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Bifurcations and chaos in a parametrically damped two-well Duffing oscillator
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We study a parametrically damped two-well Duffing oscillator, subjected to a periodic string of symmetric
pulses. The order-chaos threshold when altering solely the width of the pulses is investigated theoretically
through Melnikov analysis. We show analytically and numerically that most of the results appear independent
of the particular wave form of the pulses provided that the transmitted impulse is the same. By using this
property, the stability boundaries of the stationary solutions are determined to first approximation by means of
an elliptic harmonic balance method. Finally, the bifurcation behavior at the stability boundaries is determined
numerically.[S1063-651X99)17105-§

PACS numbds): 05.45-a

I. INTRODUCTION where » andF are the normalized damping coefficient and
the excitation amplitude, respectively, and time is regarded
In spite of the complete acceptance of the nonlinear naas dimensionless. The functig{t;T) is a generic symmet-
ture of real-world dynamical phenomena, it is still only par-ric pulse of periodT and unit amplitude. We first take
tially taken into account in the mathematical models, whichp(t; T)=cn(wt;m), i.e., the JEF of parameten. Whenm
aim to describe even the simplest of such phenomena. His=0, then cnft;m=0)=cost), i.e., one recovers the pre-
torically, nonlinearity was first incorporated into low- yiously studied case of harmonic excitatif]. To investi-
dimensional dynamical equations in the form of nonlineargate the structural stability of the systet) when only the
potential and dissipative terms. However, for temporal exCiycitation wave form is varied, we assume that the excitation

tations, harmonic functions have been overwhelmingly _em?eriod T is a frequency-independent parameter, making
ployed to mode! them up to now, even though such functions_ w(m)=4K(m)/T with K(m) the complete elliptic integral
represent solutions dfnear systems. It has recently been

pointed out that it would be more general and appropriate tff the first kind. The parameter space of systéimis then

model temporal excitations by using periodic functions tha our-dlmenS|o_naI be_cause of the addition of the paramater
are solutions ofnonlinear equations[1]. In the context of 0 thg three-d|mgn5|onal parametgr SpageH(T) of the re-
second-order differential systems, such as the pendulum arf€ctive harmonic counterpart. Since @fi{m) represents a
polynomial oscillators[2], the Jacobian elliptic functions Periodic string of symmetric pulses, whose effective width
(JEP [3] appear to be the natural candidates fulfilling thedecreases as increases fronm=0, in the limiting value
requirement of nonlinearity. In comparison with the trigono-m=1 the string vanishes except on a set of instants that has
metric excitations, the JEF’s enlarge the parameter space éebesgue measure zero, i.e., one recovers the autonomous
the system with the elliptic parameter, that controls the counterpart of Eq(1). Figure Xa) shows three plots of the
wave formof the excitation. In physical terms this means function cri4K(m)t/T;m] for differentm values. Secondly,
that, having fixed the periodhn is responsible for the tempo- we takep(t;T) to be a rectangular-pulse function:

ral rate at which energy is transferred from the excitation
mechanism to the system. This idea has led to the demonxt;a,T)
stration of the existence of new generic routes for
order—chaos by changing only the shape of a nonlinear pe-

riodic excitation[1]. In this regard, it is a general unresolved
problem to characterize the physical conditions under which =

1te[0,a/2]U[T—al2,T]
—1te[T/2—al2,T/2+al2] } in each periodT,

the aforementioned routes will be independent ofgpecific 0 otherwise,
shapeof the excitation, leaving fixed the remaining param- 2
eters.

In this present paper we consider some aspects of thiherea (a<T/2) is the parameter controlling the width of
broad question in the context of parametrically damped nonthe pulses. The parametersandm have analogous roles in
linear oscillators[4—8]. Specifically, we consider the para- the two types of pulses. Now, the question is: What would

metrically damped two-well Duffing equation, the relationshifs) betweena andm (if any) be in order for
& q the dynamics arising from the systefd), solely under
X X changes in the pulse shape, to be the same for both kinds of
N B 3_
g T HFRE TG x+x7=0, @ pulse? In view of the particular form of E¢L), a plausible
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FIG. 1. (8 Pulse function ctdK(m)t/T;m] for T=const and
m=0 (dotted ling, m=0.999 (dashed ling and m=1-10"1°
(solid ling). (b) Pulse functions(t;a,T) with a=a(m,T), [cf.
Egs.(2) and (4), respectively, for T=const andn=0 (thin solid
line), m=0.999 (dashed ling and m=1-10"*® (thick solid li-
ne). tis a dimensionless variable.
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gt =~ PO FRET],

(6)
where E(t)=1x2(t) + U[x(t)] [U(Xx)=—3x2+ x*] is the
energy function. Integration of Eq6) over any interval
[nT,nT+T/4], n=0,1,2,..., yields

nT+T/4
x2(t)[1+Fp(t;T)]dt.

(7)

Now, given thatall solutions of Eq.(1) are bounded, the
application of the first mean value theordf¥| to the re-
maining integral in Eq(7) gives

E(nNT+T/4)—E(nT)=— nJ
nT

E(nNT+T/4)—E(nT)=— nx?(t*)

T JnT+ T/4
nT
8

Z +F
wheret* e[nT,nT+T/4]. It is clear that, in generat* will
depend on botm and p(t;T). Since we are interested in
asymptotic solutions, consider E¢B) for sufficiently large
values ofn, such that the system is reaching the steady state
that corresponds to the given initial condition. Assuming
condition(3) holds, one sees that the variation of the energy
function, after a quarter period, does not depend on the spe-
cific shape ofp(t;T) but only on X(t*). Although for
symmetric-pulse functiong(t;T) with different wave forms
the associated values &{t*) will not, in general, be the
same for large periodsTé&1), it would be reasonable to
expect the difference to diminish @s—0. Thus, the respec-
tive dynamics arising from Ed1) should be very similar for
sufficiently small periods, provided that the remaining pa-
rameters and the initial condition are held constant.

X

p(t;T)dt}

physical condition to derive such a relationship would be to  The grganization of the paper is as follows. In Sec. Il we
require that the two pulse functions yield the same impuls&ydy theoretically the onset of chadsomoclinic bifurca-

in the following sense:

T T
f |cn(4Kt/T;m)|dt=f [s(t;a,T)|dt, (3)
0 0
i.e., the proposed relationship reads
(m,T) ! $V1-—m) 4
a=a(m,T)=———=arccosy1—m),
2K (m)m
with the limiting values
T
a(m=0,T)=—, ©)
o
a(m=1T)=0.

Figure Xb) shows three plots of the driving pulses
s[t;a(m,T),T] [cf. Egs.(2) and (4)] for the saman values

as in Fig. 1a). Of course, one cannot expect that condition

tion) in system(1) through Melnikov analysi$MA) by con-
sidering both types of pulse function. The features of the
threshold functions in parameter space are discussed, with
special emphasis on the shape parameter dependence. Sec-
tion Ill gives a preliminary estimate of the stability bound-
aries for the stationary solutiong£€ =1, x=0) in parameter
space {,F,T,m). The theoretical approach is based on two
assumptions: (a) that the stability boundaries of E(L) can

be obtained by analytically solving its linearized equation,
and (b) that the truncation of certain generalized Fourier se-
ries at lowest order provides an approximate but useful so
lution of this linearized equation. Also, we test numerically
the invariance conditiort3) by considerings(t;a(m,T),T)

[cf. Egs.(2) and(4)] instead of c;pdK(m)t/T;m]. In Sec. IV

we numerically investigate the bifurcation behavior at the
stability boundaries in the parameter plames- and a-F,

and lastly, Sec. V concludes the paper.

IIl. ORDER-CHAOS THRESHOLD

As is well known, MA provides a mathematical criterion

(4) be uniformly valid for all the period. Indeed, note that to determine approximately the chaotic threshold of a wide

Eqg. (1) can be put into the form,

variety of dynamical systems. Specifically, MA is concerned
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with the occurrence of homocliniGand heteroclinit chaos 0.6
in such systems. Since MA is a first-order perturbative
method, we will assume in this section that the dissipation 0.5
and parametric excitation terms aveakperturbations of the
underlying integrable system, i.ey<1, nF<<1. MA is now 04
considered a standard method, so that we refer the interested =
reader to the pertinent literatuf@—13). T 03

The application of MA to Eq(1) implies calculating the £ )
Melnikov function, -] o
associated with either of the homoclinic orbits of the inte- % 5 10 15 20 25 30
grable two-well Duffing oscillator: T

Xo(t) = 2 sechit), FIG. 2. Chaotic threshold functiod (m=0,T) for the trigono-

metric limiting case (h=0) vs period excitatiorT [cf. Eq. (17)].
U(m,T) is a dimensionless quantity afidis a dimensionless vari-

Xo(t) = Fv2 seclit)tanh(t). (10 able.
The Melnikov function(9) measures the distance between ba(T)={(2n+1)27/3T—[(2n+1)27/T]3/6}
the perturbed stable and unstable manifolds in the Poincare
section att,. If M(tg) has a simple zero, then a homoclinic x cschi(2n+1) 72/ T]. (13

bifurcation occurs, signifying th@ossibility of chaotic be-

havior. For the sake of clarity, we shall treat separately thd "0m Eqs.(12) and(13) one sees that a homoclinic bifurca-
effects of the two types of pulse function. tion is guaranteed for trajectories whose initial conditions are

sufficiently close to the separatr{g0) if

A. Case of the JEF cn 1
Using the Fourier expansion of di3], it is straightfor- E<U(m’T)’ (14
ward to recast Eq.(9) with p(t+ty;T)=cn4K(t
+10)/T;m] into the form where the chaotic threshold function is
o0 ) 371_2 *
M(tg)=—27 sechf(r)tanh?(7)dr U(m,T)ET > a,(mb,(T)|. (15
—» n=0
27 nF < In order to analyze the behavior in parameter space, consider

JmK 20 sechi(n+1/2)wK'/K] first the limiting case of a harmonic excitatiom& 0). From
Eq. (13) one straightforwardly obtains

xXcog (n+1/2)4nty/T]
a (m—0)—[1/77’ n-o0 (16)
x f sech(7)tanh2(r)cog (n+ 1/2) 47+ Tldr, " 0. n>0.
- Therefore,
(11
2 22 2
with K’'(m)=K(1—m) the complementary complete inte- U(m=0T)= = |3~ =z csch /. (17)

gral of the first kind. The resulting integrals can be evaluated
with the aid of standard integral tabl¢4]. Finally, one A plot of U(m=0,T) is given in Fig. 2. One observes the
obtains following features for increasing values at First, U(m
=0,T—0)=0, i.e., at this limiting value, chaotic motion is
8 not possible since the averagefo€os(2mt/T) over any finite
M(to)=—3 7~ 22 nF 2, an(m)by(T) time interval tends to 0 a&— 0. Second, the threshold func-
n=0 tion (17) presents anaximumat T=T,=2.51... ofU(m
x cog (n+1/2) 4wty /T], (12) =0,T=Ta0=0.1644, and aminimum at T=T,,,(m=0)
=V27 of U(m=0,T=T,,,)=0. Therefore, if one considers
with fixing the parametey; so as to lie at a regular regime at point
R in Fig. 2, then asT is increased, a window ofat least
1 transient chaos will appear for &T<T,,(m=0). This is
a,(m)=——sechi(n+1/2)7K'/K], indeed observed in numerical experiments as can be appre-
JmK ciated in the sequence shown in Fig. 3. Note thatTfauf-

o0
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FIG. 3. Velocity time series. The parameters gre 0.005,F =100, m=0 (harmonic excitation (a) T=1, (b) T=1.5,(c) T=T
=2.51...,(d) T=3.5,(e) T=T,n(m=0)=v2m, (f) T=6.5. The quantity is in arbitrary units and is a dimensionless variable.

ficiently larger thanT,,,(m=0), chaotic behavior is again =T,,(m) such that U[m,T=T,;,(m)]=0, and a T
observed, as expectddf. Figs. 2 and &)]. Third, for T =2.51...Ym [cf. Egs.(13) and(15)]. It is worth noting that
>Tmin(M=0) the chaotic threshold function is an increasingT,,(m) increases from its value at=0 asm—1, although
function that asymptotically tends th as T—«. In other  the deviation fronf ,,;,(m=0) is only noticiable for values of
words, for F<2 chaotic behavior is not possible for any m close to 1(i.e., when the pulses are fairly narrpvlhis
periodT (see Fig. 2 It is worth mentioning that this result is can be appreciated in Fig. 5, where we also figi(m) for
coherent with that arising from the stability boundary of thecomparison. While there is a notable deviation after
solutions k= =1, Xx=0) in theT-F plane, namely, that such =0.3, both functions show a monotonously increasing be-
stability boundary presents its single minimum at

=T,,n(M=0)/2 for which F=2 (cf. Ref.[8]). Fourth, atT 04
=Tmin(m=0), chaotic motion is not expected for any excita- 035
tion amplitudeF, which is a consequence of the 1:1 paramet- 03
ric resonance of the underlying Hamiltonian system. Indeed, 025
asTi(m)=2y2—mK(m) are the periods of the interior or- i 02
bits associated with the integrable£0) two-well Duffing S0
equation[cf. Eq. ()], one findsT i,(m=0)=T;,(m=0). o1
Consider now the general case# 0. From Eq.(15) one 005
readily obtains ‘ 0
0 2 4 6 8 10
Uu(m,T—oo)= %, I
U(m,T—0)=0. (18 FIG. 4. Chaotic threshold functio$(m, T) vs periodT [cf. Eq.

) o ~ (19)] corresponding to different wave fornfgalues ofm) of the
Figure 4 shows that the qualitative form of the function excitation. From top to bottom: m=0.2, 0.8, and 1 -1, respec-
U(m=constT) remains the same as that corresponding taively. U(m,T) is a dimensionless quantity affdis a dimension-
the limiting harmonic case. There always existsTg, less variable.
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FIG. 5. Plots of functionsT;(m)=2y2—mK(m) (solid line) 04
and Tpin(m) (dotg [U(m, Trin(M)=0, cf. Eq.(15)]. Ti,(m) and
Tmin(M) are both dimensionless quantities, ands a dimensionless
variable.

havior, which tends tee asm— 1. Thus, one is tempted to
consider the existence of the minimaTa;,(m) as an effect
of the parametric resonances of the underlying Hamiltonian
system. The peak valug(m,T=T,,,,) diminishes from its
value atm=0 asm—1, which is coherent with the limit
U(m—1,T)=0, i.e., in this limit chaotic behavior is not ex-
pected. Now, two remarks are in order. First, with a fixed
aroundT,,,=2.51..., the range of values of the pulse ampli-
tude for which(at least transieptchaotic motion is expected 00 0f2 0' ] O' . 0'8 o
to be observediecreasesasm is increased. Second, with a m ' '
fixed F>1/U (M, T a0 [cf. EQ. (14)], the range of values of
the period included in the interva{0,T y,(m))] for which (at FIG. 6. Chaotic threshold functiots(m,T) (dimensionless
least transientchaotic behavior is expected to be detectegduantity vs elliptic parametem (dimensionless variabldcf. Eq.
increasesasm is increased. (15)] associated with the periods=1 (a) and T=10 (b).

We now study the chaotic threshold as a function of
solely the pulse shape parametgrholding the period con- with
stant. Typical plots of the functiord(m,T=const) are 1
shown in Figs. 6 and 7. In general, férsufficiently near a — ;
givenT (M), as in the instance given in Fig. 7, the behavior c(a.T) 2n+1 si(n+1/2)2ma/T], (29
of the threshold function v is qualitatively different from
that occurring for values off sufficiently far from such andb,(T) given by Eq.(13). From Egs.(19) and (20) the
Tmin(M), as in the example depicted in Fig. 6. Figurgp)7 necessary condition for the onset of chaos is written
reveals that the dynamics can exhibittreme sensitivityo
changes in the pulse wave form, as indeed is illustrated by 1 ,
the sequence of displacement time series displayed in Fig. 8. E<U (@m, (21)
Note that the chaotic series in Fig(b3 corresponds to the
value m=mpy,, at which U m,T=T,;,(m=0)] presents a where the new chaotic threshold function is
maximum|[Fig. 7(b)] i.e., to the most favorable situation for
the onset of chaos.

U(m,T=const)

(b)

oo

> cn(a,T)by(T)

n=0

U'(a,T)=3 : (22

B. Case of a rectangular-pulse function
In order to test the invariance conditidB), we substitute

Using the Fourier expansion alt;a,T) [14], and after . y'ret £ (4)] into Eq.(20). Thus, Eq.(22) reduces to

evaluating the resulting integrals, we can recast(Bgwith

p(t+ty;T)=s(t+ty;a,T) into the form, the form
8 - ' RS
M(to)= = 57— 87F 2, (@, T)by(T) U(mT)=3) 2, ca(mbu(T)], @3

X co§ (n+1/2) 4ty /T], (19 with
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FIG. 7. Chaotic threshold functidd(m,T) vs elliptic parameter
m [cf. Eq. (15)] for the periodT =T,,;,(m=0)=v27 (at which cha-
otic behavior is not possible for a trigopnometric excitaji¢a, and
detail of the maximum regiortb). U(m,T) is a dimensionless
quantity andm is a dimensionless variable.

| (n+1/2)7r arccosyl—m
VmK(m)

Figure 9 shows that the form of the functiod’(m
=constY) is the same as that &f(m=const]) (cf. Fig. 4),
i.e., there always exists aT ;,=Tmin(M such that
U'(m;Tin(M)=0, and aT ;.= Tma=2.51...,¥Ym [cf. Egs.
(13) and (23)]. Also, T;,,(m) increases from its value an
=0 asm—1, asT,y(m) does. Figure 10 depicts the relative
deviation[ T in(M) — Trin(M)V Trmin(mM) showing that it is only
noticiable for very narrow pulse@.e., for values ofm very
close to ). This is in agreement with the discussion at the
end of the Sec. I: one sees that the invariance condiBpn
works better for small than for large perio@s. Figs. 5 and
10). The functionU’(m,T=const) is very similar in shape to

1
2nt1°"

Cn(m)= (29)

U(m,T=const), as can be appreciated in Fig. 11. Figure 12

shows the relative deviation|U’(m,T=const-U(m,T
=const)/U(m,T=const) vsm for two values of the period.
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FIG. 8. Displacement time series. The parameters are
=0.005, F=170, T=T,,s(m=0)=v2m, (@) m=0.9998, (b) m
=Mpa=0.999 942 5, andc) m=0.999 99. The quantity is in ar-
bitrary units and is a dimensionless variable.

Ill. STABILITY BOUNDARIES FOR
STATIONARY SOLUTIONS

In this section we assume that the driving peribds
sufficiently small for the invariance conditio3) to be ap-
proximately correct. We can then obtain theoretical estimates
of the stability boundaries for the solutions=f =1, x=0),
which would be valid for any symmetric-pulse function

0.4
035
0.3
_025
>

g 02
2015
0.1
0.05

0

10

For a fixed period, the deviation drops sharply as the pulses
narrow. Again, the deviation is greater for large than for FIG. 9. Chaotic threshold functions’(m,T) (dimensionless
small periods, as predicted. Nonetheless, the range of appliuantity vs periodT (dimensionless variabldcf. Eq. (23)] corre-
cability of condition(3) in the period domain appears to be sponding to distinct shapégalues ofm) of the pulses. From top to
fairly broad. bottom: m=0.2, 0.8 and 1—10°, respectively.
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FIG. 10. Relative

Tmin(m) [U(memin(m)):QU’(m:T
(23), respectively vs m (dimensionless variableThe last two plot-
ted points correspond to the valuemi=1-10°% and m
=1-1015 respectively. See Fig. 5 for comparison.

p(t;T). In order to facilitate the comparison with the previ-
ously studied harmonic ca$8], we shall calculate by using
cnoidal pulses. Thus, following Reff8] we rewrite Eq.(1)

with p(t;T)=cn(wt;m) as
2x

d

using the transformations

0.012

deviation

dx

[T i) = Trnin(M))/
(m))=0, cf. Egs.(15 and

d
Qz—tf+q[1+ 2ecn(27;m)] a—x+x3=o, (25)

0.01
0.008

£0.006

Um,1)

0.004

0.002

oL

=1
Nt
(]

0.4

—

0.35
03
5025
g 02
Po.15
0.1

0.05 (b)

=3
<
o

FIG. 11. Chaotic threshold functiob’(m,T) (dimensionless
quantity vs elliptic parametem (dimensionless variabldcf. Eq.
(23)] associated with the periods=1 (a) andT=10 (b). Compare

with Fig. 6.
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FIG. 12. Relative deviation |U’(m,T=const-U(mT
=consty/U(mT=const) vsm (dimensionless variablefor T=1
(bottom curve and T=10.

1

F
TZEwt, g=7Q, €= (26)

Q _ w

"2 2
The linearized equation for a perturbatigraround the pair
of stationary solutionsx= * 1, Xx=0) reads

¢

W+q[1+260n(27-;m)]§+2§:o, (27)

Q

We assume that the boundary of stability may be determined
from the existence of a periodic solution farin Ref.[8] the
classical Floquet theorem was used to deal with the respec-
tive problem corresponding to the limiting harmonic case
(m=0). Here we use an elliptic generalization of this pro-
cedure, which is based on the existence of generalized Fou-
rier serieg15] and on an elliptic harmonic balance method
[16]. Thus we may assume the existence of

£= %+ 2, [Ancosng)+Bysinne)], (28

wherep=am(r;m) is the JEF of parameten. Since we are
here solely interested inqualitativeestimate of the stability
boundaries in then-F and T-F parameter planes, we shall
limit our treatment to the lowest-order approximation. Thus
we truncate the serie®8) at n=1 and insert the resulting
expression into Eq(27), obtaining

{Q?[(2m—1)cn(7) — 2men’(7)]— gsn(n)dn(7)
—2eqsn(ndn(r)cn(27)+2cn(7)}A;
+{Q?[2msr(7)— (1+m)sn 7)]+qcn(7)dn(7)
+2eqcn(ndn(n)cn(27)+2 s 7)}B,1+Ay=0, (29

where we have used sgEsn(r;m), cose=cn(7;m)
[sn(m;m) and dn@;m) are JEFs of parameten] and the
notationpq(7)=pq(r;m). From the generalized Fourier se-
ries[15] for the above products of JEFsee the Appendix

if the expansions are limited to the first harmonic, instead of
Eqg. (29), one has
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m 58 f
AO+26qa6(m)Bl+ (2_92)_‘—50 A1+q[al(m) A numerical i
5.0 - —1 storder :
m |
+2eaj(m)]B, | cosp+ (Z—Qz)+§QZ}Bl 42 A
34
—q[bl(m)+26bi(m)]A1] sing F ] A
2.4 h
a
+ (higher harmonics=0, (30 18
whereb,(m), b;(m), a;(m), ag(m), anda;(m) are given 1ok
in the Appendix by Eqs(A14)—(A18), respectively. Setting |
the independent term and the coefficients of ¢@nd sine 02 ' * 1 1 '
to zero, respectively, one gets the equationsifgr A,, and 00 02 04 (I’;;’ 08 1012
B, . The existence of a nontrivial solution requires the deter-
minant of the respective coefficient matrix to vanish, i.e., FIG. 13. Stability boundary in thm-F parameter planém and
, F are both dimensionless variabldsr =0.2, T=v2a. The re-
2—(1-m/2)Q gla;(m)+2eaj(m)] B sults from numerical simulation and from first-order perturbation
—q[by(m)+2€ebj(m)] 2—(1-m/i2)Q? | are shown and compared.
(31)

boundaries in th&-F parameter plane. Numerical simula-
tions indeed show that the accuracy of the theoretical esti-

mates diminishes as approaches 1. As an example, Figs.
e(M.T.m)= ay(m) (1_ 11_ 4a2(m,T,7;)), (32  14(@ and 14b) display comparisons between the stability
2 ai(m) boundary obtained by numerical calculation and first-order
perturbation, foom=0.1 andm=0.5, respectively. In order
where to test the invariance conditiai8), we numerically obtained
the stability boundaries corresponding to rectangular-pulse
(33) driving (2) for the valuesa(m=0.1) anda(m=0.5) [accord-

which gives[cf. Eq. (26)]

a;(m)b;(m)+aj(m)b,(m)

ai(m)=

2a;(m)bi(m) ' ing to condition(4)], the remaining parameters being held
constant. Figure 15 shows the comparison between such sta-
ay(m,t, n) bility boundaries and the respective analytical estimates
[from Eq. (32)]. Finally, comparison between Figs. 14 and
ay(mby(m)+[T/K(m)+(m—2)K(m)/T]? %? 15 indicates the utility of conditior{3) over the range of
= 4aj(m)bj(m) . periods considered.

(34

IV. BIFURCATION BEHAVIOR AT THE STABILITY

Now we make the following remarks. First, for a harmonic BOUNDARIES

excitation (m=0), one recovers
Consider first the systerfl) subjected to cnoidal pulses.
One sees that the stability boundary of the solutioxs (
+1,x=0) in them-F parameter plane is an increasing mo-
notonous function as shown in Fig. 13. The qualitative form
which coincides, as expected, with the result reported in Refof this function remains the same @sandT are varied. The
[8] for the lowest-order approximation. Second, the functionbifurcation behavior is fairly rich along the boundary, i.e.,
e.(m=const],p=const) presents minima at periods  the dynamics appears quite distinct as the paramatemnd
=y2—mK(m)=T,,»(M)/2, which can be explained as a F are varied to cross different segments of this boundary.
conseqguence of the parametric resonaticesrior orbitg of ~ This is illustrated by considering two particular types of
the underlying Hamiltonian systefaf. Egs.(25) and (26)]. pathways crossing the boundary: varying the shape param-
Figure 13 shows a comparison between the stability boundeter m with fixed F, and vice versa. In all the numerical
ary obtained by numerical calculation and first-order pertursimulations presented in this section we assuyred.2. Fig-
bation[Eg. (32)] for =0.2, T=T,;s(m=0)=v27. For val-  ure 16 shows the global bifurcation diagram constructed by
ues of the shape parametarlose to 0, Eq(32) provides an means of a Poincarenap atF=3.8 and T=2.5183107.
early estimate. However, the large discrepancies appearirfgtarting atm=0, and taking the transient time as 1000 exci-
for m=0.7 indicate that higher-order approximations are re4ation periods after every increment&f=0.01, we sample
quired for narrow pulses. Nonetheless, the first-order ap50 excitation periods by picking up the firstvalue of every
proximation qualitatively reproduces the overall form of the excitation cycle. The same initial conditions are set for every
stability boundary, in particular, the expected behawor newm after Am is added. Figure 16 shows that in the range
—o asm— 1. The same considerations concerning the lim-0=m<0.31 the motion of the system is large-scale cross-
ited validity of estimatg32) can be extended to the stability well chaos for severah values. Then the system undergoes

(39

1 2
Gc(mZO,T,’Yl):; 7]2+ 2T Tr) )
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FIG. 14. Stability boundaries in th€-F parameter plane for FIG. 15. Stability boundaries in the-F parameter plane for a
cnoidal pulses andy=0.2: (a) for m=0.1 and(b) for m=0.5, rectangular-pulse functiofcf. Eq. (2)] and =0.2: (a) for a(m
respectively. The results from numerical calculation and from first-=0.1) and(b) for a(m=0.5), respectivelycf. Eq.(4)]. The results
order perturbation are shown and compare@l.and F are both  from numerical calculation and from first-order perturbafich Eq.
dimensionless variables. (32)] are shown and comparedT and F are both dimensionless

variables.

an inverse interior crisis ah=0.31, limiting the chaotic dy-
namics to inside a smaller region, through the range 0.31
=m<0.41 where phase-locked chaos was detected. From

m=0.41 tom=1 the system’s overall behavior is inverse 15
period doubling, which is interrupted for a small interval of B 1 R S e -
m, [0.82, 0.84. In this interval in turn inverse period- 10 _,|:|iiE! jgr"' m— .

doubling cascades take place after an inverse boundary crisis

near the beginning of the interval. Fore ]0.84,0.99, there

is the steady behavior of a period-2 attractor, which becomes

unstable am=0.99, jumping to the stable stationary solution

(x=1, x=0). X A
Figure 17 shows a similar bifurcation diagramvs F) v '

constructed through a Poincarenap at m=0.99, T OS5 g

=2.3271057, andr ranging from 1 to 10. In this case, the

stationary solution X=1, x=0) becomes unstable & -10

=3.1 and jumps to a single-well period-2 attractor. Period

doubling begins aF=6.18 and, after phase-locked chaos -L5 L L I r

appears aE=6.67, the motion becomes large-scale cross- 00 0z 04 06 08 10

well chaos fromF=7.03(to F=10). One can see that there m

are very different features of the two routes described above FG. 16. Bifurcation diagram for the variable with 7=0.2,

crossing the stability boundary in the-F parameter plane. F=3.8, T=2.5183107, andn (dimensionless variablein the

In particular, we would emphasize the great richness of theéange 6G<m=1, corresponding to the systeft) subjected to cnoi-

bifurcation behavior as the shape parametés varied. dal pulses. The quantityis in arbitrary units.

- R

A L
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FIG. 17. Bifurcation diagram for the variable with »=0.2, FIG. 18. Bifurcation diagram for the variable with =0.2,

T=2.327 105 7m=0.99, andF in the range £F=<10 correspond- F=3.8, T=2.5183107, and in the rangea(m=0.999 999k a
ing to system(1) subjected to cnoidal pulses. The quantitis in <a(m=0) according to conditio4), corresponding to syste(i)

arbitrary units and- is a dimensionless variable. subjected to rectangular pulses given by &) The quantityx is in
arbitrary units andh is a dimensionless variable.

Now we consider the systefl) subjected to rectangular
pulses given by Eq(2), in order to test the invariance con- (i) The stability boundaries of the stationary solutions
dition (3). To this end, Fig. 18 shows the global bifurcation (x= =1, Xx=0) were estimated, to lowest perturbative order,
diagramx vs a constructed by means of a Poincanap at by means of an elliptic harmonic balance method. Numerical
T=25183107 and F=3.8. Starting at a(m=0,T calculations indicated that the theoretical curves for the sta-
=2.5183107)[cf. Eq. (4)], and taking the transient time as bility boundaries, in then-F andT-F planes, are reliable for
1000 excitation periods after every increment dafa  values ofm sufficiently close tan=0, and that they remain
=a(m,T=2.5183107)a(m+0.017=2.5183107), we Vvalid independently of the specific wave form of the pulses.
sample 50 excitation periods by picking up the fixstalue (ii ) The bifurcation behavior along the stability boundary
of every excitation cycle. The same initial conditions are sein the parameter planes-F and a(m,T)-F [cf. Eq. (4)]
for every newa after Aa is added. Correct comparison be- were obtained numerically. It was especially rich in the case
tween Figs. 16 and 18 must take into account thas a  where only the shape parameter was varied, holding the re-
nonlinear function ofm [cf. Eq. (4)]. Nevertheless, one ob- maining parameters fixed.

serves that the global bifurcation behavior is rather analo- Finally, we expect that the transmitted impulse invariance
condition may be useful for all driven, nonlinear systems

gous.
whose motions are bounded. Our current work is aimed at
exploring this conjecture.
V. CONCLUSION
In this paper we have studied the dynamics of a para- ACKNOWLEDGMENT
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of the specific shape of the pulses, as long as an invariance

pondition concerning the impu_lse transmitted _by th_e pulses is APPENDIX: GENERALIZED FOURIER SERIES
mposed. It was shown that, in general, the invariance con- IN WHICH JACOBIAN ELLIPTIC EUNCTIONS

dition works better for small than for large periods. The fol- ARE USED

lowing is a summary of the results.
(i) Analytical estimates of the chaotic threshold function In this appendix it will be shown how to find the expan-

were obtained for both types of pulses, and compared undaions of a periodic functiorf(7), with period K (m), in
the invariance condition, by means of MA. It was demon-terms of the periodic set of the so-calletliptic harmonics
strated that there exist two windows of chadT,,(m)  [16],

[and [T min(M),o<[, for any shape ofeither oj the pulses, and

this was confirmed by numerical simulations. The impossi- cos(m,m)=1, cos(m;m)=cogne),

bility of chaotic motion at the period$=T,,;,(m) was ex-
plained in terms of parametric resonances of the underlying
Hamiltonian system. These results represent well-behaved
dynamical properties of the studied system, in the sense that
they are insensitive to damping and insensitive to the particuwhere ¢=am(r;m), m<1 and n=1,2,... Therefore, one
lar shape of the pulses. looks for the Fourier coefficients, ,b,, of

sin,(7;m)=sin(ne), (A1)
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f(r)= %+n§0 [a,cogne)+b,sin(ng)]. (A2)

They can be obtained by a standdidgonometri¢ Fourier
expansion of the transformed functidfe;m) in terms of
coshe) and sinfip):

1 (2w
am=— [ Ttgimicosnerde, (A3

1 (2w
bn(m>=;fo femsinne)de.  (Ad)

However, instead of changing the functibfy) into the form
f(@;m) [by using the inverse function=am *(¢;m)], the

current procedure uses a set of orthogonal functions defined

in the 7 variable[the set(A1)]. One, therefore, has
R .
f(r)= 5+ 2 [a,cos(mm)+b,sin(r;m)], (A5)
n=0

where, upon substituting expressigAl) and the formula
de/dr=d[am(7;m)]/d7=dn(7;m) (cf. Ref. [3]) into the
expressiongA3) and (A4), one has

1 (4K
an(m)=;f0 f(7)cog,(7;m)dn(r;m)dr, (AB)

1 (4K .
bn(m)=;f0 f(7)sin,(7;m)dn(7;m)dr. (A7)

Thus, for the products of JEFs appearing in E2P), one
straightforwardly obtains

crd(m;m)=3cn(m;m)+---, (A8)

sn( 7;m)dn(7;m)=by(m)sn(z;m)+---, (A9)
sn(7;m)dn(7;m)cn(27;m)=b;(m)sn(m;m)+---,

(A10)
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sre(m;m)=3snm;m)+---, (A11)
cn(m;m)ydn(m;m)=a;(m)cn(m;m)+---, (A12)

cn(m;mydn(7;myen(27;m) =aj(m)+aj(mycn(7;m)+---,
(A13)

where, using EqsiA6) and (A7), the coefficients are given
by

1

4K
bl(m)=;f0 srf( 7;m)dré( 7, m)dr, (A14)

1 (4K
bi(m)=;JO srf(7;m)dré(=;m)cn(27;m)dr,
(A15)

1 (4K
al(m):;fo cré(m;m)dr(7;m)dr, (A16)

1 (4K
a{)(m)=;ﬁ) cn(7;m)dr’(7;m)cn(27;m)dr,
(A17)

1 (4K
ai(m)z—f cré(m;m)dré( 7;m)cn(2;m)dr.
mJo
(A18)
Finally, with the aid of standard tabl¢47], b;(m) and
a;(m) can be written
4
by(m) = 5——[(2m—1)E(m)+(L-m)K(m)],
(A19)

4
a;(m)= _3wm[(1+ m)E(m)—(1—m)K(m)],
(A20)

where E(m) is the complete elliptic integral of the second
kind.
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