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Measuring scars of periodic orbits
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The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increas-
ing attention. Scarring is one of the most important ‘‘corrections’’ to the ideal random eigenstates suggested by
random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts
and effects of eigenfunction scarring. We propose a universal scar measure which takes into account an entire
periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures
which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced
scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer
orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.
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I. INTRODUCTION

A. Background

The modern field of quantum chaology often associa
classically chaotic motion on the one hand with aspects
random matrix theory~RMT! on the other@1#. These aspects
include level repulsion in the quantum spectrum as given
the appropriate random matrix ensemble, Gaussian ran
wave functions with Bessel correlations, etc. Since Ham
tonian dynamics cannot be truly random, numerous rec
contributions to the field address the many sorts of ‘‘corr
tions’’ to the random matrix approximation. One of tho
corrections is the phenomenon of scarring of quantum eig
states byisolatedunstable periodic orbits of the correspon
ing classical system@2#.

In the early 1980s MacDonald in unpublished work@3#
found clear evidence of nonisolated marginally unstable
riodic orbits in certain stadium eigenstates~which he named
the ‘‘bouncing ball’’ states!. He also tentatively noted th
possible influence of anisolated, unstableperiodic orbit on a
few of the calculated eigenstates, but gave no further at
tion to this effect. In the subsequent first published acco
of numerically computed stadium eigenstates by MacDon
and Kaufman@4# ~which to the authors’ knowledge contain
the first eigenstates reported for any completely chaotic
tem!, attention was focused not on periodic orbit effects b
on the nodal structure of the eigenstates. The conclusion
that the expected pattern of nodal lines for random eig
states had been reached. This early work also noted b
agreement with the Bessel function form of the eigens
spatial self-correlation function for chaotic billiards, as fir
discussed and predicted by Berry@5#. The paper@4# appeared
during the first epoch of quantum chaos theory, when m
excitement was being generated by noting similarities
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tween computed eigenstate properties of classically cha
Hamiltonian systems and RMT@1#.

Stronger numerical evidence for the influence of in
vidual periodic orbits on eigenstates, together with a theo
ical explanation for scarring in a chaotic system, was int
duced in 1984 @2#. Loosely speaking, a scar is
concentration of extra and unexpected~as compared to the
RMT prediction! eigenstate density near an unstable class
periodic orbit. This extra concentration has no classical a
log, which puts scarring into the family of quantum localiz
tion effects. A semiclassical theory for the existence a
strength of scars was given, using time domain argume
and dynamics linearized around the periodic orbits. T
theory has seen a number of extensions and applicati
including Bogomolny’s coordinate space theory of scarr
@6# and Berry’s Wigner phase-space theory@7#. ~The 1984
paper @2# had been essentially a Husimi phase space,
Gaussian wave packet, theory.! All these theories were base
on the linearized dynamics in the vicinity of a periodic orb
but there were important differences. For example, an es
tial ingredient to the strength of scarring, the Lyapunov s
bility exponent of the periodic orbit, enters only in the wav
packet approach@2#, while the important observation o
‘‘knots’’ of high density at self-conjugate~focal! points in
coordinate space along the orbit was made by Bogomo
@6#.

Scarring has been shown to affect physical systems
various sorts@8# and even the performance of devices such
a tunnel diode@9#. Recently one of us showed that the dec
of metastable states can be strongly affected by scarring
that highly anomalous lifetime distributions are possible d
pending on where decay channels are located with respe
the shortest periodic orbits of the system@10#.

The following litany of properties of eigenfunction sca
ring has led to some confusion and to several attempt
developing quantitative measures of this phenomenon.~i!
The manifestations of scarring can be subtle or obvious.~ii !
Measures of scarring can be basis dependent.~iii ! Scarlike
6609 ©1999 The American Physical Society
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6610 PRE 59L. KAPLAN AND E. J. HELLER
structures are found to occur even in artificially construc
purely random wavefunctions@11#. ~iv! Statistical fluctua-
tions allowed by RMT might account for some apparen
scarred states.

Recent work in our laboratory@12–14# has focused much
attention on quantifying the phenomenon of scarring, c
firming the role of the instability exponent of a given pe
odic orbit, and further examining the consequences of th
findings, including experimental issues and the effects of
tiscars. Related work of ours has noted that scarring is c
cordant with bounds on the ergodicity of eigenstates as
veloped by Shnirelman@15#, Zelditch @16#, and Colin de
Verdiere@17#. A review of recent developments in the theo
of scarring was recently written by one of the authors@14#.
The present work completes an important part of the pict
by explicitly addressing the basis dependence of measure
scarring and arriving at a universal and optimal basis
measuring scars, while not diminishing the utility of simpl
and moread hocmeasures.

B. Measures

If eigenstates were ideal random matrix states, then
probe states would be equivalent, in that Gaussian ran
statistics in one basis guarantees Gaussian random stat
in every other. In the RMT literature, it is sometimes not
that for any given member of the ensemble there will b
diagonalizing basis; however, this basis is nongeneric an
itself randomly varying from one member of the ensemble
another. One way of approaching the corrections to RMT
Hamiltonian systems with a classical analog is to show t
there exist special bases which are nonrandom and w
come from deterministic dynamical evolution. These spe
bases bring the Hamiltonian into a manifestly non-RM
form. Any basis which systematically shows non-RM
wave-function statistics for a classically chaotic system
thus potentially significant. Seen in this light, the basis
pendence of scar measures should be expected and eve
ploited.

One such special basis is that of complex Gaussian w
packets. Complex Gaussians have adjustable position
momentum expectation values, and satisfy minimum unc
tainty conditions in some system of axes in phase sp
making them excellent measuring devices for the structur
eigenstates in phase space. This basis was the one chos
@2#. For Gaussians centered on periodic orbits, asymp
cally exact (\→0) semiclassical dynamics for a fixed sho
time places rigorous non-RMT constraints on the statistic
eigenstate projections onto the Gaussian. Some of the ei
states~precisely which ones cannot be specified in this sh
time theory! are then required to have large projections o
the periodic orbit centered Gaussian~these are the scarre
states!, while many more are shown to have anomalou
small projections~the antiscarred states!. We review why
this is so in the next section. The inverse participation ra
~IPR, denoted byI) of such orbit-centered Gaussian pack
is anomalous, and is governed by the classical Lyapu
stability exponentl as

I;
1

l
~1!
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for small l. ~Note that\ does not appear in this scaling
implying survival of the scarring phenomenon into the cla
sical limit.! Some individual eigenstate projections onto t
Gaussian basis were shown to be enhanced by at leasl
over the RMT expectation@2# ~again, exactly which ones is
not known and would require much longer time inform
tion!. It is sometimes stated that scar theory is not a theor
individual eigenstates. While that is true in many respe
especially of the energy-averaged approaches such as B
molny’s @6#, the Husimi ~Gaussian packet! phase-space
theory of scars@2# predicts there must exist individua
scarred states, especially for small instability exponentl.

As versatile as the Gaussian basis is, there are choice
be made and certain optimizations possible which furt
sensitize the probe basis to the structures which class
dynamics imprints onto the eigenstates of classically cha
systems. Before discussing this further, we note areductio
ad absurdumwhich places restrictions on how far the refin
ment of scarring measures can go. Some years ago, To
vic and Heller@18# were successful in constructing a hig
quality scarred eigenstate of the stadium billiard using o
semiclassical methods~the overlap of the semiclassical sta
with the exact eigenstate being 0.95!. Using such near-
eigenstates as a probe basis would lead to extreme non-R
behavior in which all but one eigenstate have small proj
tion onto the test state. Furthermore, including large parts
the classical invariant manifolds leading far from the regi
of a given periodic orbit subverts the idea of a scar o
periodic orbit.

Fortunately there is a quite natural stopping point in t
construction of a test basis: we use only the linearized
namics~tangent map! near any given periodic orbit in con
structing measures of scarring. In this way we arrive at t
states that are understandable in terms of simple invar
manifold structures of classical phase space near peri
orbits. Although the test states can be more complicated t
a single Gaussian, these more sophisticated test state
still determined by short-time linear dynamics~of order of
the time over which the dynamics is linearizable, whi
scales asu log\u/l). ~Recall that a given orbit can be highl
nonlinear, yet possess a linearizable tangent map in its vi
ity.!

In constructing linear scar measures we still have a nu
ber of choices to make.

~i! What is the uncertainty zone of the test state in ph
space~in the case of a Gaussian, this is the uncertainty
lipse in phase space!. Scar measures will change, for e
ample, depending on whether the ellipse lies along the st
or unstable manifolds of the orbit or away from them.

~ii ! For a given periodic orbit, do we construct a test st
with a Gaussian placed at one point along the orbit or do
construct a tube~closely spaced Gaussians on the orbit! of
some sort, and is this tube to be a coherent superpositio
the Gaussians or an incoherent one?~In the case of a
discrete-time map, this corresponds to placing a Gaussia
each periodic point of a periodic orbit with length great
than 1.!

~iii ! Should we take coherent linear combinations of
given Gaussian and its preimages and postimages, produ
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PRE 59 6611MEASURING SCARS OF PERIODIC ORBITS
a new test state consisting of several different Gaussian
each point along the orbit?~This idea leads to the ‘‘univer
sal’’ measure of scarring.!

C. Brief history of scar measures

There are several threads in the attempt to make g
measures of scarring. The original approach@2# amounted to
projection onto single Gaussians~the Husimi measure!; an
O(1/l) enhancement in the infinite-time average retu
probability for a Gaussian placed on an unstable perio
orbit was noted for smalll. This implies that some eigen
states in specified energy ranges are systematically enha
by O(1/l) in the periodic orbit regions over the RMT pre
dictions. Much later it was realized that this local enhan
ment has a dramatic effect on the tails of theucu2 distribution
@13#.

Any theory of scarring implies some measure of the
fect. The first theory of wave function scarring in positio
space was developed by Bogomolny@6#. Bogomolny
smoothed the wave-function intensity over some small
ergy rangeDE using the semiclassical Green’s functio
scars are represented as smoothed sums over effective
nitely many periodic trajectories of the system. Bogomoln
semiclassical Green’s-function approach is very closely
lated to our wave-packet dynamics method, as the semic
sical Green’s function can be obtained from the semiclass
time-domain propagator by a stationary-phase Fourier tra
form. One difference between the approaches is that Bo
molny envisions summing over a large number of perio
orbits to get as close as possible to an energy domain r
lution of order of a mean level spacing. As mentioned abo
in some systems it is indeed possible to use semiclas
methods to compute individual eigenstates of the sys
@19#. In fact, for this purpose one needs information on
about orbits of period up to the mixing time~which scales
logarithmically with \) rather than the Heisenberg tim
~which scales as a power law!. However, our aim here is to
make predictions about the distribution of scarring streng
based only on linearized information aroundone periodic
orbit; for this purpose most other orbits which produce ad
tional oscillations in the density of states may be trea
statistically@20#. It is important to note in this context that
we are measuring wave-function intensities on a given s
classical periodic orbitP, then in the semiclassical limi
there are no other short orbits that come close to this o
~on a scale of\) in phase space. The only oscillatory co
tributions which will need to be taken into account are fro
orbits closely related to orbitshomoclinic to P ~homoclinic
orbits are those that approachP at large negative times, per
form an excursion away fromP into other regions of phas
space, and then again approachP at large positive times!. In
fact, in the\→0 limit the periodic orbit sum for a pointx on
a given periodic orbitP can be written equivalently as
contribution from the orbitP itself plus a sum over trajecto
ries homoclinic toP @21#. Although the two points of view
~periodic and homoclinic sum! are mathematically equiva
lent, the homoclinic sum approach makes explicit the spe
role of the orbitP near which we are making measuremen
In the homoclinic return formalism, it is also straightforwa
to see that the long-time recurrences of a wave-pac
at
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launched atx are correlated and enhanced in a way tha
determined entirely by the stability matrix of the short orb
P.

A position space basis, though obviously physically na
ral in many measurement situations, is not generally an
timal one for detecting scar effects. Unless the periodic po
x happens also to be a focusing point of classical trajecto
near the orbit, only a small fraction of the total scar stren
is captured in the position basis, and the fraction becom
smaller as\ decreases~or as the energy increases!. An easy
way to see this is to notice that the effects of a class
trajectory in quantum mechanicsgenericallyextend to a re-
gion around the orbit scaling not as a wavelength but rat
as the square root of a wavelength~and similarly the affected
region scales as the square root of the total number of ch
nels in momentum space!. Thus, unless either the stable
unstable manifold of the orbitP at periodic pointx happens
to be oriented along the momentum direction, the posit
space basis will not be optimal, as reflected in the falling
of the focusing prefactor with energy in the semiclassi
Green’s function~and similarly the momentum basis will no
be optimal, unless one of the two invariant manifolds is o
ented along the position direction!. All this will become
more clear in the exposition of the following section. In a
case, one should keep in mind that a position space basis
always be considered as a special limiting case of the Ga
ian wave packet test state, where the position uncertaint
the wave packet becomes comparable to a wavelength,
the momentum uncertainty becomes large.

A Wigner phase-space analysis of the scarring phen
enon was given by Berry@7#. Berry considered the Wigne
function, again smoothed over an energy intervalDE nearE.
Being formulated in phase space, the approach more clo
resembles that of@2#. Working in Wigner phase space in
stead of Husimi space also eliminates the need to choose
~apparently arbitrary! eccentricity and orientation of the
Gaussian wave packets. The downside of Wigner ph
space is the absence of a positivity condition on the Wig
distribution; thus the value of the spectral function cannot
considered as corresponding to an intensity or a probab
of being found near a certain pointx ~and random matrix
theory is therefore not applicable!. The Husimi function,
which is manifestly positive definite, is identically a phas
space smoothing of the Wigner distribution over a pha
space region scaling as\. The ambiguity in choosing the
Gaussian centered onx over which this smoothing is to be
performed is indeed an important issue, to be conside
carefully in the following. We will see that to obtain th
maximalscarring effect, the Gaussian must be chosen to
properly oriented along the stable and unstable direction
the periodic point.~An arbitrarily large wave-packet width is
allowed along either of these directions, with a correspo
ingly small width in the orthogonal direction. Also, stron
but nonmaximal scarring will generally be obtained for a
wave packet with width scaling asA\ in both the position
and momentum directions.!

A common limitation of the analyses@2,6,7# is that they
make no prediction about the properties of the spectral fl
tuations on scales much smaller than\/TD , where TD
;TP /l is the decay time of the unstable orbit with perio
TP . Therefore, it is not possible to make quantitative pred
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tions aboutspecificindividual wave-function intensities, par
ticipation ratios, etc., without explicitly doing a Gutzwille
sum overall periodic orbits. Even if the sum can be pe
formed, it is by no means clear that it will converge in a
cases~e.g., in systems where caustics are important@22#!.
When the sum does converge it may produce individ
semiclassical wave functions very different from the qua
tum eigenstates, due to diffraction and other ‘‘hard qu
tum’’ effects. Furthermore, such Heisenberg-time calcu
tions are extremely sensitive to small perturbations on
system. What one would like is to be able to say precis
how often a given single-wave-function scar strength w
appear on a given orbit, at what energy, and at what par
eter values. In the semiclassical limit, this can in fact be d
using only information about linearized dynamics near
orbit itself, and, in some cases, about a few strong isola
homoclinic recurrences which cannot be treated statistica

Agam and Fishman@23# define the weight of a scar b
integrating the Wigner function over a narrow tube in pha
space, of cross section\, surrounding the periodic orbit. L
and Hu integrate over coordinate space tubes@24#. Alterna-
tively, de Polavieja, Borondo, and Benito@25# construct a
test state highly localized on a given periodic orbit usi
short-time quantum dynamics.

Klakow and Smilansky@26# have used a scattering ap
proach to quantization to study the wave functions of billia
systems. They treat carefully the wave functions on the P
carésurface of section, and relate their properties to scar
in configuration space. Ozorio de Almeida@27# uses the
Weyl representation to establish connections between cla
cal and quantum dynamics, with particular application to
semiclassical Wigner function and scars. Tomsovic@28# has
used parametric variation as a new method for studying
effects; scars are shown to induce correlations betw
wave-function intensities on a periodic orbit and the le
velocities of these wave functions when certain system
rameters are varied. We also mention the work of Arra
Borondo, and Benito@29#, who have probed the intermedia
region between regular and strongly chaotic quantum beh
ior, and have shown how scarred states first arise from
mixing of pairs of regular wave functions as\ is decreased
~but well before one reaches the semiclassical limit which
the main focus of the present work!. Finally, several groups
@30,32# have studied the hyperbolic scar structures associ
not only with the periodic orbit itself but with its invarian
manifolds and homoclinic orbits.

In the next section we discuss scarring as measured
individual Gaussian wave packets, which was the basis
@2#. A single localized test state may be optimized to co
form to the classical invariant manifolds in the vicinity of
scar. In subsequent sections we go considerably beyond
measure, refining our templates to better detect scarring
Sec. III we address the apparent arbitrariness in the choic
a point along the orbit at which to make the measurem
and in the eccentricity of the test Gaussian, and elimin
these ambiguities by building a wave-packet-averaged m
sure of scarring. Following this, in Sec. IV, we use coher
linear combinations of the localized test states as a m
sensitive measure. In Sec. V, off-resonance scars living
either side of an unstable periodic orbit are shown to foll
naturally from our formalism. In Sec. VI, extensions
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higher-period orbits and continuous time are discussed,
lowed by concluding remarks in Sec. VII.

II. GAUSSIAN WAVE-PACKET SCARRING

A. Semiclassical dynamics of a Gaussian wave packet

We begin with a review of the original~Gaussian wave
packet! theory of scarring, as discussed in detail recently
@12#. In the course of the discussion, the key concepts of
autocorrelation function, the short-time spectral envelo
nonlinear recurrences, and the inverse participation ratio
be introduced. We will also see the inherent limitations
measuring scar strength using single Gaussian test st
pointing the way to the construction of improved ‘‘scarmom
eters’’ ~the authors thank Eugene Bogomolny for coini
this term! in the following sections.

Consider an arbitrary~unstable! periodic orbit of a chaotic
system. For the purpose of simplifying the exposition, a
without loss of generality, we take the periodic orbit to be
fixed point of a discrete-time area-preserving map on a tw
dimensional phase space. If the periodic orbit in question
in fact a higher-period orbit of such a map, or is an orbit
a continuous-time dynamics in two spatial dimensions,
can reduce the problem to the preceding case by iterating
original map, or by taking a surface of section map, resp
tively. ~The issue of higher-period orbits and continuous tim
will be addressed explicitly in Secs. III and VI.!

We start with a fixed point at the origin of phase spa
Furthermore, we can take the stable and unstable direct
at the fixed point to be vertical~p! and horizontal (q), re-
spectively~we can always get the local dynamics into th
form by first performing a canonical transformation on t
coordinates!. Then the only parameter describing the loc
~linearized! dynamics near the orbit isl, the instability ex-
ponent for one iteration of the orbit. Locally, the equations
motion are given by

q→q85eltq,
~2!

p→p85e2ltp.

We now turn to the construction of a test state which c
be used to measure the intensity of eigenstates near the
sen periodic orbit. An obvious choice is a Gaussian wa
packet centered on the fixed point:

as~q!5S 1

ps2\ D 1/4

e2q2/2s2\. ~3!

This is a minimum-uncertainty state centered at the origin
phase space, with widthsA\ in theq direction andA\/s in
thep direction.s is at this stage an arbitrary parameter:s2 is
the aspect ratio of the phase-space Gaussian, typically
sen to be of order unity. Ambiguity in the choice ofs is an
important issue that we will return to at the beginning of t
next section.

Eigenstate overlaps with our test state will provide a go
measure of eigenstate intensities near the periodic o
however, we find it useful to begin by working in the tim
domain~our results will then be applied to eigenstate pro
erties in the following subsection!.
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PRE 59 6613MEASURING SCARS OF PERIODIC ORBITS
For small enough\, the wave packetuas& and its short-
time iterates are contained well within the linear regime.
long as the wave packet stays in the phase-space region
rounding the periodic orbit in which the linearized equatio
of motion, Eq.~2!, apply, the evolution of the wave packet
completely semiclassical, given simply by the stretching
the q-width parameters. More explicitly, at short times we
have

Utuas&'U lin
t uas&5e2 iftuaselt&, ~4!

whereU is the unitary operator implementing the quantu
discrete-time dynamics,U lin represents the quantization o
the linearized behavior near the periodic orbit, andt is time,
measured in units of a single mapping. Here2f is a phase
associated with one iteration of the periodic orbit: it is giv
by the classical action in units of\, plus Maslov indices if
appropriate.

The autocorrelation function of the wave packet is defin
as the overlap of the evolved wave packet with itself:

A~ t !5^asuUtuas&, ~5!

which at short times is seen from Eqs.~3! and ~4! to be

Alin~ t !5e2 ift^asuaselt&5
e2 ift

Acosh~lt !
, ~6!

by performing a simple Gaussian integration. The ‘‘lin’’ su
script indicates that Eq.~6! describes the piece of the aut
correlation function coming from the linearized dynami
around the periodic orbit. For a weakly unstable orbit~small
l), Alin(t) is slowly decaying, with strong recurrences ha
pening for the firstO(1/l) iterations of the orbit. We note
that the short-time autocorrelation functionAlin(t) is s inde-
pendent, a fact that will prove important later on.

At longer times, namely beyond the log time, whic
scales as

Tlog;
ln f N

l
, ~7!

the wave packet leaves the linearizable region and nonlin
recurrences begin to dominate the return probability. HerN
is the total number of Planck-sized cells in the access
phase space~also equal to the dimension of the effectiv
quantum-mechanical Hilbert space!, and f is the fraction of
this phase space@typically O(1)] in which the linearized
equations of motion@Eq. ~2!# apply. The nonlinear recur
rences correspond to a piece of the wave packet leaving
linear regime along the unstable manifold, undergoing co
plicated dynamics far from the periodic orbit, and eventua
coming back along the stable manifold to intersect the or
nal wave packet. Semiclassically, these recurrences are g
by a sum over points homoclinic to the original period
orbit ~i.e., points that approach the periodic orbit both at
→1` and ast→2`).

Because the long-time homoclinic orbits come back w
complicated accumulated phases, and the number of t
recurrences grows exponentially with time, one might exp
the total long-time return amplitudes to be given by Gauss
random variables. In fact, however, contributions from
s
ur-

s

f

d

-

ar

le
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y
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en

se
ct
n
l

homoclinic points lying on a single homoclinic orbit~i.e.,
those that are exactly time-iterates of one another! come
back in phase with each other, giving rise to short-time c
relations inA(t) for large t @12#. These correlations are re
lated to the short-time dynamics of the original Gauss
wave packet. In fact, we can write the return amplitude
times Tlog!t!TH (TH5N is the Heisenberg time, wher
individual eigenstates begin to be resolved! as a convolution,

A~ t !5(
t

Arnd~t!Alin~ t2t!. ~8!

HereAlin is the short-time return amplitude andArnd has the
statistical properties of an uncorrelated random Gaus
variable. In effect, random recurrences due to Gaussian fl
tuations must have ‘‘echoes’’ that mirror the initial sho
time decay, since the recurrences reload the initial state
tuitively, the reloading effect expressed by the convolution
Eq. ~8! can be understood already at the classical level:
amplitude returning after some long timet to the location of
the original wave packet on the periodic orbit does not d
appear immediately, but rather decays away from the orb
the same rate as the original wave packet itself. The ef
depends strongly on the chaotic nature of the long-time
namics, which results in the random recurrences filling
initial wave packet in a uniform, unbiased manner, so t
the evolution of this newly returned amplitude is equivale
to the evolution of the original Gaussian. Equation~8! can
also be verified directly@12# by writing down the return am-
plitude as a homoclinic orbit sum and using known statisti
properties of long-time orbits, particularly including th
phase relations between orbits in the same family, as in
cated above.

The random part of the return amplitude is found to ha
the behavior

^Arnd~t!&50,
~9!

^Arnd
! ~t!Arnd~t8!&5

1

N
dtt8 .

The prefactor 1/N provides the proper classical normaliz
tion: in the absence of interference effects, the probability
come back is equal to the probability for visiting any oth
state in the Hilbert space. The average in Eq.~9! is taken
over long timest, Tlog!t!TH , and/or over an ensemble o
systems which all have the same linearized dynamics aro
our chosen periodic orbit. In either case, the total size of
Hilbert spaceN (51/h for a phase-space area normalized
unity! has been assumed to be large. We then obtain for
total return amplitude~including homoclinic interference ef
fects!

^A~ t !&50,
~10!

^A!~ t !A~ t1D!&5
1

N (
s

Alin
! ~s!Alin~s1D!.

At times beyond the Heisenberg time, this gets modified@12#
to
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^A!~ t !A~ t1D!&5
F

N (
s

Alin
! ~s!Alin~s1D!. ~11!

F is a factor associated with the discreteness of the eig
states: it is 3 for real eigenstate–test-state overlaps and 2
complex overlaps.

The long-time autocorrelation function is thus se
correlated on a scaleD;l21. Qualitatively, this can be un
derstood on a purely classical level: once probability h
pens to come back to the vicinity of a weakly unstab
periodic orbit, it tends to stay around before leaving aga
On the other hand, the overall enhancement in the tota
turn probability at long times,

^uA~ t !u2&5
F

N (
s52`

`
1

cosh~ls!
, ~12!

obtained by combining the general expression Eq.~11! with
the short-time overlap dynamics of the Gaussian w
packet@Eq. ~6!#, is fundamentally an interference phenom
enon, and signals a kind of quantum localization, as we s
see next. Note that in the limitl→0 ~weak instability! we
have

^uA~ t !u2&→
pF

lN
; ~13!

i.e., the enhancement factor in the long-time return proba
ity is proportional tol21 @2#.

B. Local density of states

We now defineS(E) to be the Fourier transform of th
autocorrelation function,

S~E!5
1

2p (
t52`

1`

A~ t !eiEt. ~14!

For a nondegenerate spectrum, it is easy to see~by inserting
complete sets of eigenstates! that

S~E!5(
n

z^nuas& z2d~E2En!, ~15!

whereEn are the eigenvalues of the dynamics, andun& are
the corresponding eigenstates. Thus, we obtain the local
sity of states at the wave packetuas& by Fourier transforming
its autocorrelation functionA(t). Cutting off the sum in Eq.
~14! at 6Tlog , or equivalently by including only linearized
dynamics around the periodic orbit, we obtainthe smoothed
local density of states:

Slin~E!5(
t

Alin~ t !eiEt, ~16!

an envelope centered at quasienergyE5f @see Eq.~6!#, of
width dE;l, and of height;l21 ~a factor of 2p has been
inserted into the definition ofSlin for future convenience!.
E5f is the analog of the EBK quantization condition f
integrable systems; here, because of the instability of
orbit, scarred states can live in an energy range ofO(l)
n-
for

-

.
e-

e

ll

il-

n-

e

around the optimal energy. States with energy more t
O(lu loglu) away from resonance tend to beantiscarred~i.e.,
they have less than expected intensity at the periodic orb!.

Now long-time~nonlinear! recurrences as in Eq.~8! lead
to fluctuations under the short-time envelope in the full sp
trum S(E). Because these recurrences involve a rand
variableconvolutedwith the short-time dynamics, in the en
ergy domain we obtain random fluctuationsmultiplying the
short-time envelope@12#,

S~E!5F @A~ t !#5F F(
t

Arnd~t!Alin~ t2t!G
5F @Alin#F @Arnd#5Slin~E!Srnd~E!, ~17!

whereF is the Fourier transform.~It is easy to see physically
that the random oscillations must multiply the smooth en
lope: if they were merely added to it, the total spectru
would become negative away from the peak of the en
lope.! Finally, at the Heisenberg timeTH5N, individual
states are resolved@12,13#, and we see a line spectrum with
height distribution given by

I nas
[ z^nuas& z25r anSlin~En!, ~18!

where r an are random variables~with mean ^r an&51/N)
drawn from ax2 distribution of one degree of freedom~two
degrees of freedom for complex^nuas&). Thus, in the end
we obtain a random~Porter-Thomas! line spectrumS(E), all
multiplying the original linear envelope.

Before concluding this review, we mention the notion
an inverse participation ratio~IPR, denoted byI), a very
useful measure for studying deviations from quantum erg
icity. We define

Ias
5N(

n
I nas

2 5N(
n

z^nuas& z4. ~19!

~Note that(nI nas
51 by normalization.! Being the first non-

trivial moment of the eigenstate intensity (I nas
) distribution,

the IPR provides a convenient one-number measure of
strength of scarring~or any other kind of deviation from
quantum ergodicity!. The IPR would be unity for a wave
packet that had equal overlaps with all the eigenstates of
system; the maximum value ofN is reached in the opposit
~completely localized regime!, when the wave packet is itse
a single eigenstate. Random matrix theory predicts an IPR
F, the strong quantum ergodicity factor defined above in
~11!.

From Eqs.~14! and ~15! we see that

Ias
5 lim

T→`

N

T (
t50

T21

uA~ t !u2; ~20!

as one might expect, localization is associated with an
hanced return probability at long times. Now from Eq.~12!
we see that scar theory predicts an enhancement in the
over random matrix theory:
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Ias
5F(

s

1

cosh~ls!
~21!

→F
p

l
, ~22!

where in the last line the limit of smalll has been taken. (F,
as before, is 3 or 2, depending on whether the states are
or complex, respectively.! The IPR thus decomposes into
product of two contributions: the shape of the short-tim
envelope coming from the linear dynamics around the p
odic orbit, and a quantum fluctuation factorF, as predicted
by Porter-Thomas statistics.

C. Limitations

The analysis of the preceding two subsections has b
extensively tested in numerical studies@12,13#, which show
that the statistical properties of eigenstate overlaps w
Gaussian wave packets can indeed be described by the
theory. However, there are inherent limitations in this a
proach. An obvious one is the ambiguity in the choice
wave-packet widths. A wave packet of any width can b
used ~as long as it and its short-time iterates are we
contained in the linearizable region, which condition is
ways satisfied for small enough\), resulting in the same
short-time overlaps, and thus in identical smoothed spe
Slin . The IPR is also expected to be enhanced by the s
factor for each such wave packet, depending only on
decay exponent of the periodic orbit itself. It seems in
itively clear that a better measure of scarring should be
tainable by appropriately combining information from wa
packets of all different aspect ratios, thus looking at a hyp
bolic phase-space region surrounding the stable and uns
manifolds of the periodic point. Such a test state for meas
ing scars would incorporate knowledge of the full lineariz
dynamics around the periodic point, not just knowled
about the location of the periodic point itself.

The ambiguity and apparent arbitrariness of the preced
definition of scarring seems even more pronounced in
case of a higher-period orbit of a map, or for a periodic or
of a continuous-time dynamics. In either of those cases,
analysis above can be performed atany periodic point lying
on the orbit. Yet it is known from experience that scars te
to live not at one periodic point only but along the ent
orbit. Here, also, more information could presumably
gained by looking at the behavior of an eigenstate nearall
points on a periodic orbit instead of one only, thus obtain
a fuller measure of wave-function scarring.

The preceding ambiguities will, in the following section
point us towards auniversalmeasure of wave-function sca
ring ~in the regime of smalll, where the effect is expected t
be significant!, a measure which takes full advantage of t
entire periodic orbit and thefull linearized dynamicsin the
vicinity of this orbit. In the process, we will see how th
insights of various earlier contributors to this fie
@23,31,25,28,30# can be incorporated into the resulting ge
eral approach.
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III. WAVE-PACKET INTENSITY AVERAGING

A. Density matrix test states

Consider again the fixed point of a classical are
preserving map, as introduced in Eq.~2!. Given the apparen
arbitrariness in the choice of wave packet which came ou
our discussion in the preceding section, it seems natura
extend our measure of scarring, replacing the pure Gaus
test state with a density matrix which gives weight to Ga
sians of all widths:

r5NE dt e2t2/T0
2
uaselt&^aseltu. ~23!

We choose the exponentl to be the instability exponent o
the unstable orbit@Eq. ~2!#, but this choice is in fact arbi-
trary, andl can be reabsorbed into the overall normalizati
factorN and the time cutoffT0. In the absence of the cutof
T0, the hyperbolic test state would be completely scale
variant, giving equal weight to Gaussians of all aspect rat
from tall and thin to short and wide. The cutoff is, howeve
necessary because the linearized dynamics of Eq.~2! is in
fact only valid in a finite classical region around the period
orbit ~and it also eliminates possible normalization difficu
ties!. We note that Eq.~23! is anincoherentsuperposition of
wave packets of different width, designed to give an un
ased measure of a scar~where the arbitrariness of a give
choice ofs is removed!.

Let the classical region in which the dynamics is linea
izable be given by a square in phase space, with areaA ~the
exact shape and area are not important, as we will soon s!.
Then choosings51, we see that the evolved widthsA\elt

reaches the edge of the linearizable region at time

T05
1

2l
ln

A

4\
. ~24!

@Up to constants,T0 is the same as the log-time discuss
above in Eq.~7!.# We see that a factor of order 1 ambigui
in the definition of the regionA will lead only to an additive
ambiguity in the cutoff timeT0, irrelevant in the semiclassi
cal limit A@\. Of course the condition that the Gaussian ju
touching the boundary should be suppressed by a facto
1/e ~as opposed to 1/e2, 1/e3, etc.! is still somewhat arbi-
trary, leading us to the more general form

T05
c

2l
ln

A

4\
, ~25!

wherec is now an arbitrary constant of order unity. In an
case, the ambiguity we previously had in the choice ofs
~which could be anywhere fromA\ to 1/A\, a huge range in
the semiclassical regime\!1) has now been reduced to
factor of order 1 constantc in the definition ofr.

In the following section, where we considercoherentsu-
perpositions of Gaussian wave packets, we may wish to
a more stringent criterion for the cutoff timeT0, taking into
account the form of the leading nonlinearity of the dynam
near the periodic orbit. Thus, consider the worst-case s
nario, where the stable and unstable manifolds both cu
quadratically as we move away from the periodic orbit. Th



sia
ir
te
l

-
th

th

e
s
di
th
r

us

re

f

,

th
n.
b
th
u
a

n

in
e
d
t:

the

int
f.
pace

in

ely
ave
ave
ith
to

ce

ce
e-

osi-
suf-
ged

e
ct,
trix

en-

y of

6616 PRE 59L. KAPLAN AND E. J. HELLER
in order for the curvature to be unimportant as the Gaus
stretches along one of the two manifolds, we may requ
that the distance by which the unstable manifold devia
from the horizontal line at positionq be less than the vertica
width ~momentum uncertainty! of a state with position width
q. This meansO(q2),dp;\/q, so the maximum distanceq
for which this holds scales as\1/3. Assuming the same situ
ation obtains along the stable manifold, we obtain that
linearizable area scales as\2/3, i.e., A5A0

1/3\2/3 for some
classically selected areaA0. Then ln(A/\)51

3 ln(A0 /\), i.e.,
we may take the size of the linearizable region to be
\-independent valueA0, provided we also replacec→c/3.
Because of theO(1) ambiguities already present in th
choice ofc, we will not dwell here on the numerical value
appropriate to various systems. In any case, as we will
cuss when subjecting our results to numerical tests in
following section, there is always a tradeoff between largec
leading to more localization and smallerc giving more pre-
cise agreement with analytical predictions.

Coming back now to Eq.~23!, we notice that we could
instead have chosen a hard cutoff for the sum over Ga
ians, e.g.,

r85N8E
2T0

T0
dtuaselt&^aseltu. ~26!

This would not qualitatively affect our discussion either he
or in the following sections~particularly Sec. IV, where we
discuss coherent superpositions of Gaussian test states!. The
form of Eq. ~23! and its extensions, which will follow in
future sections, is, however, convenient because it allows
relatively straightforward analytical calculations.

Another important property of Eq.~23! is that r has the
same form in momentum space as in configuration space
can be seen easily by noting that the momentum widthsp

5sq
215s21e2lt and that Eq.~23! is manifestly invariant

undert→2t. Thus, the stable and unstable manifolds of
hyperbolic point are treated symmetrically in our definitio

The idea of averaging overlap intensities can of course
extended to resolve another difficulty we encountered at
end of the preceding section, namely the apparent ambig
in treating periodic orbits that are not fixed points. For
periodTP orbit of a map, we write

r5
1

TP
(
p50

TP21

uaxp ,s&^axp ,su, ~27!

whereuaxp ,s& is a wave packet of widths along the unstable

manifold, but centered at periodic pointxp instead of at the
origin. Similarly, for a continuous-time dynamics, we ca
write

r5NE dxuax,s,sx
&^ax,s,sx

u, ~28!

where thex coordinate parametrizes the periodic orbit
phase space, and at each periodic point the wave pack
chosen to have widthsx along the direction of the orbit an
width s in the unstable direction at that point on the orbi
n
e
s

e

e

s-
e

s-

or

as

e

e
e

ity

t is

ax,s,sx
~x8,y8!; exp@2~x82x!2/sx

2\2y82/s2\

1 ipx~x82x!/\#. ~29!

Here (x,px) are the position of a phase-space point on
periodic orbit and the corresponding momentum, whiley8 is
a coordinate along the unstable manifold of the orbit at po
(x,px). Equation~28! has been written down already in Re
@12#, and a connection was made there to the phase-s
tubes of Agam and co-workers@23#.

Now the orbit averaging of Eqs.~27! and ~28! can of
course be combined with the width averaging introduced
Eq. ~23!: thus, in the case of a map we may write

r5N (
p50

TP21 E dt e2t2/T0
2
uaxp ,selt&^axp ,seltu. ~30!

Here one may legitimately ask why we perform separat
the averaging at each periodic point: we could instead h
made use of the orbit dynamics and obtained Gaussian w
packets centered at each of the periodic points starting w
one wave packet only and allowing it to evolve according
the linearized laws of motion. More explicitly, if we takeua&
to be a Gaussian wave packet of widths along the unstable
direction, centered at periodic pointx0, we may construct a
dynamical density matrix

rdyn5 (
t52`

1`

e2t2/TP
2 T0

2
ualin~ t !&^alin~ t !u. ~31!

Hereualin(t)& is the original Gaussian evolved in accordan
with the linearizeddynamics: for example, ift is an integer
multiple of the periodTP , then ualin(t)& is centered at the
same periodic point asua&, but with width selt/TP. T0 is
defined as before@Eq. ~25!#, using the full instability expo-
nentl for one iteration of theentireprimitive orbit. l/TP is
the exponentper time step; hence the factor ofTP

2 in Eq.
~31!.

For smalll, where not much stretching has taken pla
over one period of the orbit, not much difference exists b
tween the averaging methods of Eq.~27! and Eq.~31!. We
return to this connection between~linearized! dynamics and
improved test states in Sec. IV, where coherent superp
tions of Gaussian wave packets are discussed. Here it
fices to note that because all wave packets being avera
over in rdyn are exact time-evolutes of one another~at least
in the linear approximation!, they all have exactly the sam
local density of states and inverse participation ratio. In fa
this absence of real averaging is there even for the full ma
r of Eqs.~27!, ~28!, and~30!, in the limit of smalll, as we
shall see next.

B. Measures of scarring from incoherent averaging

Our measure for the strength of scarring for a given eig
stateun& is now simply

I nr[^nurun&. ~32!

We can construct a wave-packet-averaged local densit
states analogous to Eq.~15!,
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Sr~E!5(
n

I nrd~E2En!, ~33!

and a corresponding inverse participation ratio

Ir5N(
n

I nr
2 . ~34!

Notice thatSr(E) is nothing other than a weighted sum
the densitiesS(E) of Eq. ~15!, and thus follows the sam
linear envelopeSlin which we have discussed in the prece
ing section. The only thing possibly different aboutSr(E)
are the oscillations under this envelope. To understand
these oscillationsIr in the averaged local density of stat
might differ from the Porter-Thomas fluctuations one fin
for a single wave packet, we need to study correlations
tween local densities of states for different wave packets c
tered on the same periodic orbit.

In general, given two wave packetsua& and ub&, we can
define a long-time averaged transport probabilityPab @33# as

Pab5 lim
T→`

1

T (
t50

T21

z^auUtub& z2. ~35!

For a nondegenerate spectrum we easily see

Pab5(
n

z^aun& z2z^bun& z25(
n

I naI nb . ~36!

In particular, the IPR as defined in the preceding sect
corresponds to the special caseua&5ub&:

Ia5NPaa5N(
n

I na
2 . ~37!

The Pab can be thought of as the covariance matrix of t
densities of states for different wave packets, withPaa being
the variances or diagonal matrix elements; the correla
between two densities of states is then given by

Cab5
Pab

APaaPbb

. ~38!

We begin with the simplest case, where wave packetsua&
and ub& are exact time iterates of one another:ub&5ua(t)&
for some timet. There, of course,Pab5Paa5Pbb , and the
correlation is unity@the two local densities of statesS(E) are
identical#. More explicitly @from Eq. ~21!# we have in this
case

Pab5Paa5Pbb5
F

N
g~l!, ~39!

whereF/N is the RMT prediction for the quantum long-tim
return probability and

g~l!5(
s

z^auU lin
s ua& z25(

s

1

cosh~ls!
~40!
-

w

e-
n-

n

n

is a scarring IPR enhancement factor@see Eq.~21!#. In the
last equality the periodic orbit in question has been taken
be period 1~a fixed point!.

Now consider the opposite extreme case, where w
packetsua& and ub& lie on different periodic orbits of the
same classical action~and not related by any symmetry!.
Then the two local densities of statesSa(E) andSb(E) share
the same linear envelope~coming from short time dynam
ics!, but have completely uncorrelated long-time fluctu
tions:

I na5r anSlin~En!,
~41!

I nb5r bnSlin~En!,

with r an , r bn uncorrelatedx2 variables with mean 1/N @see
Eq. ~18!#. Then

Paa5Pbb5
F

N
g~l!,

Pab5
1

N
g~l!,

~42!

Cab5
1

F
.

The correlation in this case is of order unity but still less th
1.

Finally, choose the two wave packetsua& andub& lying on
the same orbit but not exact time-iterates of one another.
can think of wave packetub& as having a part composed o
ua& and its short-time iterates and another part which is s
tistically independent ofua& although it lies on the same
orbit. The fraction ofub& which is correlated withua& is
given by a~normalized! sum of squared overlaps ofub& with
ua& and its iterates:

(
s

z^buU lin
s ua& z2

(
s

z^auU lin
s ua& z2

[
gab~l!

g~l!
, ~43!

where Eq.~43! serves as the definition ofgab(l). In both
numerator and denominator linearized evolution is used,

gab~l!5(
s

1

cosh@l~s1z!#
, ~44!

where ub& is related to some exact time-iterate ofua& by a
stretch ofelz of the Gaussian along the unstable manifold

We then have a sum of two contributions:

Pab5
F

N
g~l!Fgab~l!

g~l! G1
1

N
g~l!F12

gab~l!

g~l! G
5

F21

N
gab~l!1

1

N
g~l!, ~45!

giving
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Cab5F12
1

F G gab~l!

g~l!
1

1

F
. ~46!

Now as the exponentl becomes small,any optimally ori-
ented wave packetub& lying on the periodic orbit begins to
look more and more like an iterate of any other wave pac
ua&. In that limit,

lim
l→0

gab~l!

g~l!
51, ~47!

and so the correlationCab→1. So the key result is that whe
scarring is strong (l→0), the spectra of all optimal wav
packets centered on the periodic orbit in question are vi
ally identical, making unnecessary any averaging over wi
or position along the orbit:

^nurun&→ z^asun& z2, ~48!

for an arbitraryuas& along the periodic orbit. Therefore, i
this limit any wave packet individually provides a univers
measure of scarring intensities, obviating the need to c
struct tubes and other averaging devices.

We now proceed to examine quantitatively the behav
of Cab in Eq. ~46!. First, however, we will introduce a mode
ensemble of systems which will allow us to test numerica
this quantitative prediction and others obtained in the follo
ing sections.

C. Ensemble averaging over hard chaotic systems

The classical area-preserving map we will use for o
‘‘numerical experiments’’ is defined on the unit squa
(q,p)P@0,1#3@0,1#, and consists of two parts. The first ste
is a three-strip generalized baker’s map@32,13# with strip
widths w01w11w251. Each vertical stripi of width wi
,1 and height 1 is stretched horizontally by a factor of 1/wi
and compressed vertically by a factor ofwi to make it into a
horizontal strip of heightwi and width 1. The three strips ar
then stacked on top of each other~left becoming bottom and
right becoming top! to reconstruct the unit square. Definin
si5( j , iwj to be the left edge of stripi, we have

q85~q2si !/wi ,
~49!

p85si1pwi ,

where the initial positionq lies in the i th strip, i.e.,si<q
,si 11. The second and final step is a kicked map@34#
implemented in the left and right strips of the square, leav
the middle strip undisturbed:

p95p82Vi 8
8 S q82si 8

wi 8
D mod 1,

~50!
q95si 81@~q82si 8!1p9wi 8 modwi 8#.

Here i 8 denotes the number of the strip (0 or 2) containi
q8. The entire mapping Eqs.~49! and ~50! is now iterated.

The convenience of this two-step model lies in the f
that for any choice of kick potentialsV0 andV2 acting on the
left and right strips, respectively, the middle strip expe
t

-
h

n-

r

-

r

g

t

-

ences only bakerlike horizontal stretching and verti
shrinking. Thus, there is always a fixed point of the system
the middle strip, with coordinatesqf5pf5w0 /(w01w2),
and stretching exponentl5u ln w1u. Furthermore, the stable
and unstable manifolds of this fixed point are always loca
vertical and horizontal, respectively, consistent with our
nonical form Eq.~2!. The kicked maps acting on the left an
right strips serve to provide parameters which can be ea
varied to produce ensemble averaging over the details of
nonlinear long-time recurrences without affecting the lo
dynamics around the periodic orbit which is being studie
~For a billiard system, the analogous procedure would be
take a given short periodic orbit and then create an ensem
of systems by deforming the boundary in such a way that
original orbit is unaffected.! We choose kick potentials

V0,2~x!52
1

2
x21

K0,2

~2p!2
sin 2px, ~51!

with K0,2 arbitrary parameters. The conditionuK0,2u,1 is
sufficient to ensure hard chaos, without regular regions@19#.
More general kicking potentials could of course have be
used, but we find that the two parametersK0,2 provide a
sufficiently large ensemble for our purposes.

The system is quantized in a straightforward and conv
tional way, by multiplying the unitary matrices implemen
ing baker’s map and kicked map dynamics@32,34#.

D. Numerical tests

We proceed to test the density of states correlationsCab
@Eq. ~46!# for the fixed-point orbit of the map introduce
above. The wave packetua& with horizontal widthsA\ and
vertical width A\/s is placed on the fixed point. We the
define a family of wave packetsub(z)& of ~horizontal! widths
selzA\. Notice that for integerz, ub(z)& is an exact iterate
of ua& ~in the linear approximation!, and thus in that approxi-
mation the densities of states are identical and the correla
Cab51. The differences are expected to be greatest at h
integer z where ub& is most unlike any iterate ofua&. The
correlationCab is now plotted as a function ofz for 0<z
<1 in Fig. 1. Two sets of data are given, differing in th
stability exponent of the periodic orbit~which is easily ad-
justed by varying the middle strip widthw1). The two values
used werel5 ln 5 ~upper curve! andl5 ln 10 ~lower curve!.
In each case, the numerical data come from an ensem
average over systems of sizeN51/h5200. The error bars
shown in the figure are statistical, and do not reflect fini
size effects. The theoretical curves are obtained from
~46! and require only the single parameterl. The agreement
between theory and data is quite good; furthermore we
just how large the correlations are even for not very sm
exponents. Thus, for an orbit with a stretching factor of
per iteration (l5 ln 10), the correlation does not go belo
0.95 even for the maximally unrelated wave pack
(z51/2).

In Fig. 2 we plot this minimum correlationCab(z51/2)
on the vertical axis, versus the scarring enhancement fa
g(l) on the horizontal axis. Four data points are used, c
responding~from left to right! to stretching factorsel520,
10, 5, 2.5. Both the expected average enhancementg and the
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PRE 59 6619MEASURING SCARS OF PERIODIC ORBITS
inter-wave-packet correlationCab(z51/2) are uniquely
given theoretically as functions of the exponentl. Again, the
data agree very well with the theoretical predictions. We
that a scarring enhancement factor of 2~corresponding to
stretching exponentl' ln 5) is associated with aminimum
correlation of 0.99 betweenthe least correlatedwave pack-
ets on that orbit. Strong scarring thus automatically elim
nates the ambiguity in measuring the strength of Gaus
wave-packet scarring.

The question then becomes whether it is possible in
way to take advantage of our knowledge of the orbit and
invariant manifolds to produce a scarring test state t
would do better than a single Gaussian wave packet. Ind
this is possible, and what is necessary is to usecoherent

FIG. 1. The correlationCab @Eq. ~38!# between local densities o
states for two wave packetsua& andub&, lying on the same periodic
orbit of instability exponentl, is plotted as a function of width
parameterz. The upper and lower curves correspond tol5 ln 5 and
l5 ln10, respectively. The width~along the unstable manifold! of
wave packetub& is el(n1z) times that ofua&, wheren is an integer.
Numerical data for the ensemble of kicked-baker systems descr
in Sec. III C are plotted along with the theoretical curves from E
46. As the stretching factorel gets closer to unity, so does th
correlationCab .

FIG. 2. The minimum correlation in the local densities of sta
Cab for two wave packets on an orbit of exponentl is plotted
versus the scarring IPR enhancement factorg(l) for such an orbit.
The theoretical curve is obtained from Eqs.~44! and~46!, while the
data again come from the ensemble of Sec. III C. The minim
inter-wave-packet correlation gets very close to unity for signific
scarring enhancement factorsg(l).
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quantum superpositions of test states@31,25,28# instead of
the density-matrix approach investigated in this section.

IV. COHERENT WAVE-PACKET SUMS:
ENHANCED SCARRING

A. Theory

As suggested already in@12#, we can construct a ‘‘linear-
ized eigenstate’’uc& as a normalized coherent sum of Gaus
ian wave packets centered on a periodic orbit. For a fix
point orbit, we write

C5NE dt e2t2/T0
2
uaselt& ~52!

@see Eq.~23!#. T0 is a linearized dynamics time cutoff a
defined in Eq.~25!, and the normalization constantN en-
sures^CuC&51. Just as was done for the density matrix
the preceding section, Eq.~52! can be generalized in a
straightforward way to higher-period orbits and to contin
ous time. However, to make the presentation more trans
ent, the examples here and in the following section are
stricted to the case of a fixed point, the generalizations be
left to Sec. VI.

If the dynamics away from the periodic orbit were exac
linear, we could take the cutoffT0 to infinity and obtain a
stationary state with quasienergyf @phasee2 if, see Eq.~4!#:
hence the name ‘‘linearized eigenstate.’’ In reality, a fin
cutoff is necessary because the ratio of the size of the lin
izable region of phase spaceA to \ is finite. However, if this
ratio is large~as it will always be in the semiclassical lim
\→0), most of the stateC maps to itself under Eq.~4!,
producing a large autocorrelation function at short times.
the case of Gaussian wave-packet scarring, the exten
which the short-time return probability differs from unit
~and thus the extent to which perfect localization fails to
achieved! is determined by the instability of the orbit~i.e., by
the amount by whichl is different from zero!. As measured
using the improved test stateC, the absence of complet
localization is given by the failure of thelinearizeddynamics
at long times.

The test stateC lives not only at the periodic point, bu
also along the invariant manifolds. Its autocorrelati
^CuC(t)& decays only on the order of thelog-time T0
;l21 ln A/\, as we show explicitly below in Eq.~56!. This
makesC a much sharper measure of the scar character o
eigenstate, and for small\ we expect to see much strong
localization as measured byC than by an individual wave
packet uas&. We will now proceed to show this explicitly
The construction ofC is extremely simple, requiring only
one piece of information beyond what we already needed
the single wave packet, namely the~approximate! size of the
region in which the dynamics is linearizable. No knowled
of long-time dynamics, nonlinear recurrences, or any ot
periodic orbits is needed.

We also notice that in the strong scarring limitl→0, we
could just as well have used only the linearized time itera
of ua& ~rather than wave packets of all widths! as in Eq. 52 to
construct the hyperbolic test state:
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Cdyn;(
t

e2t2/T0
2
uaselt&5(

t
e2t2/T0

2
eiftualin~ t !&

~53!

@cf. Eq. ~31!#. This form makes manifest the close conne
tion between the construction of the scarring test state
the linearized classical dynamics@Eq. ~2!#. It also makes al-
most trivial the generalization to higher period orbits and
continuous time@see Eq.~31! and also the fuller discussio
in Sec. VI#. The main disadvantage of the formrdyn ~as
compared tor) is that the former requires the arbitra
choice of initial widths. However, as we have seen in th
preceding section, this choice of starting wave packet ha
effect on any measured quantities in thel→0 limit ~where
replacement of the integral by a sum is justified!.

We begin as in Sec. II by evaluating the short-time au
correlation function

Alin
C ~ t ![^CuU lin~ t !uC&. ~54!

A straightforward calculation using Eqs.~4! and ~6! gives

Alin
C ~ t !5Qe2 iftE dy

e2(t2y/l)2/T0
2

Acoshy
. ~55!

The overall normalization constantQ can be fixed by requir-
ing Alin

C (0)5^CuC&51. The integration variabley is a time
variable scaled byl to make it dimensionless. In the lim
T0l@1, i.e., ln(A/\)@1, the exponential simplifies and w
obtain

Alin
C ~ t !5Qe2 iftE dy

e2t2/T0
2

Acoshy
5e2 ifte2t2/T0

2
. ~56!

Now we see explicitly that the decay rate of our test stateC
is indeed given by the log-time scaleT0. Of course for the
linear autocorrelation function to be a good measure of
total return amplitudeAC(t), even for timest less thanT0,
the stateC must be well contained inside the linear regio
This can be done by adjusting the constantc in Eq. ~25!:
numerically we will see below that good quantitative agre
ment with Eq.~55! is obtained forc'0.6. In any case, the
precise value of this constant does not affect any of the
portant scaling arguments which will follow.

As in Sec. II, the inverse participation ratio has an e
hancement factor associated with the short-time recurren

IC[
^ z^nuC& z4&

^ z^nuC& z2&2
~57!

5F(
t

uAlin
C ~ t !u2 ~58!

'FApT0 , ~59!

where in the last line the limiting form Eq.~56! has been
used, andT0 is taken to be large. In the Gaussian wav
packet case, the IPR scaled with the orbit decay timel21;
here it scales with the log-time;l21u ln \u@l21. This
-
d

no

-

e

.

-

-

-
s:

-

makes the coherent test state a factor ofT0l/Ap;u ln \u
times better than any of the single Gaussian test states.

We can also look at the spectral envelopeSlin
C which is the

Fourier transform of the short-time autocorrelation functi
@see Eq.~16!#:

Slin
C ~E!5(

t
Alin

C ~ t !eiEt ~60!

'A2pT0e2(E2f)2T0
2/2, ~61!

where again in the last line the limiting (\→0) form Eq.
~56! has been used. The energy envelope is centeredE
5f, just like the smoothed single-wave-packet local dens
of states, but the peak is both narrower and taller by a fa
scaling asu ln \u.

B. Numerical tests

We now check the results obtained in this section, us
again the ensemble of kicked-baker systems introduce
Sec. III C. The short periodic orbit will again be the fixe
point of the middle baker’s strip, with exponentl set by the
logarithm of the width of this strip. We begin by looking a
the smoothed local densities of statesSlin

C and Slin
a , for the

universal test stateuC& and the simple Gaussianua&, respec-
tively. The widths of the starting Gaussian is set toAw1, so
that the aspect ratio of the Gaussian is equal to the as
ratio of the rectangular middle strip in which the classic
dynamics is linearizable. The wave packet can then exp
the same number of steps in either time direction bef
reaching the edge of the linear regime. The test stateC is
constructed using a cutoff set byc50.6 @see Eq.~25!#.

Ensemble averaging is performed over many kicke
baker systems of the same~reasonably large! exponentl
5u ln 0.18u, and of system size~Hilbert space dimension! N
51/h5800. Local densities of states foruas& and uC& are
ensemble-averaged and smoothed, with the resulting e
lopes plotted in Fig. 3. Theoretical curves obtained from E
~16! and ~60! are also plotted for comparison. Excelle
agreement is observed between the data and the predic
based on the linearized theory. Furthermore, we see tha
spectral envelope for the hyperbolic test stateC is signifi-
cantly narrower and taller than the corresponding envel
for the Gaussian wave packet, again in accordance with
diction. We should note here that the hyperbolic test stat
constructed here with the very modest log-time cutoffT0
50.90. There are three reasons for the smallness ofT0 in this
example:~i! the stretching factorel'5.6 is rather large,~ii !
the system size, and particularly the size of the lineariza
region, are modest,~iii ! and finally the free parameterc has
been set at a rather conservative~small! value. With regard
to the last point, we should note in particular that increas
the cutoff parameterc @Eq. ~25!# will give rise to a sharper
envelope, with larger inverse participation ratio, though
some cost to the accuracy of the formulas Eqs.~58! and~60!,
etc. In effect, there is a tradeoff between keeping the
state well inside the linear region and thus being able
obtain with good accuracy its statistical properties~smaller
c) versus maximizing the localization properties of the h
perbolic test state by allowing it to some extent to leak out
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PRE 59 6621MEASURING SCARS OF PERIODIC ORBITS
the linear region~largerc). All of this will become clearer as
we go on to discuss IPR measures for the universal
states. Of course, none of theseO(1) considerations affec
the basic scaling predictions, namely the height, inve
width, and IPR of the spectral envelope forC all scale in-
versely withl for smalll and also logarithmically with 1/\
for small \. In particular, the hyperbolic~coherentC test
state! spectral envelope gets arbitrarily taller and narrower
\→0 for a fixed classical system, while the correspond
spectral envelope for a single Gaussian packet test stat
mains unchanged.

We next probe the behavior of the meanIC as a function
of N andc ~with exponentl again set tou ln 0.18u). In Fig. 4,
we plot the IPR versus cutoff timeT0, for five sets of data:
N51/h550, 100, 200, 400, and 800 from bottom to top. F
each value ofN, 26 values are plotted: from left to rightc
5(1.1)j , j 5220, . . . ,15. The five values atT050 repre-
sent simple Gaussian test states (c→0). The upper dashed
curve represents the theoretical prediction of Eq.~58!, which
should hold for large values ofN. Good agreement with the
data is obtained forN>200, as finite-size effects becom
less relevant.@Notice that because the width of the cent
strip here is quite small (0.18),N5200 corresponds to a siz
of only 0.183200536 for the linearizable region~in units of
h).# The six rightmost points on each data curve repres
c>1, and some deviation from the linear theory prediction
expected to start setting in there. We also note that at v
large values ofT0 ~requiring correspondingly larger value
of ln N), the theoretical prediction converges to the line
asymptotic form of Eq.~59! ~lower dashed line!.

We note for purposes of comparison that the single-wa
packet scarring strengthIa is predicted to be 3.66 for this
value of l @see Eq.~21!, noting that a quantum fluctuatio
factorF52 is appropriate for complex eigenstates#. This in-
deed is close to the value attained by the single wave pac
(T050), at least forN>200. @The deficit in the measure
single Gaussian IPR values (T050) for finite N, i.e., the

FIG. 3. Smoothed local densities of states are plotted for
universal hyperbolic test stateuC& ~higher peak! and a Gaussian
wave packetua& ~lower peak!, on a periodic orbit with exponen
l5u ln 0.18u. The system size isN5800. Cutoff constantc50.6
@see Eq.~25!# is used to construct the stateuC&. The theoretical
curves~dashed! are obtained by Fourier transforming the lineariz
autocorrelation functions of Eqs.~55! and ~6!, respectively, while
the data~solid curves! are obtained by ensemble averaging.
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extent to which these fall below the limiting value of 3.66,
in close correspondence with similar deficits in the hyp
bolic state IPR’s (T0.0).# We see that IPR values signifi
cantly larger than this can be attained using the hyperb
test states, especially for larger values ofN. The data are
consistent with the prediction that the IPR~at a fixed value of
c;1) scales logarithmically withN for large system sizeN.

Finally, to close this section we present in Fig. 5 the H
simi phase-space plot for the hyperbolic test stateC. In this
figure,T0 has been taken to be very large compared tol21,

e

FIG. 4. In this figure, the inverse participation ratio~IPR! for
hyperbolic test stateuC& is plotted versus the log-time cutoffT0

@see Eqs.~52! and~25!#, for various values of system sizeN. From
bottom to top, the five curves correspond toN550, 100, 200, 400,
and 800. For eachN, 26 points are plotted, forc5(1.1)j , j
5220, . . . ,15. The orbit has exponentl5u ln 0.18u, as in the pre-
ceding figure. The upper dashed curve is theN→` theoretical pre-
diction @Eq. ~58!, F52], which converges to the asymptotic pre
diction of Eq.~59! ~lower dashed line! for largeT0. The linearized
theory is expected to start breaking down forc>1 ~rightmost six
points on each data curve!.

FIG. 5. This figure is a Husimi plot in phase space of the u
versal hyperbolic stateuC& for log-time cutoff T→` ~i.e., the re-
gion plotted is well inside the linearizable region in classical ph
space!. The fixed point is at the center of the plot, and the horizon
and vertical axes correspond to the unstable and stable manif
respectively. The total area of the plot is 12A\312A\.
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i.e., the linearizable regime is much larger than a unit Pla
cell, and also much larger than the phase-space area sh
in the figure. We note that the phase-space Husimi pictur
universal, and in particular independent of the exponenl,
since a change in the value ofl in Eq. ~52! can of course
always be absorbed into a redefinition ofT0 and the overall
normalizationN. In other words, in the ln (A/\)→` limit, the
stateC depends only on the linear region size parame
A/\, and when we further look well inside the areaA, its
structure is completely free of any parameters. The pha
space area shown in the figure is 12A\312A\, i.e., it con-
tains 144/2p Planck-sized cells. We see from the figure th
C lives at the periodic point in the center of the plot~the size
of the bright region at the periodic point being set byh), and
symmetrically along the linearized stable and unstable m
folds. This picture will be important to us for compariso
purposes when we study off-resonance universal test stat
the following section. The analytic expression used to obt
the density plot in Fig. 5 will also be given there@Eq. ~65!#.

V. OFF-RESONANCE AND OFF-ORBIT SCARRING

Going back to the construction of the hyperbolic test st
C in Eq. ~52!, we notice that there the Gaussian wave pa
ets are all addedin phase, giving rise to a preferred energyf
which is the same as that for any single wave packet con
ered individually. We may, however, equally well consid
the more general form

C5NE dt e2t2/T0
2
eiutuaselt&, ~62!

whereu is an arbitrary phase accumulated per time step. T
extra phase should give rise to a state that prefers to liv
an energy different from the one that exactly quantizes
periodic orbit~i.e., E5f). In turn, this energy shift may be
expected to give rise to phase-space structures that lie a
from the invariant manifolds of the periodic orbit, i.e., abo
and below the separatrix constructed from these manifo
@30#. These intuitive expectations turn out to be justified,
we now shall see.

We begin once again by computing the short-time~linear-
ized! autocorrelation function. The generalization of Eq
~55! and ~56! works out to be

Alin
C ~ t !5Qe2 iftE dy

e2(t2y/l)2/T0
2
2 iu(t2y/l)

Acoshy
~63!

'e2 i (f1u)te2t2/T0
2
. ~64!

In the last line, the limitsl→0 andT0l; ln (A/\)→` have
been taken, in complete analogy with Eq.~56!.

From these expressions, we proceed to obtain spectra
velopes and IPR values, exactly as we did previously for
u50 special case. It is interesting to note here that in
asymptotic limit of Eq.~64!, the spectral envelope will be
exactly the same as that obtained previously@Eq. ~61!#, but
shifted so as to be centered at energyE5f1u. Because the
shape of the envelope is unaffected by the value ofu in this
limit, the IPR is still asymptotically given by our previou
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formula, Eq.~59!. It is important to note, however, that fo
realistic values of ln (A/\), this asymptotic regime may no
be attained, and the more general formulas Eqs.~58!, ~60!,
and ~63! should be used instead.

In Fig. 6, we plot~numerically obtained! smoothed spec-
tral envelopes for the hyperbolic statesC, for the same en-
semble of systems as was used in producing Fig. 3.
envelopes correspond tou50 ~the tallest envelope, alread
seen previously in Fig. 3!, throughu522p, moving to the
left in steps of 2p/20. Even though the asymptotic form o
Eq. ~64! predicts all the envelopes should have the sa
shape, being merely shifted to the left by angleu, in reality
we see this is not quite the case for finite values of ln (A/\).
Because of the finite linearizable volume of phase space,
off-resonance hyperbolic states have significantly less w
defined envelopes compared to theu50 state. That is be-
cause the asymptotic form assumes most of the autocor
tion function comes from long-time overlaps of wav
packets with very different widths. At finite system sizes
very important correction is the partial self-cancellation inC
coming from wave packets of comparable widths be
added together with very different phases. This correction
of course, taken into account in the more general form of
~63!, which does in fact predict less sharp envelopes~and
consequently lower IPR’s! for the off-resonance states. Th
important point to notice here, however, is the presence
very significant localization effect even foruuu.l, i.e., at
energies well outside the resonance of the original Gaus
wave-packet. States at such energies are not strongly sc
according to the original~Gaussian wave packet! definition,
nor are they particularly enhanced along the stable and
stable manifolds of the orbit, as measured by the
resonance hyperbolic test state. However, such states do
enhanced intensity relative to the off-resonance hyperb
statesC(uÞ0), which live in hyperbolic regions on eithe
side of the separatrix~see Fig. 10 later in this section!. Al-
though the enhancement factors for such states are q
modest for the parameters chosen (;2 over RMT!, they will
of course grow withl21 and with lnA/\, as we discussed
earlier. In particular, in the high-energy limit (\→`) of a
given classical system, scarring by the off-resonance stat
expected to be equally strong

FIG. 6. Smoothed local densities of states are plotted for
off-resonance universal hyperbolic test stateuC&, for off-resonance
angleu ranging from 0~tallest peak! in steps ofp/10 ~to the left!,
through22p, on a periodic orbit with exponentl5u ln 0.18u. As in
Fig. 3, the system size isN5800, and the cutoff constantc is set to
0.6 @see Eq.~25!#. The data are obtained by ensemble averagin
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PRE 59 6623MEASURING SCARS OF PERIODIC ORBITS
compared to the on-resonance (u50) form of scarring.
To demonstrate the preceding assertion, we plot in Fig

the ~theoretically computed! IPR as a function ofT0, for
several values of the off-resonance angleu. To facilitate
comparison with Fig. 4, we again choose stretching expon
l5u ln 0.18u. The six curves represent~from top to bottom at
T051) values ofu from 0 to p, in steps ofp/5. The top
curve has thus already appeared previously in Fig. 4.
lowest curve will later be compared with data in Fig. 8. T
asymptotic form of Eq.~59!, to which all these curves con
verge at largeT0 ~large u ln \u), is shown in the figure as a
dashed line.

An interesting point to notice here is that for sufficient
large u, the IPR can drop at moderateT0 from its single-
wave-packet value~at T050), before eventually recoverin
at largerT0 ~this is a result of the self-cancellation effe
alluded to earlier!. However, for~exponentially! large sys-
tems, scarring is equally strong for the different values of
off-resonance parameteru. Intuitively, for a large system~or
small\), the size of the linearizable region in which the te
stateC is constructed is very large compared to the s

FIG. 7. Theoretically computed IPR values for the univer
hyperbolic test statesC are plotted versus the log-timeT0 for sev-
eral values of off-resonance angleu. From top to bottom atT0

51, the solid curves representu50, . . . ,p, in steps ofp/5. The
dashed line is the limiting value for all of these at largeT0 @Eq.
~59!#. The single-Gaussian IPR~the T0→0 limit! is 3.66 for this
value ofl.

FIG. 8. The IPR is plotted here as a function of log-timeT0, as
in Fig. 4, but for the off-resonance test stateC(u5p) of Eq. ~62!.
Again, five data curves corresponding~bottom to top! to N550,
N5100, N5200, N5400, andN5800 are shown in the figure
with cutoff parameterc varying from (1.1)220 to (1.1)15 from left
to right within each curve. The stability exponent isl5u ln 0.18u, as
before. The upper dashed curve is theN→` theoretical prediction
obtained from Eqs.~58! and ~63!. The lower dashed line is the
asymptotic form of Eq.~59!, to which the upper curve converges
the T0→` limit. The linearized theory is again expected to bre
down for c>1 ~the rightmost six points on each data curve!.
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(;h) of a single wave packet. Thus, a given wave pac
used in the construction ofC in Eq. ~62! has very little
overlap with most of the other wave packets in the sum.
this reason, the cancellation effect arising from similar wa
packets being added together with different phases~for non-
zerou) becomes insignificant in the semiclassical limit.

To make contact once again with the data, we choosu
5p, and in Fig. 8 we do for this case what we did foru
50 earlier in Fig. 4. Again, data forN550, 100, 200, 400,
and 800 are plotted, and the same range ofc values is used.
Only for N>200 do we see the recovery towards larger IP
values that we expect from the theoretical curve~dashed!.
Recall that 3.66 is the single-wave-packet IPR value.

In Fig. 9, the system sizeN5200 is fixed, with cutoff
parameterc50.6, and the IPR is plotted versus the o
resonance angleu, ranging here from 0 to 2p. Agreement
between theory and data is in this case~surprisingly! good.
We see for this value ofN that byu52p, the IPR values are
already approaching the RMT value of 2, indicating almo
no localization.

Finally, we return to the Husimi representation ofC,
which we began to discuss already in the preceding sect
Husimi representations of the off-center scarring were d
cussed in@30#, where the inverted oscillator eigenstates we
probed with Husimi states. Here, we have shown how
generate test states which are sensitive to off-center s
developing in chaotic systems. For reference, the expres
describing the Husimi intensities is

Hq0 ,p0

C 5 z^gq0 ,p0
uc& z2

5e2q0
2/\U E dy

e2y2/l2T2
eiyu/le~q02 ip0!2ey/4\ coshy

Acoshy
U2

.

~65!

Here gq0 ,p0
is a phase-space Gaussian centered at ph

space point (q0 ,p0) of width A\ in both position and mo-
mentum:

l

FIG. 9. Here the IPR is plotted versus off-resonance angleu, for
l5u ln 0.18u, N5200, and cutoff time parameterc50.6. The solid
curve with error bars represents ensemble-averaged data, whil
dashed curve is the theory@Eqs.~58! and~63!#. At small angles, the
scarring strength is significantly above the single wave packet
value of 3.5~theoretical prediction: 3.66), while for larger angle
we approach the ergodic RMT value of 2.
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gq0 ,p0
~q!5~p\!21/4e2(q2q0)2/2\1 ip0(q2q0)/\. ~66!

Recall that we are working in a coordinate system where
fixed point is located at the origin (q,p)5(0,0), and the
linearized invariant manifolds are horizontal and vertic
@Eq. ~2!#. As the linearizable region becomes large compa
to the phase-space region of interest (T0→`), the Husimi
density of Eq.~65! depends on only three dimensionle
numbers: an off-resonance parameteru/l and the phase
space coordinatesq0 /A\, p0 /A\.

Previously, in Fig. 5, we have seen the Husimi density
C for u/l50 plotted in the square phase-space area26
<q0 /A\,p0 /A\<16. In Fig. 10 we present the analogo
picture for ~a! u/l50.8 and~b! u/l52.5. As the energy
goes further off resonance, the stateC moves away from the
periodic orbit and its invariant manifolds, and shifts into tw
of the quadrants separated by the manifolds (qp.0 or qp
,0, depending on the sign ofu). For largeuuu/l, narrow
hyperbolic regions in phase space are accessed, lying fu
and further from the periodic orbit itself. Foru/l;61, C
lives near the hyperbolasqp;6\ surrounding the periodic
point. This regime corresponds to a spectral envelope foC
which is centered at energyl away from the EBK energy
i.e., at the edge of the single-Gaussian spectral envel
Eigenstates having strong overlaps withC are now barely
scarred at the periodic point itself. If we go further into t
regimeuuu/l@1, the spectral envelope ofC is now centered
at an energy which is outside the envelope of the single w
packet. Then, states overlapping such a test stateC will have
stronger than expected intensity on hyperbolic regions
rounding the periodic orbit, but will not be scarred at all~and
may even be antiscarred! on the orbit itself.

The connection discussed above between an energy
away from the EBK value and hyperbolic phase-space st
tures may be understood very simply by considering the e
lution of off-center Gaussiansgq0 ,p0

of Eq. ~66!. Such a
Gaussian is not an optimal test state for measuring scar
because the autocorrelation function decays quite rapidly
pecially forq0

21p0
2@\ ~to be contrasted withC, which lives

along theentirehyperbolic region, and thus has much larg
self-overlaps at short times!. However, the phase informatio
in the autocorrelation function forgq0 ,p0

is quite relevant:

FIG. 10. Analogous to Fig. 5, this figure presents Husimi pl
of the universal test stateC for off-resonance parameter values~a!
u/l50.8 and~b! u/l52.5. As before, the linearizable region
taken to be much larger than the displayed area of size 1A\
312A\, centered on the periodic orbit.
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Alin~ t !5e2 ifte2[ ~q0
2
1p0

2
!/\]sinh2 ~lt/2!/coshlte2( iqp/\)tanhlt

~67!

@compare with Eq.~6!#. Upon Fourier transforming this to
obtain a spectrum, we obtain an expression for the opti
energy as a function of phase-space location:

E2f'l
qp

\
. ~68!

Thus the off-resonance parameteru of our test stateC is
then expected to be associated with phase-space hyperb

u

l
'

qp

\
. ~69!

VI. EXTENSION TO HIGHER-PERIOD ORBITS AND
CONTINUOUS TIME

A. Longer orbits of maps

The analysis of the preceding two sections has focused
fixed-point periodic orbits, but it generalizes in a straightfo
ward way to longer orbits and to continuous time. We sh
see below that the benefits of using universal scar meas
instead of simple Gaussians become even greater w
longer orbits are considered.

Consider again a periodic orbit~of a map! of periodTP ,
with periodic pointsxp (p50, . . . ,TP21), as in Eq.~27!.
Let 2f be the phase accumulated over one full iteration
the orbit, andl the corresponding stability exponent. Th
short-time autocorrelation function for a Gaussianua& cen-
tered at any of the periodic points is a generalization of E
~6!:

Alin~ t !5
e2 ift/TP

Acoshlt/TP

d (t modTP),0 . ~70!

The IPR as a function ofl is then the same as for a period
orbit @because it is given simply by the sum of the short-tim
return probabilities, Eq.~20!#, while the short-time spectra
envelope Slin has TP peaks in the quasienergy doma
@0,2p#, of height scaling asl21, and width scaling asl/TP .
The peak energies are of course those that ‘‘quantize’’
orbit: TPE5f mod 2p, or

Ek5
f12pk

TP
, k50, . . . ,TP21. ~71!

We notice that both the maximum scarring strength and
IPR can be large only for smalll, which becomes difficult to
achieve for the longer orbitsTP.1 ~normally l grows lin-
early with TP).

We now proceed to construct the universal test stateC
for such an orbit, having made a choice of quantization
ergy Ek :

C5N(
p
E dte2t2/TP

2 T0
2
ei (Ek1u/TP)p1 iut/TP2 ifp

3uaxp ,s f pelt/TP&. ~72!

s
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Here f p is a stretching factor andfp is a phase, both define
by

U lin
p uax0 ,s&5e2 ifpuaxp ,s f pelp/TP&. ~73!

f p andfp take into account the fact that stretching and ph
accumulation along the orbit may both be nonuniform;
course,f TP

51 andfTP
5f. The factorsf p are of order unity

and thus not very important in the semiclassical lim
ln A/\→` when the linearizable region is very large; on t
other hand, the phasesfp are crucial for getting constructiv
interference. The parameterT0 is defined as before@Eq.
~25!#, using the area of the linearizable region around p
odic point x0, and u/l is an off-resonance parameter,
discussed previously.

The short-time autocorrelation function of the stateC
then has the same form as what we found previously for
special caseTP51 @Eqs. ~55!, ~56!, ~63!, and~64!#, replac-
ing

T0→T0TP , l→l/TP , u→u/TP , f→Ek ~74!

throughout. Note thatl andu are defined as stretching ex
ponent and phaseper orbit periodrather than per time step
and likewiseT0 is the log-time measured in units of the orb
period. Equations~60! and ~61! describing the shape of th
linear spectral envelope, and Eqs.~58! and ~59! for the IPR
of the universal test stateC, undergo the same simple mod
fications and are then applicable to the case ofTP.1.

Let us compare these results with ordinary~single Gauss-
ian! scarring forTP.1 as well with the scarring of a fixed
point, which we focused on in the preceding two section

For generalTP>1, the autocorrelation function of
Gaussian wave packetuas& hasO(l21) strong recurrences
spacedTP steps apart, and thus stretching over a total ti
scale of orderTPl21. In the quasienergy domain, this lea
to a set ofTP evenly spaced spectral envelopes, each w
width, height, and IPR scaling~for small l) as

wa;l/TP ,

ha;l21, ~75!

I a;l21

~TP envelopes, centered at allEk!.

Although the width scales with the exponentper time step,
due to the presence ofTP of these envelopes, the maximu
expected scarring strength and the IPR both scale only
the total exponentper iteration of the entire orbit, and thus
are expected to deviate less and less from perfect ergod
as longer orbits are considered.

Let us repeat the same analysis for the stateC, which
takes properly into account all of the linearized dynam
around the periodic orbit. The short-time autocorrelat
function does not decay until a time of orderT0TP
;TPl21 ln A/\. This produces asingle peak centered a
quasienergyEk ~or shifted by an off-resonance phaseu/TP).
The width, height, and IPR scale as

wa;l/~TP ln A/\!,
e
f

t

i-

e

e

h

th

ity

s
n

I;ha;~TP ln A/\!/l ~76!

S 1 envelope, centered at someEk1
u

TP
D .

Apart from the logarithmic enhancement which leads
more and more deviation from RMT in the\→0 limit, we
also notice that only one peak is present~a choice of quan-
tization energyEk having been made!, and all quantities now
depend only on the ratiol/TP , the stability exponentper
time step. This measure of scarring therefore allows us to s
strong effects even for longer periodic orbits, as long as
stretching per time step remains moderate.

If the total exponentl ~and not justl/TP) is small, we
can equivalently use the linearized dynamics to generate
universal test state@compare Eqs.~31! and ~53!#. Equation
~53! generalizes easily to

Cdyn;(
t

e2t2/TPT0
2
ei (Ek1u/TP)tualin~ t !&, ~77!

whereua& is a Gaussian wave packet of widths centered at
any point along the periodic orbit. Equation~72! can be
thought of as an averaging of Eq.~77! over the initial width
s from somes0 to s0el. For smalll, the averaging proce
dure is unnecessary, all the states being essentially iden
and the simple expression of Eq.~77! well describes the
universal test state for any choice ofs.

B. Hamiltonian systems

The entire analysis can be applied also to Hamilton
systems in an essentially unchanged form. LetTP again be
the period of the orbit~now measured in real time unit
rather than in time steps!, and letl andf still be the expo-
nent and phase per one iteration of the orbit. Then an opti
Gaussian centered anywhere on the orbit and aligned a
the stable and unstable manifolds~with width s along the
unstable manifold! has a linear autocorrelation functio
given by a sum over iterations of the orbit:

Alin~ t !5(
n

w~ t2nTP!
e2 ifn

Acoshln
. ~78!

The very-short-time window functionw(t) describes the
self-overlap of the wave packet as it intersects itself on
every period; it is associated with the nonzero widthsx of
the wave packet in the direction of the orbit, and has a sc
Dt;sx /v;sx /AE. ~In the last equality, the particle mas
has been assumed to be unity, as it will be throughout.! Fou-
rier transforming, we obtain a very wide envelope~of width
DE;\AE/sx) associated with the energy uncertainty of t
wave packet itself. Multiplying this are the scarring env
lopes, centered at the quantizing energies, of width

wa;\l/TP , ~79!

and separated by

sa;\/TP . ~80!
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~Notice thatE is now a real energy, rather than the Floqu
phase it was for a map, andTP has units of time instead o
step number, hence the factor of\ in the equations above.!
The normalized peak height and the IPR are therefore g
by

I;ha;l21. ~81!

Again we see that ordinary measures of scarring are typic
unable to resolve scarring arising from longer orbits, beca
the exponentl for such orbits is generally not small.

The universal stateC is constructed by analogy with Eq
~72! as

C5NE
0

TP
dtE dt e2t2/TP

2 T0
2
ei (Ek1\u/TP)t/\1 iut/TP2 ift

3uaxt ,sx ,s f telt/TP&. ~82!

Heret is a time parameter parametrizing the orbitxt , f t and
ft are, as before, a stretching factor and phase assoc
with short-time evolution fromx0 to xt , Ek is a quantization
energy, andu/l is again an optional off-resonance ener
shift parameter. For smalll, this can be written as

Cdyn;(
t

e2t2/TP
2 T0

2
ei (Ek1\u/TP)t/\ualin~ t !&. ~83!

The short-time autocorrelation function again has a de
time scale TPT0;TPl21ln A/\ @with no window w(t)
present#, leading to asingle spectral envelope centered
energy Ek (Ek1\u/TP for off-resonance states!, and of
width and height given by

wC;\l/~TP ln A/\!,

hC;~TP ln A/\!/\l. ~84!

The IPR is somewhat difficult to talk about in this case b
cause IPR’s~like any other measure of quantum ergodicit!
can only be measured relative to some already known en
window which takes into account various conserved qua
ties. In this case, the only plausible window is the spec
envelope of the original Gaussian wave packet of widthsx
in the direction of the periodic orbit@see the discussion fol
lowing Eq. ~78!#. Then the IPR is given by

IC;
AETP

lsx
ln

A

\
. ~85!

Notice that the combinationl/AETP is just the exponent pe
unit length of the orbit. Of course, our result depends on
width sx of each Gaussian along the orbit. The enhancem
of the IPR forC over the corresponding IPR for the sing
Gaussian@Eq. ~81!# can also be thought of as being given
the usual logarithmic factor times the ratioAETP /sx of the
length of the orbit compared to the wave-packet size.

In any case, we again see that long orbits can be ea
resolved using this improved scarring measure. A suffici
condition to get significant enhancement is for the expon
tial stretching to be small on the time scale of the very-sh
time windoww(t), i.e., during the time it takes for the wav
t
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packet to traverse its width while moving along the orb
This criterion is of course independent of the orbit leng
Even if the criterion above is not satisfied at low energi
one nevertheless gets strong scarring in the semiclas
limit. For a two-dimensional billiard system, the increase
scarring strength~as measured by peak height of the spe
trum or by the IPR! scales with energy as

hC;AE ln E, ~86!

IC;E1/4 ln E. ~87!

~The power-law IPR scaling arises from the wave-pac
width sx scaling with energy assx;E21/4. This is a natural
scaling which keeps thex uncertainty and the uncertainty i
the x momentumpx in a fixed ratio relative to the total siz
of the accessible phase space. Without this scaling the
crease in IPR with energy would be only logarithmic.!

C. Numerical tests

We conclude this section with a numerical example of
localization enhancement obtainable for longer orbits us
the universal test-state approach. For this purpose, we ch
a modified version of the kicked-baker system introduced
Sec. III C. Instead of having the kicks act on the left a
right strips of the three-strip system, we have one act n
only on the middle strip, leaving the left and right strips
undergo ordinary baker-like dynamics, i.e., horizontal exp
sion and vertical compression. Any periodic orbits contain
entirely in these two side strips thus have locally orthogo
stable and unstable manifolds@of the form Eq.~2!#, with a
stretching exponent and action given simply in terms of
widths w0 and w2 of the left and right strips. In particular
consider the period-2 orbit that jumps from the left strip
the right strip and back. Its periodic point in the left strip
given by q5w0(12w2)/(12w0w2), p5(12w2)/(1
2w0w2). The other periodic point is obtained by interchan
ing theq andp coordinates. The stretching exponent for o
full iteration of this orbit isl5u ln w0w1u, and the correspond
ing phase is given byf5w0(12w2)2/(12w0w2)\. Thus, a
desired value for the exponent and phase can be fixed
selecting the three baker strip widths, and the kick stren
acting on the middle strip is then used to provide ensem
averaging over the details of the long orbits~nonlinear recur-
rences!.

We select for our example widthsw050.40,w250.42, as
before, leading to an exponentl5u ln 0.168u for our chosen
orbit, and work with the matrix sizeN5800. In Fig. 11, the
smoothed local density of states for a Gaussian wave pac
obtained by averaging over several realizations, is rep
sented by the double-peaked solid curve. The theoretical
diction, given by the linearized dynamics of Eq.~70!, is
shown by the dashed curve. The narrow, single-peaked s
curve centered at one of the two possible quantization e
gies is the similarly smoothed local density of states for
universal stateC, constructed once again withc50.6 and
u50, as in Fig. 3. Again, the corresponding dashed curv
the theoretical prediction based on the linearized dynam
and agrees well with the data. Notice that in this case
difference between Gaussian and universal scarmomete
more dramatic than in Fig. 3, the reason bei
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PRE 59 6627MEASURING SCARS OF PERIODIC ORBITS
that scarring as measured byC depends only on the stretch
ing rate along the unstable manifold per unit time, not p
iteration of the entire orbit. While scarring strength as m
sured by a single wave packet drops off with orbit leng
scarring strength as measured byC is length-independent a
long the orbit period remains small compared to the lo
time. Orbits of arbitrary length can therefore be strong
scarred using this measure, provided a correspondingly s
value of\ is chosen.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper we began by reviewing the theory and ex
ing measures of scarring. We were then able to estab
considerably refined and arguably universal scarring m
sures. The refinement means in practice that much la
deviations from RMT behavior are predicted using the
fined test states. The test states are not special from
standpoint of random wave functions, but they pick up str

FIG. 11. Smoothed local densities of states are shown here
Gaussian wave packet placed on a period-2 orbit~double-peaked
solid curve!, and the universal test stateC constructed on the sam
orbit ~tall single peak!. The dashed curves represent theoretical p
dictions based on the linearized dynamics near the periodic orb
question. The system is a kicked Baker’s map with kick poten
acting on the middle strip~see Sec. VI C!, and the periodic orbit has
a total exponentl5u ln 0.168u over the two-step period. One of tw
possible on-resonance energies has been chosen for the test stC,
which is again constructed using cutoff constantc50.6 ~as in the
analogous calculation in Fig. 3 for a period-1 orbit!. The enhance-
ment here is more dramatic due to the fact that universal scar
strength depends only on the exponent per unit time along the o
not on the orbit length itself.
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tures which exist in eigenstates of dynamical systems.
The two major issues of generalization of scar measu

which we faced are~i! coherence~or lack of it! in superpo-
sitions of localized wave-packet states, and~ii ! summing
over all the points of periodic orbits whose period is grea
than one iteration of a map. The smooth Hamiltonian vers
of this is to coherently add up packets all along the orb
making phase space tubes which are related to the tube
Agam and Fishman@23#; see also@12#.

The universality mentioned above stems ultimately fro
the use of the linearizable domain near periodic points in
construction of scar measures. The scar test states are
optimal ones which can be constructed with the lineariz
dynamics. In turn, we argued that the linearizable portion
the dynamics was a reasonable stopping point for the de
tion of scar strength. Going beyond the linearizable dyna
ics is certainly possible and semiclassically viable, bu
problem arises in that one begins to approach the const
tion of individual eigenstates, at least in favorable cases@18#,
which is a somewhat disturbing limit. The reason this is d
turbing is that such ‘‘test’’ states for scarring pick up~in the
ideal limit! only one state, which brands the whole eigenst
as a scar. Moreover, pieces of classical manifolds far fr
any given periodic orbit will have been incorporated in t
longer time dynamics of such a test state. Indeed it is no
all clear that any one periodic orbit should dominate t
others in such a state. These new periodic orbits would be
to play a role in the long time dynamics~on the order of the
Heisenberg time!, so we would not even be speaking of
scar of a given periodic orbit. Given all these factors,
seems reasonable to stop at the linearizable zone surroun
given periodic orbits.

Various numerical tests made possible by ensem
averaged baker map results supported the measures e
lished here. The enhancements in IPR made possible by
optimized coherent measures can be modest~factors of 1.5 or
2! for reasonable\ and short orbits, but much more dramat
for longer period orbits, as compared to a single Gauss
wave-packet measure.

Finally, we have given a theoretical basis for the ‘‘o
center’’ scars living on the hyperbolic manifolds near~but
not on! a given periodic orbit, and provided them with te
states sensitive to their presence.
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