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Streaminglike diffusion in the low-dimensional stochastic pump model
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In this paper we analyze a diffusion phenomenon in a few-dimensional Hamiltonian system of coupled
mappings in which the principal component of diffusion occurs along resonances. The result is that the
diffusion can have power-law dependence in coupling parametand be independent of the stochastic
parameterK. For the same range of parameters, the usual analytical Arnold diffusion across resonances is
dependent o and can be much smaller than resonance streaming diffusion. The results are used to qualita-
tively explain recent results in multidimensional coupled standard nM&i963-651X99)09706-

PACS numbd(s): 05.45—a, 05.60—k

. INTRODUCTION of e=K given by y=0.45 and independent df. This is

close toy=0.5 predicted from a three-resonance model. For

The problem of the dependence between the perturbatioglobal coupling an exponential form did not fit well; fof
parameter of the diffusion in multidimensional Hamiltonian =4, 5, and 6 they found thab=K?” with y=5. Using a
systems is far from being fully understood. The results ofgeneral analysis similar to that employed to obtain an upper
Chirikov, calculating the diffusion in two-and-a-half degreesbound to the diffusion, but applied to larger values ef
of freedom[1], and applied to two coupled mappinf 3], Chirikov and Vecheslavoy9] have found that the rate of
have made reasonably accurate predictions of the diffusiodiffusion for L sufficiently large and not too small behaves
rate. The method called the three-resonance mptelor as a power law ine, Doce”, and is independent df. The
stochastic pump model for mapping], treats the lowest value of 7 can be adjusted by a fitting parameter, which was
dimensional system that exhibits Arnold diffusifih2]. The = compared td8] to obtain a value ofy=6.5.
three-resonance model predi@s= (Al)%/t=eM <", wheree The forms of the mapping studied by Konishi and Kaneko
is the perturbation parameter afd-1. [8_] do_ not distinguish ho_w_mar_ly resonances are drlvmg_the

If many resonance layers overlap, then the threediffusion, and_ do not distinguish the strength of coupling
resonance model is not adequate to describe the diffusioffOM the nonlinearity. We adopted an alternate procedure of
which can be much larger than that calculated using a thredinking standard maps together through a weak-coupling
resonance model. An upper bound on the diffusion rate ha§'m[3,10l. We investigated various forms, for example,

been obtained by Nekhoroshé4] of the form Dxe A€’

(A=1), where for the number of degrees of freedbnthe 1 1, il il 1, am
optimal value ofy has been shown to bg=L ! [5,6]. If L Insa =l KEsInG, + psin( 0t + 6,),
is large, it is clear that an exponentially small diffusion could

only hold for very smalle, otherwise the exponential factor L -

would be essentially unity. It has been estimated that, for the Ohi1=0nt i1

exponential form to holdf<eL~(a§/L)2'-2, where o, is
the rate of decrease of Fourier coefficients of an analytic )
perturbation6]. For L large, this limitse to very small val- : (1)
ues. Also, an upper bound is related to the fastest local dif-
fusion, while an average global diffusion is controlled by
portions of the phase space where the diffusion is slowest. IN  =IN+KNsingN+ wsin(6N+---+ 6™ 1),
In a model problem in which many resonances overlap,
for L=23, Chirikov et al. [7] numerically investigated the
scaling of the diffusion with, finding that it agreed with the
upper bound scaling fos small, while it followed the three-
resonance modey= 31, for largere. However, the important
L dependence was not investigated. whereK is the nonlinearity parametes, the coupling param-
Konishi and Kanekd8] studied global diffusion in a set eter, with m—1 explicit couplings,m<N. For u=0 we
of coupled mappings, both for which nearest neighbors arbaveN uncoupled standard maps. The structure of the indi-
coupled and for which there is all-to-all global coupling, vidual maps is nearly unchanged by making the coupling
with a perturbation parametd. They investigated the dif- strengthu small, and the number of interacting resonances is
fusion for 0.2<K<1, over a range oN, the number of controlled through the number of coupling phases. The non-
coupled maps. For nearest-neighbor coupling Bi¥d3 the linearity parameter&', 1<i<N, can also be varied inde-
diffusion coefficientD fitted an exponential with the power pendently of the coupling. The mapping equatighs are

N _ oN N
0n+1_0n+|n+lv
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volume preserving and are aI;o reversible, ar_1d may or may |_1=|1+,u, Si(O1+---+ N+ 9)),
not have a complete symplectic form, depending on the spe-
cific mapping form chosen.
In previous work[3,10] the mappings were numerically 9l=0t+11,
integrated, for a large set of initial conditions, chosen to be in
the stochastic phase space of the coupled system, for various
values ofK, u, m, andN. The actionl was allowed to range
over all values, to determine the action diffusiti,,s. The
values ofK and u were chosen to be sufficiently large that _
the diffusion rate could be determined in a reasonable time IN=1N+ psin(6t+- -+ 0N+ 6y),
(typically 22'—224 iterations per mapping for each initial
condition, while x was chosen sufficiently small so as not to

greatly perturb the phase space of the individual maps. The oN=oN+ 1N,

standard map has the useful property of beimgp2riodic in 2
both angle and action, so that diffusion can be followed over — )

Al 2. l1=11+Ksin(6y),

The local rate of Arnold diffusion can be calculated, using
a generalization of the three-resonance model obtaining good _ _
agreement with numerical diffusion over a limited range of 01=01+11,
m andK [3]. A formula for global diffusion was obtained,
using a generalization of phase-space arguments that had
been developed to treat a simpler problgti]. Reasonable
agreement between theory and experiment was obtained in
initial studies withK=0.8. In a subsequent study tkede- TL=17+K sin(6})
pendence was explored over the rang&dfetween 0.3 and NN N7
0.8 and over a large range of values. The expecteg
dependence and power-law numerical results gadepen- =0 41
dence for the diffusiob = u2K#, where 1.5 8<2.5. Since NTUN N
the studies in[8] varied a single parameteas, combining

coupling and nonlinearity, this would correspond insour Caseyrimary nonlinear parametét that drives the diffusion. Al-

to Dxe” (B=2), somewhat below the value @fxe” 0b- 6,91 the driven maps can also be in their stochastic layers,
tained there. Furthermore, our theoretical averaging proceye fraction of time(phase spagds very small compared to
dure to obtain the global diffusion produces a dominant scaly,q fraction of time(phase spagevhen the driven maps are

i 2 3

ing of Dx u”K, such thaDee”. The theory, however, made i rotational or librational orbits. We therefore neglect diffu-
a very strong assumption on the phase averaging, whiclion arising from the stochastic layer of the driven maps

should be significantly in error for smaif. _ . compared to the continuous driving from the stochastic
In order to explore the reasons for these discrepancie

and to see if there are additional mechanisms leading to the Thé mappings2) diffuse according to the Arnold mecha-

diffusive process, we have explored a simpler system Ofjism and the local diffusion coefficient depends exponen-
mappings in which the mappings with stochastic d”V'ngtiaIIy with K

phases are decoupled from the driven action and phases. This

separation allows much simpler averaging than in our previ-

ous work, but at the cost of less symmetry. In Sec. Il we 52 EXN(TQ,)

introduce the new system and numerically determine the dif- Da=16u QOW(W—QO)' G
fusion. In Sec. Ill we analyze in more detail the new map.

Then, in Sec. IV we calculate the diffusion arising from thewhere Q, is the ratio between the frequency of the driven
dominant mechanism. Finally, in Sec. V the conclusions areind driving angled1,3,11. The single driving angle has

As in Egs. (1), the couplingsu are independent of the

given. frequencyK 2, while the driven frequency is the sum of the
frequencies of the other angles, med2\s described in pre-
[l. NUMERICAL RESULTS WITH SIMPLIFIED vious work, if there is only a single driven ang(say 6,)
MAPPINGS being driven byd; , then the local diffusion across amy ,,

with Al,/I;<1, depends on the local frequency 6f,

We start with a Hamiltonian systeficoupled symplectic  Which in rotation is just ;. ThusQo(l1)=1,/K"? sincel,
mapping$ perturbed from their action-angle coordinates. Di- spans the space-0r, the diffusion is very slow foi; near
viding the angles into driving and driven ones, the former arer andK small. Therefore, we expect the global diffusion to
in their stochastic layers, only coupled in one directionbe limited by the slowest diffusion when is nears. How-
through their angles, one to one, with the driven maps, whickever, if we have additional angles in the phase term, then the
are in rotational or librational orbits. The driving angles value of localQ,=(l;+1,+---+1y)mod 27/K*2 With a
(primed act like time, although governed by the complicatedsufficient number of angles we might expect that for elach
behavior in a bound separatrix layer. The general mappinthe otherl’s can take on values to makg,=O(1) and thus
system is shown in Eq$2), have rapid diffusion everywhere, with only an additional
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00100 Arnold diffusion calculations becomes dominant at sriall
This additional diffusion mechanism probability also ac-
counts for the fact that most of the numerical results for
small K lie above the dominant larg diffusion solution.
The resonance streaming manifests itself most clearly and is
most easily calculated for two driven actions on a single

resonance.
D 0.0010
lll. TWO-DRIVEN-MAP SYSTEM
WITH ASSOCIATED MAPS
***** N= We consider here the simplest set of maps that actualize
-------- N=16 the stochastic pump model for diffusion in Hamiltonian sys-
theory tems. We have the following maps for two driven angles
00003 0z 0s o6 o8 10 6,62 and two driving oned); , 65:
K
Ti_1 ; 1 2 '
FIG. 1. Comparison of the numerically determiredfrom Egs. I7=17+ psin(6"+ 67+ 6,),
(5), as a function oK for various values oN, to the value calcu- - 4T
lated from the dominant term in the averaging, from E4); 0-=0"+1-,

pu=0.1. .

12=12+ usin( 01+ 62+ 65),
phase-space ratio giving the probabiliB(Qo~1). This
was done ir10], leading to a dominant term 92=02+12,

_ (6)

5 ZF 4 exf (m/2)(1/KY?)]\2 | . l1=11+Ksingy,
T o \ K2 sinh(#l/KT?) : @ o
0,=0:+14,

where the integral can be taken to extend over the entire _ .

phase space. At smdllwe expanded sink(/K*? for small l,=1,+Ksing,,
argument, to obtain an approximate scalbgK. . .
As described above, the numerical results gave power O,=05+15.

laws somewhat larger. In fact, for a small number of phases

the averaging assumption leading to E4) should not be To analyze the streaming diffusion we introduce related
fulfilled, and therefore slower diffusion with a higher power maps generated from the sum and the difference driven equa-
of K would be expected. AKX becomes small we would tions of Egs.(6). The sum equations give

expect that large values of are required to satisfy the av-

eraging condition. — . 01+ 05 01— 65
? =1+2usin y+ co ,
In Fig. 1 we plotD versusK from Egs.(2) for 0.1<K 2 2
=0.8 andp=0.1 with various values ofn=N. All results (7)
are normalized by the number of initial conditions, and the E: ¢+|_,

number of mappings,
wherel=11+12 and = 6+ #? are the new simplectic co-
1 ., M 5 ordinates. The mag?) in the limit of K—0 (6;,605—0)
D=_Al rmszizzl [1i(m)=1i(n]*/NMn, (3 becomes the standard map with stochastic paramgier 2
Figure 2 shows the distribution normalized to 1 of prob-
where M is the number of initial conditions, usually with abilitiesX of 6; and (9 — 6;) for K=0.04. The hyperbolic
M =512, gives good statistics. We have also checked thaointis at 0(27 is equivalent to Pand the elliptic point atr.
after an initial transient, we have normal diffusion, with AS expected, the probability of a particle being close to the
Al2 n. We see a surprising pattern, with the lafgae- hyperbolic point at Fhe vicinity of 0 oris chh greater
sults roughly following the theoretical predictions of Eg), ~ than ata. If both driving angles are in the vicinity of O or
numerically calculatedsolid line), while the lower values of 27, (61— 03)/2 is approximately 0 or 2. If one of the driv-
N have weakeK dependence. As described above, we wouldng angles is near 0 and the other near, then (61— 6,)/2
expect strongeK dependence for small values Nf as the and (91 + 65)/2 are near tor. So in the map7) when both
phase averaging fails to be complete. driving angles are in the same vicinity, the value of the co-
The results indicate that another process is at work, nogine function equals approximately 1 and the primed phase in
covered by the previous analydi8,10|. We have, in fact, the sine is approximately 0. When the driving angles are not
encountered such a process, caltedonance streamingn  at the same vicinity, the value of cosine equals approxi-
which an external stochastic parameter drives two actionmately —1 and siny——sing. In both cases the maf¥)
along their principal resonan¢é1,12. As we shall see be- behaves like a standard map for most times, i.e., as long as
low, this process which we have neglected in the previoushe driving angles stay at the vicinity of 0 orr2Figure 2
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FIG. 2. Distribution of probabilitys, normalized to 1, of)} and ~ FIG. 3. Graphic of two separatrix anglés, ¢, , in radians, and

01— 65 vs angle;K=0.04. sin (6, — 65)/12] vs time forK=0.02.

resembles the plot of the distribution of probabilities for astreams during this timesince the cosine term in mag) is
single angles; in the separatrix. The difference between therelatively constant. The streaming dfis therefore propor-
distribution of ] and (6, — 65) is that the distribution close tional to Zu and a random phase fz,actczr. _
to the elliptic pointzr is greater in casé, . The reasonis that " ,F'g', 3 the separatrix angle8; ,6, and the function
if 9, and 6} are in the most probable region, close to theSIN(f1~¢>)/2] are plotted versus time foK=0.02. Th’e
hyperbolic point, @;— 65) is also around this point, but if at peallks in the figure correspond to the small time th{(8jn
least one of the angles is not theré; ¢ 65) is also not close  — ¢2)/2] is different from zero. The near periodic motion of
to the hyperbolic point. We note that the diffusion outside off19- 3, which is associated with the average period of the
the resonance will be slow in the sum variable. separatrix trajectoryl,,, as given in3], is

To obtain the fast diffusion, we introduce the map created

2
by subtracting the driven equatiof®): T~ 27" 9)
K
— 01+ 6,  [601—6; o
J=J+2u cog ¢+ > |sinl—5—/, Each peak of siif6;—#65)/2] in Fig. 3 corresponds to the

transit of the separatrix trajectory from a vicinity of the hy-
_ _ ®) perbolic point from 0 to 2, or vice versa. The double peaks
y=¢+lI, results from the summing effect between two close transits.
) For K=0.02, in Fig. 3,T,~1000 corresponding to two os-
whereJ=I'—1%Note that map(8) is not two degrees of ijliations of a separatrix trajectory. Considering that on av-
freedom; it is coupled to the dynamic evolution #ffrom erage there are four peaks for edkfy, since there are two

sine function of mag7) and in the cosine of maf8). Sup-  petween peaks is given by

pose initially the primed phase of m&p) is near 0 and the/

phase gives librational orbits which oscillate aroundFor T
m—a<y<m+a, we have— p<siny<z, where p=sina P="p5" (10

and a positive. With the same phases in mé&p), —1

<cosy<y1—7°. In contrast, for the prime phase of EQs. \yherep takes values between 4 and 8, depending on whether
(7) nearm, —B<y¢<p, also—o<siny<oin map(8), but  the switching of the two angles coincides or not. These can

V1—o0°<cosy<1, wheres=sinp and B positive. We see pe seen in the figure; we will use=6 as an average value.
that there is an abrupt change in cosine function in t&p

when the primed phase switches from OrtoThis is respon-
sible for diffusion, as shall be discussed in the next section.
Note that @;+ 05)/2 is essentially always equal to O af
except during the relatively short switching time. The To understand the diffusive streaming process, we have to
streaming is realized in ma8) during the time the term look at the peaks si(d;— #,)/2] of Fig. 3. In Fig. 4a) we
sin(6,—65)/2] is different from zero. Most of the time plot the variable] of map (8) versus time fork =0.01 and

sin (6, — 6,)/2]=0 because th@’ angles are in the vicinity w«=0.2. Figure 4b) shows, for the same set of parameters
of the hyperbolic point. But during a timethe sine term will and time, the slowly varying sit¥;— #5)/2], the function

be close tox1 and during that time the term ¢¢8,  cogy+(6;— 6,)/2], which has a rapidly varying and a slowly
—0)12] in Egs.(7) is close to 0 such that=11+12=0. Then  varying parts, and the product of these two functions. The
the variable ¢y does not oscillate greatly and=I1'—12  fast frequency characteristic igu in the cosine function,

IV. DIFFUSION IN THE SYSTEM OF TWO COUPLED
DRIVEN MAPS
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FIG. 5. Solid line is the numerically determined coefficient of
diffusion D vs the parameter of stochastisky from Eq. (5); the
dashed line gives the streaminglike diffusion calculated, from Eq.
(14); ©=0.1.

1.0

05
A

D=Diocaf 72 (12

0.0

where (27)2 is the total area of the phase space &pd is
the resonance area, which can be determined approximately
from the pendulum formula to b&=372.

The time of a peak, from the vicinity of O tom2 or vice
versa, is 2r/\K, the orbital period of the pendulufiil].

S s 13600 13650 13700 13750 13800 We estimate the streaming timethe center of the peak, by
(b) time 7=1/JK. Using this result and Eq12) we obtain the fol-

FIG. 4. In(a) the variable] is plotted vs time from Eqg8), in lowing K independent diffusion:
(b) functions sif(6;— 65)/2], cog ¢+ (6;— 65)/2], and the product of
these two functions are plotte#;=0.01 andu=0.2.

-05

2
2u
and the slow frequency characteristic\IE in the sine. As \/R 3@ 25
we have commented in the preceding section, the peak “om2 4n =0.29u7% (13
causes a change in the cosine phase and values, for instance —
6K
from (6’ — 6")/2=m and J1— o?<cosy<1 to (6’ — 6")/2
=0 and—1<cosy<\1— 7. The increase\J in map(8), ) ] o
and consequently the diffusion, is proportional to the area 10 numerically estimate the diffusion, we suppose that
over the product function cpg+ (6, + 65)/2]sin (6,— 6,)/2]. the gtreammg is causeq ba,smally by the effect of a sequence
One can see from the figure that this area is related to th@f Single peaks of sfif6;—6;)/2]. We evaluate an average
difference 7— o). These quantities are difficult to estimate (A1)? in Eq. (11) from a single peak using ma(8), where
analytically, but can be determined numerically. 0,=0 and 6; is the separatrix trajectorj11]. Averaging
The local diffusion coefficient related to the streaming isAl=AJ over I, and ¢, for some values oK, and using
estimated analogously to the case of diffusion caused by a®2=4 corresponding to a single peak in EG0), we write
celerator mode$l11]. The variables used aw®l, the mean
streaming pathr, the d_uration the streaming, apdthe time (A2 A, 3 \/ﬂ
between the peaks, with phase randomization near the hyper- =P 22 2.3 K(Al)?, (14
bolic points. For Eqs(8) the main diffusion path isAl (2m) m
=72, the product of the duration of the streaming time
times thed map step 2. The diffusion coefficient whose results we plot with a dashed line in Fig. 5. The solid
line plots the coefficient of diffusion obtained from results
(AN (r2p)? like those in Fig. 6, foru=0.1, where the typical time of 10
'006'_T_ p (12) million iterations was used. We find reasonable agreement
with the predictecK-independent diffusion, and also obtain
which is labeled local because it takes place only in that parthe magnitude of the diffusion.
of phase space where the system is in resonance. In Fig. 6 we plot the dispersion in actionA ()%= (Ina
To construct a global diffusion coefficie we use a —|l,a)% Versus time withu=0.1 for K=0.4 and 0.08 for
phase-space argument as in previous wWark,10: the map(6). The dispersion was computed from the average
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FIG. 6. Log-log plot of the dispersiom(?) vs time, from Egs. ) ” o o
(7), for ©=0.1 andK=0.4 and 0.08. FIG. 7. The numerically determined coefficient of diffusion ver-

susu, as in Fig. 6, fork =0.8, 0.3, and 0.1.

of 512 particles. The plot shows two distinct transient timestransforming the driven maps to sum and difference map-
before the system attains a diffusive regime. The first is Charpings whose orbits were explored over short times. The re-

. - . 2
acterized by an initial small constanA()® caused by the  g1ts agreed with physical expectations of the diffusive
initial conditions very close to the hyperbolic point; this is streaming mechanism.
estimated 'anq(g)' The second transient time presents &  an analytic theory of the diffusion was developed, and
slope of @AI)“ versus time that is greater than the diffusive, yhe giffusion rate calculated. It was found that the diffusion
characterizing streaming behavior. This time also increasegaq the proportionalityD e 425, where x is the coupling

with decreasin&. These transient times can be observed inonstant, and was independentiofthe stochastic drive pa-
the figure. . rameter, fork small. These proportionalities were checked
In Fig. 7 we numerically plot on a log-log scaleversus  ymerically over a significant range gfandK. In fact, the

M f%rlf=Q.8, 0.3, and 0.1. We find an average slopof  heory and numerics are in good quantitative agreement, as
w7 which is in reasonable agreement with the value ofshown in Fig. 5.

D« u?® found in Eq.(13). Although theory and numerics agreed well for two

coupled driven maps, with each coupled to a single driving
V. CONCLUSIONS AND FINAL REMARKS map, the results are not easily extendible to larger systems.
dl’hus we have found, qualitatively, an explanation for the

We have show that when the stochastic drive of couple : . e o O
! ; ; ) ..~ numerically determined diffusion in Fig. 1, and also for the

e  aoea e o A SUIS 11011 b s nlude s et -

o S . . A ltatively, in larger systems, using the type of phase-space
diffusion. The mechanism, which had previously been StUd'argumeynt empl%yed}iln our previo%s wc{r:)llk,plo] Tﬁis s anp
ied in problems in which the drive is an external randominterestin avenue for future research '
variable[1,11], was applied here to the case in which the 9 '
drive is the highly correlated motion within a thin stochastic
layer. The physical mechanism was demonstrated in a simple
system in which two mappings of mostly regular orbits were One of the author$G.C) acknowledges the support of
coupled together through their phases and also coupled to tHeAPES, Conselho Nacional de Pesquisa, Brazil. The work
phase of a weakly stochastic map which itself is locked in itsvas also partially supported by the NSF under Grant No.
own stochastic layer. The basic dynamics was exhibited byPHY-9505621.
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