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Recovering smooth dynamics from time series with the aid of recurrence plots

Fatihcan M. Atay* and Yiğit Altıntaş
Mathematics Department, Koc¸ University, Istinye 80860, Istanbul, Turkey
~Received 12 August 1998; revised manuscript received 8 January 1999!

A graphical method based on recurrence plots is used in the reconstruction of the phase space from a time
series of measurements. It is demonstrated that if the embedding delay and dimension are correctly chosen, the
recurrence plot of a smooth dynamical system has a particularly simple form. It is shown how to use recurrence
plots to determine the correct embedding parameters so that reliable quantitative information can be drawn
about the system generating the time series. The average line length in the plot is shown to be directly related
to the prediction horizon. Furthermore, it is a numerical characteristic of the embedded series independent of
the threshold used in the plot.@S1063-651X~99!04206-3#

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

The method of delay coordinates is a well-established
widely-used tool to reconstruct the phase-space geometr
a chaotic system using only the observations of a single c
ponent. It forms the basis of many further analyses p
formed on the data, ranging from graphical representation
the calculation of numerical characteristics such as
Lyapunov exponents, correlation integrals, and fractal
mensions@1#. Since there is not a unique way to go about t
reconstruction, guaranteeing the accuracy of the calculat
is not a simple matter, however. Here we use a sim
graphical tool to test how well the reconstructed geome
represents the dynamical characteristics of the system.

The delay-coordinate reconstruction is based on the
that, given a scalar sequencex1 ,x2 , . . . , of measurements
taken from a dynamical system at equally spaced time
stants, the locus of thed-dimensional vectors

vk5~xk ,xk2t , . . . ,xk2(d21)t! ~1!

will give a picture which is equivalent to the actual geome
of the attractor. Indeed, the embedding theorem of Tak
ensures that the procedure will succeed for almost any ch
of the embedding delayt and a sufficiently large embeddin
dimensiond @2,3#. ~Generically, the necessary embeddi
dimension is not more than 2n11, wheren is the dimension
of the attractor.! For a finite data size, however, when
comes to estimating quantitative information from the rec
struction, such as the Lyapunov exponents, different cho
of the embedding parameters can lead to different estim
@4#. The reason is that while the reconstruction is topolo
cally equivalent to the actual attractor, there is not neces
ily a diffeomorphic or isometric equivalence. In other word
the delay coordinates give a continuously deformed pict
of the attractor, possibly distorting the tangent vectors a
the distances in the structure. Several methods have appe
in the literature which address the problem of how to cho
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the parameters for a ‘‘good’’ reconstruction of the pha
space@1#. Our treatment of the problem emphasizes the fa
ful reconstruction of the differential structure and makes u
of the recurrence plots introduced in Ref.@5#.

The recurrence plot is a device displaying how the rec
structed trajectory comes close to itself. It has been use
test for stationarity@5# or chaos in time series@6#, as well as
to extract periodic orbits@7#. The plot is constructed as fol
lows: Let d be a fixed positive number, and define the arr

ai j 5H 1 if ivi2vi 1 j i,d

0 otherwise
, i , j 51,2, . . . , ~2!

where thevk are the vectors obtained after the embedd
~1!, and i•••i denotes the usual Euclidean norm. The qua
tity d is a measure of closeness and is usually expressed
percentage of the diameter of the attractor or the stand
deviation of the time series data. The recurrence plot is
tained by plotting a point on thei-j plane wheneverai j 51.
Notice that our definition~2! is slightly different and some-
what simpler than the one given in Ref.@5#, but the under-
lying idea is the same. The resulting two-dimensional gra
can contain intriguing patterns; however, we argue that m
of these is an artifact of the way the embedding is done,
if the embedding parameters are correctly chosen, all
should see are simple horizontal line segments. Hence,
question of whether the reconstruction actually represents
true dynamics can be directly answered by looking at
recurrence plot.

We use ideas from the theory of smooth dynamical s
tems to deduce the type of patterns the recurrence plot
and cannot contain, and we distinguish good and bad em
dings by their corresponding plots. We test our conclusio
by showing that the embeddings deemed bad by the re
rence plot test perform poorly in the calculation of th
Lyapunov exponents and prediction of the time series.
also show that the average line length in the plot is larg
independent of the choice of the thresholdd, and so can be
used as a numerical value summarizing the visual inform
tion offered by the plot. Finally, we investigate the relatio
ship between the average line length, the largest Lyapu
exponent, and the prediction of the series.
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FIG. 1. Portion of the recurrence plot for the Ro¨ssler data. The parameters are~a! d51, t51, ~b! d52, t51, ~c! d56, t51, and~d!
d56, t58. The value ofd is the same in all three figures.
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II. RECURRENCE PLOTS OF SMOOTH
DYNAMICAL SYSTEMS

We consider time series generated by smooth dynam
systems, and we assume that the time interval between m
surements is sufficiently small to capture the smoothnes
the trajectories. The important property we want to exp
for such systems is continuous~though possibly sensitive!
dependence on initial conditions, of both the trajectories
also the derivatives. We also assume that the quantityd in
Eq. ~2! is chosen sufficiently small so that the recurrence p
displays only local information, although the exact value
d will be of little consequence for our purposes~see also Sec
IV !.

By continuous dependence on initial conditions, if tw
trajectories come close in the phase space they will rem
close for some time interval, and this will be reflected a
horizontal line segment in the recurrence plot. On the ot
hand, a nonhorizontal curve in the plot indicates two traj
tories are close but their tangent vectors point in differ
directions, so that, say, the pointv10 is close tov100, but v11
is close tov99 instead ofv101. Such a situation is in violation
of the continuity of the tangent vectors, and indicates that
phase-space reconstruction does not faithfully reproduce
differential structure. This typically occurs when the embe
ding dimension is too small to prevent the intersection of
trajectories, but can also occur if an incorrect choice of
embedding delay artificially squeezes the trajectories
gether. Although this first aspect has been noted before~e.g.,
Ref. @7#!, the role played by the delay seems largely ov
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looked. We illustrate both situations with the aid of Figs.
and 2.

Figure 1 shows the recurrence plot of the data genera
by thex-coordinate of the familiar Ro¨ssler system

ẋ52y2z,

ẏ5x1ay, ~3!

ż5b1z~x2c!,

with a5b50.1 andc514, for an embedding delayt51 and
for different embedding dimensions. The nonhorizontal p
terns disappear as the embedding dimensiond is increased
from 1 to 6@Fig. 1~a! through 1~c!#. This is as expected sinc
the Rössler attractor has a~fractal! dimension between 2 an
3, and choosing a large enough dimension would unfold
attractor. However, increasing the dimension is not alw
the solution. Consider the periodic signal shown in Fig. 2~a!,
which was studied in Ref.@8#. The recurrence plot of a pe
riodic orbit should consist only of equally spaced horizon
lines, indicating periodic recurrence for all points. For th
signal, however, a typical plot looks similar to Fig. 2~b!,
obtained for the valuesd53 andt51. Although the exact
pattern depends also on the value ofd, changingd does not
remove the nonhorizontal structures in the plot. By incre
ing the embedding dimension up to 10, the authors in R
@8# succeed in removing some, but not all, of the nonho
zontal patterns. On the other hand, by the embedding th
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rem, three dimensions should be sufficient to embed any
riodic orbit ~a one-dimensional closed curve!. Clearly then,
the problem lies not with the choice of the dimension b
with the delayt. Figure 2~c! shows the recurrence plot whe
t is increased to 10, withd53. The recurrence plot can thu
help determine the correct choices for both the embedd
dimension and the embedding delay.

Cleaning a recurrence plot from nonhorizontal pattern
a first step in the determination of the correct embedd
parameters, but usually is not sufficient. A close inspect
of Fig. 1~c! displays two other undesirable features:~1! iso-
lated points, or very short lines and~2! short gaps frequently
interrupting line segments. Shortness here is to be un

FIG. 2. Recurrence plots of the periodic function shown in~a!
for the values~b! t51, and~c! t510. The embedding dimension i
3 for both plots.
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stood in terms of the time scale used in the measureme
and not as a simple count of points. Now such patterns in
plot is an indication of points in phase space coming clo
and then immediately moving away, or starting to mo
away but returning instantly, which imply widely varyin
derivatives at nearby points. However, inside a bounded
tractor of a smooth system the derivatives are also boun
and by choosing a sufficiently smalld it is possible to rule
out the possibility of such behavior as seen in Fig. 1~c!. In
practice these may still show up because of the finite ti
interval between observations and the necessity to work w
a reasonably larged to reveal any patterns in a finite tim
series; nevertheless, they should be rare. For instance
plot in Fig. 1~d! agrees better with our expectations of
smooth dynamical than Fig. 1~c! does. The only difference
between the two plots is in the choice of the embedd
delay. We would expect then that a ‘‘clean’’ recurrence p
such as Fig. 1~d! represents a better reconstruction of t
attractor, and we test the assertion by calculating
Lyapunov exponents and the prediction errors.

III. TESTING THE ASSERTIONS

A. Lyapunov exponents

The notion of a recurrence plot is intimately related to t
calculation of the average local Lyapunov exponents fr
time series: The basic idea in the calculation of the ma
mum exponent, for instance, is to find a pair of spatia
nearby points in the attractor and follow their time evoluti
to measure the rate of divergence@4#, until the points can no
longer be considered close. Hence, short horizontal line
the recurrence plot correspond to large local expone
Clearly, both procedures are dependent on how the em
ding is done~i.e., the choice of the dimension and the dela!,
as well as what the measure of closeness is@i.e., the quantity
d in Eq. ~2!#. This gives a way to check our assertions
follows. We generate a time series from a system wh
equations of motion are known, and construct a recurre
plot. The three parameters used in the plot are then fed t
algorithm based on Ref.@4# to calculate the largest Lyapuno
exponent from the time series, and the result is compare
the exponent calculated directly from the equations of m
tion. The agreement between the two calculated exponen
an indication that the corresponding embedding parame
are correctly chosen. To ensure that the errors are not du
the shortness of the time series, data consisting of 20 00
more points are used in the calculations.

The comparison of the exponent is done for several qu
tatively different systems. In all cases it is found that wh
the recurrence plot is ‘‘clean,’’ in the sense of containi
only ~uninterrupted! horizontal line segments, the corre
sponding embedding parameters allow very accurate ca
lation of the exponents. For instance, using the paramete
Fig. 1~c! the calculated exponent is about 6 times as large
the true exponent, leading to a huge relative error, wh
those of Fig. 1~d! result in a relative error of less than 1%
The fact that Fig. 1~c! results in an overestimation of th
exponent gives further support to our discussion about
dynamics reflected in the plot—the single points and sho
segments in the figure falsely imply a high rate of local se
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ration. Similar results were obtained with the Lorenz syst
~data not shown!.

We also tested conservative systems, such as the
modelling two nonlinearly coupled anharmonic oscillato
with the Hamiltonian

H5
1

2
~px

21py
2!1

1

2
x220.05x310.00140625x410.72y2

20.0864y310.002916y410.1x2y2, ~4!

wherex,y are the position coordinates andpx , py are the
momenta. The exponent calculation for this system for d
ferent energy levels was discussed in Ref.@9#. Typical recur-
rence plots at a particular energy level are shown in Fig
The parameters used in Fig. 3~a! result in a relative error of
160% in the exponent calculation, while the cleaner plot
Fig. 3~b! gives 4% error. For all the energy levels consider
in Ref. @9#, it has been possible to estimate the exponent w
1–4 % error using the parameters obtained from a clean
currence plot.

B. Prediction errors

The phase-space neighbors can be used to predict th
ture evolution of a given point in the embedded time ser
@10#. For a chaotic system the prediction is necessaril
short-term one, and the prediction horizon is mainly det
mined by the Lyapunov exponents, although it also depe

FIG. 3. Recurrence plots for the Hamiltonian system given
Eq. ~4! for ~a! t51 and~b! t56. The embedding dimension is
for both plots.
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on the way the embedding is done. To make the connec
with the recurrence plots, as a predictor for a given point
use points in itsd neighborhood which are temporally in th
past. Iterates of this neighbor are compared to the iterate
the given point, and the difference is divided by the stand
deviation of the data, giving the normalized prediction err
Prediction is done for each point in the second half of
time series. In case a neighborhood contains more than
point, their average is used; in the case when it conta
none, no prediction is made. Plotting the average predic
error against the prediction time shows how the error gro
at each iterate as a result of chaos.

Figure 4 shows plots of the logarithm of the predictio
error for the Ro¨ssler system and the Hamiltonian syste
given by Eq.~4!, for various choices of the embedding dela
It is seen that the small delays of 1 and 2 initially give
smaller prediction error, but the rate of increase of error
much faster. Since the slopes of the lines are directly rela
to the largest Lyapunov exponent@10#, the implication is that
the use of these delay values would result in a large expo
estimate, confirming our earlier observation using recurre
plots. As the delay is increased, the error lines converge n
a delay of 8 for the Ro¨ssler and 6 for the Hamiltonian sys
tem.

The ability to predict further into the future is an indica
tion of the quality of the embedding, since it reflects t
deterministic structure in the data. This information can a
be obtained visually from the recurrence plot. At the end

y

FIG. 4. Prediction errors for the Ro¨ssler~a! and the Hamiltonian
~b! systems for various choices of the embedding delay.
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each horizontal line, a large prediction error is introduc
Consequently, long uninterrupted lines signal good pred
tion performance, whereas single points contribute largel
the prediction error. It is therefore not surprising that an e
bedding which results in a clean plot with long line segme
will also lead to better forecasting. This also suggests to
the average line length as a numerical measure of the qu
of embedding, which we discuss in the next section.

A word of caution may be in order: We have deliberate
chosen examples of bad embeddings to illustrate that la
errors are possible if the embedding is not done properly
particular, our conclusion isnot that long embedding delay
are necessarily better than shorter ones, butif an embedding
is unsatisfactory, because of either too smallor too large a
delay, then it shows in the recurrence plot.

By the results of the Lyapunov exponent and predict
error calculations, we conclude that a direct investigation
the recurrence plot can reliably tell whether the embedd
parameters are correctly chosen. While it may not always
possible to obtain a completely clean plot due to the fin
time interval between observations, the recurrence plot
still tell if an embedding is better than the others, within t
limitations of the available data.

IV. LINE LENGTHS IN THE RECURRENCE PLOT

To quantify the visual information offered by the recu
rence plot, the average lengthL of the horizontal lines can be
useful. The foregoing discussion suggests that this quan
would be directly related to the prediction horizon and to
inverse of the largest Lyapunov exponentl21. To facilitate
comparison, we define a characteristic prediction timeTe as
the time it takes for the initial error to grow by a factor ofe.
Figure 5 summarizes the relation betweenL, l21, and Te
for the Rössler system for various choices of the embedd
delay. The observation that the three curves have t
maxima at slightly different locations can be attributed to
errors associated with each method in dealing with a fin
time series. However, all three methods indicate that 8
nearby delay values would give an acceptable embedd

FIG. 5. Comparison of the inverse of the largest Lyapunov
ponentl21 ~as calculated from the time series!, characteristic pre-
diction timeTe , and the average line lengthL in the recurrence plot
for the Rössler system. The dotted horizontal line shows the rec
rocal of the true value of the largest exponent.
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while a value less than 3 or 4 would not.
It might appear that the thresholdd used in the recurrence

plot would affect the line lengths, so one might object to t
use of the average line lengthL as an invariant of the dy-
namics. It turns out that this is not the case. The two effe
of increasingd so that more points appear on the plot are,
the one hand, making existing lines longer, while on t
other hand creating new lines which are necessarily shor
the continuity of the process. These two counterbalance e
other to render the average line length constant. Figur
illustrates this for the Ro¨ssler system: Asd is increased the
number of horizontal lines in the plot greatly increases, wh
the average line length is virtually unchanged. Therefore,
selection of the thresholdd is not critical for the conclusions
derived from the recurrence plot. Of course, ifd is chosen
too large, then the plot will contain too many points to d
cern any patterns; while if it is chosen too small, the plot w
contain too few lines to be statistically significant. As su
gested by Fig. 6, a value ofd in the range of 5–30 % of the
standard deviation of data seems safe for many practical
sizes.

With the existence of the long segments and the dis
pearance of the shorter ones, the average length of the
segments increases towards a good embedding. Being i
pendent of the thresholdd, the average line length can thu
serve as a numerical measure in determining the quality
the embedding.

V. CONCLUSION

In quantitative studies of time series using reconstruc
phase-space it is often crucial that the differential structur
accurately represented. For this purpose it is important
the parameters used in the reconstruction are properly
sen. Among these parameters, the determination of the
bedding dimension usually does not present much difficu
In fact, increasing the dimension beyond the sufficient qu
tity 2n11 does not change the reconstructed space m
The choice of the embedding delay, on the other hand, w
not changing the topology, can have a profound effect on

-

-

FIG. 6. As the thresholdd is increased, the number of lines
(3) in the recurrence plot greatly increases, but the average
length (s) is virtually constant. A 20 000-point time series from
the Rössler system is used in the calculations.
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differential structure. The recurrence plots can be used
display whether the phase-space behavior of the embe
time series is consistent with the smoothness of the ac
system. The effects of the incorrect choices of the embedd
parameters can be seen visually as deviations from a sim
structure consisting of horizontal lines. Moreover, the av
age line length can serve as a numerical guide for compa
S.

aw
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g

different embeddings, or for quantifying chaos in gener
The results turn out to be insensitive to the choice of
thresholdd, which is the only extra parameter used in t
plot. Once properly constructed, graphical tools such as
recurrence plot can be invaluable for gaining more insi
into the dynamics of the system, especially since visuali
tion becomes difficult beyond three dimensions.
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