cosh(¢;). How- =0, therefore supporting a rotational motion. In addition, the
ever, as soon a§;>In(2l/kd), the solutionf will begin to  asymptotic behavior 0§ goes asg~|X2|*1’2exp:iik)(§] at
oscillate and the oscillation amplitude decreases with the didarge distances. The signs are found to be attached to the
tance &, as e V2, which becomes Y2 in terms of the two branches of the same solution on either side ofjthe
radial distance in the cylindrical coordinate. At large dis- =0 half-line. The vortex sheet is thus clearly demonstrated
tances, the wave functiop resembles);(kr)e''? given by a  in this asymptotic expression neag;=0, where g

point vortex of angular momentud. Such afree vortex  ~|x|Y%exd +ikx]. Such a vortex sheet can also arise from
sheet solution requires only a small positive eigenenergythe focusing by a parabolic boundary, no matter how remote
although it can never be a ground state. the boundary is located. The boundary reflects an incident

If the system has a finite sidg the eigenvalu&® must  particle from the lower/upper half-plane back to infinity
assume a set of discrete values, the lowest of which is on th&long the upper/lower half-plane.
order of L 2. However, for such an eigensolution to exist, It should be stressed that the elliptic and parabolic coor-
the boundary must have a proper shape, i.e., an oval shapénates are the only two nontrivial coordinates, besides the
whose focal points will be those of the const@nteontours. trivial polar and planar coordinates, that allow for separation
If not, it will be impossible for the wave functions to possessof variables for the two-dimensional Helmholtz equation
a generalized angular momentum as its quantum numbel13]. Since energy must be a quantum number and since the
and the stationary quantum vortex sheet will be impossible irexistence of stationary vortex sheets also requires an angular-
the absence of a pinning potential. Even when the systermomentum-like quantum number, it follows that separabil-
boundary is located at a very remote distance so that thity, or integrability, of the Hamiltonian should be a necessary
system may seem to be boundary-free, the occurrence @bndition for the quantum vortex sheets to exist. In some
such “free” vortex sheets in fact arises primarily from the cases, the quantum numbers must assume some specific val-
focusing by a remote oval boundary. ues in order for the Hamiltonian to become integrable. Ex-
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amples include the vortex sheets pinned by arbitrary-shaped As mentioned earlier, textures that exhibit finite and half-
singular potentials, for which the eigenenerBymust be infinite vortex sheets have been observed in the nematics of
zero. For these cases, the Hamiltonian is generally not intdiquid crystals. In view of the close analogy between the
grable, and the vortex-sheet states correspond to the quasiematics and the superconductivity at the phase transition
isolating integral hypersurfaces in classical mechafiled.  [5], we speculate that the quantum vortex-sheet defects may
Indeed, the Hamilton-Jacobi equation has a separable solaiso be present, as bosonic excitations, in many-electron sys-
tion at the vortex-sheet state and the corresponding classicedms and may play a non-negligible role in determining the
trajectories lie on a two-dimensional surface in the four-macroscopic physical properties of the condensed matters.
dimensional phase space. This singular integral surface in

fact pertains to the invariant surface of Kolmogord\g],

Arnold [16], and Mosef17] type, the KAM surface. Such an ACKNOWLEDGMENTS
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