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Measuring scars of periodic orbits
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The phenomenon of periodic orbit scarring of eigenstates of classically chaotic systems is attracting increas-
ing attention. Scarring is one of the most important “corrections” to the ideal random eigenstates suggested by
random matrix theory. This paper discusses measures of scars and in so doing also tries to clarify the concepts
and effects of eigenfunction scarring. We propose a universal scar measure which takes into account an entire
periodic orbit and the linearized dynamics in its vicinity. This measure is tuned to pick out those structures
which are induced in quantum eigenstates by unstable periodic orbits and their manifolds. It gives enhanced
scarring strength as measured by eigenstate overlaps and inverse participation ratios, especially for longer
orbits. We also discuss off-resonance scars which appear naturally on either side of an unstable periodic orbit.
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[. INTRODUCTION tween computed eigenstate properties of classically chaotic
Hamiltonian systems and RM[LL].
Stronger numerical evidence for the influence of indi-
The modern field of quantum chaology often associategigual periodic orbits on eigenstates, together with a theoret-
classically chaotic motion on the one hand with aspects ofca| explanation for scarring in a chaotic system, was intro-
random matrix theoryRMT) on the othef1]. These aspects quced in 1984 [2]. Loosely speaking, a scar is a
include level repulsion in the quantum spectrum as given bygncentration of extra and unexpect@s compared to the
the appropriate random matrix ensemble, Gaussian randoRMT prediction) eigenstate density near an unstable classical
wave functions with Bessel correlations, etc. Since Hamilperiodic orbit. This extra concentration has no classical ana-
tonian dynamics cannot be truly random, numerous receribg, which puts scarring into the family of quantum localiza-
contributions to the field address the many sorts of “correction effects. A semiclassical theory for the existence and
tions” to the random matrix approximation. One of those strength of scars was given, using time domain arguments
corrections is the phenomenon of scarring of quantum eigerand dynamics linearized around the periodic orbits. This
states byisolatedunstable periodic orbits of the correspond- theory has seen a number of extensions and applications,
ing classical systerf2]. including Bogomolny’s coordinate space theory of scarring
In the early 1980s MacDonald in unpublished wé8 [6] and Berry’s Wigner phase-space the¢®]. (The 1984
found clear evidence of nonisolated marginally unstable pepaper[2] had been essentially a Husimi phase space, or
riodic orbits in certain stadium eigenstaigghich he named Gaussian wave packet, thegnpll these theories were based
the “bouncing ball” states He also tentatively noted the on the linearized dynamics in the vicinity of a periodic orbit,
possible influence of aisolated, unstabl@eriodic orbit on a  but there were important differences. For example, an essen-
few of the calculated eigenstates, but gave no further attertial ingredient to the strength of scarring, the Lyapunov sta-
tion to this effect. In the subsequent first published accounbility exponent of the periodic orbit, enters only in the wave-
of numerically computed stadium eigenstates by MacDonalghacket approach2], while the important observation of
and Kaufmar{4] (which to the authors’ knowledge contains “knots” of high density at self-conjugatéfocal) points in
the first eigenstates reported for any completely chaotic syssoordinate space along the orbit was made by Bogomolny
tem), attention was focused not on periodic orbit effects buf{6].
on the nodal structure of the eigenstates. The conclusion was Scarring has been shown to affect physical systems of
that the expected pattern of nodal lines for random eigenvarious sort$8] and even the performance of devices such as
states had been reached. This early work also noted broadtunnel diodg9]. Recently one of us showed that the decay
agreement with the Bessel function form of the eigenstat®f metastable states can be strongly affected by scarring, in
spatial self-correlation function for chaotic billiards, as first that highly anomalous lifetime distributions are possible de-
discussed and predicted by BefBJ. The papef4] appeared pending on where decay channels are located with respect to
during the first epoch of quantum chaos theory, when muclthe shortest periodic orbits of the syst¢hd).
excitement was being generated by noting similarities be- The following litany of properties of eigenfunction scar-
ring has led to some confusion and to several attempts at
developing quantitative measures of this phenomerin.
*Electronic address: kaplan@physics.harvard.edu The manifestations of scarring can be subtle or obviGis.
TElectronic address: heller@physics.harvard.edu Measures of scarring can be basis depend@@n).Scarlike

A. Background
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structures are found to occur even in artificially constructedor small . (Note thatZ does not appear in this scaling,
purely random wavefunctiongll]. (iv) Statistical fluctua- implying survival of the scarring phenomenon into the clas-
tions allowed by RMT might account for some apparentlysical limit.) Some individual eigenstate projections onto the
scarred states. Gaussian basis were shown to be enhanced by at least 1/
Recent work in our laboratorjl2—14 has focused much over the RMT expectatiof2] (again, exactly which ones is
attention on quantifying the phenomenon of scarring, connot known and would require much longer time informa-
firming the role of the instability exponent of a given peri- tion). It is sometimes stated that scar theory is not a theory of
odic orbit, and further examining the consequences of thesidividual eigenstates. While that is true in many respects,
findings, including experimental issues and the effects of anespecially of the energy-averaged approaches such as Bogo-
tiscars. Related work of ours has noted that scarring is cormolny’s [6], the Husimi (Gaussian packgtphase-space
cordant with bounds on the ergodicity of eigenstates as detheory of scars[2] predicts there must exist individual
veloped by Shnirelman15], Zelditch [16], and Colin de scarred states, especially for small instability exponent
Verdiere[17]. A review of recent developments in the theory  As versatile as the Gaussian basis is, there are choices to
of scarring was recently written by one of the authidd]. be made and certain optimizations possible which further
The present work completes an important part of the pictur@ensitize the probe basis to the structures which classical
by explicitly addressing the basis dependence of measures dffnamics imprints onto the eigenstates of classically chaotic
scarring and arriving at a universal and optimal basis forsystems. Before discussing this further, we noteeductio
measuring scars, while not diminishing the utility of simpler ad absurdunwhich places restrictions on how far the refine-

and moread hocmeasures. ment of scarring measures can go. Some years ago, Tomso-
vic and Heller[18] were successful in constructing a high-
B. Measures quality scarred eigenstate of the stadium billiard using only

If eigenstates were ideal random matrix states, then aﬁemiclassical methodshe overlap of the semiclassical state

probe states would be equivalent, in that Gaussian randoiffith the exact eigenstate being 0)93Jsing such near-
statistics in one basis guarantees Gaussian random statistigenstates as a probe basis would lead to extreme non-RMT
in every other. In the RMT literature, it is sometimes notegPehavior in which all but one eigenstate have small projec-
that for any given member of the ensemble there will be dion onto the test state. Furthermore, including large parts of
diagonalizing basis; however, this basis is nongeneric and e classical invariant manifolds leading far from the region
itself randomly varying from one member of the ensemble toof a given periodic orbit subverts the idea of a scar of a
another. One way of approaching the corrections to RMT irperiodic orbit.

Hamiltonian systems with a classical analog is to show that Fortunately there is a quite natural stopping point in the
there exist special bases which are nonrandom and whictonstruction of a test basis: we use only the linearized dy-
come from deterministic dynamical evolution. These speciahamics(tangent mapnear any given periodic orbit in con-
bases bring the Hamiltonian into a manifestly non-RMT structing measures of scarring. In this way we arrive at test
form. Any basis which systematically shows non-RMT states that are understandable in terms of simple invariant
wave-function statistics for a classically chaotic system ismanifold structures of classical phase space near periodic
thus potentially significant. Seen in this light, the basis deprhits. Although the test states can be more complicated than
pendence of scar measures should be expected and even @Xsingle Gaussian, these more sophisticated test states are

ploited. , o _ still determined by short-time linear dynamiésf order of
One such special basis is that of complex Gaussian Wavige time over which the dynamics is linearizable, which

packets. Complex Gaussians have adjustable position angoq asloghi|/\). (Recall that a given orbit can be highly
momentum expectation values, and satisfy minimum uncer:

) o . . nonlinear, yet possess a linearizable tangent map in its vicin-
tainty conditions in some system of axes in phase space )
making them excellent measuring devices for the structure 0}')/- N .
; : ; ; . In constructing linear scar measures we still have a num-
eigenstates in phase space. This basis was the one chosen in )
[2]. For Gaussians centered on periodic orbits, asymptoti- er_of ch0|c_es to make. : :
cally exact i—0) semiclassical dynamics for a fixed short (1) What is the uncertainty zone of the test state in phase
time places rigorous non-RMT constraints on the statistics ofPace(in the case of a Gaussian, this is the uncertainty el-
eigenstate projections onto the Gaussian. Some of the eigelPSe in phase spageScar measures will change, for ex-
states(precisely which ones cannot be specified in this short2mple, depending on whether the ellipse lies along the stable
time theory are then required to have large projections onto®" unstable manifolds of the orbit or away from them.
the periodic orbit centered Gaussiéthese are the scarred (i) For a given periodic orbit, do we construct a test state
state$, while many more are shown to have anomalouslywith a Gaussian placed at one point along the orbit or do we
small projections(the antiscarred statesWe review why construct a tubégclosely spaced Gaussians on the Qrbit
this is so in the next section. The inverse participation raticsome sort, and is this tube to be a coherent superposition of
(IPR, denoted byf) of such orbit-centered Gaussian packetsthe Gaussians or an incoherent on@gf the case of a

is anomalous, and is governed by the classical Lyapunodiscrete-time map, this corresponds to placing a Gaussian at

stability exponent as each periodic point of a periodic orbit with length greater
than 1)
1 (iii) Should we take coherent linear combinations of a
I~— (1) . . : ) . :
N given Gaussian and its preimages and postimages, producing
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a new test state consisting of several different Gaussians &unched aix are correlated and enhanced in a way that is
each point along the orbit(This idea leads to the “univer- determined entirely by the stability matrix of the short orbit
sal” measure of scarring. P.

A position space basis, though obviously physically natu-
ral in many measurement situations, is not generally an op-
timal one for detecting scar effects. Unless the periodic point

There are several threads in the attempt to make goorl happens also to be a focusing point of classical trajectories
measures of scarring. The original approfZhamounted to  near the orbit, only a small fraction of the total scar strength
projection onto single Gaussiatithe Husimi measuje an  is captured in the position basis, and the fraction becomes
O(2/\) enhancement in the infinite-time average returnsmaller asi decreasegor as the energy increaseén easy
probability for a Gaussian placed on an unstable periodiavay to see this is to notice that the effects of a classical
orbit was noted for smalk. This implies that some eigen- trajectory in quantum mechanigenericallyextend to a re-
states in specified energy ranges are systematically enhancgidn around the orbit scaling not as a wavelength but rather
by O(1/\) in the periodic orbit regions over the RMT pre- as the square root of a waveleng#nd similarly the affected
dictions. Much later it was realized that this local enhanceregion scales as the square root of the total number of chan-
ment has a dramatic effect on the tails of i distribution  nels in momentum spageThus, unless either the stable or
[13]. unstable manifold of the orbiP at periodic pointx happens

Any theory of scarring implies some measure of the ef-to be oriented along the momentum direction, the position
fect. The first theory of wave function scarring in position space basis will not be optimal, as reflected in the falling off
space was developed by Bogomolr$]. Bogomolny of the focusing prefactor with energy in the semiclassical
smoothed the wave-function intensity over some small enGreen'’s functior(and similarly the momentum basis will not
ergy rangeAE using the semiclassical Green’s function; be optimal, unless one of the two invariant manifolds is ori-
scars are represented as smoothed sums over effectively &inted along the position directipnAll this will become
nitely many periodic trajectories of the system. Bogomolny’smore clear in the exposition of the following section. In any
semiclassical Green’s-function approach is very closely reease, one should keep in mind that a position space basis can
lated to our wave-packet dynamics method, as the semiclagiways be considered as a special limiting case of the Gauss-
sical Green'’s function can be obtained from the semiclassicahn wave packet test state, where the position uncertainty of
time-domain propagator by a stationary-phase Fourier tranghe wave packet becomes comparable to a wavelength, and
form. One difference between the approaches is that Bogahe momentum uncertainty becomes large.
molny envisions summing over a large number of periodic A Wigner phase-space analysis of the scarring phenom-
orbits to get as close as possible to an energy domain resenon was given by Berr{/7]. Berry considered the Wigner
lution of order of a mean level spacing. As mentioned abovefunction, again smoothed over an energy intetval nearE.
in some systems it is indeed possible to use semiclassic@8eing formulated in phase space, the approach more closely
methods to compute individual eigenstates of the systemesembles that of2]. Working in Wigner phase space in-
[19]. In fact, for this purpose one needs information onlystead of Husimi space also eliminates the need to choose the
about orbits of period up to the mixing timevhich scales (apparently arbitrany eccentricity and orientation of the
logarithmically with #) rather than the Heisenberg time Gaussian wave packets. The downside of Wigner phase
(which scales as a power lawHowever, our aim here is to space is the absence of a positivity condition on the Wigner
make predictions about the distribution of scarring strengthslistribution; thus the value of the spectral function cannot be
based only on linearized information arouonde periodic  considered as corresponding to an intensity or a probability
orbit; for this purpose most other orbits which produce addi-of being found near a certain point(and random matrix
tional oscillations in the density of states may be treatedheory is therefore not applicableThe Husimi function,
statistically[20]. It is important to note in this context that if which is manifestly positive definite, is identically a phase-
we are measuring wave-function intensities on a given shogpace smoothing of the Wigner distribution over a phase-
classical periodic orbitP, then in the semiclassical limit space region scaling &. The ambiguity in choosing the
there are no other short orbits that come close to this orbiGaussian centered onover which this smoothing is to be
(on a scale oft) in phase space. The only oscillatory con- performed is indeed an important issue, to be considered
tributions which will need to be taken into account are fromcarefully in the following. We will see that to obtain the
orbits closely related to orbitsomoclinicto P (homoclinic  maximalscarring effect, the Gaussian must be chosen to be
orbits are those that approaghat large negative times, per- properly oriented along the stable and unstable directions at
form an excursion away fror® into other regions of phase the periodic point(An arbitrarily large wave-packet width is
space, and then again appro&elat large positive timesin  allowed along either of these directions, with a correspond-
fact, in thei— 0 limit the periodic orbit sum for a pointon  ingly small width in the orthogonal direction. Also, strong
a given periodic orbitP can be written equivalently as a but nonmaximal scarring will generally be obtained for any
contribution from the orbifP itself plus a sum over trajecto- wave packet with width scaling a¢h in both the position
ries homoclinic toP [21]. Although the two points of view and momentum directions.

(periodic and homoclinic sumare mathematically equiva- A common limitation of the analysd®,6,7] is that they
lent, the homoclinic sum approach makes explicit the speciainake no prediction about the properties of the spectral fluc-
role of the orbitP near which we are making measurements.tuations on scales much smaller th&iTy, where Tp

In the homoclinic return formalism, it is also straightforward ~Tp/\ is the decay time of the unstable orbit with period
to see that the long-time recurrences of a wave-packefp. Therefore, it is not possible to make quantitative predic-

C. Brief history of scar measures
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tions aboutspecificindividual wave-function intensities, par- higher-period orbits and continuous time are discussed, fol-
ticipation ratios, etc., without explicitly doing a Gutzwiller lowed by concluding remarks in Sec. VILI.
sum overall periodic orbits. Even if the sum can be per-
formed, it is by no means clear that it will converge in all Il. GAUSSIAN WAVE-PACKET SCARRING
cases(e.g., in systems where caustics are impor{@]).
When the sum does converge it may produce individual
semiclassical wave functions very different from the quan- We begin with a review of the originaiGaussian wave
tum eigenstates, due to diffraction and other “hard quanPacke} theory of scarring, as discussed in detail recently in
tum” effects. Furthermore, such Heisenberg-time calculai12]. In the course of.the dlscussmn,_the key concepts of the
tions are extremely sensitive to small perturbations on th@utocorrelation function, the short-time spectral envelope,
system. What one would like is to be able to say preciselj‘on_“near recurrences, and the inverse part|C|pqt|qn r_atlo will
how often a given single-wave-function scar strength willbe mtro_duced. We will also see t_he inherent _Ilmltatlons of
appear on a given orbit, at what energy, and at what parani€@suring scar strength using single Gaussian test states,
eter values. In the semiclassical limit, this can in fact be don®0inting the way to the construction of improved “scarmom-
using only information about linearized dynamics near the€ters” (the authors thank Eugene Bogomolny for coining
orbit itself, and, in some cases, about a few strong isolatetiS tern in the following sections. _ _
homoclinic recurrences which cannot be treated statistically. Consider an arbitrarfunstablé periodic orbit of a chaotic
Agam and Fishmafi23] define the weight of a scar by system. For the purpose of simplifying th_e gxposmon, and
integrating the Wigner function over a narrow tube in phasdVithout loss of generality, we take the periodic orbit to be a
space, of cross sectidi, surrounding the periodic orbit. Li fixed paint of a discrete-time area-preserving map on a two-
and Hu integrate over coordinate space tul#. Alterna- _dlmen5|on_al phase_space._ If the periodic orbit in question is
tively, de Polavieja, Borondo, and Benif@5] construct a N fact a higher-period orbit of such a map, or is an orbit of
test state highly localized on a given periodic orbit using® continuous-time dynamics in two spatial dimensions, we
short-time quantum dynamics. ca_n.reduce the problem to the preceding case by iterating the
Klakow and Smilansky[26] have used a scattering ap- Ofiginal map, or by taking a surface of section map, respec-
proach to quantization to study the wave functions of billiardtively. (The issue of higher-period orbits and continuous time
systems. They treat carefully the wave functions on the PoinWill be addressed explicitly in Secs. Il and V1.
caresurface of section, and relate their properties to scarrin% We start with a fixed point at the origin of phase space.
in configuration space. Ozorio de Almeida7] uses the urthermore, we can take the stable and _unstable directions
Weyl representation to establish connections between clas! the fixed point to be verticap) and horizontal §), re-
cal and quantum dynamics, with particular application to theSPectively(we can always get the local dynamics into this
semiclassical Wigner function and scars. Tomsd2@] has form py first performing a canonical transfor_matlon on the
used parametric variation as a new method for studying sc&Pordinates Then the only parameter describing the local
effects; scars are shown to induce correlations betweeflinearized dynamics near the orbit is, the instability ex-
wave-function intensities on a periodic orbit and the levelPonent for one iteration of the orbit. Locally, the equations of
velocities of these wave functions when certain system pafotion are given by
rameters are varied. We also mention the work of Arranz,

A. Semiclassical dynamics of a Gaussian wave packet

I — ait
Borondo, and Benitf29], who have probed the intermediate a—a=ea.
region between regular and strongly chaotic quantum behav- Y 2
ior, and have shown how scarred states first arise from the p—p =€ "p.

mixing of pairs of regular wave functions #sis decreased
(but well before one reaches the semiclassical limit which i
the main focus of the present workEinally, several groups
[30,32 have studied the hyperbolic scar structures associat
not only with the periodic orbit itself but with its invariant
manifolds and homoclinic orbits. 14
In the next section we discuss scarring as measured by - 1 - 2120
g . . . a,(q) (—z—) e : )
individual Gaussian wave packets, which was the basis of moh
[2]. A single localized test state may be optimized to con-
form to the classical invariant manifolds in the vicinity of a This is a minimum-uncertainty state centered at the origin of
scar. In subsequent sections we go considerably beyond thighase space, with widttn\/% in the q direction andy%/o in
measure, refining our templates to better detect scarring. Ithep direction.o is at this stage an arbitrary parameief:is
Sec. Il we address the apparent arbitrariness in the choice tifie aspect ratio of the phase-space Gaussian, typically cho-
a point along the orbit at which to make the measurementen to be of order unity. Ambiguity in the choice @fis an
and in the eccentricity of the test Gaussian, and eliminatémportant issue that we will return to at the beginning of the
these ambiguities by building a wave-packet-averaged mearext section.
sure of scarring. Following this, in Sec. IV, we use coherent Eigenstate overlaps with our test state will provide a good
linear combinations of the localized test states as a mormeasure of eigenstate intensities near the periodic orbit;
sensitive measure. In Sec. V, off-resonance scars living ohowever, we find it useful to begin by working in the time
either side of an unstable periodic orbit are shown to followdomain(our results will then be applied to eigenstate prop-
naturally from our formalism. In Sec. VI, extensions to erties in the following subsectidn

We now turn to the construction of a test state which can
Sbe used to measure the intensity of eigenstates near the cho-
SEN periodic orbit. An obvious choice is a Gaussian wave

packet centered on the fixed point:
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For small enought, the wave packefa,) and its short- homoclinic points lying on a single homoclinic orhite.,
time iterates are contained well within the linear regime. Asthose that are exactly time-iterates of one angttwame
long as the wave packet stays in the phase-space region simack in phase with each other, giving rise to short-time cor-
rounding the periodic orbit in which the linearized equationsrelations inA(t) for larget [12]. These correlations are re-
of motion, Eq.(2), apply, the evolution of the wave packet is lated to the short-time dynamics of the original Gaussian
completely semiclassical, given simply by the stretching ofwave packet. In fact, we can write the return amplitude at
the g-width parametewr. More explicitly, at short times we times T\, <t<Ty (Ty=N is the Heisenberg time, where
have individual eigenstates begin to be resolyad a convolution,

U'la,)=Ujnla,) =e™'"asen), @)

, , , _ A)=2 And T)Ajn(t=7). ®)
whereU is the unitary operator implementing the quantum T
discrete-time dynamicd);, represents the quantization of . _ .
the linearized behavior near the periodic orbit, aigitime, ~ HeréAin is the short-time return amplitude ard,q has the
measured in units of a single mapping. Her@ is a phase statistical properties of an uncorrelated random Gaussian
associated with one iteration of the periodic orbit: it is givenVariable. In effect, random recurrences due to Gaussian fluc-

tuations must have “echoes” that mirror the initial short
appropriate. time decay, since the recurrences reload the initial state. In-
The autocorrelation function of the wave packet is defineduitively, the reloading effect expressed by the convolution in

as the overlap of the evolved wave packet with itself: Eq. (8) can be understood already at the classical level: any
amplitude returning after some long timeo the location of

by the classical action in units df, plus Maslov indices if

A(t)=(a,|UYa,), (50  the original wave packet on the periodic orbit does not dis-
. _ . appear immediately, but rather decays away from the orbit at
which at short times is seen from Ed8) and(4) to be the same rate as the original wave packet itself. The effect

depends strongly on the chaotic nature of the long-time dy-

A (D)= 1%(a [a, o) = e ' ©) namics, which results in the random recurrences filling the
fin oIS JCoshint) | initial wave packet in a uniform, unbiased manner, so that

the evolution of this newly returned amplitude is equivalent
by performing a simple Gaussian integration. The “lin” sub- to the evolution of the original Gaussian. Equati@ can
script indicates that Eq6) describes the piece of the auto- also be verified directly12] by writing down the return am-
correlation function coming from the linearized dynamicsplitude as a homoclinic orbit sum and using known statistical
around the periodic orbit. For a weakly unstable ofbihall ~ properties of long-time orbits, particularly including the
N), Ajn(t) is slowly decaying, with strong recurrences hap-phase relations between orbits in the same family, as indi-
pening for the firstO(1/\) iterations of the orbit. We note cated above.

that the short-time autocorrelation functiég,(t) is o inde- The random part of the return amplitude is found to have
pendent, a fact that will prove important later on. the behavior
At longer times, namely beyond the log time, which
scales as (And(7))=0,
€)
InfN 1
Tog™ = @) (Arnd DV Amd 7)) = 8,

the wave packet leaves the linearizable region and nonline
recurrences begin to dominate the return probability. Here
is the total number of Planck-sized cells in the accessibl
phase spacéalso equal to the dimension of the effective
guantum-mechanical Hilbert spacandf is the fraction of

%he prefactor M provides the proper classical normaliza-
tion: in the absence of interference effects, the probability to
%ome back is equal to the probability for visiting any other
state in the Hilbert space. The average in E).is taken

. ) . . . : over long timesr, T\,,<<7<Ty, and/or over an ensemble of
this p.hase spac[—:?ypmally O(1)] in which thg linearized systems which all hffve the same linearized dynamics around
equations of motior{Eq. (2)] apply. The nonlinear recur- our chosen periodic orbit. In either case, the total size of the

rences correspond to a piece of the wave packet leaving tqflilbert spaceN (= 1/h for a phase-space area normalized to

Ilnear regime al_ong the unstable rr_1amfold,_undergomg ComLmity) has been assumed to be large. We then obtain for the
plicated dynamics far from the periodic orbit, and eventually

. . : . total return amplitud€including homoclinic interference ef-
coming back along the stable manifold to intersect the Or'g"fects) P ¢ 9

nal wave packet. Semiclassically, these recurrences are given
by a sum over points homoclinic to the original periodic (A(1))=0
orbit (i.e., points that approach the periodic orbit bothtas '
— +o and ast— —x). 1

Because the long-time homoclinic orbits come back with (A*(DA(+A) == D A" (S)Aj(S+A).
complicated accumulated phases, and the number of these N <5
recurrences grows exponentially with time, one might expect
the total long-time return amplitudes to be given by Gaussiamt times beyond the Heisenberg time, this gets modifit)
random variables. In fact, however, contributions from allto

(10
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F . around the optimal energy. States with energy more than
(A*(DA(t+A4)) = N > An(S)AR(s+A). (1D O(\|log\|) away from resonance tend to hetiscarred(i.e.,
S they have less than expected intensity at the periodic)orbit

F is a factor associated with the discreteness of the eigen- NOW long-time(nonlineay recurrences as in E¢) lead

states: it is 3 for real eigenstate—test-state overlaps and 2 f& fluctuations under the short-time envelope in the full spec-
complex overlaps. trum S(E). Because these recurrences involve a random

The long-time autocorrelation function is thus self- Variableconvolutedwith the short-time dynamics, in the en-
correlated on a scalé~\ L. Qualitatively, this can be un- €'9Y d_omam we obtain random fluctuatiomaltiplying the
derstood on a purely classical level: once probability hapShort-time envelopgl2],
pens to come back to the vicinity of a weakly unstable
periodic orbit, it tends to stay around before leaving again.
On the other hand, the overall enhancement in the total re-
turn probability at long times,

S(E)=F[A(t)]=F ET Annd( ) Ajn(t—7)

=F[Ain] F[Amndl = Sin(E) Sind E), 17

©

<|A<t>|2>=E P

s== COSHA\sS)’ (12)

whereF is the Fourier transforn(lt is easy to see physically
that the random oscillations must multiply the smooth enve-
obtained by combining the general expression @d) with  lope: if they were merely added to it, the total spectrum
the short-time overlap dynamics of the Gaussian wavevould become negative away from the peak of the enve-
packet[Eq. (6)], is fundamentally an interference phenom-lope) Finally, at the Heisenberg tim&,=N, individual
enon, and signals a kind of quantum localization, as we shalitates are resolvdd2,13, and we see a line spectrum with a
see next. Note that in the limk—0 (weak instability we  height distribution given by

have

InaUE|<n|aa>|2:ranSIin(En)’ (18)

mF
(1A= (13
where r,, are random variableswith mean (r ,,)=1/N)
i.e., the enhancement factor in the long-time return probabjidrawn from ay? distribution of one degree of freedoftwo
ity is proportional tox ~* [2]. degrees_ of freedom for comple{m|a}0>). Thus, in the end
we obtain a randonfPorter-Thomasline spectruns(E), all
multiplying the original linear envelope.
Before concluding this review, we mention the notion of
We now defineS(E) to be the Fourier transform of the an inverse participation ratio(IPR, denoted byZ), a very
autocorrelation function, useful measure for studying deviations from quantum ergod-
icity. We define

B. Local density of states

1 = _
S(E)= Et;m A(t)e'Et, (14)

T, =N 15, =N [(nla,)[* (19
T . . n n
For a nondegenerate spectrum, it is easy to(bgenserting

complete sets of eigenstatdbat
P g ) (Note that> | na, =1 by normalization. Being the first non-

trivial moment of the eigenstate intensitynga) distribution,

the IPR provides a convenient one-number measure of the
strength of scarringor any other kind of deviation from
whereE,, are the eigenvalues of the dynamics, anflare  quantum ergodicity The IPR would be unity for a wave
the corresponding eigenstates. Thus, we obtain the local depacket that had equal overlaps with all the eigenstates of the
sity of states at the wave pacKet,) by Fourier transforming system; the maximum value &f is reached in the opposite

its autocorrelation functiod(t). Cutting off the sum in Eq. (completely localized regimewhen the wave packet is itself
(14) at =T,q, or equivalently by including only linearized a single eigenstate. Random matrix theory predicts an IPR of
dynamics around the periodic orbit, we obt#ire smoothed F, the strong quantum ergodicity factor defined above in Eq.

S(E)=§ [(nla,)8(E—E,), (15)

local density of states (11).
From Egs.(14) and (15) we see that
Sin(E) =2, Ain(De’, (16) N
T, = lim= > |AM% (20
an envelope centered at quasienekgyy ¢ [see Eq.(6)], of 7 Toel 120

width SE~\, and of height~\ ~* (a factor of 27 has been

inserted into the definition ofy, for future conveniende  as one might expect, localization is associated with an en-
E=¢ is the analog of the EBK quantization condition for hanced return probability at long times. Now from E#2)
integrable systems; here, because of the instability of theve see that scar theory predicts an enhancement in the IPR
orbit, scarred states can live in an energy rangeD@k) over random matrix theory:



PRE 59 MEASURING SCARS OF PERIODIC ORBITS 6615

1 lll. WAVE-PACKET INTENSITY AVERAGING
I. =F> ———— 21
& ES cosh\s) 21) A. Density matrix test states
Consider again the fixed point of a classical area-
preserving map, as introduced in Ef). Given the apparent
X 22) arbitrariness in the choice of wave packet which came out of
our discussion in the preceding section, it seems natural to
extend our measure of scarring, replacing the pure Gaussian
test state with a density matrix which gives weight to Gaus-
where in the last line the limit of small has been takenF,  sians of all widths:
as before, is 3 or 2, depending on whether the states are real
or complex, respectiv_el)/._The IPR thus decomposes intc_> a p=NJ dt e-tz/rg|agem><agem|_ (23)
product of two contributions: the shape of the short-time
envelope coming from the linear dynamics around the peri-

by Porter-Thomas statistics. the unstable orbifEq. (2)], but this choice is in fact arbi-

trary, and\ can be reabsorbed into the overall normalization
factor A" and the time cutofffy. In the absence of the cutoff
C. Limitations To, the hyperbolic test state would be completely scale in-

variant, giving equal weight to Gaussians of all aspect ratios,

The_analy5|s of.the prec_edmg two subsecthns has beeI’i)om tall and thin to short and wide. The cutoff is, however,
extensively tested in numerical studigd<,13, which show necessary because the linearized dynamics of(Bgis in

t(;'at the statistical Er(t)pemeg c(j)f Zlgbenztate .gvgrlt‘;“pfh Withho ot only valid in a finite classical region around the periodic
thaussmlg wave pat?] ets can_mh ee ¢ F" .test.crl ec %‘ € SEbit (and it also eliminates possible normalization difficul-
eory. However, there are inherent imiations in tis ap+jeq e note that Eq(23) is anincoherentsuperposition of

proach. AI? ,:)b\_/('jc;ru; (X\e is the aLnt;lg:chty n t_r:ﬁhCho'Cf) Ofwave packets of different width, designed to give an unbi-
wav;:-pacle wi t \(/jva_\:e pz;c tet' 0 a_rt1y V\;' can e” ased measure of a scawhere the arbitrariness of a given
used (as long as it and its short-time iterates are we “choice of o is removed.

contained in the linearizable region, which condition is al- Let the classical region in which the dynamics is linear-

ways .SatiSﬁEd for small enoug'm)_, res_ulting in the same izable be given by a square in phase space, with Arghe
short-time overlaps, and thus in identical smoothed spectrg, ot shape and area are not important, as we will sodn see

Sin- The IPR is also expected to be enhanc;ed by the sa en choosingr=1, we see that the evolved width/7 e
factor for each such wave packet, depending only on th?eaches the edge of the linearizable region at time
decay exponent of the periodic orbit itself. It seems intu-

itively clear that a better measure of scarring should be ob-
tainable by appropriately combining information from wave

packets of all different aspect ratios, thus looking at a hyper-
bolic phase-space region surrounding the stable and unsta
manifolds of the periodic point. Such a test state for measu

TO = ﬁln E . (24)

e _ . :
TUp to constantsT, is the same as the log-time discussed
ing scars would incorporate knowledge of the full linearized@°0V€ in EA(7).] We see that a factor of order 1 ambiguity

dynamics around the periodic point, not just knowledgem the definition of the regior will lead only to an additive
about the location of the periodic poin,t itself. ambiguity in the cutoff timeT, irrelevant in the semiclassi-

The ambiguity and apparent arbitrariness of the precedin al Iimit A>#. Of course the condition that the Gaussian just
definition of scarring seems even more pronounced in th&ouching the boundary should be suppressed by a factor of

case of a higher-period orbit of a map, or for a periodic orbit}/€ (8 opposed to ef, 1/e°, etc) is still somewhat arbi-

of a continuous-time dynamics. In either of those cases, th§ay, leading us to the more general form

analysis above can be performedaaly periodic point lying

on the orbit. Yet it is known from experience that scars tend T =iln i (25)

to live not at one periodic point only but along the entire O 2N an

orbit. Here, also, more information could presumably be

gained by looking at the behavior of an eigenstate rdlar Wwherec is now an arbitrary constant of order unity. In any

points on a periodic orbit instead of one only, thus obtainingcase, the ambiguity we previously had in the choiceoof

a fuller measure of wave-function scarring. (which could be anywhere fron to 14\/%, a huge range in
The preceding ambiguities will, in the following sections, the semiclassical regim&<1) has now been reduced to a

point us towards aniversalmeasure of wave-function scar- factor of order 1 constart in the definition ofp.

ring (in the regime of smalk, where the effect is expectedto  In the following section, where we consideoherentsu-

be significank, a measure which takes full advantage of theperpositions of Gaussian wave packets, we may wish to use

entire periodic orbit and thdull linearized dynamicsn the  a more stringent criterion for the cutoff tinT,, taking into

vicinity of this orbit. In the process, we will see how the account the form of the leading nonlinearity of the dynamics

insights of various earlier contributors to this field near the periodic orbit. Thus, consider the worst-case sce-

[23,31,25,28,3Pcan be incorporated into the resulting gen- nario, where the stable and unstable manifolds both curve

eral approach. quadratically as we move away from the periodic orbit. Then



6616 L. KAPLAN AND E. J. HELLER PRE 59

in order for the curvature to be unimportant as the Gaussian a0 (XY~ exd — (X’ _X)2/g§ﬁ_y'2/02ﬁ

stretches along one of the two manifolds, we may require o

that the distance by which the unstable manifold deviates +ipy(X' =x)/%]. (29

from the horizontal line at positiog be less than the vertical

width (momentum uncertainjyof a state with position width Here (x,p,) are the position of a phase-space point on the
g. This mean®(q?) < 8p~7/q, so the maximum distanag  periodic orbit and the corresponding momentum, whilés

for which this holds scales d@s'®. Assuming the same situ- a coordinate along the unstable manifold of the orbit at point
ation obtains along the stable manifold, we obtain that théx,p,). Equation(28) has been written down already in Ref.
linearizable area scales &, i.e., A=Al% 23 for some [12], and a connection was made there to the phase-space
classically selected arefy,. Then In@V%)=2%In(A/%), i.e., tubes of Agam and co-workef&3].

we may take the size of the linearizable region to be the Now the orbit averaging of Eqg27) and (28) can of
fi-independent valud\,, provided we also replace— c/3. course be combined with the width averaging introduced in
Because of theD(1) ambiguities already present in the EQ.(23): thus, in the case of a map we may write

choice ofc, we will not dwell here on the numerical values
appropriate to various systems. In any case, as we will dis-
cuss when subjecting our results to numerical tests in the
following section, there is always a tradeoff between larger

leading to more localization and smallegiving more pre- Here one may legitimately ask why we perform separately
cise agreement with analytical predictions. the averaging at each periodic point: we could instead have
Coming back now to Eq(23), we notice that we could made use of the orbit dynamics and obtained Gaussian wave
instead have chosen a hard cutoff for the sum over Gausgmckets centered at each of the periodic points starting with
lans, e.g., one wave packet only and allowing it to evolve according to
the linearized laws of motion. More explicitly, if we taka)
to be a Gaussian wave packet of widthalong the unstable
direction, centered at periodic poirg, we may construct a
dynamical density matrix

Tp-1
272
p:NpEO dte™ /T0|axp,ae“><axp,aeﬁ|- (30

-
P’:Mf i dt|asen)(@gen|- (26)

This would not qualitatively affect our discussion either here
or in the following sectiongparticularly Sec. IV, where we
discuss coherent superpositions of Gaussian test states
form of Eq. (23) and its extensions, which will follow in
future sections, is, however, convenient because it allows foHere|a;,(t)) is the original Gaussian evolved in accordance
relatively straightforward analytical calculations. with the linearizeddynamics: for example, if is an integer

Another important property of Eq23) is thatp has the  multiple of the periodTp, then|ay,(t)) is centered at the
same form in momentum space as in configuration space, &me periodic point ag), but with width oe*/Te. T, is
can be seen easily by noting that the momentum wigfh  defined as beforfEq. (25)], using the full instability expo-
=0, =0"te M and that Eq.23) is manifestly invariant nent\ for one iteration of thentire primitive orbit. \/Tp is
undert— —t. Thus, the stable and unstable manifolds of thethe exponenper time stephence the factor off2 in Eq.
hyperbolic point are treated symmetrically in our definition. (31).

The idea of averaging overlap intensities can of course be For small\, where not much stretching has taken place
extended to resolve another difficulty we encountered at thever one period of the orbit, not much difference exists be-
end of the preceding section, namely the apparent ambiguitjveen the averaging methods of Eg7) and Eq.(31). We
in treating periodic orbits that are not fixed points. For areturn to this connection betweglnearized dynamics and

+ oo

den:t:E_w e_tZ/T'ZDTaalin(t)><alin(t)|- (31)

period Tp orbit of a map, we write improved test states in Sec. IV, where coherent superposi-
tions of Gaussian wave packets are discussed. Here it suf-
Te—l fices to note that because all wave packets being averaged

p= T_p pgo |axp ,g><axp,g|. 27 over in pgy, are exact time-evolutes of one anotffat least

in the linear approximation they all have exactly the same

) ] local density of states and inverse participation ratio. In fact,
where|a, ) is a wave packet of widthr along the unstable  thjs absence of real averaging is there even for the full matrix
manifold, but centered at periodic poixg instead of at the p of Egs.(27), (28), and(30), in the limit of small\, as we
origin. Similarly, for a continuous-time dynamics, we can shall see next.

write
B. Measures of scarring from incoherent averaging
p:/\/f dX|ay ¢.0 M8 0.0l (29 Our measure for the strength of scarring for a given eigen-
* * state|n) is now simply
where thex coordinate parametrizes the periodic orbit in In,=(nlp[n). (32

phase space, and at each periodic point the wave packet is
chosen to have widtlr, along the direction of the orbit and We can construct a wave-packet-averaged local density of
width ¢ in the unstable direction at that point on the orbit: states analogous to EL5),
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is a scarring IPR enhancement facfeee Eq.(21)]. In the
S,(E)=2> 1,,8(E—Ey), (33 last equality the periodic orbit in question has been taken to
" be period 1(a fixed poin}.

Now consider the opposite extreme case, where wave
packets|a) and |b) lie on different periodic orbits of the
same classical actiofand not related by any symmelry
Z,=N2>, 12, (34)  Then the two local densities of statBg E) andS,(E) share

n the same linear envelogeoming from short time dynam-

) _ ] ) ics), but have completely uncorrelated long-time fluctua-
Notice thatS,(E) is nothing other than a weighted sum of {jgns:

the densitiesS(E) of Eq. (15), and thus follows the same

and a corresponding inverse participation ratio

linear envelopes;, which we have discussed in the preced- lha=ranSin(En),
ing section. The only thing possibly different abdgif(E) (41)
are the oscillations under this envelope. To understand how lnb="bnSin(En),

these oscillationg, in the averaged local density of states
might differ from the Porter-Thomas fluctuations one findswith r,, 'y, uncorrelatedy? variables with mean N [see
for a single wave packet, we need to study correlations beEq. (18)]. Then
tween local densities of states for different wave packets cen-
tered on the same periodic orbit.

In general, given two wave packets) and|b), we can
define a long-time averaged transport probabity, [33] as

=
Paa= Pbb:Ngo\)a

1
1 Til ¢ 5 Pab:Ng()\)v
Pap=lim = a|U'|b)|“. 35
= lim = 3, KalU'fb) (39 @)
co_ 1
For a nondegenerate spectrum we easily see T E"

The correlation in this case is of order unity but still less than
Pav=2 KalmPKbIMP=2 lnalao- ~ 38) 1,
" " Finally, choose the two wave packégs and|b) lying on
r;he same orbit but not exact time-iterates of one another. We
can think of wave packgb) as having a part composed of
|a) and its short-time iterates and another part which is sta-
tistically independent ofa) although it lies on the same
Za,=NPg=N>, 12,. (37)  orbit. The fraction of|b) which is correlated witha) is

n given by a(normalized sum of squared overlaps {) with

. _ |a) and its iterates:
The P4, can be thought of as the covariance matrix of the

densities of states for different wave packets, viath being )
the variances or diagonal matrix elements; the correlation > [b|ula)l
S

In particular, the IPR as defined in the preceding sectio
corresponds to the special cds¢=|b):

between two densities of states is then given by = gas();) (43)
g(n)
- 2 Kaluf,la)P
a
ab= 5= (38
PaaPbb where Eq.(43) serves as the definition af,,(\). In both

o . numerator and denominator linearized evolution is used, so
We begin with the simplest case, where wave packets

and |b) are exact time iterates of one anothdy)=|a(t)) 1
for some timet. There, of courseP,,=P,,=Ppp, and the gab()\)=2 —_—
correlation is unityfthe two local densities of stat&E) are s Costir(s+2)]
identicall. More explicitly [from Eq. (21)] we have in this
case

(44)

where|b) is related to some exact time-iterate |af by a
stretch ofe*? of the Gaussian along the unstable manifold.
We then have a sum of two contributions:

F
Pab=Paa=Ppp=9(N\), 39
ab aa bb Ng( ) ( ) = gab(}\) 1 gab()\)
whereF/N is the RMT prediction for the quantum long-time
return probability and F—1 1
=~ Fan(M)+ I, (45

g =2 KalUjla)f=2

cosh\s) giving
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1]gas(N) 1 ences only bakerlike horizontal stretching and vertical
Cab=[1— Fl o = (46)  shrinking. Thus, there is always a fixed point of the system in
the middle strip, with coordinateg;=ps=wqg/(Wg+W5),
Now as the exponent becomes smallany optimally ori- ~ and stretching exponem=|lr}w1.|. Furthermore, the stable
ented wave packeb) lying on the periodic orbit begins to and unstable manifolds of this fixed point are always locally
look more and more like an iterate of any other wave packevertical and horizontal, respectively, consistent with our ca-

|a). In that limit, nonical form Eq«(2). The kicked maps acting on the left and
right strips serve to provide parameters which can be easily
~ Gap(N) varied to produce ensemble averaging over the details of the

A"Lno g(N) =1, (47) nonlinear long-time recurrences without affecting the local

dynamics around the periodic orbit which is being studied.
and so the correlatioB ,,— 1. So the key result is that when (For & billiard system, the analogous procedure would be to
scarring is strongX—0), the spectra of all optimal wave @ke a given short periodic orbit and then create an ensemble
packets centered on the periodic orbit in question are virtu®f Systéms by deforming the boundary in such a way that the
ally identical, making unnecessary any averaging over widtPriginal orbit is unaffected.We choose kick potentials

or position along the orbit: . .
_ T2 02 .
(n|p|ny—|(a,|n)?, (48) Vo AX) 5 X + (ZW)zsm 27X, (51

for an arbitrary|a,) along the periodic orbit. Therefore, in
this limit any wave packet individually provides a universal

measure of scarring intensities, obviating the need to COM0re general kicking potentials could of course have been

struct tubes and other averaging devices. ' .
. o : f hat th
We now proceed to examine quantitatively the behaworused’ but we find that the two parametéls, provide a

. ) - sufficiently large ensemble for our purposes.
of Cqp in EQ. (46). First, h‘?WGV‘?f' we will introduce a quel The system is quantized in a straightforward and conven-
ensemble of systems which will allow us to test numerlcally,[io

. o - ; . nal way, by multiplying the unitary matrices implement-
}Eésgggirgggtlve prediction and others obtained in the follow-ing baker's map and kicked map dynamja®,34.

with Ko, arbitrary parameters. The conditigKq <1 is
sufficient to ensure hard chaos, without regular reg[d:ss.

. . D. Numerical tests
C. Ensemble averaging over hard chaotic systems

" We proceed to test the density of states correlatiops
[Eq. (46)] for the fixed-point orbit of the map introduced
above. The wave packgt) with horizontal widtho % and
vertical width 7/ is placed on the fixed point. We then
define a family of wave packetb(z)) of (horizonta) widths
oer?\#i. Notice that for integee, |b(z)) is an exact iterate

of |a) (in the linear approximationand thus in that approxi-
horizontal strip of heightv, and width 1. The three strips are mation the densities of states are identical and the correlation

then stacked on top of each othéeft becoming bottom and Cab=1. The differences are expected to be greatest at half-
right becoming topto reconstruct the unit square. Defining INteger z where |b) is most unlike any iterate dfa). The

The classical area-preserving map we will use for ou
“numerical experiments” is defined on the unit square
(q,p) €[0,1]X[0,1], and consists of two parts. The first step
is a three-strip generalized baker’'s migg®,13 with strip
widths wy+w;+w,=1. Each vertical strig of width w;
<1 and height 1 is stretched horizontally by a factor a¥;1/
and compressed vertically by a factorvef to make it into a

/=3, to be the left edge of striy we have c<orrglati(.)ncatJ is now plotted as a function crf fo'r O§z
<1 in Fig. 1. Two sets of data are given, differing in the
q’'=(q—sj)/w;j, stability exponent of the periodic orbftvhich is easily ad-
(49  justed by varying the middle strip width,). The two values
p’'=s+pwi, used were\ =In 5 (upper curvgé and\ =1In 10 (lower curve.

In each case, the numerical data come from an ensemble
where the initial positiorg lies in theith strip, i.e.,s;<q  average over systems of sih&=1/h=200. The error bars
<si+1. The second and final step is a kicked m@#]  shown in the figure are statistical, and do not reflect finite-
implemented in the left and right strips of the square, leavingsize effects. The theoretical curves are obtained from Eq.
the middle strip undisturbed: (46) and require only the single paramelerThe agreement
between theory and data is quite good; furthermore we see

"\ q' —si mod 1 just how large the correlations are even for not very small
P=p i Wi/ ' exponents. Thus, for an orbit with a stretching factor of 10
(50) per iteration { =In 10), the correlation does not go below

q’=s;+[(q’ —si,)+p"w;; modw;]. 0.95 even for the maximally unrelated wave packets

(z=1/2).
Herei’ denotes the number of the strip (0O or 2) containing In Fig. 2 we plot this minimum correlatio®,,(z= 1/2)
g’. The entire mapping Eq$49) and(50) is now iterated.  on the vertical axis, versus the scarring enhancement factor
The convenience of this two-step model lies in the factg(\) on the horizontal axis. Four data points are used, cor-
that for any choice of kick potentialé, andV, acting on the  responding(from left to right to stretching factorg = 20,
left and right strips, respectively, the middle strip experi-10, 5, 2.5. Both the expected average enhancegant the
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. : . . guantum superpositions of test staf@d4,25,2§ instead of
\/ the density-matrix approach investigated in this section.

stretching factor = 5

—_

e
N
N

IV. COHERENT WAVE-PACKET SUMS:

0.98}
ENHANCED SCARRING
0.97% A. Theory
0.96} 1 As suggested already [112], we can construct a “linear-

stretching factor

0.95 10 ized eigenstate’l) as a normalized coherent sum of Gauss-

ian wave packets centered on a periodic orbit. For a fixed-
point orbit, we write

local density of states correlation C,,

0.94 - - - ,
? 0 0.2 04 0.6 0.8 1
wave packet parameter z B 2
\If=/\/’f dt e To|a, o) (52
FIG. 1. The correlatiol©,;, [Eq. (38)] between local densities of
states for two wave packelta) and|b), lying on the same periodic

orbit of instability exponent\, is plotted as a function of width . . . . .
parametez. The upper and lower curves correspondteln5 and  [S5€€ EQ.(23)]. Ty is a linearized dynamics time cutoff as

A=In10, respectively. The widtkalong the unstable manifolof ~ defined in Eq.(25), and the normalization Cons_tam' en-
wave packetb) is €("*2 times that of|a), wheren is an integer.  sures(¥|¥)=1. Just as was done for the density matrix in

Numerical data for the ensemble of kicked-baker systems describeitie preceding section, Eq52) can be generalized in a
in Sec. Il C are plotted along with the theoretical curves from Eq.straightforward way to higher-period orbits and to continu-
46. As the stretching factoe" gets closer to unity, so does the ous time. However, to make the presentation more transpar-
correlationCap ent, the examples here and in the following section are re-
stricted to the case of a fixed point, the generalizations being
inter-wave-packet correlationC,,(z=1/2) are uniquely left to Sec. VI.
given theoretically as functions of the expongntAgain, the If the dynamics away from the periodic orbit were exactly
data agree very well with the theoretical predictions. We sednear, we could take the cutoff, to infinity and obtain a
that a scarring enhancement factor ofi@rresponding to Stationary state with quasienergy{phasee™'?, see Eq(4)]:
stretching exponenk ~In5) is associated with aninimum  hence the name “linearized eigenstate.” In reality, a finite
correlation of 0.99 betweethe least correlatedvave pack-  cutoff is necessary because the ratio of the size of the linear-
ets on that orbit. Strong scarring thus automatically elimi-izable region of phase spageto # is finite. However, if this
nates the ambiguity in measuring the strength of Gaussiaf@tio is large(as it will always be in the semiclassical limit
wave-packet scarring. h—0), most of the statal maps to itself under Eq4),

The question then becomes whether it is possible in anproducing a large autocorrelation function at short times. In
way to take advantage of our knowledge of the orbit and itghe case of Gaussian wave-packet scarring, the extent to
invariant manifolds to produce a scarring test state thawhich the short-time return probability differs from unity
would do better than a single Gaussian wave packet. Indeetnd thus the extent to which perfect localization fails to be

this is possible, and what is necessary is to osherent achievedis determined by the instability of the orltite., by
the amount by which is different from zerg. As measured

using the improved test stat¥, the absence of complete

. 1 t localization is given by the failure of tHmearizeddynamics
7 0.98 at long times.

5 0.9 The test statél lives not only at the periodic point, but
% 0 also along the invariant manifolds. Its autocorrelation
5 0.94f . (P|¥(t)) decays only on the order of thivg-time T

% 09| ] ~N\"tIn A%, as we show explicitly below in E¢56). This

8 makes¥ a much sharper measure of the scar character of an
E‘ 091 eigenstate, and for small we expect to see much stronger
Z 088} ; localization as measured by than by an individual wave
E 086l ] packet|a,). We will now proceed to show this explicitly.
8 The construction of¥ is extremely simple, requiring only

! IPR eifincemeit faaof;for W;e packef Oi 0rbit4 one piece of information beyond what we alreao_ly needed for
the single wave packet, namely ttepproximatg size of the
FIG. 2. The minimum correlation in the local densities of states'€9i0n in which the dynamics is linearizable. No knowledge
C., for two wave packets on an orbit of exponentis plotted of I_ong—t|mel dy_namlcs, nonlinear recurrences, or any other
versus the scarring IPR enhancement fagiov) for such an orbit. ~ Periodic orbits is needed.
The theoretical curve is obtained from E¢#4) and(46), while the We also notice that in the strong scarring linit-0, we
data again come from the ensemble of Sec. Ill C. The minimuntould just as well have used only the linearized time iterates

inter-wave-packet correlation gets very close to unity for significantof |a) (rather than wave packets of all widjtes in Eq. 52 to
scarring enhancement factagé\ ). construct the hyperbolic test state:
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272 22 makes the coherent test state a factorTgh/ 7 ~|In#]
‘denwz e /T°|aaek‘>:2 e Toe! ¥layy (1)) times better than any of the single Gaussian test states.
(53 We can also look at the spectral enveldje which is the
Fourier transform of the short-time autocorrelation function
[cf. Eq. (3D)]. This form makes manifest the close connec-[see Eq(16)]:
tion between the construction of the scarring test state and
the linearized classical dynamif&q. (2)]. It also makes al-
most trivial the generalization to higher period orbits and to
continuous timgsee Eq.(31) and also the fuller discussion
in Sec. VI|. The- main disadvantage of .the forpyy, (Fis %\/%Toef(equ)%g/z, (61)
compared top) is that the former requires the arbitrary
choice of initial widtho. However, as we have seen in the where again in the last line the limiting:(0) form Eq.
preceding section, this choice of starting wave packet has n@6) has been used. The energy envelope is centerdfl at
effect on any measured quantities in the-0 limit (where = ¢ just like the smoothed single-wave-packet local density

replacement of the integral by a sum is justijied of states, but the peak is both narrower and taller by a factor
We begin as in Sec. Il by evaluating the short-time autoscaling agin).

correlation function

SH(E)=2>, Al(t)e (60)
t

B. Numerical tests

Ain(D=(¥[Ujjn()| ). (54) s
We now check the results obtained in this section, using
A straightforward calculation using Eggt) and(6) gives again the ensemble of kicked-baker systems introduced in
Sec. lll C. The short periodic orbit will again be the fixed
_ e—(t—y/x)Z/TS point of the middle baker’s strip, with exponentset by the
Aﬁlﬁ(t)=Qef"”tf dy——. (55  logarithm of the width of this strip. We begin by looking at
ycoshy

the smoothed local densities of sta®% and S2., for the
universal test stateV') and the simple Gaussida), respec-
tively. The widtho of the starting Gaussian is set{ov,, SO

that the aspect ratio of the Gaussian is equal to the aspect
ratio of the rectangular middle strip in which the classical
dynamics is linearizable. The wave packet can then expand
the same number of steps in either time direction before

The overall normalization constagXcan be fixed by requir-
ing All,(0)=(W|¥)=1. The integration variablg is a time
variable scaled by. to make it dimensionless. In the limit
ToA>1, i.e., InWh)>1, the exponential simplifies and we

obtain

72 reaching the egige of the linear regime. The test siatis
Altil;](t)zQefi(mj dy € — e idtg— TS (56) constructed using a c;utoff set loy=0.6 [see Eq.(25)]. .
Jcoshy Ensemble averaging is performed over many kicked-
baker systems of the sameeasonably largeexponent\
Now we see explicitly that the decay rate of our test state =|In0.18, and of system sizéHilbert space dimensiorN

is indeed given by the log-time scalg. Of course for the =1/h=800. Local densities of states fta,) and|¥) are
linear autocorrelation function to be a good measure of theensemble-averaged and smoothed, with the resulting enve-
total return amplitudeA¥ (t), even for times less thanT,,  lopes plotted in Fig. 3. Theoretical curves obtained from Egs.
the state? must be well contained inside the linear region. (16) and (60) are also plotted for comparison. Excellent
This can be done by adjusting the constanih Eqg. (25): agreement is observed between the data and the predictions
numerically we will see below that good quantitative agree-based on the linearized theory. Furthermore, we see that the
ment with Eq.(55) is obtained forc~0.6. In any case, the spectral envelope for the hyperbolic test stdteis signifi-
precise value of this constant does not affect any of the imeantly narrower and taller than the corresponding envelope
portant scaling arguments which will follow. for the Gaussian wave packet, again in accordance with pre-
As in Sec. Il, the inverse participation ratio has an en-diction. We should note here that the hyperbolic test state is
hancement factor associated with the short-time recurrencesonstructed here with the very modest log-time cufdff
=0.90. There are three reasons for the smallne33 of this
GRS example:(i) the stretching factoe*~5.6 is rather largeii)
W 5D the system size, and particularly the size of the linearizable
region, are modestjii) and finally the free parameterhas
been set at a rather conservatigeall value. With regard
=F> |AL ()2 (58  to the last point, we should note in particular that increasing
t the cutoff parametec [Eq. (25)] will give rise to a sharper
envelope, with larger inverse participation ratio, though at
~F \/;TO, (59 some cost to the accuracy of the formulas E§8) and(60),
etc. In effect, there is a tradeoff between keeping the test
where in the last line the limiting form Eq56) has been state well inside the linear region and thus being able to
used, andT, is taken to be large. In the Gaussian wave-obtain with good accuracy its statistical propertiemaller
packet case, the IPR scaled with the orbit decay thmé; c) versus maximizing the localization properties of the hy-
here it scales with the log-time-\~1InA[>\"1 This  perbolic test state by allowing it to some extent to leak out of

I\pE
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FIG. 3. Smoothed local densities of states are plotted for the Cucoff time T

universal hyperbolic test stafe) (higher peak and a Gaussian o _ o

wave packe{a) (lower peak, on a periodic orbit with exponent FIG. 4 In this flgure,_ the inverse participation _ra(itPR) for

A=|In0.1§. The system size if=800. Cutoff constant=0.6 hyperbolic test stat¢¥) is plo.tted versus the Iog-tlmg cutoff,

[see Eq.(25)] is used to construct the statd). The theoretical ~[S€€ Eqs(52) and(25)], for various values of system si2é From

curves(dashed are obtained by Fourier transforming the linearized Pottom to top, the five curves correspond\e-50, 100, 200, 400,
autocorrelation functions of Eq$55) and (6), respectively, while and 800. For eactN, 26 points are plotted, foc=(1.1), j

the data(solid curve$ are obtained by ensemble averaging. =—20,...+5. The orbit has exponent=(In 0.1§, as in the pre-
ceding figure. The upper dashed curve iskhe « theoretical pre-

diction [Eq. (58), F=2], which converges to the asymptotic pre-
diction of Eq.(59) (lower dashed lingfor large T,. The linearized

the linear regiorilargerc). All of this will become clearer as  theory is expected to start breaking down &1 (rightmost six
we go on to discuss IPR measures for the universal tegoints on each data curve
states. Of course, none of the®¢1) considerations affect
the basic scaling predictions, namely the height, inverse
width, and IPR of the spectral envelope fér all scale in-  extent to which these fall below the limiting value of 3.66, is
versely with\ for small\ and also logarithmically with in close correspondence with similar deficits in the hyper-
for small 4. In particular, the hyperboli¢coherent¥ test  bolic state IPR’s To>0).] We see that IPR values signifi-
statg spectral envelope gets arbitrarily taller and narrower asantly larger than this can be attained using the hyperbolic
#—0 for a fixed classical system, while the correspondingtest states, especially for larger valueshf The data are
spectral envelope for a single Gaussian packet test state reensistent with the prediction that the IR& a fixed value of
mains unchanged. c~1) scales logarithmically witiN for large system siz8l.

We next probe the behavior of the me&p as a function Finally, to close this section we present in Fig. 5 the Hu-
of N andc (with exponent again set tdIn 0.18). In Fig. 4,  simi phase-space plot for the hyperbolic test sthteln this
we plot the IPR versus cutoff tim&,, for five sets of data: figure, T has been taken to be very large compared 9,
N=1/h=50, 100, 200, 400, and 800 from bottom to top. For
each value oNN, 26 values are plotted: from left to riglat
=(1.1), j=-20, ... +5. The five values aty=0 repre-
sent simple Gaussian test states+«0). The upper dashed
curve represents the theoretical prediction of &), which
should hold for large values &. Good agreement with the
data is obtained foN=200, as finite-size effects become
less relevant[Notice that because the width of the central
strip here is quite small (0.18N=200 corresponds to a size
of only 0.18x 200= 36 for the linearizable regiofin units of
h).] The six rightmost points on each data curve represent
c=1, and some deviation from the linear theory prediction is
expected to start setting in there. We also note that at very
large values ofT, (requiring correspondingly larger values
of InN), the theoretical prediction converges to the linear
asymptotic form of Eq(59) (lower dashed ling

We note for purposes of comparison that the single-wave-
packet scarring strength, is predicted to be 3.66 for this  pg. 5. This figure is a Husimi plot in phase space of the uni-
value of\ [see Eq.(21), noting that a quantum fluctuation yersal hyperbolic statg?’) for log-time cutoffT—c (i.e., the re-
factor F =2 is appropriate for complex eigenstateBhis in-  gion plotted is well inside the linearizable region in classical phase
deed is close to the value attained by the single wave packegpacg. The fixed point is at the center of the plot, and the horizontal
(Ty=0), at least forN=200. [The deficit in the measured and vertical axes correspond to the unstable and stable manifolds,
single Gaussian IPR value§ {=0) for finite N, i.e., the respectively. The total area of the plot is\ii2< 12\/%.
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i.e., the linearizable regime is much larger than a unit Planck g 4

cell, and also much larger than the phase-space area shown 2 35 AR S omresonance)
in the figure. We note that the phase-space Husimi picture is S 3 /,,}i’ <
universal, and in particular independent of the exponent g 250 oo n ,lii,i’/’llllll 8=2n
since a change in the value ®fin Eq. (52) can of course 8, ‘;";;;,/;;,I;,;;I\ .
always be absorbed into a redefinitionTof and the overall T RS e
normalizationV. In other words, in the In4/A1)—o limit, the 5 ‘3‘3’:3:3:3:3';;/"/\\&‘&(//’
stateW depends only on the linear region size parameter E ! ‘O:W’\\\“X&\\\&\\\\‘\\ /
A/f, and when we further look well inside the ar@aits g 05 "o:::’ggg;,"‘ :zgggtgg‘tg{:g{‘;\;\
structure is completely free of any parameters. The phase- g o e ——

) . : o 2 10 1 2
space area shown in the figure is\E2< 12\%, i.e., it con- 5 >

tains 144/2r Planck-sized cells. We see from the figure that
W lives at the periodic point in the center of the pltite size FIG. 6. Smoothed local densities of states are plotted for the
of the bright region at the periodic point being setijy and  off-resonance universal hyperbolic test stad, for off-resonance
symmetrically along the linearized stable and unstable maniangle ¢ ranging from O(tallest peakin steps ofx/10 (to the leff,
folds. This picture will be important to us for comparison through—2, on a periodic orbit with exponent=|In 0.1§. As in
purposes when we study off-resonance universal test statesfig. 3, the system size N=800, and the cutoff constantis set to
the following section. The analytic expression used to obtair?-6 [see Eq(25)]. The data are obtained by ensemble averaging.
the density plot in Fig. 5 will also be given thegg. (65)].

formula, Eq.(59). It is important to note, however, that for

V. OFF-RESONANCE AND OFF-ORBIT SCARRING realistic values of InA/%), this asymptotic regime may not

) ] ] be attained, and the more general formulas E§8), (60),
Going back to the construction of the hyperbolic test statey, (63) should be used instead.

V¥ in Eqg. (52), we notice that there the Gaussian wave pack- |, Fig. 6, we plot(numerically obtainedsmoothed spec-
ets are all addenh phase giving rise to a preferred energy g envelopes for the hyperbolic statds for the same en-
which is the same as that for any single wave packet consitsemple of systems as was used in producing Fig. 3. The
ered individually. We may, however, equally well CO”SiderenveIopes correspond ®=0 (the tallest envelope, already

the more general form seen previously in Fig.)3through#= — 2, moving to the
left in steps of 2r/20. Even though the asymptotic form of
‘IfZNf dteftZ/Tgethla(reM% (62) Eq. (64) p_redicts all the_ envelopes should haye the_ same
shape, being merely shifted to the left by anglan reality

we see this is not quite the case for finite values o).
whered is an arbitrary phase accumulated per time step. Thiecause of the finite linearizable volume of phase space, the
extra phase should give rise to a state that prefers to live aff-resonance hyperbolic states have significantly less well-
an energy different from the one that exactly quantizes thejefined envelopes compared to the O state. That is be-
periodic orbit(i.e., E= ¢). In turn, this energy shift may be cause the asymptotic form assumes most of the autocorrela-
expected to give rise to phase-space structures that lie awagn function comes from long-time overlaps of wave
from the invariant manifolds of the periodic orbit, i.e., above packets with very different widths. At finite system sizes, a
and below the separatrix constructed from these manifoldgery important correction is the partial self-cancellation¥in
[30]. These intuitive expectations turn out to be justified, ascoming from wave packets of comparable widths being
we now shall see. added together with very different phases. This correction is,

We begin once again by computing the short-tiiteear-  of course, taken into account in the more general form of Eq.
ized autocorrelation function. The generalization of Egs.(63), which does in fact predict less sharp envelopesd

(55) and(56) works out to be consequently lower IPR)sfor the off-resonance states. The
- important point to notice here, however, is the presence of a
v o [ g e (L-yN)FTo—io(t—y/\) 63 very significant localization effect even fo|>\, i.e., at
Ain(t)=Qe” f 63 i i igi i
lin y m energies well outside the resonance of the original Gaussian

wave-packet. States at such energies are not strongly scarred
. » 2 according to the originalGaussian wave pacKetefinition,
~e (¢ 0)tg=tITo, (64)  nor are they particularly enhanced along the stable and un-
stable manifolds of the orbit, as measured by the on-
In the last line, the limits\ —0 andTy\ ~In (A/A)—o have  resonance hyperbolic test state. However, such states do have
been taken, in complete analogy with E§6). enhanced intensity relative to the off-resonance hyperbolic
From these expressions, we proceed to obtain spectral entates¥ ( 6+ 0), which live in hyperbolic regions on either
velopes and IPR values, exactly as we did previously for theside of the separatritsee Fig. 10 later in this sectipnAl-
0=0 special case. It is interesting to note here that in thehough the enhancement factors for such states are quite
asymptotic limit of Eq.(64), the spectral envelope will be modest for the parameters chosen over RMT), they will
exactly the same as that obtained previoy#ly. (61)], but  of course grow withA ~* and with InA/4, as we discussed
shifted so as to be centered at enefEyy ¢+ 6. Because the earlier. In particular, in the high-energy limifi(~=) of a
shape of the envelope is unaffected by the valué@ of this  given classical system, scarring by the off-resonance states is
limit, the IPR is still asymptotically given by our previous expected to be equally strong
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FIG. 7. Theoretically computed IPR values for the universal
hyperbolic test state¥ are plotted versus the log-tin1g, for sev-
eral values of off-resonance angie From top to bottom aff, FIG. 9. Here the IPR is plotted versus off-resonance afgfer
=1, the solid curves represefit=0, ... ;m, in steps of/5. The )\ =|In0.14, N=200, and cutoff time parameter=0.6. The solid
dashed line is the limiting value for all of these at laG@[Ed.  curve with error bars represents ensemble-averaged data, while the
(59)]. The single-Gaussian IPRhe To—0 limit) is 3.66 for this  dashed curve is the theoffgs.(58) and(63)]. At small angles, the

Off-resonance angle

value of\. scarring strength is significantly above the single wave packet IPR
) value of 3.5(theoretical prediction: 3.66), while for larger angles
compared to the on-resonanc@=0) form of scarring. we approach the ergodic RMT value of 2.

To demonstrate the preceding assertion, we plot in Fig. 7
the (theoretically computedIPR as a function ofT,, for . .
several values of the off-resonance angleTo facilitate (~h) of a single wave packet. Thus, a given wave packet

comparison with Fig. 4, we again choose stretching exponerﬂsed n the construction of’ in Eq. (62) ha§ very little
x=|In0.18. The six curves represefftom top to bottom at overlap with most of the other wave packets in the sum. For

: this reason, the cancellation effect arising from similar wave
To=1) values of@ from O to 7, in steps ofw/5. The top ! .
curve has thus already appeared previously in Fig. 4. Thgackets being added together with different phafmsnon-

lowest curve will later be compared with data in Fig. 8. TheZ®" §) becomes insignificant i_n th_e semiclassical limit.
asymptotic form of Eq(59), to which all these curves con- To make contact once again with the data, we chabse

- ; : =4, and in Fig. 8 we do for this case what we did fér
‘éi;%i;t":]aggo (large [In#), is shown in the figure as @ _ " " i i Fio 4 Again, data fdi—50, 100, 200, 400,

An interesting point to notice here is that for sufficiently gn? 200 Nafzﬂgtged’ and thehsame range vxﬁluzs ils usedI.P R
large 6, the IPR can drop at moderafg, from its single- - Tor N= 0 we see the recovery towards larger

wave-packet valugat To=0), before eventually recovering values that we expect from the theoretical cufdasheq

at largerT, (this is a result of the self-cancellation effect Recall f[hat 3.66 is the smg_le-wave—pack_et IPR yalue.
alluded to earlier However, for(exponentially large sys- In Fig. 9, the system S|zej=200 is fixed, with cutoff
tems, scarring is equally strong for the different values of th®arameterc=0.6, and the IPR is plotted versus the off-

off-resonance parameteér Intuitively, for a large systerfor Lesonancehangle, rgndging_hgre rf}rpm 0 to ﬁ.‘..Aglreemednt
small#), the size of the linearizable region in which the test etween theory and data is in this cdsarprisingly good.

stateV is constructed is very large compared to the size'/€ Se€ for this value dfl that by =2, the IPR values are

already approaching the RMT value of 2, indicating almost

6 M ' , —— . no localization.
B ,;ﬁ’/N—No (theory) | Finally, we return to the Husimi representation Wf,
N—»oo 7/ N30 i which we began to discuss already in the preceding section.

5T TO —> oo ‘,/’;;

Husimi representations of the off-center scarring were dis-
cussed irf30], where the inverted oscillator eigenstates were
probed with Husimi states. Here, we have shown how to
generate test states which are sensitive to off-center scars
developing in chaotic systems. For reference, the expression
describing the Husimi intensities is

- . . 4
sin}lc gaussian test statg;’

0 0.5 1 1.5 2 2.5 3
Cutoff time T,
v 2
. . . qu,p0_|<gqo,po|¢>|
FIG. 8. The IPR is plotted here as a function of log-tifig as
in Fig. 4, but for the off-resonance test stdté 9= 7) of Eq. (62).

) e—yzl)\ZTZeinIAe(qo—ipo)zey/4ﬁ coshy‘ 2
Again, five data curves correspondifigottom to top to N=50, =g Yo/t f dy .
N=100, N=200, N=400, andN=800 are shown in the figure, ycoshy ‘
with cutoff parametec varying from (1.1) ?° to (1.1)"5 from left 65)

to right within each curve. The stability exponenhis:|In 0.1, as
before. The upper dashed curve is tiie> o theoretical prediction
obtained from Eqgs(58) and (63). The lower dashed line is the . .
asymptotic form of Eq(59), to which the upper curve converges in Here Yag.p 1S @ phase-space Gaussian centered at phase-
the Ty— e limit. The linearized theory is again expected to break Space point @y,po) of width % in both position and mo-
down forc=1 (the rightmost six points on each data cyrve mentum:
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Ay (1) = e—i¢te—[(q§+ pa)/Alsink? (\t/2)/cosh\tg— (igp/#)tanhit
in

(67)
[compare with Eq{(6)]. Upon Fourier transforming this to

obtain a spectrum, we obtain an expression for the optimal
energy as a function of phase-space location:

E—¢=~\ %. (68)
f
b Thus the off-resonance parametgrof our test statel is

. L - then expected to be associated with phase-space hyperbolas:
FIG. 10. Analogous to Fig. 5, this figure presents Husimi plots

of the universal test staté for off-resonance parameter valugs 6 qp
6/A=0.8 and(b) 8/x=2.5. As before, the linearizable region is —~—. (69
taken to be much larger than the displayed area of sizéf12 A
X 12\/5, centered on the periodic orbit.
VI. EXTENSION TO HIGHER-PERIOD ORBITS AND

o (q):(,n_h)—1/4e—(q—qo)2/2h+ipo(q—qo)/h_ (66) CONTINUOUS TIME
0'F0

A. Longer orbits of maps

Recall that we are working in a coordinate system where the The analysis of the preceding two sections has focused on
fixed point is located at the origing(p)=(0,0), and the fixed-point periodic orbits, but it generalizes in a straightfor-
linearized invariant manifolds are horizontal and verticalward way to longer orbits and to continuous time. We shall
[Eq.(2)]. As the linearizable region becomes large compare®€€ below that the benefits of using universal scar measures
to the phase-space region of intere$t- ), the Husimi instead of simple Gaussians become even greater when
density of Eq.(65) depends on only three dimensionlesslonger orbits are considered.
numbers: an off-resonance parametiéh and the phase-  Consider again a periodic ortiof a map of period Tp,
space Coordinat%/\/g, pO/\/ﬁ with perlOdlc pOIntSXp (p=0, C ,Tp_l), as in Eq(27)
Previously, in Fig. 5, we have seen the Husimi density of-€t — ¢ be the phase accumulated over one full iteration of
¥ for #/A=0 plotted in the square phase-space areh the orl_olt, and\ the co_rrespond!ng stability exponent. The
<dqo/\fi,po/VE<+6. In Fig. 10 we present the analogous short-time autocorrelation function for a Gausslar) cen-
picture for (@) @/A=0.8 and(b) 6/\=2.5. As the energy tered at any of the periodic points is a generalization of Eq.

goes further off resonance, the stdtenoves away from the ):

periodic orbit and its invariant manifolds, and shifts into two o i9UTH
of the quadrf'ints separatfed by the manifoldp*%0 or gp A (t) = 3t modTo).0- (70)
<0, depending on the sign a). For large|6|/\, narrow Coshat/Tp

hyperbolic regions in phase space are accessed, lying further

and further from the periodic orbit itself. F@/A~+1, ¥ The IPR as a function of is then the same as for a period-1

lives near the hyperbolagp~ *# surrounding the periodic orbit [because it is given simply by the sum of the short-time

point. This regime corresponds to a spectral envelop&for return probabilities, Eq(20)], while the short-time spectral

which is centered at energy away from the EBK energy, envelopeS;, has Tp peaks in the quasienergy domain

i.e., at the edge of the single-Gaussian spectral envelopg0,2], of height scaling as ~*, and width scaling as/Tp .

Eigenstates having strong overlaps with are now barely The peak energies are of course those that “quantize” the

scarred at the periodic point itself. If we go further into the orbit: TerE=¢ mod 2, or

regime| §|/A> 1, the spectral envelope 8 is now centered

at an energy which is outside the envelope of the single wave E— ¢+ 2wk

packet. Then, states overlapping such a test dtateéll have KT

stronger than expected intensity on hyperbolic regions sur-

rounding the periodic orbit, but will not be scarred at(alhd ~ We notice that both the maximum scarring strength and the

may even be antiscarredn the orbit itself. IPR can be large only for small, which becomes difficult to
The connection discussed above between an energy shichieve for the longer orbit§s>1 (normally A grows lin-

away from the EBK value and hyperbolic phase-space strucearly with Tp).

tures may be understood very simply by considering the evo- We now proceed to construct the universal test state

lution of off-center Gaussiangg, , of Ed. (66). Such a for such an orbit, having made a choice of quantization en-

Gaussian is not an optimal test state for measuring scarrin§/9y Ex:

because the autocorrelation function decays quite rapidly, es-

pecially forg3+ p2>7 (to be contrasted with’, which lives =N f dte~PITET2ei (Ec+ oITp)p+i o Tp—id,

along theentire hyperbolic region, and thus has much larger P

self-overlaps at short timgsHowever, the phase information

in the autocorrelation function fcgqmpO is quite relevant:

k=0, ... Tp—1. (70)

X |a-Xp ,(rfpe)‘t/TP> . (72)
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Heref, is a stretching factor ang, is a phase, both defined I~ha~(TpInA/R)/IN (76)
by

i 0
Uhlag,o) =€ ?Plax ot ervio). (73 1 envelope, centered at somfg+—|.
P
f, and ¢, take into account the fact that stretching and phase, L .
accumulation along the orbit may both be nonuniform; of/\Part from the logarithmic enhancement which leads to
coursefr =1 andgr_= ¢. The factors , are of order unity more and more deviation from RMT in the—0 limit, we
and thusP not very F>important in the semiclassical limit also notice that only one peak is preseaichoice of guan-
. ; T tization ener having been madeand all quantities now
In A/h—o when the linearizable region is very large; on the O« g de q

: : . depend only on the ratia/Tp, the stability exponenper
pther hand, the phases, are cru_czlal fo_r getting constructive time step This measure of scarring therefore allows us to see
interference. The parametdr, is defined as befor¢Eg.

. ( . ; .strong effects even for longer periodic orbits, as long as the
(25)], using the area of the linearizable region around peri-, g ger p 9

di ot PN p ‘ stretching per time step remains moderate.
0diC pointXo, an IS an ofi-resonance parameter, as ¢ yhe total exponend (and not justh/Tp) is small, we
discussed previously.

The short-ti " lation funcii f the stalie can equivalently use the linearized dynamics to generate our
€ short-ime autocorrefation function of he s universal test statecompare Eqgs(31) and (53)]. Equation
then has the same form as what we found previously for th

special casd =1 [Egs.(55), (56), (63), and(64)], replac- ?53) generalizes easily to
ing
N 2 TpT5ai (Ex+ 0/ Tp)t| 5.

To—=ToTe, A=NTp, 6—60/Tp, S—E, (74 Payn Z € e |ayin(t)), (77)
throughout. Note thak and ¢ are defined as stretching ex- where|a) is a Gaussian wave packet of widthcentered at
ponent and phasger orbit periodrather than per time step, any point along the periodic orbit. Equatiai@2) can be
and likewiseT is the log-time measured in units of the orbit thought of as an averaging of E.7) over the initial width
period. Equationg60) and (61) describing the shape of the & from someo, to ope*. For small\, the averaging proce-
linear spectral envelope, and E¢§8) and (59) for the IPR  dure is unnecessary, all the states being essentially identical,
of the universal test stai¥, undergo the same simple modi- and the simple expression of E(Z7) well describes the
fications and are then applicable to the cas& of1. universal test state for any choice @f

Let us compare these results with ordingingle Gauss-
ian) scarring forTp>1 as well with the scarring of a fixed
point, which we focused on in the preceding two sections. . ) ) o

For generalT=1, the autocorrelation function of a  The entire analysis can be applied also to Hamiltonian
Gaussian wave packéa,) hasO(\ 1) strong recurrences Systems in an essentially unchanged form. Tgtagain be
spacedT steps apart, and thus stretching over a total timghe period of the orbittnow measured in real time units
scale of ordefp\ ~L. In the quasienergy domain, this leads father than in time stepsand let\ and ¢ still be the expo-
to a set ofTp evenly spaced spectral envelopes, each witf'€nt and phase per one iteration of the orbit. Then an optimal

B. Hamiltonian systems

width, height, and IPR scalinor small\) as Gaussian centered anywhere on the orbit and aligned along
the stable and unstable manifol@sith width o along the
Wo~NTp, unstable manifold has a linear autocorrelation function
given by a sum over iterations of the orbit:
ha~\"1, (75) ,
e—uf)n
Ia~)\ 1 Alln(t) zn: W(t nTP)m- (78)

(Te envelopes, centered at af). The very-short-time window functiomw(t) describes the

Although the width scales with the exponesgr time step self-overla_lp of t_he wave packe_t as it intersects ?tself once
due to the presence @f of these envelopes, the maximum €Very period; it is associated with the nonzero widthof
expected scarring strength and the IPR both scale only witf® Wave packet in the direction of the orbit, and has a scale
the total exponenper iteration of the entire orbjtand thus At~ ox/v~a,/\E. (In the last equality, the particle mass
are expected to deviate less and less from perfect ergodicif}@s been assumed to be unity, as it will be throughdidu-
as longer orbits are considered. fier transforming, we obtain a very wide envelojé width

Let us repeat the same analysis for the stitewhich ~AE~#%/E/o,) associated with the energy uncertainty of the
takes properly into account all of the linearized dynamicswave packet itself. Multiplying this are the scarring enve-
around the periodic orbit. The short-time autocorrelationlopes, centered at the quantizing energies, of width
function does not decay until a time of orddrgTp
~TpA"*InA/%. This produces asingle peak centered at Wa~AiNTp, (79)
guasienergye, (or shifted by an off-resonance phagdp).
The width, height, and IPR scale as and separated by

W~ N (TplInAlh), Sy~ hlTp. (80
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(Notice thatE is now a real energy, rather than the Floquetpacket to traverse its width while moving along the orbit.
phase it was for a map, ankb has units of time instead of This criterion is of course independent of the orbit length.
step number, hence the factor #ofin the equations above. Even if the criterion above is not satisfied at low energies,
The normalized peak height and the IPR are therefore givenne nevertheless gets strong scarring in the semiclassical

by limit. For a two-dimensional billiard system, the increase in
scarring strengtifas measured by peak height of the spec-
I~ha~\"h (81)  trum or by the IPR scales with energy as
Again we see that ordinary measures of scarring are typically hy~+EInE, (86)
unable to resolve scarring arising from longer orbits, because
the exponenh for such orbits is generally not small. Zy~EYInE. 87
The universal stat¥ is constructed by analogy with Eq.
(72) as (The power-law IPR scaling arises from the wave-packet
width o, scaling with energy as~E Y4 This is a natural
\If=/\/fTPdTJ dt e 2ITETeQi Bt hOITp) it + 1 i Tp— i, scaling which keeps the uncertainty and the uncertainty in
0 the x momentump, in a fixed ratio relative to the total size
of the accessible phase space. Without this scaling the in-
X|ax o, .of etTe). (82)  crease in IPR with energy would be only logarithmic.
Here is a time parameter parametrizing the orbit . and C. Numerical tests
¢, are, as before, a stretching factor and phase associated ] ) ) )
with short-time evolution fronx, to x,., E, is a quantization We conclude this section with a numerical example of the

energy, andg/\ is again an optional off-resonance energyIocalization enhancement obtainable for longer orbits using

shift parameter. For smaX, this can be written as the universal test-state approach. For this purpose, we choose
' a modified version of the kicked-baker system introduced in

RITRTR (Bt hOIT o) U Sec. Il C. Instead of having the kicks act on the left and
\denwz e " Poettk P | ayin (). (83 right strips of the three-strip system, we have one act now

only on the middle strip, leaving the left and right strips to
The short-time autocorrelation function again has a decayndergo ordinary baker-like dynamics, i.e., horizontal expan-
time scale TpTo~TpA " LnA/% [with no window w(t)  SION and vertical compression. Any periodic orbits contained
presert, leading to asingle spectral envelope centered at entirely in these two side strips thus have locally orthogonal

energy E, (E,+%6/Tp for off-resonance statgsand of stable and unstable manifoldisf the form Eq.(2)], with a
width and height given by stretching exponent and action given simply in terms of the
widths wy andw, of the left and right strips. In particular,

Wy ~AN (TpINA/R), consider the period-2 orbit that jumps from the left strip to
the right strip and back. Its periodic point in the left strip is
hy~(TpInAlR)/IAN. (84 given by gq=wg(l—wy)/(1-wew,), p=(1-w,)/(1

—WgW,). The other periodic point is obtained by interchang-
The IPR is somewhat difficult to talk about in this case be-ing theq andp coordinates. The stretching exponent for one
cause IPR'qlike any other measure of quantum ergodikity full iteration of this orbit isk = |In wgw;|, and the correspond-
can only be measured relative to some already known energdyg phase is given by=wg(1—w,)?%/(1—ww,)%. Thus, a
window which takes into account various conserved quantidesired value for the exponent and phase can be fixed by
ties. In this case, the only plausible window is the spectrakelecting the three baker strip widths, and the kick strength
envelope of the original Gaussian wave packet of widfh  acting on the middle strip is then used to provide ensemble
in the direction of the periodic orbfsee the discussion fol- averaging over the details of the long orlii®nlinear recur-
lowing Eq.(78)]. Then the IPR is given by rences.

We select for our example widthg,=0.40,w,=0.42, as
before, leading to an exponelt=|In 0.168 for our chosen
orbit, and work with the matrix sizbl=800. In Fig. 11, the
smoothed local density of states for a Gaussian wave packet,
Notice that the combination/ VE T is just the exponent per obtained by averaging over several realizations, is repre-
unit length of the orbit. Of course, our result depends on th&ented by the double-peaked solid curve. The theoretical pre-
width o of each Gaussian along the orbit. The enhancemerdiction, given by the linearized dynamics of E(0), is
of the IPR for¥ over the corresponding IPR for the single shown by the dashed curve. The narrow, single-peaked solid
GaussiafEg. (81)] can also be thought of as being given by curve centered at one of the two possible quantization ener-
the usual logarithmic factor times the rati& Tp/o, of the  gies is the similarly smoothed local density of states for the
length of the orbit compared to the wave-packet size. universal statel, constructed once again wit=0.6 and

In any case, we again see that long orbits can be easil§=0, as in Fig. 3. Again, the corresponding dashed curve is
resolved using this improved scarring measure. A sufficienthe theoretical prediction based on the linearized dynamics
condition to get significant enhancement is for the exponenand agrees well with the data. Notice that in this case the
tial stretching to be small on the time scale of the very-shortdifference between Gaussian and universal scarmometers is
time windoww(t), i.e., during the time it takes for the wave more dramatic than in Fig. 3, the reason being

JVET, A
~ In

v N, M (85)
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tures which exist in eigenstates of dynamical systems.

The two major issues of generalization of scar measures
| Improved test state | V\(hich we faced_ aréi) coherencdor lack of it)”in superpo-
! s sitions of localized wave-packet states, afiid summing
! over all the points of periodic orbits whose period is greater
than one iteration of a map. The smooth Hamiltonian version
of this is to coherently add up packets all along the orbit,
/Theory Siin | making phase space tubes which are related to the tubes of

Single gaussian Agam and Fishmafi23]; see alsd12].

Smoothed local density of states
N W e OO N 0 ©

test state /T | The universality mentioned above stems ultimately from
Numétics the use of the linearizable domain near periodic points in the

T y Y 1 construction of scar measures. The scar test states are the
= . - — . . - optimal ones which can be constructed with the linearized
3 2 ! En%rgy £ 2 3 dynamics. In turn, we argued that the linearizable portion of

the dynamics was a reasonable stopping point for the defini-
FIG. 11. Smoothed local densities of states are shown here for ion of scar strength. Going beyond the linearizable dynam-
Gaussian wave packet placed on a period-2 ddduble-peaked jcs is certainly possible and semiclassically viable, but a
solid CUI’VQ, and the universal test staie constructed on the same problem arises in that one begins to approach the construc-
orbit (tall single peak The dashed curves represent theoretical pretign of individual eigenstates, at least in favorable c446%
dictions based on the linearized dynamics near the periodic orbit iy hich is a somewhat disturbing limit. The reason this is dis-
qugstion. The ;ystem i§ a kicked Baker's map wi.th !(ick potentialturbing is that such “test” states for scarring pick (ip the
acting on the middle strifsee Sec. VI & and the periodic orbit has - 40 5| |imit) only one state, which brands the whole eigenstate
atov?" exponent = I 0.164 over the two-step period. One of two as a scar. Moreover, pieces of classical manifolds far from
possible on-resonance energies has been chosen for the teﬁtstateany given periodic orbit will have been incorporated in the
which is again constructed using cutoff constant0.6 (as in the longer time dynamics of such a test state. Indeed it is not at

analogous calculation in Fig. 3 for a period-1 oybithe enhance- . . .
ment here is more dramatic due to the fact that universal scarringII clear that any one periodic orbit should dominate the

strength depends only on the exponent per unit time along the orbi 7thers in SUCh_ a state. These new pe!’iodic orbits would begin
not on the orbit length itself. to play a role in the long time dynamig¢en the order of the

Heisenberg timg so we would not even be speaking of a

. scar of a given periodic orbit. Given all these factors, it
that scarring as measured By depends only on the stretch- geems reasonable to stop at the linearizable zone surrounding

ing rate along the unstable manifold per unit time, not PEyiven periodic orbits.

iteration of the entire orbit. While scarring strength as mea-" \/5ri0us numerical tests made possible by ensemble-
sured by a single wave packet drops off with orbit length,yeraged baker map results supported the measures estab-
scarring strength as measuredByis length-independent as jished here. The enhancements in IPR made possible by our
long the orbit period remains small compared to the 109-5ntimized coherent measures can be motfastors of 1.5 or
time. Orbits of arbitrary length can therefore be stronglys) ¢or reasonablé and short orbits, but much more dramatic
scarred us_ing this measure, provided a correspondingly smafl, longer period orbits, as compared to a single Gaussian
value of? is chosen. wave-packet measure.
Finally, we have given a theoretical basis for the “off

VIl. SUMMARY AND CONCLUDING REMARKS center” scars living on the hyperbolic manifolds negaut

not on a given periodic orbit, and provided them with test

In this paper we began by reviewing the theory and exist I :
ftates sensitive to their presence.

ing measures of scarring. We were then able to establis
considerably refined and arguably universal scarring mea-
sures. The refinement means in practice that much larger
deviations from RMT behavior are predicted using the re- This research was supported by the National Science
fined test states. The test states are not special from tHeoundation under Grant Nos. 66-701-7557-2-30 and
standpoint of random wave functions, but they pick up struc-CHE9610501.
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