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Determination of the quench velocity and rewetting temperature of hot surfaces:
Formulation of a nonisothermal microscale hydrodynamic model
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A nonisothermal microscale model of the three-phase, solid-liquid-gas, contact zone is formulated in the
context of rewetting phenomena. The model incorporates hydrodynamics, heat transfer, interfacial phenomena,
and intermolecular long range forces, in a two-dimensional proximal region of the order of 1000 A in width
and 100 A in thickness. The model comprises scaled mass, momentum, and energy balances, and their
corresponding scaled boundary conditions. The small contact angles which are characteristic of rewetting
situations facilitate the use of the lubrication approximation, and the dynamics of the liquid and gas phases is
decoupled by applying the one-sided simplification. The microscale hydrodynamic model reflects the strong
effect of the solid-liquid interactions on the film profile, and the attendant flow and thermal fields. Thinner
films having smaller contact angles involve stronger solid-liquid attraction forces, and consequently they
exhibit higher rewetting temperatures and lower evaporation and vapor recoil effects. Thermocapillary and
evaporation and conduction effects are expressed by appropriate dimensionless numbers. A set of such num-
bers is defined in the context of the differential equations of the microscale model. This model covers the
hydrodynamic aspect of rewetting phenomena, which are also controlled by thermodynamic and macroscale
constraints. This calls for interfacing and appropriate combination between the microscale hydrodynamic
model, thermodynamics, and other macroscale rewetting models, for the determination of rewetting tempera-
tures and quench velocities of liquids on hot solid surfaces. This is addressed elsewhere, in subsequent papers
that follow this work.[S1063-651X%99)00506-1

PACS numbsg(s): 44.35+c, 05.70.Np, 68.10.Cr, 82.65.Dp

[. INTRODUCTION such an accident occurs, the nuclear fuel rods may be ex-
posed, with a due increase in their temperature. This rise in
temperature can reach dangerous levels where melting of the
Rewetting of hot surfaces is a process in which a liquidrods becomes imminent. One way to avoid this situation is to
wets a hot solid surface by displacing its own vapor thafjood the core of the reactor with water from top to bottom,
otherwise prevents contact between the solid and liquigh a process which is called “top flooding.” If the reverse
phases. When a liquid contacts a sufficiently hot surface i§jjrection is used, then it is called “bottom flooding.” It is
comes to a boiling point, and a vapor film, which separategherefore important to be able to predict, for these flooding

the liquid from _the surface, is ggnerated. As the surface COOIErocesses, the velocity at which the quench front propagates,
off, the vapor film reaches a point where it can no longer bq e., the rewetting velocity

sustained. At this point, the vapor film collapses and surface- Several models for the rewetting velocity have been for-

liquid contact is reestablished. This phenomenon is Ca”e%ulated in the last 30 years. Most of them require the as-
rewetting or quenching. . . sumption of ana priori value for the quenchrewetting

The. temperature at th_e solld—llqgld—vapor contact line, attemperature at the three-phase, e.g., solid-liquid-vapor, con-
the point where contact is reestablished, has been called %ct line. There is no general r;wethdd as yet, to dete}mine
different names, such as rewetting, quenching, sputtering, %his temperature, despite several attempts that have been

Leidenfrost temperature. Though these synonyms for the r nade. emploving brincioles of thermodvnamics. hvdrody-
wetting temperature do not have exactly the same phySiC%ramic’s, suprfa)éegcr?emis?ry, and heat trgnsfer. L’Jsirilg allyor

meaningsthere is much confusion regarding this pgirthis ome of these principles still leads to predictions of different

temperature may generally be considered as being a thres Swetting temperatures. for i lid-liqui m th
old temperature, above which liquid cannot wet the surface, etting temperatures, for a specific solid-liquid system that

. . A is operated under fixed conditions.
or alternatively, be in contact with it. P

Rewetting phenomena of hot surfaces appear in many
physical processes and have important technological applica-
tions. Understanding of this phenomenon is called for in
many engineering and scientific fields where it is encoun- Reviews of rewetting models were given by Gerweck and
tered. For example, it is observed in cryogenic processe¥adigaroglu[1l], Carbajo and Sieg¢R], and Ben David3].
filling of liquefied natural gas pipelines, and in high tempera-In the present work, reference is made to some specific mod-
ture metallurgy. The rewetting phenomenon is known to beels that are used at a later stage for comparison purposes. The
of paramount importance regarding the danger of loss ohydrodynamic approaches include identification of heat
coolant fluid from the cooling system of a nuclear reactor. Iftransport mechanisms between the wall, droplets impinging

A. Problem description

B. Models based on hydrodynamic
and thermodynamic theories
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on it, and the flow boundary layer. These hydrodynamic ap- Tues— Tves. B H, 0.6
proaches show that the heat flux attains a minimum, which T——T|:0'4 é“c (T T
depends on the flow rate, pressure, and vapor quality at a MFe.B p.st TMFB.B - Tsa

specific temperature defined as the rewetting temperaturghereT g g is the value ofT eg from the Berenson model,
Agreement with experimental data is limited to a few casesy, is the liquid temperatures, is the heat capacityc(, s is
only. Other hydrodynamic models for rewetting temperatureshe heat capacity of the sojidand¢ is defined by

are based on instability limits such as the Rayleigh-Taylor

limit. A force balf_;mce indicates that the perturbation would £=INpCpli INpCyls. @)
grow when the distance between the bubbles formed on the

surface reaches a critical wavelength. Models that inC|ud¢|oege1 Rohsenow, and Griffitf8], developed a correlation
the above considerations were developed by Berefidhn for forced vertical flow, using water data and the Berenson
Henry[5], and Shoji and Takadi6]. According to the Ber- correlation. Their result was given by

enson model, the minimum film boilingMFB) temperature

2

for water, benzene, and ethanol, at atmospheric pressure, was Toen—To=(T —T.)(1—0.2952%)
found to beTyrg=158, 180, and 178 °C, respectively. Dur- wre ™ Tsar~ (Tura.e ™ Toal( x
ing rewetting, the hydrodynamic constraints must be satisfied X (1+0.2795%49, 4

to allow contact of the liquid with the wall, and the interface ) ) ) ) )
temperature must not exceed the thermodynamic limit folVN€re x is the exit quality ands is the mass flux, which
wetting to occur. Different values of rewetting temperaturesrar'ges between 54.2 and 135'6. kgém De Salve. and
can be expected from the different hydrodynamic approachelgane"a'[lo] suggested an expression for the rewetting tem-

mentioned above. This may be due to differences in the mod2EraUre:Trew, based on hydrodynamic-thermodynamic con-

. . siderations. It includes the maximum superheat temperature
els, or perhaps the existence of a range of the rewetting ten)- o L ; o

. of the liquid, Ty Which is based on the Spinodal limit,
perature, rather than a single value.

_ . from Spiegleret al. [11] and the interface temperature of
Berensor{4] was the first to present an expression for theBaumeister and Simof12], with a correction factor for the
minimum film temperature of pool boiling on a horizontal {4\ from Ref. [9]. Their e;<pression is given by
surface, that is based on the Taylor instability of the vapor-

liquid interface. In his theory, the spacing of the bubbles 04
departing from the vapor film, and their growth rate, are Trew=T1+0.29 Tryao— T) (140.2795°%)

determined by this instability, and an analytical expression X[ exp(3.06x 106/3)erf0(1751_5@)]71, (5)

for the heat transfer coefficient near the minimum film boil-

ing point is deduced. This heat transfer coefficient is comyhere ,3=[7\pCp]5_1- A rewetting model based on micro-
pared with a correlation of the minimum heat flux, in Orderscopic considerations was proposed by Way[rj@j This

to obtain the following minimum film boiling temperature model does not give a rewetting temperature, but it provides

(Twmes) for a horizontal surface: an expression for the rewetting velocity. The latter is ob-
tained by modeling the fluid flow in the region, where the
HiTg(o—py) 123 o 12 evaporating liquid film and the vapor join the solid surface.

Tuee— Tsae 0.127'D [ } [ } One of the parameters determining the flow characteristics is

N Loty 9(pi=pu) the disjoining pressure, which is the pressure drop, in a thin

Lo 13 fluid layer, caused by the London—van der Waals forces be-
X [—_} 1) tween the substrate and the fluid. The final expression for the

9(pr=pu) rewetting velocity,U,.,,, based on the balance between this
disjoining pressure, the pressure gradient due to surface ten-

i sion, and the change in curvature of the liquid-vapor inter-
whereTg, p, H, N\, 0, u, andg are the saturation tempera- ;.0 s

ture, density, heat of evaporation, thermal conductivity,
liquid-vapor interfacial tension, viscosity, and gravitational
acceleration, respectively. Subscriptsy, ands (which is
used later denote the liquid, vapor and solid phases.

The model of Berenson does not depend on the wall prop-
erties. Nevertheless, its results are in good agreement with
experimental data that were obtained with several fluidswhere § is the thickness of the fluid filmé* its derivative
Henry[7] reported that the actual rewetting temperature valwith respect to the coordinate which moves with the quench
ues for water, freon, sodium, and potassium are significantljront, &, the film thickness at the junction between the
higher. He performed a dimensional analysis for the probevaporated region and the nonevaporated regigna dis-
lem, using the infinite slab modéCarslaw and Jaegef8],  persion constant accounting for London—van der Waals
for temperature upon contact, microlayer evaporation, andorces,v, the kinematic viscosity of the liquidsg the thick-
the minimum film boiling temperature from the hydrody- ness of the lamina being cooled, amg the dry solid tem-
namic model of BerensdrEq. (1)], and obtained the follow- perature. It is rather difficult to compare this expression with
ing correlation for the minimum film boiling temperature in other known expressions for the rewetting velocity, because
pool boiling: some of the parameters, suchMAgand 8, cannot be deter-

— AyS*

)

Urew=

o
4l PI( o— ?) +Pscp,sss(Trew_ Tsd)/HI
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mined with sufficient accuracy. Another disadvantage of thisand they become dominant at distances which are in the

expression is the arbitrariness in setting the value ,of range of 30—1HA. In their analysis of dynamic contact
Most of the existing rewetting velocity models use data oflines, de Gennes, Hua, and Levind@0], showed that there

rewetting temperature, as a necessary input condition at this no clear characteristic length for this range. In this context,

triple-phase contact region. A characteristic feature of meththey suggested adopting the molecular sizand found it to

ods for estimation ofl ., is that they are either thermody- be convenient in scaling the various regions. This molecular

namic or hydrodynamic. In contrast to this traditional dis-size is of the order of few A. de Gennfl] defined it by

tinction, the approach that is developed in this work, and its

subsequent parts, determines the rewetting temperature by A

the simultaneous combination of thermodynamic and hydro- a‘=——, )

dynamic aspects of rewetting. In this context a significant

advance is achieved through the microscaling of the rewet- i o

ting phenomenon, and the incorporation of physical Ioalralrn\_NhereA is the Hamaker constant. He ass_umed the liquid film

eters of interfaces, such as contact angle and those related!fy P almost flat(the contact angle being very smafl,

intermolecular forces. This focuses the treatment onto a mi<<1). SO that the vertical dimensidi, perpendicular to the

croscale region, adjacent to the three-phase contact line. TI§9!id) is very small in comparison to the lateral op¢ in the

modeling method and its consequences are the subject offipW direction. de Gennes also showed that the long-range
four-part series. The first part, that is presented here, is §rces provide a natural cutoff for the singularity of the loga-

formulation of a non-isothermal micro-scale hydrodynamicrithm expression of the total dissipation near the contact line,
model of the three-phase contact zone. The model is basél fluid thicknessH(X), defined by

on the conservation equations, and takes into account the

above-m_entloned ph_enomene}, thermocapillary effec_ts, and H(X)=6,L, Lsaleg. @)
evaporation. Appropriate scaling, and the use of lubrication

approximation, facilitate substantial simplifications of the . . . .
governing equations, and boundary conditions. The secon-&he lengths given in Eqs(8) determme_the region where
long-range van der Waals forces prevail. This work is con-

part[14], includes the derivation of the interface equation, its d with th in which th f infl th
solution, and a parametric study of the film thickness behay€rMed Wi € range in wnic ese forces nfluence e’
rewetting process. To this end, employing the de Gennes

ior. In the third par{15], a microscale model for the contact lassificati f wetli . facilitates the devel ;
angle ¢ is added, based on the method of Sulliad®,17). classiiication of wetting regions faciiitates the deveiopmen
of a microscale rewetting model.

By comparing # with the slope of the interfacéusing an ; .
iterative algorithm), a relation is obtained between the rewet- Following de Genne$21], the_ crossover Iength which
relates to the expressions of disjoining pressure, in retarded

ting temperaturd ,, and the quench velocity ,,. Finally, A : .
these two parameters are uniquely determined in the fourt nd_nonr(_atarded sﬂuaﬂonsﬁ,\ IS abou_t 100 A. This means that
part [18], by combining the microscale model with a mac- or film thickness 0fO(100 A), the disjoining pressure, d.ue
roscale one developed in R4fL9], which predictsUq, if to long-range van der Waals forces, should be included in the
Trew IS known. The results, which are presented in the thirt{ome balang:e. Thereforg, the momentur_n balance, whph IS
and fourth part§15,18, cover a wide range of solid-liquid ormu_lat_ed in this work, includes a spema_l t?‘rm accounthg
properties. for this intermolecular fo_rce. Not_e that _thls_ scale check
has been made for all fluids considered in this work. The use
of de Gennes’ classification of wetting regions means that, in
Il. THEORY this work, the scaling lengths of the region investigated are

A. Scales of the rewetting region those given by Eq(8).

In order to determine the dimensions of the investigated
region, use was made of the classification made in [R€l.
They distinguished between four regions close to the contact The formulation of the microscale hydrodynamic model is

B. Basic assumptions

line: based on the following guidelines and assumptions.

(1) A molecular domain of size (~a few A), very close (1) The analysis is focused on the domain close to the
to the triple line, where the continuum description breakscontact line. The magnitude of this domain is of the order of
down. 100 A in the vertical directiorfilm thicknes$ and 1000 A in

(2) A proximal region(of lengtha/ 62 and heighta/6,),  the horizontal directioriparallel to the solid surfage
where the long-range van der Waals forces domin&geig (2) The region investigated contains a thin viscous liquid

an equilibrium contact angleln this region, forces due to film that is bounded by its vapdgas phase and by a rigid
capillary and Poiseuille friction effects are also significant. wall that is held at constant temperature. The justification for
(3) A central region, where capillary forces and Poiseuillethis assumption is given in Sec. I C 2.

friction are the only important factors. (3) The liquid film is thin enough so that gravitational
(4) A distal region, where macroscopic featufgsavita-  effects are negligible, and van der Waals attraction forces are
tional forces, etg.come into play. significant. However, the film thickness still warrants a de-

In this work, the proximal region, where intermolecular scription of the liquid as a continuum, and use of related flow
forces(mainly van der Waalsand capillary effects are sig- theories.
nificant, is selected for the development of a microscale hy- (4) The liquid film consists of an incompressible Newton-
drodynamic model. van der Waals forces are long rangedan fluid.
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z A A=(—Hyi+K)(1+H2) 12 T=((+Hyk)(1+H2) 2,
Vapor (9)

wherei and k are unit vectors in theX and Z directions,
respectively. The subscripX refers to a partial derivative
with respect toX. This convention applies also for partial
derivatives with respect t@ and 7.

Interface , T(I)

Z=H(X,t)

100 A Liquid , T
------- 3 - 1. Balance equations
Solid , Ty, X . .

o The following equations express mass, momentum, and

l< 1000 A =0.1 pm > energy balances for the liquid. In the entire studied region
(not including boundarigsthe mass balancés given by the
FIG. 1. Sketch of the problem geometry. continuity equation
(5) The liquid properties, i.e., density, viscosity, etc., ex- Uyx+W;=0, (10

cept for the surface tension, do not change significantly with

temperature, and their values are taken as those under coffereU andW are the velocity components in theandZ

ditions of saturation temperature and atmospheric pressurediréctions. The forces acting in this region may be expressed

(6) The liquid in the film evaporates. Consequently, there®Y Momentum balancethe horizontal directioriX),
is heat, mass, and momentum transfer at the vapor-liquid
interface. The evaporation dynamics is described by bound-  pI(U+UUx+WUz)=—Pyx+ 7(Uxx+Uzz), (118
ary condition jumps.

(7) The density, viscosity, and thermal conductivity are
assumed to be considerably greater in the liquid as compared
to the vapor, so that the dynamics of the vapor can be de- ~ PI(W:rH UWx+WWz) = —Pz+ 7 (Wxx+Wz2),

coupled from that of the liquid. (11b)
(8) Surface phenomena such as contact angle, capﬂlaryo,,herepI is the liquid density,», is its dynamic viscosity,

and the vertical directioK?),

and thermocapillary effects are significant. andP is a generalized pressure that is defined by
(9) The rewetting geometry is two-dimensional due to the
fact that the liquid film thickness is much smaller than its P=P g+ ® (12
y .

longitudinal dimension.

(10) The small slopesd<1), which are characteristic of Here Phya is the hydrodynamic pressure, add denotes a
the liquid-vapor interface in rewetting situations, allow the potential associated with the van der Waals attraction forces.
use of the lubrication approximation. This potential gives rise to an extra body fordép, that

(11) The three-phase contact line moves at a nearly condepends on the film thickness, cf. Ruckenstein and Jain
stant velocity,U ., so that in the moving frame of this [22]:
contact line, the problem can be described as being quasi-
static. d=Pd(H)=—-A/H3+A/IZ3. (13

(12) When the temperature at the three-phase contact line
exceeds the rewetting temperature, which is independent dfote that the second balance does not include the effects of
time and space, no solid-liquid contact is possible. Vo nor t_hat of gravity. 'I_'here is no contribution Bﬁ) in the

In contrast to the currently available models, this workZ direction becauseb is a function of the thickness
presents hydrodynamic modeling of film spreading that takeg™ H (X, 7) only. Without loss of generalityy,q is defined as
into account temperature and phase changes occurring alofigf Pressure above that of the vag®g,, which is considered
the liquid-vapor interface, as well as heat and mass transf constant. .
between the liquid and vapor phases that interact across it. The energy balancés expressed by
This approach treats the problem in a more general way, in
comparison with other known models, such as that of de PiCp (T UTx+WT2) =N (Txx+Tz2), (14)

Genneg21], which deals with the isothermal case. whereT is the temperature, which depends on time and po-

sition.
C. Mathematical description of the problem
The configuration of the investigated region is shown in 2. Boundary conditions at the wall
Fig. 1. Cartesian coordinatéX,Z) are used to describe the At the solid boundaryZ=0, the no-slip condition is as-
two-dimensional system. sumed in theX direction, the nonpenetration condition is

The liquid-vapor interface is expressed Aas-H(X,7), applied in the vertical direction, and the temperature is as-
and the film thicknes$i is a function of the lateral coordi- sumed to be constant, so that
nate X and timer. The outward normal and tangent to the

interface unit vectorsh andt, are given by u=0, w=0, T=T, atZ=0. (15
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Note that the assumption of a constant wall temperature is JV,=V,)-A—(T,~T,)-A-A—2Ba(T)=0. (19
justified since any possible change in temperature, due to Y v
axial heat conduction, is much smaller compared with thel’he first term of Eq(19) stands for a component of momen-
error entailed in rewetting temperature measurements. Tht

. . . fim which arises due to the mass flux across the interface.
order of _magnltude of this possible temperature change hthe second term is the normal component of the momentum
been estimated as follows: Owen and Pull2§] reported

: : which is due to the jump in the normal stress tensors between
that the sputtering process occurs in a range of 1-3 mm from

the quench front. The initial dry-solid temperature is usuallytN® tWo phases. Herg, andT, are the stress tensors of the
within the range of 18-1C° °C. Consequently, the average I|qU|.d and vapor, respectively. The forces acting normally to
temperature gradient along the wallAT/AX, is the interface are balanced by the capillary force. The latter is
O(10°~10° °C/m). In the new model, the scale which defined by the surface tensientimes twice the mean cur-

determines the horizontal length of the region considered, i¥atUreB of the interface, which is given by
O(1000A). Accordingly, an estimate for the temperature
variation along the wall may be expressed by 2B=V-A. (20)

AT,=(AT/AX)L, (16)  The velocities both in vapor and liquid are assumed to be
slow enough so that they can be treated as incompressible
where AT,, denotes a possible wall temperature variation fluids. The stress tensor in the liquid is given as
Substitution of the above mentioned values into ELf)
shows that the temperature chang&T,, is O(0.01- _ _
0.1°C), which is, indeed, less than the expected experimen- Ti=—Pl+297, (21)
tal error involved in measuring -

wherel is the identity tensor. A similar form can be used for

3. Boundary condition at the liquid-vapor interface the vapor stress tensor, and the vapor presBynmay be set
At the interfaceZ=H(X, ), liquid-vapor jump condi- as a reference level, i.e., the ambient pressure.
tions, as formulated by Delhay&4], are applied. The liquid The balance of forces tangent to the interface, constitutes

is assumed to evaporate in a direction normal to the liquidthe following shear stress boundary condition

vapor interface. For the sake of convenience, the mass, mo-

mentum, and energy balances are expressed through the ve- N = = A A

locity vector on both sides of the interface, i.e., in the liquid JVI=Vy) t=(T=T,) - t+ Vo t=0. (22
and vapor phases. On the interface there is no mass accumu-

lation, so that the mass fluftelative to the interfaged is ~ The jump in shear stress, is balanced by the gradient of the
expressed by the following jump mass balance: surface tension. The change of the surface tension along the

interface, owing to its dependence on the temperature, gives
rise to thermocapillary effects that are included in this
boundary condition.

The surface tension is represented by a linear equation of
state as follows:

I=pi(Vi=V)-A=p,(V,~V')-f 17

whereV, andV, are the velocity vectors of the liquid and
vapor, andV' is the velocity of the interface.

The energy balancet the interface is expressed using a
similar technique. In this case, the jump energy balance takes o(M=o— T =Ty, (23
the following form:

where o is the surface tension at the reference saturation

1 1 temperaturel g and at the given system pressure. For nearly
JyH+ 5[(VU—V')'ﬁ]2— E[(V|—V').ﬁ]2 all common liquids,y is positive, so that increase of tem-
perature leads to a decrease of the surface tension. Note that
+MVT-A=\, VT, -A+29,(F-0)-(V,—V") y is assumed to be practically a constant, so that its deriva-

tives, with respect tX and Z in Eq. (22), are negligible in
—25,(%,-H)-(V,—V")=0, (18 comparison to those of the temperature.
The mass fluxl is expressed by the following linearized
where7 and7, are the rate of deformation tensors in the constitutive equation, that is derived from the kinetic theory

liquid and vapor, and, is the vapor temperature. (cf. Palmer[25])
The first term of Eq(18) expresses the energy change due
to the evaporation process at the interface. It accounts for the ao H M\ 12
heat of evaporation and the kinetic energy differences across J:<_pg72_') <_) (T'=Ty). (24)
the interface. The second term represents the energy change Ts 27R

occurring due to the conduction of heat across the interface.

The third and fourth terms represent the energy change duédepends on the local interface temperaftitethe molecu-

to dissipating shear forces in the liquid and vapor phases. lar weightM, the universal gas constaRy, and the dimen-
The normal-stressboundary conditiojump momentum  sionless accommodation coefficient(whose value is close

balance is given by to 1 for most commonly used liquigds
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4. One-sided model simplification T-A-i=Vo(T) (29)

The boundary conditions at the liquid-vapor interface, i.e.,
Egs. (17—(19) and (22), describe mass, energy and force Thus the dynamics of the vapor is decoupled from that of the
balances between the liquid and vapor. In other words, théquid. This results in the “one-sided model”; see RE27].
liquid behavior is conjugate to that of the vapor. However,Note that the mass balance equati@g), and the linearized
the values of thermophysical properties such as density, visonstitutive equatiori24) remain unchanged.
cosity, and thermal conductivity are by far larger in the lig- The boundary conditions at the interface are presented in
uid as compared to those in the vapor. Therefore, followingheir general form. In the following, they are described more
our basic assumptidiNo. (7) in Sec. Il B], the balance equa- explicitly, i.e., the tensofl and terms such a8 o(T)-t and
tions are simplified, e.g., according to Burelbach, Bankoff,v (T) - are each presented in a more detailed form.
and Davis[26]. As an example, only the energy boundary
condition[Eqg. (18)] is derived here in detail. As the same 5. Normal and shear stress boundary conditions: Explicit forms
simplifications have been applied to the other boundary con- _ i ~ . .
ditions at the interfacgsee Eqs(19) and (22)], only their Equation(27) includes terms such as-fi- i, and the cur-
final forms are presented below. vature 23 of the two—dlmgnsmnal mterfaceZzH_(X,r).

The energy balance equatidt8) is transformed into a Substltut_lon of the expression for the normal unit vecfor,
simpler form by applying several algebraic steps. The veloclEd: (9] in Eq. (20) gives
ity differences are expressed in terms of the mass flux and
density by substitution of the jump mass balance from Eq. Hyx
(17). Assuming thaW T, - A, 7 - A, and7, - A are all bounded, 2B=— (1R (30
and rearranging the terms, gives X

JH+1J21J
" 2lp,)  2\p

The explicit form of the stress tensor componfad). (21)]

2 for a Newtonian liquid in a film with thicknesd, is

N,
fora-tor,
|
. 2m[Ux(1—H2) + (Uz+Wy)Hy]
(1+H?

—
>
I
|

+27]|

Ao )l e (] n-o
| o)+ =] 2| 2|z, | m=o.

(3D
(25)
In the model which is developed here, the interface is limited
By applying the limits such a&,/\;—0, this equation is to small slopes §=Hy<1). The final form of the normal-

reduced to stress boundary condition is obtained by substitution of a
linearized form of Eqs(30) and (31) into Eg. (27), as fol-
1 2 lows:
2| py 7
Equation(26) states that the heat conducted across the filmis o +PH2m[Ux+ (Uz+ Wi)Hx]= = o (T)Hxx.
used to vaporize the liquid and supply kinetic energy to the (32
vaporized molecules.
For the normal-stress balance, equati®@8), the simpli- The shear-stress boundary condition of E2P) is consid-
fied form of the boundary condition is obtained as ered next. The stress tensor componenfi-t is written at
the interface, in terms a=H(X, 7):
NE.
—— —T-A-A=2B0o(T), (27 2y
Py %A= mL(Uz+Wx)(1-H%) 4U><Hx]. 33

. . o (L+HYY?
where the term proportional t#’ is due to the jump in den-

sities across the interface. Since the mass balance across {)gon using the expression for the surface tendign, (23)],

o e e e g that of he tangen uni vectbEq. 91, the expic
pushes the liquid down toward the solid. Burelbach, Bankoff, esult for the second term in E(R9) is obtained as

and Davis[26], termed this phenomenon ‘“vapor recoil,”
which may cause the film to rupture. ~ YTx+TzHy)

For the shear-stress balance equatfi®®), using the no- Vo(T) t=- W (34)
slip boundary between the two viscous fluids gives
Substitution of expression83) and (34) into Eq. (29), and
using the assumptiofly<<1, gives the shear stress balance

(Vi=V,)-t=0, (28) in the following form:

and, applying the above assumption, i.e., regarding the jump
in velocities, a simpler form is obtained: 7(Uz+Wy—4UyHy)=— y(Tx+T,Hy). (35
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6. Kinematic boundary condition: Explicit form allow the largest possible dimensionle@sit orde) tem-

The jump mass balance specified in Efj7) leads to the Perature difference.

kinematic condition at the interface, where a particle moves [N the following, the various variables of the balance
with the velocityV'. The modulus o' is the same as that equations are scaled according to these considerations. In

of the interface velocitydH/dr. The boundary condition for this way, a new workable set of dimensionless variables, that

the mass balance involves mass transport across the inté:rbar%Cter'zeS the rewetting problem in microscales, is ob-
face, with the following flux: tained.

1. Length scales

I= p (V=) A pi(H = UHx+W) (36) The space variablX varies in the range € X<L. Be-
R (1+H32)2 cause of the small slop&,<1, the expected height of the
interface is of the order df 4, ; therefore, the space variable
The small slope assumption leads to the following simplifiedZ is scaled using this length. The dimensionless lengtsd
form for the kinematic boundary condition: z are thus defined by

J=p(—H,—UHy+W). (37 X Z

(38

At this stage, we have a system of four partial differential
equationg10), (11), and(14): mass, forces, and energy; four where L=a/6? as in Eq.(8), and 6, is the contact angle
boundary conditions representing balances at the interfacghich, in rewetting situations, is typically very smdfor
[Egs.(17)—(19) and (22)]: mass, shear stress, normal stressexample, 6,~1°). Note thaté, is defined arbitrarily as a
and energy balances; and three boundary conditions at thgaling equilibrium contact angle.

solid surface Eq. (15)], specifying a no-penetration bound-

ary, a no-slip boundary, and a fixed wall temperature. In Sec. 2. Time scale

I D, the model is further simplified, by using the lubrication
approximation and an appropriate scaling, so as to facilitat?_
analytical solution of its equations. e

According to de GenneR21] and de Gennes, Hua, and
vinson,[20], very thin films that spread on a solid surface
advance with an average velocity,=K @', wherem=1
. . andK>0 are empirical constants, amg=0 is the dynamic
D. Scaling of variables contact angle. Note that this constitutive relation was proved

The small slope of the liquid-vapor interfacéi¢<1)  theoretically by de Gennd®1]. The power ofm=3 is sug-
allows the adoption of the well-known lubrication approxi- gested by data of Hoffmaf29] and Tannef30]. The coef-
mation. The contact anglé is derived asHy and rescaled ficientK is of the order of 1&(m/sec). The time scaleis
through a reference contact anglg. Its value is very small expressed as the ratio of the horizontal domain lemgémd
(6,<1), and, for convenience, it can be selected to be equahe average contact line velocity,:
to 6. [see Eq(8)]. All the variables in the balance equations,
that are functions ofd are introduced by their asymptotic

; . . . . L
expansions, i.e., as a function @f. Following the scaling = (39)
step, the leading-order terms in the equationg)as 0, con- A
stitute the “lubrication approximation.”
The space variable&X,2) are scaled according to the de 3. Velocity scale

Genneg 21] methodology. He argued that for microscopic
films, which spread with a moving contact line, there is no
characteristic length. Therefore, the molecular sizées a

According to these time and length scales, the velocity
scales are determined by the conservation of mass. The hori-
convenient choice for rescaling, and the lengths inXtend ~ Zontal velocityU is scaled by the average contact line veloc-
Z directions are scaled by the dimensions given in @y. 1Y, SO thatu=U/U, . The continuity equation in dimension-
The time scale is constructed by combining the length scalSs form is given by
a with an estimate of the average velocity of the contact line,

U,. This velocity relates to the contact angle throudh U aw

=K', where K and m are constants; see Ehrhard and —+—=0. (40
Davis, [28] and de Gennes, Hua, and Levins@0]. The X oz
scaling considerations applied here are similar to those of N . )
Ehrhard and Davi§28] and Burelbach, Bankoff, and Davis, 1his facilitates scaling of the velocity componemtas
[26].

Conservation of mass determines the velocity scales. The W
pressure scale is obtained by balancing the pressure gradients W= ————7. (41)
and viscous terms, which is common practice in lubrication Kb,

flows. Note that the generalized pressBrencludes the van
der Waals intermolecular forces through the potential funcThe dimensionless form of the continuity equati@t) is
tion ® [Eq. (12)]. The temperature scaling is chosen so as tmbviously the same as that of the dimensional &g (10)].
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4. Pressure scale T-T, H A

O==——, h=—n, A= ——— 1.
Tu—Ts L6, 6myKL2M !

The pressure scale is obtained through the following bal-
ance of pressure and viscous forces:
The variables summarized in EGO) are used, in this work,

9P to formulate the dimensionless balance equations and bound-
ﬂlez:R- (42 ary conditions of the new microscale hydrodynamic model.
Rescaling this balance gives E. Scaling of balance equations and lubrication approximation
In this section, the equations of momentum and energy
d?u  dp balance are rewritten in terms of the dimensionless variables
92X (43 of Eq. (50). For the sake of brevity, only the treatment of the
horizontalx component of the momentum balance is shown
where the pressune has the following form: in detail, whereas the other equations are given only in their
final form.
Lg2—m The dimensionless mass balance is given by the continu-
p=< o )p (44) ity equation(40). Next the momentum balander alterna-
7K tively force balanckin the X direction,[Eq. (1139] is trans-

formed into a dimensionless form. Substitution of the
complete set of relevant parameters from Eif) into this
equation gives

Similarly, rescaling of the potential functioh (due to van
der Waals forcesyields

Loz ™ o . K2g2m u v du
p= K P (45 P |t U W,
In order to preserve the form of E¢L3), a dimensionless B nK ap mKey[d2u 1 ¢%u
potential functiong is defined by ST x| Rz
x (52)
_ A — 2 gm+1y—1
=13 A=(BTKL 0, 7) A, (46) Following the multiplication of Eq(51) by the factorg?™™,
it turns out that the terms on the left-hand side are much
smaller than those on the right-hand side. Furthermore, the
h=H/L6,, 47) g

second order derivative of the velocity, with respect tox,
on the right-hand side of E@51), is negligible. The result is
that for 6,— 0, Eq.(51) reduces to a form that is dictated by
the leading order terms as follows:

whereh and A are the dimensionless film thickne@sight
of the interfacé and Hamaker constant, respectively. Ac-
cording to Eq.(12), the dimensionless pressure is then ex-
pressed by ap d°u
B B P + o2 =0. (52
P=Phyat ¢ = Prya— AT+ A/Z3, (48 , o .
Equation(52) implies that the pressure and the intermolecu-
5. Temperature scale lar interaction forces, which are represented thropghare
balanced with the viscous forces. Note tkigtis part ofp,;
see Eg. 12. This form of the momentum equation is a result
of what is known as the “lubrication approximation.”

The temperature field is scaled through

0= T Ts ] (49) Application of the same procedure to the momentum bal-
Tw—Ts ance in thez direction[Eq. (11b)] gives
The maximum temperature difference for the problem under IW oW oW
consideration iAT=T,,— T, so that®'<s@®<1, where® PO — +u—tw—
and®' are the scaled temperature, below and at the surface, o X 9z
respectively. mlop 2w ) EY,
A summary of the dimensionlegscaled variables that ="K |2z "oz T oz | (53

characterize the rewetting problem is given as follows:
An order of magnitude analysis of the last equation shows

m
x—ﬁ, 7= z , tzKiT, that the pressure gradient must m{og) for m=1, and
L L6, L therefore, wherg,— 0, it also tends to zero. Hence, at the
> m o limit
u W Lo; 5 Lé; ®
u= y w= ’ = ’ = !
KoT Kep T PT gk T P _

(50) e 0. (54)
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The energy balance equati@hy) is treated in the same way, fields were all eliminated. In Sec. Il F, the same scaling pro-
and the result is cedure is applied to the boundary conditions at the solid wall,

z=0, and at the interfaceg=h(x,t).
00 00 J0

N[ PO 970
4 2
pICp KO —FUu——+w—|= —{ e+ —|-
at X 92 L X 9z F. Scaling of boundary conditions
(59 At the solid surface, the dimensionless form of the veloc-
When 8,0, this equation is reduced to ity and temperature boundary conditiongg. (15)] are as
o follows:
9’0
2 =0 (56) u=0, w=0, =1 atz=0. (57)

Thls.form of the energy equation means that 09“0’. the . At the interface, which is represented in dimensionless form
dominant mechanism of heat transport is by conduction, witfy - _ h(x,t), there are four boundary conditions that are
subsequent superheating of the liquid and evaporation acr0§galed in 'Ehe, following.
the interface.

In summary, a substantial simplification of the balance
equations is achieved by applying the lubrication approxima-
tion. Effects such as time dependence, nonlinear convection The scaling of Eq(32) using the dimensionless variables

terms, and the coupling of the thermal and hydrodynamiof Eq. (50) gives

1. Scaling of normal-stress balance

LJ2+ MK o gm M [P W) AN #°h o -
T gy P20 ot G gk [ ax == 5290). (58)

The terms of Eq(58) include different powers of),. The  Accordingly, the constitutive expressid@4) for J is also
leading order terms of the asymptotic equation, which preexpressed in a dimensionless form by inserting the expres-

vails asf,—0, yield the following reduced form: sion of the nondimensional interface temperat@'eand di-
viding by J,,
L J pK  4h
_0—0p—v+—r907mp——(9—)(2'0'(®). (59 j:N®I, (63)

This relationship includes the mass flixand the surface Where the dimensionless coefficients given by

tensiono(0), that will now be scaled and then expressed in
a dimensionless form. The former is scaled through a refer-
ence mass flux],, which is due to the vaporization process
that occurs at the interfacd, is defined using a film, of
reference thicknedsé,, that evaporates due to heat conduc-The surface tensionr(T) [Eq. (23)] is expressed as a func-
tion which is driven by a temperature differende=T,,  tion of the dimensionless temperatu';
-Ts.

The heat flux

Lbap,Hf v2

N T2

(64)

[ M
27Ry

d(@)=0y1-FO"), (65)
NAT whereF is the capillary change factor:
[0}
vAT
relates these two processes by the following simple energy F= . (66)
balance: Is
Introduction of the expressions for the surface tensit@)
NAT [Eqg. (65)] and the dimensionless mass fluXEq. (63)], in
Jo=JoH= Lo, - (61) conjunction with Eqs(60) and(62), into Eq.(59), yields the
following dimensionless expression for the normal stress bal-
Thus the dimensionless mass fluis obtained as ance:

JH, L6H, _ #°h
= (62) —SJZ+Cp=—W(l—F®'), (67)

__J
J_i_q_o NAT
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where the dimensionless variabl8and C are given by 3. Scaling of energy balance

Rescaling the energy balance of E26) in the same way,
( NAT )2( L ) i.e., using the rescaled mass flpthrough the constitutive

(68) relation (63), letting #,—0, and leaving only the leading

LOoH,/ \ospy, by order terms, give
7K U, | 12 (‘?@
=M 69 NO®'[1+G(N®')2]+| =—| =0, 71
el ool (69) [ (NOHTJ+| — . (71

It is noted that when there is no temperature gradima-  Where the dimensionless gro@pis defined by
thermal casg S and F vanish, so that the Young-Laplace
term prevails at the liquid-vapor interface. 1 [ yAT\2
The dimensionless numb&[see Eq.(68)] describes the G= ﬁ(?)
effect of kinetic energy of liquid particles that vaporize I\ Po-Yo

through the mterface. Mass conservation, and the steep 9"%%e first term of Eq(71) represents the heat consumed by
dient of density across the interface, impose a steep gradien

. : : evaporation, the second term refers to the kinetic energy of
of velocity. At the interface, vapor particles are much faster,[he vapor particles. and these two terms are balanced with

than those of the liquid. Consequently, the interface i por p ¥ . .
" ” ; . he heat conducted across the film. This form of boundary
pushed back,” and this produces a reverse reaction force L : : | .
condition is nonlinear in the temperatufe,. Comparison of

tions. This effect was termed “vapor recoil” by Burelbach, the order of mag_mtu_de of these thr_ee energy components
shows that the kinetic energy term is small relative to the

Bankoff, and Davig26]. The term in the first parentheses of cvaporation term, so that E71) may be linearized. Con-
Eq. (68) expresses the ratio between the heat transmitted b ideF; for exam I'e the aro —G(N%)')Z for the ca{se of
conduction and that by evaporation. The dimensionles i r The dim pn ,i ol 9 nupn:b@ ndN are found 1o b
group S expresses the evaporation process through the inte _ae;l € EnsIoness numoessa are found 1o be
face, subject to the normal stress boundary condition. Th e(t%/\?ee;. z-grf adnl31irllseloZlc?if(altrielrfallf?oItlgvmvge{ﬁ;unrethvsc”es
t f Eq67) i Itiplied by the di ionl ’ o ' ’
pressure term of E67) is multiplied by the dimensionless e=0(10 %) can be neglected with respect to 1. For further

capillary numbelC, which is defined as the ratio of the vis- . .
cous effects and surface tension effects of the moving conqeta'ls' see Burelbach, Bankoff, and Dayig6]. The result

tact line. of neglecting the kinetic energy term in Eq.1) yield:
The term on the right-hand side of E@7) is the linear-

ized curvature multiplied by the factor accounting for varia- . [99

tion of the surface tension with temperature. The existence of NO + (E) =0. (73

a temperature gradient along the interface produces a corre- z=h

sponding gradient of surface tension.

(72)

that may drive the interface to exhibit significant perturba-

The latter boundary condition implies that the energy bal-
) ance at the interface is dominated by conductive heat transfer
2. Scaling of shear stress and evaporation
The result of rescaling the shear stress baldfcg (35)]

with the variables from Eq50), letting 6,— 0, and selecting 4. Scaling of mass balance (the kinematic condition)

only leading order terms, gives Rescaling of the mass balanfgq. (37)], and using the
lubrication approximation, gives the following dimensionless
kinematic boundary condition:

C62 gu 90 90 dh
= E__((?_x E& at z=h. (70)
oh  oh

Ej=w— ——u—, (74
The dimensionless numbé&/F expresses the thermocapil- at X
lary effect. In this context, a variable surface tension is ex- . . . )
pected to develop concurrent with the occurrence of a temWhere the dimensionless grokipis defined by
perature gradient along the interface. At larger distances
from the three-phase contact line, the decrease in tempera- NAT
ture produces an increase in the surface tension. The tem- :<m)' (79

perature induced gradient of surface tension acts to “pull”

the advancing fluid backward.e., opposite to the film ve- g gescribes a ratio of heat flow by conduction and evapora-

locity U). This hinders the film movement. The gro@$F  tjon. Expressing in Eq. (74) by its constitutive relatiofiEg.
describes the ratio between the viscosity effects and the fraggg)| gives

tional thermal change in the surface tension. Note that, for
isothermal fields, the right-hand side of Eq0) vanishes,
and the dimensionless shear stress boundary condition is re- dh  dh

|y —— | —
duced tou,=0 (the vapor seems to be passive ENO =w ot u ox’ (76)



PRE 59 DETERMINATION OF THE QUENCH VELOCITY AND. .. 6697

TABLE I. System of simplified dimensionless equations for the rewetting problem.

Mass balance—continuity
Momentum—in thex direction
Momentum—in thez direction
Energy balance

Liquid-solid potential of interaction

Boundary conditions at the
solid liquid interfacez=0

u,+w,=0
Uzz= Px
p,=0
0,~0
#=A/h? (included in generalized pressup,
no slip u=0
impermeable wall w=0
wall temperature 0=1

Liquid-vapor interface jump °+Cp=—h,(1-FO"

Normal stress balance —S
conditions,z=h(x,t), [

j
5
= u,=—(0,+0zh,)
Linearized energy balance N®'=—0,

Mass balance EN®'=w—h,—uh,

Shear stress balance

Constitutive relation for mass fluj=N®'

Dimensionless numbers

N Lﬁ’oapUH|2 M |\ 2 o 77IU0)
\onTE 2Ry o6
YAT MATV? L
F= S=
Os LOoH,) \osp, b
[ NAT A A
| pHILUH? " 6mmUL%6,

If there is no evaporation, or the system is isothermal, i.e.yided in macroscale geometry. Here the work is concerned
AT=0, then the interfacé(x,t) behaves as if it is imper- with the formulation of a nonisothermal microscale,
meable to matter==0, and the kinematic boundary condi- O(1000A), rewetting model. The microscale model is fo-
tion reduces to its familiar form: cused in a region defined in RdR0] as a “proximal re-
gion.” In this region, the intermolecular solid-liquid forces
oh oh and the effect of contact angle must be accounted for in the
EZW—U&- (77) momentum balance equation. The contact angle, which is
typically very small in rewetting situationO(1°)], deter-

Table | summarizes the set of dimensionless balance equ&tines the geometry as well as the scales of the problem.
tions (mass, momentum, and enejgyand their related (2) The nature of the rewetting system, and its small con-
boundary conditions, in their final simplified form. tact angle, facilitate, through the use of the well known “lu-
This concludes the formulation of the nonisothermal mi-brication approximation,” considerable simplifications of the
croscale model of the three-phase contact zone. The afalances equationgnass, momentum, and eneygound-
proach was based on hydrodynamics, heat transfer, surfaégy conditions were formulated, both on the solid wall and at
tension, and intermolecular long-range forces. The theoretthe liquid-vapor interface. The force and energy balances
cal model consists of a system of differential equations ofletermine the boundary conditions at the liquid-vapor inter-
mass, momentum, and energy conservation, and their bounéace (i.e., shear stress, normal stress, energy balances, and
ary conditions. The second part of the four-part series dekinematic condition
scribing the worl{14] includes the derivation of the interface  (3) The boundary conditions, as well as the balance equa-
equation, emerging from this model, and also its solution, afons, were subjected to a process known as one-sided sim-
a parametric study of the film thickness behavior and analyplification. This process results in decoupling of the dynam-
sis of the related phenomena. Subsequent parts of this serigs of the liquid and vapor phases. The set of equations
[15,18 deal with the determination of the rewetting tempera-accounts for several physical phenomena at the quench front.

ture and velocity, by applying additional considerations ofThis is reflected, for example, in the normal stress boundary
thermodynamics and heat transfer. condition, where a term is included to describe the kinetic

energy of evaporated fluid particles at the interface.
(4) The dynamic behavior of the fluid, at and across the
interface, affects the solutions of the thermal and hydrody-
(1) The rewetting phenomena is usually treated as being aamic fields. This is due to the dependence of these solutions
problem of heat and mass transfer, and its modeling is proen the interface profileh(x). The kinetic energy effect,

IIl. SUMMARY AND CONCLUSIONS
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where the film is pushed by the evaporating liquid toward theorces also act against the tendency of the liquid to evapo-
solid wall, is known as the “recoil effect.” In case of inten- rate.
sive evaporation, this effect can even cause film rupture. (7) The evaporation and conduction effects are incorpo-
(5) The microscale hydrodynamic model involves therated in the dimensionless parame$eiLiquids with higher
thermo-capillary numbe€/F and the capillary numbet. In values of heat of evaporatiohl,, are characterized by
this model,C/F expresses the effect of temperature on thesmaller values o§. In this case, the evaporation effect on the
surface tension forces. The occurrence of a temperature graxterface solution profile becomes less pronounced. The re-
dient along the interface, in rewetting situations, imposes aerse is also true. The dimensionless paramgter part of
corresponding gradient of surface tension. This changes thbe kinematic boundary condition. This number also ex-
interface profile and the contact angle. The capillary numbepresses the evaporation and conduction effects, but in con-
C provides a measure for the relative effects due to viscourast toS, which depends on the heat of evaporation, it relates
and capillary forces. In rewetting, a film that moves with ato the kinematic behavior of the liquid-vapor interface. The
smaller quench velocity involves smaller viscosity forcescase of interface that is impermeable to mass is obtained at
relative to the surface tension forces. In these cases, the suE=0.
face tension is more dominant and smaller values of contact (8) The microscale nonisothermal hydrodynamic model,
angle may be obtained. of the quench front forms the basis for analysis of the hydro-
(6) The microscale hydrodynamic model reflects thedynamics involved in the rewetting phenomena. However,
strong effect of the solid-liquid interactions on the film pro- rewetting systems are also controlled by their thermodynam-
file, and on the attendant flow and thermal fields. Thinnerics, and, hence, the latter must be matched with the solution
films, or alternatively smaller contact angles, are associatedf the hydrodynamic model. This calls for the formulation of
with stronger attraction forces between the solid and the liga combined hydrodynamic-thermodynamic model, for the
uid molecules. Consequently, rewetting can be established description of rewetting phenomena, which is the subject of
higher temperatures of the solid surface. These attractiothe subsequent parts of this serjéd,15,18.
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