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The nonlinear regimes of convection in a system of three immiscible viscous fluids are investigated by the
finite-difference method. We study new phenomena caused by direct and indirect interaction of thermocapil-
lary and buoyancy(Rayleigh and anticonvectiyanstability mechanisms. Two variants of heating—from
below and from above—are considered. The interfaces are assumed to be flat. We focus on nonlinear evolution
of steady and oscillatory motions and selection of stable convective structures depending on the parameters of
systems. The influence of the lateral boundary conditions is also investigated. A classification of different
variants of interaction between Rayleigh and thermocapillary instability mechanisms is presented, and several
typical examples are studied. Specifically, we considered six different configurations where the Rayleigh
convection arises mainly in a definite layer, and the thermocapillary convection appears mainly near the
definite interface. Also, the case where both interfaces are active and alternatively play a dominant role is
investigated. Some configurations of interaction between anticonvective and thermocapillary instability mecha-
nisms are considerefiS1063-651X99)12205-0

PACS numbes): 47.27—i, 47.20—k

[. INTRODUCTION air/silicone oil 10 cs/fluorinert FC7&eg[11-13). For these
systems, the thermocapillary and buoyancy forces act in the
The phenomenon of Rayleigh-Bard convection in a Same direction, and the instability is always stationary near
horizontal fluid layer between rigid boundaries is causedhe threshold of the onset of convection.
only by the buoyancy effect. Convection in the presence of In the present paper we consider the combined action of
an interfaceis characterized by several additional instability Several mechanisms of instability for three-layer systems
mechanisms. The most well-known interfacial physical ef-With different physical properties. The paper is organized as
fect tha‘[ may cause a Convective |nstab|||ty iS thermocap- follows. In Sec. |l V\!E! describe the fO_I‘mulat_ion of the pI‘Ob—
illary effectwhich can generate stationgy] and oscillatory ~ lem and the numerical method. Section Ill is devoted to the
motions [2—5]. There exists another instability mechanism consideration of the combined action of Rayleigh and ther-
which appears only in systems with an interface. Althoughmocapillary instability mechanisms. In Sec. IV we study the
caused by buoyancy, it is nevertheless completely differeninteraction between thermocapillary convection and anticon-
from the Rayleigh instability mechanism. This kind of insta- Vection. Section V contains some concluding remarks.
bility, which is obtained by heatinffom above was discov-
ered in[6] and explained from a physical point of view([in]
(see alsd8]). This phenomenon, connected essentially with
the difference of physical parameters of fluids on both sides

of the interface, is called “anticonvection.” Let the rectangular cavity with rigid boundaries be filled
_ In areal situation, various instability mechanisms may acy three immiscible viscous fluidsee Fig. 1 The plates are
simultaneously. The buoyancy instability mechanismsept at different constant temperatutéise total temperature
(caused by aolumeeffecy are more important for relatively grop is@). It is assumed that surface tension coefficients on
thick layers, while thermocapillaritfinterfacial effect plays e upper and lower interfaces and o, decrease linearly
the dominant role in the case of thin layers or under microyitn temperature: o= oo—aT, o, =0 —a,T. In the
gravity conditions. The combined action of different instabil- present paper we do not take into account deformations of
ity mechanisms may lead to some qualitatively new effectsyhe interfaces. Thus, we disregard the long-wavelength de-
For instance, competition between two mechanisms of st&rmational instability mod¢§14,15 which may be observed
tionary instability can produce oscillatiofis]. only in very thin layers with distant lateral boundar{ds).
Recently, some new technologies appeared that are basgfle |inear stability analysis performed for three-layer sys-
on complicated multilayer systems, for example, the liquidiems with deformable interfacdd7] shows that the defor-
encapsulation crystal growth techniq{0] used in space ational instabilities do not appear in the case of moderate
laboratory missions, which enables the growing crystals tqayer |engths. The assumption used does not contradict the
attain a high quality by putting the melt between the fluid egyts of space experimerits0]. Indices 1 and 3 are related

layers. The simultaneous interaction of many interfaces with, the exterior layers, and index 2 is related to the middle
their bulk phases and with each other can lead to a muchpe.

more complex dynamics and unexpected effects. At present, | g ys use the following notations:

the combined action of the thermocapillary and buoyancy

mechanisms of convection were considered only for the

three-layer systems air/silicone oil 50 cs/fluorinert FC70 and ve,=v3lvy, v=w3zlvy,, n,=n3/74,

. FORMULATION OF THE PROBLEM AND
NUMERICAL METHOD
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2 . Here Mr=yM/P, Mr, =7, aM/P, andM=a®az/73x3
X is the Marangoni number. On the horizontal solid plates the
boundary conditions have the fory=1:
i3
3:W:O, 3:0, (24)
y=—a-a,
FIG. 1. The system of fluids. P
1#1:(9—:0, T]_:S, (25)
y
n=mn3ln2, Ky=k3lky, Kk=kK3lkz, s=1 for heating from belows= —1 for heating from above.
We consider two kinds of boundary conditions on vertical
Xx=Xx3lx1, x=xs3lx2, Bx=B3lB1, walls.
o (A) Well-conducting boundaries:x=—L/2,L/2:
B=B3/ﬁ21 aza*/av alp
_o¥i — _ A =
a,=a;la;, a=a,la;, L=l/a;. =ox 0 Ti=TAYTB;, =123 (269

Herev;, ui, ki, xi, Bi, anda; are, respectively, kinematic Here

and dynamic viscosities, heat conductivity, thermal diffusiv-

ity, heat expansion coefficient, and thickness ofithelayer ~ A;=sk, (1+xa+«,a,) L, A,=sk(l+ka+x,a,)

(i=1,2,3). As the units of length, time, velocity, pressure,

and temperature we usg, a3/vs, v3/as, psvi/as, and®.
Introducing the stream functio#r and the vorticitye we

can write the dimensionless equations in the following form:

As=s(1+ka+ T G2

s=s(Itratua,) " Bi=sm e oy
B,=Bs=s(l+«ka+k,a,) .

G W dor_ Wy D o

—dAg+bG T
9t ay ax ox ay o ATRiRTR

(B) Insulated boundaries:x=—L/2,L/2:

Alﬂi:_(pi , alﬂi aTi .
= o =0, x =0, i=1,2,3. (2.6b
dTy 9y 9Ty 9y Ty ¢ .
5t Gy X ox ay pATi (i=123. (2.1 The boundary value probleif2.1)—(2.6) contains 17 in-
dependent nondimensional parameters. The parametric in-
Here, dg=bs=cs=1, d;=1/v, , by=1/8, , c,=1lx, , vestigation of this problem seems to be impossible. Because

of this we shall concentrate on some particular systems of
fluids demonstrating various characteristic phenomena.
The boundary value problert2.1)—(2.6) was solved by

d,=1/v, b,=1/8, c,=1ly, G=gB;@a3/v3 is the Grashof
number, andP®=v3/ x5 is the Prandtl number for the liquid

in layer 3. hthe finite-difference method. Equatiof®.1) were approxi-

At the interfaces normal components of velocity vanis ated on a uniform mesh using a second-order approxima-
and the continuity conditions for tangential components of ! 9 PP

velocity and viscous stresses, temperatures, and heat fluxggn f_or_ Fhe spat_lgl coordinates. T_he calculqu_on_s were started
also apply: y=0: with initial conditions corresponding to equilibrium fields of

temperature and localized vorticity of different sign in sev-
eral points(see Fig. 2. The nonlinear equations were solved

oy oy ~ i T ;
Yo=th3=0, ——=—", T,=Tj, using the explicit scheme, as a rule on a rectangular uniform
ay 28x 84 mesh. We checked up the results also or 82 and
(2.2 28x126 meshes. The time step was calculated by the for-
10T, dT3 Py I N T3 mula
kay oy TaZ oy M

B [min(Ax,Ay) 12 min(1,v,x, v, ,x4)]
y=—a: B 2[2+max i(x,y)]]
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+ —|[= + + — 2[ ha(X, = Ay) + h3(x,Ay)]
@3()(10):_ (A )2(1+ )
— +|[+ = = + YT
+ == +|] + - Cmr - Ts
- - - - Mr 1+ 7 ox x,0), (2.7
FIG. 2. Types of initial conditions for vorticity. ITa
©2(X,0)= ne3(x,0)+ MI‘W(X,O), (2.8
The Poisson equations were solved by the iterative Liebman
successive over-relaxation method on each time step: the ac- ox(X,—a) = — 2[Pa(X,—a—Ay)+ip(x,—at+Ay)]
2\, -

curacy of the solution was fixed (16 for steady solutions
and 10 ° for oscillations. The Kuskova and Chudov formu-
las [18] providing the second-order accuracy were used for
approximation of the vorticity on the solid boundaries. For
example, on the boundar=0

aT
i(2AX,y) —8yi(AX,y) P1(X,—a)=7m, 7 Tex(x,—a)+ Mr*a—xz(x,—a).
2(Ax)? ' (2.10

(AY)*(1+ 7,7 Y
1 4T,

_Mr*1+7]*7771<9_x

(x,—a), (2.9

‘PI(Ovy):

At the interfaces the expressions for the vorticities at the Here Ax, Ay are the mesh sizes for the corresponding
exterior layers are approximated with second-order accuracgoordinates. The temperatures on the interfaces were calcu-
for the spatial coordinates and have a form lated by the second-order approximation formulas:

[4Ty(X,—Ay)—To(Xx—2AY) |+ k[ 4T3(x,Ay) — T5(X,—24y)]

TZ(XvO):T3(X!O): 3(1+K) y (211)

K [4To(X,—atAy)—Ty(X,—a+2Ay) ]+ k[4T(X,—a—Ay)—T(X,—a—2Ay)]

Ta(x,—a)=Ty(x,—a)= ki) . (2.12

The same code was formerly used for calculation of convec- Ill. COMBINED ACTION OF RAYLEIGH AND
tive flows in three-layer systemsee[11,19). It turned out =~ THERMOCAPILLARY MECHANISMS OF CONVECTION
to be efficient for calculation of both stationary and oscilla-
tory convection regimes. A good agreement between Iinea\ge
and nonlinear theories was observed. N and two-layer systems.

l_\levertheless, we p(_arformed some addltlonal_ test;. The |, one-layer systems, the Marangoni convection in the
typical test results obtained for the system described in Segsence of the surface deformation is always stationary. In
INA (M=27500,G=0) are shown in Tables I and Il. yyo-layer systems, the Marangoni oscillations may a&e
These tables present the dependences of the oscillation pggt only in some specific casé20]. In three-layer systems,
riod 7 and the maximal value of stream functiotz)max i the interaction of the interfaces may lead to the appearance
the upper layer on the mesh siZeable ) and the time step of new mechanisms of oscillatory instability. Formally, the
(Table I). Relative changes of stream function amplitudescritical Marangoni numbers for the stationary convection in a
for all mesh sizes do not exceed 3%. The maximal relativehree-layer system satisfy a quadratic equat{d®,21],
changegup to 10% were observed for the vorticity near the which does not always have real solutiofis the case of
corner points where the vorticity field is not continuous.  one-layer and two-layer systems, the Marangoni number is

First of all, we shall discuss the specific features of con-
ction in three-layer systems in comparison with one-layer

TABLE I. TABLE 1.

Mesh sizes T (¥3) max Time step T (¥3) max
28x84 0.284 5.679 At 0.284 5.670
42x84 0.284 5.724 At/2 0.284 5.661
28x126 0.284 5.707 At/4 0.284 5.656
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TABLE II1. corner” motion appears at small values bfThe typical
_ : dependence of the maximal value of the stream function
Rayleigh convection () maxont (i=1,2,3) is shown in Fig. $boundary condi-

tions(2.63]. One can see a “plateau” in the stream function

Upper layer Middle layer Lower layer . . .
PReriay y y for all the layers in the region ¥5t<30 corresponding to a

Upper . . - . - .
M PP B C transient state, containing vortices with different sigsse
arangoni interface Fig. 4a)]. Small i di to the “cold
convection  Lower D E F ig. a]: mall vortices corresponding to the “cold cor-
interface ner’ motion appear spontaneously near the vertical walls.

Finally, the corner vortices replace the structure produced by
the initial conditions, and the system evolves to the same
steady state as for the second kind of initial conditions. The

calculated from a I|n_ear eq‘!a“b”r.‘_m?”y cases, the dlsap- spatial structure of this steady motion which does not depend
pearance of the stationary instability is a sign of an oscilla-

tory instability. That is why the oscillatory instability in o the initial state corresponds to the “cold comer” case
y Y- . y ! y Y see Fig. 4b)] and is almost insensitive to the growth of the
three-layer systems is much more widespread than in twa: ) b
layer oneq§13,19,21,22 arangoni numoer. -
I In the case of heat-insulated lateral boundary conditions

thng-elgeelrs Sagt%tgg iﬁltfheglo?egvehr:(ég g:cagot?]ppbizr a?::;ly Elin .6b), the evolution of the structure from the initial condi-
Y y P yancy anf, g (a) and(b), as well as the final structure of the station-

thermocapille}ry instability mechanisms. anh layer is char ry thermocapillary motion, are similar to those obtained in
acterized by its own local value of the Rayleigh number, thal he casd2.69. The intensit); of the motion in the ca&2 6b

is why th'e buoyancy convectlo.n !nstablllty is reallzed_ USU-ic <omewnhat lower than in the ca&2.63 (see Fig. 5 In

ally only in one of the layers. Similarly, the thermocapillary both cases, for relatively small values bf the maximal
:nsttsbmty mayhbe ptrhOdltfed mam% by one of tthe mte(;fz?)ces\/ame of the stream function is achieved in the upper layer,
n the case where the thermocapiiary convection anc bUOYg, ;e gq large values oM it is achieved in the middle layer.
ancy convection are generated mainly in different fluids, Let us remember that in the one-layer c&28] the flow

some I§|nd of “indirect mtere}ctlon of 'mstqblhty mecha- long the surface towards the cold wall compresses the ther-
nisms is observed. Several different situations are broug al gradient, thereby enhancing the flow. That is why the

together in Table lll. In the rest of S_ec. Il we Sha”.cons'd?rmotion in the case of a cold corner turns out to be essentially
phenomena corresponding to the listed types of mteractlomore intensive than in the case of a hot corner. For an ex-

between Rayleigh and Marangoni convection mechanlsms.temal horizontal temperature gradient on the surface, the

problem was investigated in detail by Canri¢p4] (see also
A. System 1 [25]). We consider here the case where the external tempera-

We start with the simplest case, where the buoyancy coriUre gradient is directed perpendicularly to the interfaces.

vection arises mainly in the middle layer, the thermocapillary’ "€ temperature gradient along the interface is nonzero only
convection appears mainly near the upper interfaeseB ~ Pecause of the convective motion. One could assume that

in Table 1), and only steady motions are realized in thePoth cases of the “cold corner” and the “hot corner” may
system. be observed. However, because of the positive feedback for a
Let us consider the system air/silicone oil 10 cs/fluorinerthermocapillary motion in the case of a “cold corner,” the

FC70, which is characterized by the following set of param_motion corresponding to the latter case turns out to be pre-
eters [13]: 7,=6.8<10°% v, =112, k,=0.375, x, ferred. Let us note that in the case of well-conducting verti-

=643, B,=3.6, p=2x10"3, v»=157, k=0.196, cal boundaries, the vorticity is not continuous in the corner

=228.4,3=3.27,=0.5, P=0.707 (system 1. The thick-  POINts[26].
nesses of the layers are assumed to be equah, =1, L
=2.5,s=1 (heating from beloyw Both types of boundary
conditions(2.69 and(2.6b) are used.

First, let us consider the thermocapillary convectidh ( 008 |
#0, G=0). The threshold valuesM. for both heat-
conductive and heat-insulated lateral boundary conditions
turned out to be rather closeM(=25000). The motion 0.06 |
takes place mainly near the upper interface. _

One can expect that two kinds of thermocapillary motions =
are possible. The case where the temperature near the vert %%
cal walls is lower than that near the symmetry planie0
will be defined as the case of “cold corners.” The opposite
situation will be called the case of “hot corners.”

As the initial state, we used the temperature field corre-
sponding to the mechanical equilibrium state which is char- 4,
acterized by a temperature gradient, directed perpendicularl
to the interfaces, and two kinds of vorticity fields character-
ized by the two-vortex structure in each laysee Figs. &) FIG. 3. Dependence ofy)m.x (i=1,2,3) ont in the case of
and Zb)]. For the first kind of initial statétype ()] a “hot M =40000.

‘pl)max
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FIG. 4. (a) Transient stateNl =40 000); (b) streamlines of the
steady motion foM =40 000.

In the case of the buoyancy convectioB+#€0, M=0),
the motion appears mainly in the two lower laygsse Fig.
6(a)]. Let us note that the direction of the motion in the
middle layer is the same in both cases of buoyancy and ther- 0
mocapillary convection. That is why in the ca€s~0, M
#0 the intensity of convection in the middle layer is larger
under the action of both effects than in the absence of one of
them[see Fig. &)]. The situation is similar to that consid-  FIG. 5. Amplitude curves ;) ma(M) (i=1,2,3) for(a) well-
ered by Nield[27] for a one-layer system. conducting andb) heat-insulated lateral boundary conditions. The
Thus, for system 1 the combined action of both mechahumber of the line coincides with the number of the layer.
nisms of instability, as well as the change of the lateral o ) ) ]
boundary conditions, do not produce qualitatively new flowin different layers. Such an “indirect” interaction of insta-
structures. bility mechanisms is possible only in three-layer systems.
For the system with the given physical properties it is L€t us consider the system air/ethylene glycol/fluorinert
possible to obtain a situation when the thermogravitationaFC75 which is characterized by the following set of param-
convection is realized mainly in the upper layeaseA in  eters [28]: #,=0.013, »,=18.767, «,=0.401, x,
Table Ill). For this purpose we change the ratios of layer=606.414, B, =2.62, »=0.001, »=0.974, x=0.098, x
thicknessesa=a, =0.4; it means that the thickness of the =215.1,8=5.9, P=0.72, «=0.08. Let us takea=a, =1,
upper layer is the largest one. Boundary conditi¢héb are | =2.5,s=1. We use boundary conditiori.63. The dia-
used. In this case the direction of the vortices’ rotation neagram of structures is shown in Fig. 7. The pure buoyancy
the upper interface is the same both for buoyancy and theiconvection G#0, M=0) was considered formerly by Si-

mocapillary convection and thermocapillary effect leads tomanoyskii[29]. We can introduce the Rayleigh numbers de-
the stabilization of the stationary instability mainly in the (ermined by the parameters of each layer:

upper and middle layers. In the upper layer the motion has a
two-story structurgsee Fig. €)]. gBiAal
R=——— 1i=1,2_3.
B. System 2 ViXi

In the present subsection, we shall concentrate on a quali- In our case the “local” Rayleigh numbers differ consid-
tatively new situation, where both instability mechanisms acerably:

FIG. 6. Streamlines in the case of heat-insulated boundary condifi@n&=1750,M=0; a=a,=1; (b) G=1750,M=12000; a
=a,=1; (c) G=500,M=5000;a=a, =0.4.
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B £ rotation are not equivalent; the preferred motion appears in a
subcritical way. These details cannot be seen in the scale of
the graph.

Let us consider now the case of the pure thermocapillary
convection G=0, M#0; see Fig. Y. The Marangoni con-
vection is generated mainly in the second and the third layers
= s0'm & & [see Fig. @)]. In the third layer the fluid goes down in the
middle part of the layer, in the second layer it goes up, and in
the first layer it goes dowfthe latter motion is invisible in

Fig. 9]
Now we shall discuss the case of the combined action of
T 2 B buoyancy and thermocapillary mechanisms of convection
0 o—¥—% (G#0,M#0; see Fig. ¥. The considered system belongs to

0 ; .
%0 type C of Table Ill. Because the thermocapillary convection

G in the second and the third layers induces a descending flow
in the middle of the first layer, it supports structéegainst
other possible structures. For nonzero valuedlobne can
observe in the lower layer structufe[Fig. 9b)] instead of
R R both structure® andC. If M is nonzero but not sufficiently
—2_35 —1=1.7x10% large, the structur€ survives[see Fig. &)]. In the latter
Rs Rs case, some small vortices appear, separating mainly buoy-
ancy convection motion in the lower layer and mainly ther-
}ﬁwocapillary motions in the middle layer and in the upper
layer.

The considered example shows that the structure of the
buoyancy convection in a certain layer may be influenced by
thermocapillary convection appearing in some other fluid

FIG. 7. Diagram of strucutregl—structureA, O—structure
B,*—structureC).

Because of this, the intensive convection motion arises onl
in the lower layer G.=2.5); in the other layers weak in-
duced motions existsee Fig. 8. It is interesting that the
structure of the motion changes with the increas&ir-or
relatively smallG [see Fig. )] the fluid goes down in the
middle of layer 1(structure J. WhenG increases, the lateral
vortices become stronger and suppress the central vortices; Let.us change the ratio of layer thicknessas:1: a,
so that structure | is smoothly transformed into a steady four-_

; . =4; it means that the lower layer has the largest thickness.
vortex structure I[see Fig. &)]. For largeG [see Fig. &)] . . ; "
the fluid goes up in the middle of layer Gtructure II). The thermocapillary convection appears mainly near the up

. . . er interfacq see Fig. 1()]. As for the given cas®,;>R
There is a hysteretic transition between structures Il and IIIp dsee Fig. 18] As 9 &1 >R,

. . >R;, the buoyancy convection is realized mainly in the
in the interval of the Grashof numbers 8(G:<80 the sta- lower layer. Let us note that nonlinear oscillatory convection

fs possible in that casesee Figs. 1) and 1@c)]. The os-
cillatory motion retains in the system under the combined
Gy =—di(=xy), Tixy)=Ti(=xy), i=12,3 actiqn of both mechanisms of ins.tabilitgaét 0, M #0). The
(3.1) maximum values of stream function modulus in all the layers
as a function of time are presented in Fig. 11. The evolution
are not violated. It is knowitsee[20,30,31) that the bifur-  of the streamline patterns during one-half of the period is
cation of steady finite-amplitude motions with the symmetryshown in Figs. 1&a)—12d). The most intensive motion of
(3.1 is two sided(the motions with different direction of the gravitational nature takes place in the lower layer, where

configurations, the symmetry properties

0.0153 -----

_____ 0.0245 -~ 0.0254 ----.

B 0.0123 - 0.0127 -----
000764 - oo § DL L J— 211107

e T -0.0123 —-- 0.0127 ~--

0.0153 ----- -0.0245 ----- 0.0254 -----

FIG. 8. Streamlines foM =0; (a) G=20, (b) G=75, (c) G=100.
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0.0327 ~----

......

FIG. 9. Streamlines for the system air/ethylene glycol/fluorinert FG¥54, =1; «=0.08): (8 G=0, M=50000; () G=75, M
=25000; (c) G=100,M =25 000.

during one-half of the period the vortices change their signsif 1 <a<4.5 thermocapillary convection is generated by
The thermocapillary motion in the upper and middle layers isboth upper and lower interfaces, and if 4&<12.5 the
weakly influenced by the buoyancy convection in the lowermotion takes place mainly near the lower interface. In the

layer. last case inclusion of buoyancy convectidd+ 0) leads to
Now let us consider a case when the thickness of theype F in Table .

middle layer is larger than the thickness of the exterior lay- With the increase inv the situation changes essentially
ers:a=2.4,a,=0.4. The ratios of local Rayleigh numbers also for the layers with unequal thicknesses. Let us take

are =2.4,a,=0.4, «=12.5. In this case the thermocapillary
convection appears mainly near the lower interface, and, as
—2_1155 —‘=448. was discussed above, the buoyancy convection arises mainly
Rs Rs in the middle layer. It means that the system belongs to type
In this situation the intensive buoyancy convectidB#0, E in T"’_‘ble ll. The c_omblned action of buoyancy and ther-
M=0) arises mainly in the middie laydsee Fig. 18)]. r_nocaplllary mechanisms3# O M#O_) Iea_ds to the estab-
The competition between the buoyancy convection and thiShment of the steady motion mainly in the lower and
thermocapillary effeci{type B in Table Ill) intensifies the r . ,
stationary motion[see Fig. 18)]. One can see that the
maximum of the motion’s intensity takes place in the middle
layer, close to the upper interface.

Let us note that the increase of the ratio of the thermal 0.1 -l-‘ A
coefficients of the surface tensiam (for example, by the i
addition of the surface-active agents on the interfatesds !
to the change of the “activities” of the interfaces. We shall
takea=a, =1. ForG=0, M#0, if 0.08<a<1 the upper 008 i

a-

interface plays an active role in the generation of convection,

0.0147 -~ 0.0497 -~ é i A x o \ A o
0.00737 - 0.0327 - ~= 0.06 [ i i A Y &t |
1.73198 - 0.0156 i Y iy iy I A Py ;
-0.00737 - 0.00143 —-- = | i ! i | !
0.0147 ---- 0.0185 ---- ~ | / { ! ; i
13
! { ! i { !
i ! 13 1 i
5 5 5 0.04 k/ W P N\ A ,} A || £OOATTNS D .-'.,:".
: I N U S R R
R R S A - A A e T
4 4 | o | | \d Lo
Vot L 5 ! Y s (W ]
Vi V) 0 Vi vl ¢
{3 3 Y kY y 4 i Y
1 5 0.02 -
4 1 1
[ T ) 0
0 1 2 o 1 I 1
. b . 0 100 200 300
FIG. 10. Streamlinesa=1, a, =4, «=0.08) for (a) steady

thermocapillary convectionG=0, M =60 000);(b), (c) oscillatory

FIG. 11. Dependence df#i)|max (i=1,2,3) ont in the case
buoyancy convectionG=5, M=0).

G=5,M=60000;a=1,a,=4, a=0.08.
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FIG. 12. Streamlinega)—(d) for the periodic oscillatory motion for the half of the peri@=5, M=60000;a=1, a, =4; «=0.08.

middle layers close to the lower interfafsee Fig. 1&)]. Let G=0. From results of19], we expect that thermocap-
Let us consider now the case when the thickness of thélary oscillations may arise in the system, because of equal
upper layer is larger than the thicknesses of the other layersialues of temperature diffusivities. It turns out that the me-
a=0.333,a, =0.133. Fora=12.5 the buoyancy convection chanical equilibrium state is stable il <M,=12 700 (see
is realized mainly in the upper layer and the thermocapillaryrig, 14). AsM> M, the equilibrium state becomes unstable
convection appears mainly near the lower interface. In Tablgyith respect to oscillatory disturbances. This instability leads
Il such a situation is classified as tyfiz The combined {5 temporally periodic oscillationéregime 2 which appear
action of both mechanisms of instabiliyGe=0, M#0) i 5 supercritical way. Let us describe qualitatively the flow
leads to the arising of the steady motion in the system. As fog, | tion during the period of oscillatiorisee Fig. 15 We
pure thermogravnaugnal convection, the most intensive start from the state where an intensive thermocapillary con-
motion takes place mainly in the upper layer. vection corresponding to a ‘“cold corner” configuration
takes place mainly in the third layer and in the second layer,
while the fluid in the first layer is almost stagnafig.
15(@)]. The fluid motion in the second layer induces two
In the previous example, only one of the interfaces playedveak vortices in the first laydiFig. 15b)]. Because the as-
an active role in the generation of the thermocapillary concending flow in the middle of the second layer is more in-
vection. To investigate the interaction between two activeensive than the descending flow in the first layer, a maxi-
interfaces, we consider the model system, where all the panum of the temperature distribution appears in the middle
rameters of fluids are equal except dynamic and kinematipoint of the lower interface. As the result, the temperature
viscosities:k=«k, =xy=x,=a=a,=a=1, p=v=0.5, 7, field generates a new four-vortex structure in the first layer
=y, =0.25. It means that the lowest layer has the highesand in the second laydisee Fig. 1&)] which ousts the
viscosity. We choos®=1, L=2.5. We use boundary con- former structure. An intensive motion developing in the sec-
ditions (2.63. ond layer induces a motion in the opposite direction in the
The general diagram of regimes is shown in Fig. 14.  third layer[see Fig. 1&d)] and diminishes the temperature in

C. Oscillatory convection regimes due to the interaction
of interfaces

0.0164 ---- 0.0209 ---- 0.00542 ----

0.00804 ---- 0.0105 ---:- 0.00271 -
-0.000344. -~ 0.000183 - 105106
-0.00873 -~ -0.0102 -~ -0.00271 -

0.0171 -~ -0.0205 -+~ -0.00542 -~

FIG. 13. Streamlines for the ratios of layer thicknesaes2.4, a, =0.4: (a) G=240, M=0; «=0.08; (b) G=240, M=12000;
=0.08; (c) G=20, M=5000; a=12.5.
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o o Thus, the main elements of patterns are mutually interact-
T ing four-vortex structures generated by temperature inhomo-
410 geneities on the interfaces that were analyzed formerly in
[11,19.
To characterize the intensity and the structure of motions,
i’ we shall introduce the following integral characteristics:
= -1
- 0 1
210} - Sn(t)=f dxf dy ¢s(x,y,1),
% o _ - ™ —L/2 0
-
—
AN ¢ =" L2 1
N ;/// s Sr(t)=f0 dXLdytﬂs(x,y,t),
0 1-104. - 2--104 °
c S,=S+S,, S =S-S. (3.2

FIG. 14. The diagram of regimgg\—equilibrium, B—steady ~ Near the threshold the oscillations have a rather simple, al-
state, O—oscillation3. The dashed lines separate the regions ofmost sinusoidal fornisee Fig. 16, line J1 but the mean value
different regimes. of S(t) is different from zero. The fields of stream function

and temperature satisfy the symmetry conditi¢8<). For
the symmetric motior{3.1), S;(t)=—S(t); thus,S_ oscil-
the middle of the lower interface. Because of the latter phelates, S, =0. With the increase in the Marangoni number,
nomenon, the motion in the first layer slows doWrg. the amplitude of oscillations growsee Fig. 16, line 2 and
15(e)] and changes its directidfirig. 15f)]. A “two-story” their periodr decrease$see Fig. 17, line )1
structure appears in the second layer. The new growing vor- Let us note that the effect of the “cold corner” is observ-
tices in the second layer suppress the upper pair of vorticeable also in the case of the oscillatory motion. In Fig. 18 the
[Fig. 159)], enhance the temperature in the middle of thetime evolution of the vorticity on the interfaces in the points
upper interface, and diminish the temperature in the middl€x,y)=(L/2—Ax,0), (x,y)=(L/2—Ax,—a), where Ax is
of the lower interface. That is why the flow in the first layer the mesh size for the horizontal coordinate, is presented. The
is suppressefFig. 15h)], and finally the structure returns to calculations were performed on the meshx&2. One can
the configuration of Fig. 1®). see that the sign of the vorticity is positive during almost the

FIG. 15. Streamlinega)—(h) for the periodic oscillatory motion & =27 500 for the whole period. Time interval between neighboring
pictures is7/8.
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0.0

1000

-500.0

LP 500
-1000.0 - . . - .

4.0 5.0 6.0 7.0 8.0 2.0

t

FIG. 16. Oscillations ofS/(t) for the model systenfline 1—
Mr =16 000, line 2—M =27 500, line 3—M =31 200).

whole period of oscillations. This sign of the vorticity corre-
sponds to a “cold corner” motion. Let us note that the sec-
ond harmonics caused by nonlinearity are much stronger in
the oscillations of the vorticity in the corner than in the os-
cillations of the integral characteristics.

As M=30500, the symmetric oscillatory periodic motion - 500 2 29 30
becomes unstable with respect to disturbances violating the
symmetry conditiong3.1). Now both variablesS_ and S, t
are nonzero and oscillate. Generally, we could expect that
the oscillations ofS, would arise with a frequency incom-
mensurable to the oscillation frequency ®f . However, it
turns out that a synchronization takes place: the oscillatio
frequency ofS_ is exactly one-half of the oscillation fre-
guency ofS, (regime 3. Hence, one observespariod dou-

FIG. 18. Oscillations of vorticity for the whole period near the
right corner on the upper interfackne 1) and lower interfacéline
r%); M =27 500.

lation of the symmetry3.1) is obvious during the main part

; Lo X e ) of the period. In Figs. 2&) and 2Ql) the motion in the

bling (subharmonic bifurcationof the limit cycle (see Fig.  gocong layer is dominated by one strong vortex. In Figs.

19). The typical dependencg(t) is shown in Fig. 16, line 3. >4 20(m), and 2@n) a one-vortex structure is observed in
The time evolution of the stream function and temperaturgpq third layer. Thus, the transition from regime 1 to regime

field during a half of the period is shown in Fig. 20. The 5 is connected with the competition of one- and two-vortex
general evolution of patterns is similar to one shown in Fig.qir ctures in the middle layer.

15, and its physical origin was explained above. Some pic-

Comparing(a) and(n) in Fig. 20 one can see that
tures look similafe.g., Fig. 1%¢) and Fig. 2Qe), Fig. 15d) paring(a) ) g

and Fig. 20h), Fig. 15e) and Fig. 20i)]. However, the vio- gyt 712)= — (X, Y1),
3.3
2
r
045 500.0 +
4
b S,
035} 1 0.0
025 : : . 5000 ' :
12-10° 22410 32-10 4210 -1000.0 -500.0 0.0
M 5
FIG. 17. Dependence of the period of oscillationen M for FIG. 19. Phase trajectory of the periodic motion after the period

characteristic types of oscillations. doubling bifurcation(regime 2,M =31 200).
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FIG. 20. Streamlinega)—(n) for the periodic oscillatory motion d#l =31 200 for the half of the period.

Ti(x,y,t+7/2)=T;(—x,y,t). For M>32000 a new periodic regime is establisHes
gime 4. The oscillations are strongly nonsinusoidal from the
After the period doubling bifurcation, with the increaseMn  very beginning(see Fig. 22 The amplitude increases and
the period of oscillations decreases. For larger valuel! of the period decreases with the increase in the paranhéter
the periodicity of the motion is destroyed; the phase trajec{see Fig. 17, line ¥ These oscillations satisfy the same sym-
tory is not closedregime 3, see Fig. 21 metry property(3.3) as ones for regime see Fig. 23 but
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1000.0 +
500.0

00
0.0

-1000.0 L .
-2000.0 -1000.0 0.0

Se

-500.0
-1000.0

FIG. 23. Phase trajectory of the periodic motigagime 4,M
FIG. 21. Fragment of the phase trajectory of a nonperiodic mo-= 47 500).

tion (regime 3,M =32 000).

the evolution of streamlines and isotherms is completely dif- & _
ferent(see Fig. 24 The four-vortex structures are absent; as R3
a rule, there is only one main vortex in each layer. During
one-half of the period, the vortex moves from the left to theThus, the convection motion arises first of all in the upper
right, then it is reflected by the lateral boundary and starts tdayer (see Fig. 25 G.=5. When the Grashof number is
move in the opposite direction. Recall that the picturg3,(a increased, the convection develops also in the middle layer
(az) and ([‘D7 (h2) are connected by the transformat(@f]g)_ and in the lower Iayefsee Flg 293 The motions SatiSfy the
From the physical point of view, the transitions observedsymmetry conditiong3.1).
may be considered as a result of a competition between two In the case where both thermocapillary and buoyancy
instability modes: the “symmetric” mode satisfying condi- mechanisms are present, it turns out that regime 4 is the
tion (3.3), which leads to the development of regime 1, andpreferred form of the motion. For instance, this oscillatory
the “asymmetric” mode leading to regime 4. In infinite lay- regime is observed fo= 15 000,M =50 000(see Fig. 1%
ers, these modes would correspond to different values of theet us remember that for values of parametérs 15 000,
wave number. The nonlinear interaction of both modes genM =0 and G=0, M=50000 we obtained stationary mo-
erates more complicated regimes 2 and 3 which in somdéons. Another regime of oscillations which does not satisfy
sense can be considered as a “superposition” of regimes gondition(3.3) was observed fo& =15 000,M = 16 000(see
and 4. ForM =49 960 oscillations become unstable, and theFig. 27).
steady motion satisfying symmetry conditi¢8.1) (regime
5) is established. IV. COMBINED ACTION OF THERMOCAPILLARY AND

Let us consider now the case of the pure buoyancy con- ANTICONVECTIVE MECHANISMS OF INSTABILITY
vection (see Fig. 14 formerly studied by Simanovskj29].

Obviously, the ratios of the “local” Rayleigh numbers are In the preceding section we considered several variants of
the interaction between buoyancy and thermocapillary insta-

1 bility mechanisms acting bieating from belowlf the sys-
| tem is heated from abovethe usual Rayleigh instability

! 2 ] mechanism is impossible, while the thermocapillary convec-
| tion may appear. The thermocapillary instability mechanism
: A/ may interact with the anticonvection formerly studied in
[6-8].

We consider the model system with the following set of
parameters:y»=0.2, v=1, k=0.1, xy=0.1, 8=0.01, #»,
=0.04, v, =1, «,=0.1, x,=0.07, 38,=0.01, =1, L
=2.5,a=a,=1, P=1. It means that the heat expansion
coefficient of the upper layer is much smaller than the heat
expansion coefficient of the middle layer, and the thermal
diffusivity of the middle layer is much higher than the ther-

mal diffusivity of the upper one. This choice is based on the
2000055 20 50 60 fact that this system displays an anticonvective instability
when heated from abo\&9].

Let us explain the physical mechanism responsible for the

FIG. 22. Oscillations of5,(t) (line 1—M =32 350, line 2-M anticonvective instability mode. Let a warm element of the
=47500). third fluid move down towards the upper interface. Owing to

05, _g.25
.9, R_g_ 2.

S

0.0

-1000.0 |
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FIG. 24. Streamline$a)—(h;) and isothermga,)—(h,) for the periodic oscillatory motion & =47 500.

the low thermal diffusivity of the upper layery&1l, x, on the upper interface caused by the warm element leads to
<1) the element temperature remains higher than that of itthe appearance of temperature gradients directed along the
“neighbors” for a long time. Since the heat expansion coef-interface to the spot under the element. These gradients cause
ficient of the upper fluid is smallg§<1, 8, <1) the Archi- the advective motion along the interface. Since the heat ex-
median force does not act on this element, so that it capansion coefficient of the middle layer is large, an ascending
approach the interface. The change in the temperature fielebnvective flow there arises. Because the thermal diffusivity
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0.859 ---- 0.833 -
0429 - 0.667 -
9 567 -
0.429 - 0.333 -~
0.859 - 0.167 -----
1000.0 |
S
00 } |
1 13 1 1 L L
a
b -1000.0 L . .
FIG. 25. Streamlines(a) and isotherms(b) for G=6000, -2000.0 -1000.0 o 0.0
M=0. 7]

FIG. 27. Phase trajectory of the periodic motio@= 15 000,
of the middle fluid is high, this flow does not destroy the M =16 000).
warm spot. At the same time, the ascending motion in the
middle layer supports a descending flow in the upper fluid by
means of viscous stresses. Thus, a steady convective flow is We have considered the nonlinear regimes of thermocap-
generated. illary and buoyancy convection and the combined action of
For the system under consideration, conditions for the apseveral types of instabilities in three-layer fluid systems. The
pearance of the anticonvectimsG+ 0, M =0) are satisfied steady and oscillatory motions with different spatial struc-
on the upper interface. As usu@ee[20]), the intensity of tures and transitions between them were studied.
the convection is maximal in the fluid situated below the It was shown that for thermocapillary convection oscilla-
active interface. tions are restricted by the Marangoni humber both from be-
The thermocapillary convectionM#0, G=0) also ap- low (by the mechanical eqqilib_rium statano_l from above _
pears near the upper interface. Unlike the case of the antfPy the steady staleThe oscillations are subject to a transi-
convection, the intensities of the thermocapillary convectiorflOn Petween spatially symmetric and asymmetric forms.
in both upper and middle layers are of the same ofdee his transition is associated with a period doubling bifurca-

Fig. 28@a)]. The directions of rotation coincide for anticon- tion. With the increase in the Marangoni number the period

vective and thermocapillary motions. When both mecha-Of oscillations decreases except for bifurcation points. In a

. . - . . . finite interval of the Marangoni number nonperiodic oscilla-
nisms of instability act simultaneously, the intensity of the_. N I
- : ; oo . . tions are observed. Periodic oscillations take place both be-
motion increases in both fluids, but its increase in the middl

. ; . . ow and above this interval.
l(Zﬂe{r:Z rgtl:g; S;;?Qg}ifgg Ftlginzgajt)r]\éV\s/;;]T‘fgs f:lzngf t"v?/yo We have also investigated the influence of the lateral tem-

interfaces in the generation of the thermocapillary convecPerature boundary conditions on the convective motions. We

tion also changes. If 4 < 180 thermocapillary convection found that this influence is rather weak; generally, the inten-

. . . ; sity of the motion is lower in the case of heat-insulated
e ouon opoundares han n th case of welvconducing bourdares
buoyancy convectionG=0, M0, a>180) leads to indi- D_nfferent vana_nts of direct anq indirect mteractl_ons of insta-
rect interaction of instabiliiy mec’hanisms The most inten—bIIIty mechanisms are considered. In the ;lmplest_case,
sive motion takes place in the middle Iay.er near the IowePNhere o_nIy one of the mterfa_tces plays an active role n the
interface[see Fig. 260)] generation of 'the thgrmocapllla(y convection, the cpmbln(_ed
' ' action of two instability mechanisms increases the intensity
of motion. This effect is possible in one-layer and two-layer
systems as well. However, for three-layer systems this inter-
action may be more delicate. In the case where there are
several competing structures the interaction of different
mechanisms may strongly influence the selection of the
stable patterns. It was shown that the “indirect” influence of
the thermocapillary effects on the motions generated mainly
by buoyancy convection supports one particular structure
over the other possible onéf®r instance, structurA in Sec.
11 B). Similarly, buoyancy selects regime 4 among other os-
Y LTy cillatory regimes of Marangoni convectig®ec. Il C. We
R R also found that the combined action of both instability
e ! mechanisms may produce a new regime of the matiiée
that shown in Fig. 2Bwhich cannot be generated by any sole
FIG. 26. Streamlinega) and isotherms(b) for G=28000, mechanism. Classification of different types of interaction
M =0. between Rayleigh and Marangoni convection mechanisms is

V. CONCLUSIONS
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FIG. 28. (@) Streamlines for the model systenM& 12 000,G=0, a=1); (b) streamlines for the model systenM& 12 000, G
=4500,a=1); (c) streamlines for the model systerivl & 25 000; G =4500; a=200).

suggested. All six types of interaction according to our clasics Research Fund, and the Minerva Center for Nonlinear
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