PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Wavelet-based fractal analysis of airborne pollen
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The most abundant biological particles in the atmosphere are pollen grains and spores. Self-protection of a
pollen allergy is possible through information about future pollen contents in the air. In spite of the importance
of airborne pollen concentration forecasting, it has not been possible to predict the pollen concentrations with
great accuracy, and about 25% of daily pollen forecasts result in failures. Previous analyses of the dynamic
characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional
chaotic map. We apply a wavelet transform to study the multifractal characteristics of an airborne pollen time
series. The information and the correlation dimensions correspond to a chaotic system showing a loss of
information with time evolution[S1063-651X99)00606-9

PACS numbdis): 05.45~-a, 87.10+e

[. INTRODUCTION To continue with the characterization of airborne pollen
concentrations, the next step would be to characterize them

A pollen allergy is a common disease causing hay fever iras a multifractal. A very efficient method to obtain they)
5-10 % of the population. Although not a life threateningsingularity spectrum of a pollen time series relies on the use
disease, the symptoms can be very troublesome; furthermoref @ mathematical tool introduced in the early 1980’s in sig-
the costs to the social sector due to pollen related diseas&@! analysis; thevavelet transformThe wavelet transform
are high. Self-protection of hay fever patients is possibldas been proved very efficient to detect singularities and to
through information about future pollen contents in the airProve that fractals are indeed singular functions. Muzy,
[1]. Bacry, and Arneod§12,13 developed thevavelet transform

Models to forecast pollen concentration in the air are prinfnodulus maxim&WTMM) method as a technique to study
cipally based on pollen and atmospheric weather interacfractal objects. In this method the wavelet is used as an os-
tions. Several statistical techniquis-4] have been used to Cillating variant of the “square” function of a box. The
predict future atmospheric pollen concentrations fromWTMM method was succesfully applied to study fractal
weather conditions of the day and recent previous days. IRroperties of diverse systems such as DNA nucleotide se-
spite of these attempts, it has not been possible to predict tfiiences 14,15, Modane turbulent velocity signall2,16],
pollen concentrations with great accuracy, and about 25% cdnd a cool flame experimefit7]. We apply the WTMM
the daily pollen forecasts have resulted in failufdg A method to obtain the generalized fractal dimensibrsas-
reason for these failures could be that the methods used #Pciated with the pollen time series.
airborne pollen forecasting are based on standard linear sta-
tistical techniques WhiC.h are not suitablga when the phenom- Il. EXPERIMENTAL SETUP
enon to be forecasted is esentially nonlinear.

A previous analysis of the dynamic characteristics of a The material used in this work was from our chaos study
time series of atmospheric pollen was developed in fdf.  of pollen seried5]. Data of airborne pollen concentration
through the study of the correlation dimensip§7]. The  were obtained with an automatic and volumetric Burkard
dimension found was of a low and noninteger val[&g, pollen and spore trap, situated at the roof of the Facultad de
which indicates that the system may be described by a norsiencias Exactas y Naturales of our University, 12 m above
linear function of just a few variables relating the nearestground level. The area surrounding the sample is typical of
pollen concentrations of the time series. The fact that théMar del Plata. The great distance from the sampling site to
correlation dimension found was fractal predicts that thisthe emission sources makes the particular emission spectra
function, also called a map in nonlinear dynamics, can disunimportant.
play chaotic behavior under certain circumstances. The exis- Ten liters of air per minute were sucked through a 14
tence of a low dimensional map suggests possibilities forx 2-mn¥ orifice, always orientated against the wind flow.
short-term predictioi8] through the use of some nonlinear The sucking rate is checked weekly. Behind the slit, a drum
model. Artificial neural networks have been widely used torotates at a speed of 2 mm per hour. The particles are col-
predict future values of chaotic time series identifying thelected on a cellophane tapg®elinex), 19 mm wide, just
nonlinear model by extracting knowledge from the d&t  below the orifice. The sticky collecting surface comprises of
Very good pollen concentration forecasts were obtained usnine parts vaseline, and one part paraffin in toluene. The
ing neural networkg10] and, in a previous work, the hy- exposed tape is removed from the drum, cut into pieces of 48
pothesis that random fluctuations appearing in the polleimm, corresponding to 24-h intervals, then embedded into a
time series are produced by Gaussian noise was rejectelution of polivinylalcohol(Gelvato), water, and glycerol,
[11]. and covered with a cover glass. Slides were studied as 12
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~ FIG. 1. Two years of an airborne pollen concentration time se-  F|G. 2. Distribution function associated with a pollen concen-

ries. The time step is 2 h. The units of pollen concentration argration time series. The WTMM method was applied to this func-

pollen grains. tion. The units of the distribution function are pollen grains times
hours.

transects per day. The pollen was counted at a magnification

of X400 for the first year cycléAugust 1987-198Band at  The capacity or box dimension of the support of the distri-

%200 for the secondAugust 1988-1989 and correspond- pution is given by Dy=f(a(0))=—7(0). D;=f(a(1))

ing to 13.5 and 27 min of sampling every 2 h, respectively.= 4(1) corresponds to the scaling behavior of the informa-

The method of counting pollen follows that of K#a and tjon, and is called thénformation dimensionFor g=2, D,

Penttinen[18]. Hourly counts were stored in a database fileang theq-point correlation integralsare related. As we will

for further analysis. Statistics of hourly counts may be seemhow in Sec. IV, the wavelet transform is specially suited to
in Tables 1 and 2 of Ref5]. The concentration values cor- gnalyze a time series as a multifractal.

respond to total pollen grains. The main species found were
Cupressus, Gramineae, Eucalyptus, Pinace, Chenopodiineae,
Plantago, Cyperaceae, Betula, Cruciferae, compositae Tueul-

florae, Ambrosia, Ulmus, Umbelliferae, Platanus, and Fraxi- The wavelet transformwT) [20,2] of a signals(t) con-

IV. WAVELET TRANSFORM

nus. sists of decomposing it into frequency and time coefficients,
asociated to the wavelets. The analyzing waveletby
Ill. MULTIFRACTAL FORMALISM means of translations and dilations, generates the so-called
. i . ] ) family of wavelets.
The aim of this formalism is to determinate thx) sin- The wavelet transform turns the sigrsét) into a function

gularity spectrum of a measuge . It associates the Hauss- T,[sl(a,b):
dorff dimension of each point with the singularity exponent
a, which gives us an idea of the strength of the singularity, 1 t—b
Tw[s](a,b)=—J ¢*(—) s(t)dt, (4)
Nu(e)~e (), (D 2 2

. .
whereN,_ is the number of boxes needed to cover the mea\-Nhere‘/’ is the complex conjugate of, a the frequency

sue, ank i the sie o eac bt e e o Paemeter ion
A partition functionZ can be defined from this spectrum pply
(it is the same model as the thermodynamic)one

N(e) f P(t)dt=0, (5)

Z(q,6)=2, pi(e)~e@ for -0, (2 _
i=1 and to be orthogonal to lower-order polynomials,

where7(q) is a spectrum which arouses by Legendre trans-
forming thef(«) singularity spectrum. f t"y(t)dt=0, O=m=n, (6)
The spectrum ofjeneralized fractal dimensionsyDs ob-

tained from the spectrum(q) where m is the order of the polynomial. In other words,

lower- order polynomial behavior is eliminated, and we can
_T (@) 3) detect and characterize singularities even if they are masked
9 (qg—-1)° by a smooth behavior.
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FIG. 3. Wavelet transform data of pollen time series distributianscalea=1, (b) scalea= % and(c) scalea= 6%1. The units are the
same as the distribution function, pollen grains times hours.

The WT provides a useful tool in the detection of self- |T¢[s](a,b,(a))|~a“(b,(a)) for a—0, (9)
similarity or self-affinity in temporal series. For a valbén
the domain of the signal, the modulus of the transform iswhereb,(a) is the position at the scale of the maximum
maximized when the frequeneyis of the same order of the belonging to the the line&.

characteristic frequency of the signg(t) in the neighbor- The wavelet transform modulus maxima method consists
hood ofb; this last one will have a local singularity exponent of an analysis of the scaling behavior of some partition func-
a(b)e]n,n+1]. tions Z(q,a) that can be defined as
This means that, arourtg
Is(t) = P(t)|~|t—b[2®, 7) 2(q,2)=2 |T,[s]@ b)), (10)
whereP,(t) is ann-order polynomial, and and will scale as™® [12,13. This partition function works
. like the previously defined partition function for singular
T,(a,b)~a*®), (8)  measures. Fog>0 the most pronounced modulus maxima

will prevail, and, on the other hand, fgr<O the lower ones
provided the firsm+1 moments are zero. If we havg™ il survive. The most pronounced modulus take place when
=d(N)(eX2/2)/de, the firstN moments are vanishing. very deep singularities are detected, while the others corre-
The wavelet modulus functiofir ,[s](a,t)| will have a  spond to smoother singularities. We can obtaiy) [Eq.
local maximum around the points where the signal is singu{2)] and f(«) andD, spectra, as explained previously. The
lar. These local maxima points make a geometric placshape off(a) is a hump that has a maximum value. The
called modulus maxima ling€. generalized fractal dimensioriy, are meaningful for mea-
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) ) FIG. 5. f(a) spectrum of a pollen time series2<q<4.
FIG. 4. 7(q) spectrum of a pollen time series.

) fied zone, whereas higher values exhibit weaker singularities
sures only. They do not have any meaning for general funCynii p | j.e., the weakest singularity corresponds to the
tions. The pollen time series is a singular measure. densest zone.

The information dimension isD;=f(a(1))=f(0.68)
V. APPLICATION OF WTMM METHOD TO =0.68+0.08, which features the scaling behavior of the in-
THE POLLEN TIME SERIES formation. It plays an important role in the analysis of non-

The airborne pollen concentration time series may be SeeIquar dynamic systems, especially in describing the loss of

in Fig. 1. The way to deal with singular measuresas the information as chaotic system .evolves in tirf22]. D, .
pollen time series is to work with its corresponding distribu- =0.68+ 9”?8 |mpl|?s _thatjyve aren the_ grgii%ci;f ah(_:hr?otlc
tion functions[i.e., f(x)=u([0x])], because their singular system. The correlation |menS|onDs£.— /=112, WhIC
behavior is given by the singularities of their associated sincharacterizes a chaotic attractor and is very close to the value

gular measure§12]. The distribution function associated obtained previously with the Grassberger-Procaccia method

with the pollen time series is shown in Fig. 2. [5].
The third derivative of the Gaussian function was chosen
as the analyzing wavelet, VI. CONCLUSION

@, The wavelet transform modulus maxima method was ap-
JO(t)= W(et 2y, (11)  plied to study the multifractal characteristics of an airborne
pollen time series. Previous analyses of the dynamic charac-

Twelve wavelet transform data files were obtained by apply-

ing the wavelet transform witg(®), ranging the scaling fac- 20 ' ' '

tor a from a,,,= 1/256 toa,,= 8 in steps of 2. To give an

idea of the effect of the change of scale on the wavelet trans-

form of the pollen time series, three of them are shown in 15l 1

Fig. 3.
We computed the partition functiofi(g,a) for —30<q
=30 and 1/256-a=<8, obtainingr(q), as shown in Fig. 4.
7(q) is a nonlinear convex increasing function wit0)= Da 1.0
—0.97+0.15 and two asymptotic slopes which ang,,
=0.40+0.12 forq>0 and @ y,,=1.39+0.33 forg<O0.
This lays the correspondinfg «) singularity spectrum ob-
tained by Legendre transformingq) for —2<qg=<4, that is 05 F
displayed in Fig. 5. The single humped shape with a nonu-
nique Hdder exponent obtained characterizes a multifractal.
The D spectrum obtained from(q) can be seen in Fig.
6. The support dimensio®,=D = — 7(0)=0.97+£0.15, 0.0 ' ' L
which implies that the capacity of the support is approxi- ~40 -20 0 20 40
mately 1; i.e., the support is not a fractéd,, converges
asymptotically toD.,=0.40+0.04 for quax, and toD_,. FIG. 6. D4 spectrum of a pollen time series. The support dimen-
=1.38+0.24 forgp,,- The minimum valueD., corresponds  sion D,=D(q=0)~1. D, converges asymptotically td _..
to the strongest singularity which characterizes the most rari= 0.40+0.04 for g2, and toD.,= 1.38+ 0.24 for qpn -
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teristics of atmospheric pollen time series indicate that thairborne pollen dynamics is important in order to improve
system can be described by a low dimensional chaotic magirborne pollen forecasting.

The full complexity of the scaling structure of the strange
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