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Recovering smooth dynamics from time series with the aid of recurrence plots
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A graphical method based on recurrence plots is used in the reconstruction of the phase space from a time
series of measurements. It is demonstrated that if the embedding delay and dimension are correctly chosen, the
recurrence plot of a smooth dynamical system has a particularly simple form. It is shown how to use recurrence
plots to determine the correct embedding parameters so that reliable quantitative information can be drawn
about the system generating the time series. The average line length in the plot is shown to be directly related
to the prediction horizon. Furthermore, it is a numerical characteristic of the embedded series independent of
the threshold used in the pldiS1063-651X%99)04206-3

PACS numbd(s): 05.45—a, 05.40-a

I. INTRODUCTION the parameters for a “good” reconstruction of the phase
spaceg 1]. Our treatment of the problem emphasizes the faith-
The method of delay coordinates is a well-established anéul reconstruction of the differential structure and makes use
widely-used tool to reconstruct the phase-space geometry off the recurrence plots introduced in RES).
a chaotic system using only the observations of a single com- The recurrence plot is a device displaying how the recon-
ponent. It forms the basis of many further analyses perstructed trajectory comes close to itself. It has been used to
formed on the data, ranging from graphical representations ttest for stationarity5] or chaos in time serid$], as well as
the calculation of numerical characteristics such as théo extract periodic orbit§7]. The plot is constructed as fol-
Lyapunov exponents, correlation integrals, and fractal dilows: Let$ be a fixed positive number, and define the array
mensiong1]. Since there is not a unique way to go about the

reconstruction, guaranteeing the accuracy of the calculations 1 if |lvi—visil<é
is not a simple matter, however. Here we use a simple aj;= ! , Li=1,2, ..., 2
graphical tool to test how well the reconstructed geometry 0 otherwise

represents the dynamical characteristics of the system.
The delay-coordinate reconstruction is based on the idewhere thev, are the vectors obtained after the embedding

that, given a scalar sequengg,X,, ..., of measurements (1), and|---| denotes the usual Euclidean norm. The quan-
taken from a dynamical system at equally spaced time intity & is a measure of closeness and is usually expressed as a
stants, the locus of theé-dimensional vectors percentage of the diameter of the attractor or the standard
deviation of the time series data. The recurrence plot is ob-
V= (X Xk— 75+« + Xk—(d—1)7) (1) tained by plotting a point on thiej plane whenevea;;=1.

Notice that our definition(2) is slightly different and some-
will give a picture which is equivalent to the actual geometrywhat simpler than the one given in R¢&], but the under-
of the attractor. Indeed, the embedding theorem of Takenlying idea is the same. The resulting two-dimensional graph
ensures that the procedure will succeed for almost any choiagan contain intriguing patterns; however, we argue that much
of the embedding delay and a sufficiently large embedding of these is an artifact of the way the embedding is done, and
dimensiond [2,3]. (Generically, the necessary embeddingif the embedding parameters are correctly chosen, all one
dimension is not more tham2+- 1, wheren is the dimension  should see are simple horizontal line segments. Hence, the
of the attractop. For a finite data size, however, when it question of whether the reconstruction actually represents the
comes to estimating quantitative information from the recontrue dynamics can be directly answered by looking at the
struction, such as the Lyapunov exponents, different choicesecurrence plot.
of the embedding parameters can lead to different estimates We use ideas from the theory of smooth dynamical sys-
[4]. The reason is that while the reconstruction is topologitems to deduce the type of patterns the recurrence plot can
cally equivalent to the actual attractor, there is not necessaand cannot contain, and we distinguish good and bad embed-
ily a diffeomorphic or isometric equivalence. In other words, dings by their corresponding plots. We test our conclusions
the delay coordinates give a continuously deformed picturdy showing that the embeddings deemed bad by the recur-
of the attractor, possibly distorting the tangent vectors andence plot test perform poorly in the calculation of the
the distances in the structure. Several methods have appeareghpunov exponents and prediction of the time series. We
in the literature which address the problem of how to choosalso show that the average line length in the plot is largely

independent of the choice of the threshdldand so can be

used as a numerical value summarizing the visual informa-
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FIG. 1. Portion of the recurrence plot for the $3ter data. The parameters éapd=1, 7=1,(b) d=2, 7=1,(c) d=6, =1, and(d)
d=6, 7=8. The value ofé is the same in all three figures.

Il. RECURRENCE PLOTS OF SMOOTH looked. We illustrate both situations with the aid of Figs. 1
DYNAMICAL SYSTEMS and 2.
Figure 1 shows the recurrence plot of the data generated

We consider time series generated by smooth dynamic%y the x-coordinate of the familiar Besler system

systems, and we assume that the time interval between mea*
surements is sufficiently small to capture the smoothness of

the trajectories. The important property we want to exploit X==y—z

for such systems is continuoythough possibly sensitiye )

dependence on initial conditions, of both the trajectories and y=x+ay, (€)
also the derivatives. We also assume that the quastity

Eq. (2) is chosen sufficiently small so that the recurrence plot z=b+2z(x—c),

displays only local information, although the exact value of
S will be of little consequence for our purposege also Sec. with a=b=0.1 andc= 14, for an embedding delay=1 and
V). for different embedding dimensions. The nonhorizontal pat-
By continuous dependence on initial conditions, if two terns disappear as the embedding dimensias increased
trajectories come close in the phase space they will remaifrom 1 to 6[Fig. 1(a) through Xc)]. This is as expected since
close for some time interval, and this will be reflected as ahe Rssler attractor has @ractal) dimension between 2 and
horizontal line segment in the recurrence plot. On the otheB, and choosing a large enough dimension would unfold the
hand, a nonhorizontal curve in the plot indicates two trajecattractor. However, increasing the dimension is not always
tories are close but their tangent vectors point in differenthe solution. Consider the periodic signal shown in Fig,2
directions, so that, say, the pow{, is close tov,qq, butv,;  which was studied in Ref8]. The recurrence plot of a pe-
is close tovgg instead ofv,g;. Such a situation is in violation riodic orbit should consist only of equally spaced horizontal
of the continuity of the tangent vectors, and indicates that théines, indicating periodic recurrence for all points. For this
phase-space reconstruction does not faithfully reproduce th&ignal, however, a typical plot looks similar to Fig(b?
differential structure. This typically occurs when the embed-obtained for the valued=3 and7=1. Although the exact
ding dimension is too small to prevent the intersection of thepattern depends also on the valuespfthangings does not
trajectories, but can also occur if an incorrect choice of theemove the nonhorizontal structures in the plot. By increas-
embedding delay artificially squeezes the trajectories toing the embedding dimension up to 10, the authors in Ref.
gether. Although this first aspect has been noted bdétae, [8] succeed in removing some, but not all, of the nonhori-
Ref. [7]), the role played by the delay seems largely over-zontal patterns. On the other hand, by the embedding theo-
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(a) 7000 stood in terms of the time scale used in the measurements,
6000 - ﬂ n and not as a simple count of points. Now such patterns in the
plot is an indication of points in phase space coming close
5000 — and then immediately moving away, or starting to move
4000 away but returning instantly, which imply widely varying
1 3000 - derivatives at nearby points. However, inside a bounded at-

tractor of a smooth system the derivatives are also bounded,
2000 — and by choosing a sufficiently smafl it is possible to rule
out the possibility of such behavior as seen in Figg).1In

1000 4 practice these may still show up because of the finite time
0 I T T interval between observations and the necessity to work with
0 50 100 150 200 a reasonably largé to reveal any patterns in a finite time
t (sec) series; nevertheless, they should be rare. For instance, the
plot in Fig. 1(d) agrees better with our expectations of a
smooth dynamical than Fig.(d does. The only difference
(b) 400 between the two plots is in the choice of the embedding
350 delay. We would expect then that a “clean’” recurrence plot
such as Fig. @) represents a better reconstruction of the
300 attractor, and we test the assertion by calculating the
250 Lyapunov exponents and the prediction errors.
" 200
150 lll. TESTING THE ASSERTIONS
100 A. Lyapunov exponents
50 +AT—A—A—2 The notion of a recurrence plot is intimately related to the

50 100 150 200 250 300 350 400 calculation of the average local Lyapunov exponents from
i time series: The basic idea in the calculation of the maxi-

mum exponent, for instance, is to find a pair of spatially

nearby points in the attractor and follow their time evolution

(c) 400 to measure the rate of divergeried, until the points can no
350 longer be considered close. Hence, short horizontal lines in
the recurrence plot correspond to large local exponents.
300 Clearly, both procedures are dependent on how the embed-
250 - ding is dong(i.e., the choice of the dimension and the dglay
—_ as well as what the measure of closenegsés, the quantity
200 é in Eq. (2)]. This gives a way to check our assertions as
150 - follows. We generate a time series from a system whose
equations of motion are known, and construct a recurrence
100 plot. The three parameters used in the plot are then fed to an
50 — T algorithm based on Reff4] to calculate the largest Lyapunov

exponent from the time series, and the result is compared to
the exponent calculated directly from the equations of mo-
tion. The agreement between the two calculated exponents is
FIG. 2. Recurrence plots of the periodic function showr{adn  an indication that the corresponding embedding parameters
for the valuegb) =1, and(c) 7=10. The embedding dimension is are correctly chosen. To ensure that the errors are not due to
3 for both plots. the shortness of the time series, data consisting of 20 000 or
more points are used in the calculations.
rem, three dimensions should be sufficient to embed any pe- The comparison of the exponent is done for several quali-
riodic orbit (a one-dimensional closed cupveClearly then, tatively different systems. In all cases it is found that when
the problem lies not with the choice of the dimension butthe recurrence plot is “clean,” in the sense of containing
with the delayr. Figure Zc) shows the recurrence plot when only (uninterruptedl horizontal line segments, the corre-
T is increased to 10, witd= 3. The recurrence plot can thus sponding embedding parameters allow very accurate calcu-
help determine the correct choices for both the embeddintation of the exponents. For instance, using the parameters of
dimension and the embedding delay. Fig. 1(c) the calculated exponent is about 6 times as large as
Cleaning a recurrence plot from nonhorizontal patterns igshe true exponent, leading to a huge relative error, while
a first step in the determination of the correct embeddinghose of Fig. 1d) result in a relative error of less than 1%.
parameters, but usually is not sufficient. A close inspectiorThe fact that Fig. (c) results in an overestimation of the
of Fig. 1(c) displays two other undesirable featur€b: iso-  exponent gives further support to our discussion about the
lated points, or very short lines ari@) short gaps frequently dynamics reflected in the plot—the single points and shorter
interrupting line segments. Shortness here is to be undesegments in the figure falsely imply a high rate of local sepa-

50 100 150 200 250 300 350 400
i
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FIG. 3. Recurrence plots for the Hamiltonian system given by Prediction time (sec)
Eq. (4) for (a) =1 and(b) 7=6. The embedding dimension is 8
for both plots.

FIG. 4. Prediction errors for the Reler(a) and the Hamiltonian
(b) systems for various choices of the embedding delay.

ration. Similar results were obtained with the Lorenz syster‘rbn the way the embedding is done. To make the connection
(da\;\ellenztlssohot(\g?ted conservative svstems. such as the or\{\éith the recurrence plots, as a predictor for a given point we
modelling two nonlinearly coupledy anhar’monic oscillators 22 points in itsy ngighporhood which are temporally in the
with the Hamiltonian past. Iterates of this neighbor are compared to the iterates of
the given point, and the difference is divided by the standard
1 1 deviation of the data, giving the normalized prediction error.
H= E(p§+ py)+ Ex2— 0.05¢3+0.0014062%*+ 0.7y Prediction is done for each point in the second half of the
time series. In case a neighborhood contains more than one
—0.0864/3+0.002916* + 0.1x?y?, (4)  point, their average is used; in the case when it contains
none, no prediction is made. Plotting the average prediction

wherex,y are the position coordinates apg, p, are the error against the prediction time shows how the error grows

momenta. The exponent calculation for this system for dif-2t €ach iterate as a result of chaos. o

ferent energy levels was discussed in R8f. Typical recur- Figure 4 shows plots of the logarithm of the prediction
rence plots at a particular energy level are shown in Fig. 38/or for the Rssler system and the Hamiltonian system
The parameters used in FiglaBresult in a relative error of 9iven by Eq.(4), for various choices of the embedding delay.
160% in the exponent calculation, while the cleaner plot inlt iS seen that the small delays of 1 and 2 initially give a
Fig. 3(b) gives 4% error. For all the energy levels consideregsmaller prediction error, but the rate of increase of error is

in Ref.[9], it has been possible to estimate the exponent witdnuch faster. Since the slopes of the Iings are d_irec.tly related
1-4% error using the parameters obtained from a clean rd® the largest Lyapunov exponeji], the implication is that
currence plot. the use of these delay values would result in a large exponent

estimate, confirming our earlier observation using recurrence
- plots. As the delay is increased, the error lines converge near
B. Prediction errors a delay of 8 for the Rssler and 6 for the Hamiltonian sys-
The phase-space neighbors can be used to predict the ftem.
ture evolution of a given point in the embedded time series The ability to predict further into the future is an indica-
[10]. For a chaotic system the prediction is necessarily dion of the quality of the embedding, since it reflects the
short-term one, and the prediction horizon is mainly deterdeterministic structure in the data. This information can also
mined by the Lyapunov exponents, although it also dependke obtained visually from the recurrence plot. At the end of
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FIG. 5. Comparison of the inverse of the largest Lyapunov ex- FIG. 6. As the threshold is increased, the number of lines
ponent\ " (as calculated from the time serjesharacteristic pre- () in the recurrence plot greatly increases, but the average line

diction timeT,, and the average line lengthin the recurrence plot  |ength (O) is virtually constant. A 20 000-point time series from
for the Ressler system. The dotted horizontal line shows the recipthe Rwsler system is used in the calculations.
rocal of the true value of the largest exponent.

while a value less than 3 or 4 would not.

each horizontal line, a large prediction error is introduced. |; might appear that the threshoftused in the recurrence
Consequently, long uninterrupted lines signal good predic ot would affect the line lengths, so one might object to the

tion performance, whereas single points contribute largely tq,se of the average line lengthas an invariant of the dy-
the prediction error. It is therefore not surprising that an eMyamics. It turns out that this is not the case. The two effects
bedding which results in a clean plot with long line segments,¢ i creasings so that more points appear on the plot are, on
will also lead to better forecasting. This also suggests to USg o one hand making existing lines longer, while on the
the average line length as a numerical measure of the qualiyier hand creating new lines which are necessarily short by

of embeddirf1g, WhiCh we disc_uss in the ner>1<t sectic;.n. | the continuity of the process. These two counterbalance each
A word of caution may be in order: We have de Iberateyother to render the average line length constant. Figure 6

chosen examples of bad embeddings to illustrate that largg, .syrates this for the Resler system: As is increased the
errors are possible if the embeddmg IS not dong properly. Iy mber of horizontal lines in the plot greatly increases, while
particular, our conclusion isot that long e-mbeddmg de!ays the average line length is virtually unchanged. Therefore, the
are necgssanly better than shorter onesiban embedding selection of the threshold is not critical for the conclusions

s unsatisfactory, because of either too snoalkoo large a derived from the recurrence plot. Of course difis chosen

delsy,t';]hen It SI?OW]? tlk? thLe recurrence plot. t and dicti too large, then the plot will contain too many points to dis-
y the results of the Lyapunov €xponent and predicion.q, ., any patterns; while if it is chosen too small, the plot will

;ahrror calculatlonsi, :ve concl!ug:e tthflilt ahd':ﬁCt Rvesugsugg_o ontain too few lines to be statistically significant. As sug-
€ recurrence piot can refiably tefl whether the embedding, o ey by Fig. 6, a value @ in the range of 5-30 % of the

parameters are correctly chosen. While it may not always b tandard deviation of data seems safe for many practical data

possible to obtain a completely clean plot due to the finiteSizes

time int_erval betweef‘ ot_)servations, the recurrence p_Iot Can \with the existence of the long segments and the disap-
S.t'". teI_I if an embeddllng is better than the others, within thepearance of the shorter ones, the average length of the line
limitations of the available data. segments increases towards a good embedding. Being inde-
pendent of the threshold, the average line length can thus
serve as a numerical measure in determining the quality of

To quantify the visual information offered by the recur- the embedding.
rence plot, the average lendthof the horizontal lines can be
useful. The foregoing discussion suggests that this quantity
would be directly related to the prediction horizon and to the
inverse of the largest Lyapunov exponant!. To facilitate In quantitative studies of time series using reconstructed
comparison, we define a characteristic prediction tifiges  phase-space it is often crucial that the differential structure is
the time it takes for the initial error to grow by a factoref accurately represented. For this purpose it is important that
Figure 5 summarizes the relation betwden A%, andT,  the parameters used in the reconstruction are properly cho-
for the Rassler system for various choices of the embeddingsen. Among these parameters, the determination of the em-
delay. The observation that the three curves have theibedding dimension usually does not present much difficulty.
maxima at slightly different locations can be attributed to theln fact, increasing the dimension beyond the sufficient quan-
errors associated with each method in dealing with a finitdity 2n+1 does not change the reconstructed space much.
time series. However, all three methods indicate that 8 offhe choice of the embedding delay, on the other hand, while
nearby delay values would give an acceptable embeddingiot changing the topology, can have a profound effect on the

IV. LINE LENGTHS IN THE RECURRENCE PLOT

V. CONCLUSION
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differential structure. The recurrence plots can be used tdifferent embeddings, or for quantifying chaos in general.

display whether the phase-space behavior of the embeddddhe results turn out to be insensitive to the choice of the
time series is consistent with the smoothness of the actuaghresholds, which is the only extra parameter used in the

system. The effects of the incorrect choices of the embeddinglot. Once properly constructed, graphical tools such as the
parameters can be seen visually as deviations from a simphlecurrence plot can be invaluable for gaining more insight
structure consisting of horizontal lines. Moreover, the averinto the dynamics of the system, especially since visualiza-
age line length can serve as a numerical guide for comparingion becomes difficult beyond three dimensions.
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