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Nonlinear Langevin equations and the time dependent density functional method
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To study the time dependent density functional metfiddDFM), two streaming velocityreversible terms
are reformulated in the nonlinear Langevin equation. MdiPsog. Theor. Phys33, 423 (1965] projection
operator method shows a variety of nonlinear Langevin equations. This is because the equations depend on the
choice of phase space functions employed in the projection. If phase space functions include particular func-
tions, however, the streaming velocity term has an invariable form. The form is independent of the choice of
other phase space functions. Since the invariable streaming velocity term does not introduce the TDDFM, the
second viewpoint is presented. In this, the linearization of the streaming velocity term agrees with the fre-
guency term in the linear Langevin equation. Since only the second streaming velocity term introduces the
TDDFM, one needs to be cautious in the derivation of the TDDF81.063-651X99)10506-3

PACS numbsgps): 05.20.Jj, 05.40.Jc, 05.45a, 05.60.Cd

I. INTRODUCTION Fujisaka formulated the free energy by tAdunctions. On
the other hand, the free-energy functional in the TDDFM is

Many authors have employed the time dependent densitthermodynamically defined by the cumulant function or the
functional method(TDDFM) [1,2] to examine dynamical fictional external field§16—18. The two kinds of free en-
properties of classical liquid2—10]. Linear[3-5] and non-  ergy agree at the long-wavelength limit of fluctuations in
linear [5,6] TDDFM'’s have brought out a deep understand-density. Small-wavelength fluctuations in density, however,
ing of solvation dynamics. With the TDDFM, Araki and Mu- have a large difference.
nakata calculated shear viscosity and a self-diffusion The TDDFM is possibly established from other nonlinear
constan{9]. In addition to normal liquids, the TDDFM has Langevin equations than that derived by Mori and Fujisaka.
recently been applied to supercooled liquids or glass stat€Bhis is because various kinds of projections lead to various
[2,10!. nonlinear Langevin equatiof49]. While Mori and Fujisaka

Though the TDDFM has been extensively employed, fewemployed projection onto thé functions, one can also de-
authors have studied its microscopic derivatiddi]. The rive another Langevin equation from another kind of projec-
TDDFM was not developed from the Liouville equation that tion. For example, the projection onto the dynamical vari-
provides a microscopic basis. One cannot explain, in particuables themselves leads to Mori’s linear Langevin equation
lar, the origin of the term including a free energy functional[20]. Thus the TDDFM is possibly related to other projec-
derivative in the basic equation of the TDDFM. tions than that by Mori and Fujisaka.

If the TDDFM is related to nonlinear generalized Lange- In the relation between the TDDFM and nonlinear Lange-
vin equations, one can microscopically derive it. This is be-in equations, the streaming velocity term plays an important
cause nonlinear generalized Langevin equations are derivadle. The free energy definition in the TDDFM is different
from the Liouville equation. The nonlinear generalizedfrom that in the equation by Mori and Fujisaka. For the TD-
Langevin equation is divided into three parts: the streamind®FM, the free energy functional is included in the streaming
velocity term, the memory term, and the random force. Thevelocity term, if the velocity and number densities are se-
streaming velocity term does not contribute to entropy prodected as the dynamical variables.
duction, so that it is also called the reversible t¢ff]. One In addition, studying the streaming velocity term is im-
can expect that the streaming velocity term causes the fregortant because one can exactly calculate the term from the
energy functional term in the TDDFM, if the velocity and microscopic viewpoint. The calculation of the streaming ve-
number densities are selected as the dynamical variablefcity term requires information only on equilibrium states,
Their relation, however, has not yet been established. while the memory term and random force require a dynami-

A nonlinear generalized Langevin equation has been foreal knowledge. This allows one to learn the form of the
mulated from the Liouville equatiofil3]. After Green[14]  streaming velocity term definitely, though one can only ap-
and Zwanzidg 15] derived the Fokker-Planck equation, Mori proximately estimate the other two terms. Thus one needs to
and Fujisakd 13] have formulated the generalized nonlinearestablish the microscopic derivation of the streaming veloc-
Langevin equation. Mori and Fujisaka projected the Liou-ity term for the application.
ville equation onto thed functions of the dynamical vari- The purpose of the present study is to study the streaming
ables. Their streaming velocity term was the same as that inelocity term in nonlinear Langevin equations to establish
the Fokker-Planck equation derived by Greghd] and the microscopic derivation of the TDDFM. It focuses on the
Zwanzig[15]. streaming velocity term corresponding to the TDDFM. In

One cannot establish the TDDFM from the nonlinearaddition, a physical meaning is established for the difference
Langevin equation formulated by Mori and Fujisaka becausdetween the streaming velocity term corresponding to the
of the difference in the definitions of free energy. Mori and TDDFM and that derived by Mori and Fujisaka.
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For the purpose, two streaming velocity terms are reforis the transport coefficient. Since it is a functionalkofgain,
mulated in nonlinear Langevin equations. The first streaminghe replacement ofAy., ;({X;})} changes values df;,, .
velocity term is formulated so that the form is independent of  In the nonlinear Langevin equations, one can establish an
projection in Mori’s identity if particular functions belong to invariable form of the streaming velocity term if the phase
the subspacéSec. 1). The streaming velocity term is the space functiondAy.({Xi})} include particular ones. The
same as the term derived by Grddd], Zwanzig[15], and invariable streaming velocity term does not change the form
Mori and Fujisakg13]. The second streaming velocity term even if others of Ay ({X;})} are replaced.
is formulated so that its linearization agrees with the fre- If the particular function and another arbitrary function
quency term in the linear Langevin equati@®ec. Ill). The are denoted by f;({X;}) and h({X}), then A
TDDFM is developed from the second streaming velocity= (X;,f;({X;}),h({X;})) and
term. The two streaming velocity terms agree at the thermo-
dynamic limit. Q0= 5 o 3

Il. INVARIABLE FORMS OF STREAMING VELOCITY Here 5fi,a has the value of unity ife corresponds to

TERMS fi({X;}); otherwise its value is zero. Equati¢8) shows that

Mori’s projection operator method shows that nonlinearthe streaming velocity term in Eqéla) and(2a) is indepen-
generalized Langevin equations depend on the phase spadent of changes ih({X}).
functions employed in the projection. In the present study, Equation(3) provides the invariable form of the streaming
the equations describe the time evolution of a set of dyvelocity term. From Eq(1b), Eq. (3) is rewritten as

namical variables,{X;}={Xy, ... Xy\}. Then the phase
space functions are denoted by A (XiA) = (fi({XiHAL). (4
=(X1, - XA (X)) A 28X, - ). Here

An+j({Xi}) is a function of X;}. By projecting the Liouville  \yhen A,=h({X;}), the functional differentiation with re-
equation ontoA, one can derive generalized Langevin equa-gpect to an arbitrary functiom({x;}), yields

tions

K3 10,43 [MtsAsdstR D, (XX =x))=Fi({x})(8(X=x)), )
“ « 70 (19 Where8(X—x)=1I1;5(X;—x;). Thus, to satisfy Eq(3), the
function f;({x;}) should have the following form:

whereA;=X;, i=1,... N. In Eq. (18, one has
(Xi8(X=X))
100,= 3 (XA (AR);1, (1 b= 50— ©

Equation(6) agrees exactly with the streaming velocity term
M (D)=, <Ri(t)R3(0)>(AA)5§y (10 obtlgined by Green14], Zwanzig [15], and Mori and
B Fujisaka[13].
_ The invariable streaming velocity terms do not introduce
R,(t)=e¥C'QiLA, . (1d  the TDDFM. If the free energy functional is defined by
_ o —kgTIn{(8(X—x)), Eq. (6) reduces to the reversible term in
Here Q=1-P, whereP is the projection operator on#,  he TDDFM. For the TDDFM, however, the free energy
andil is the Liouville operator. In add't'onQ'l'_'> is the  functional is usually defined in a different manner.
average by the canonical ensemble, aAA)™ " is the in- One can also derive the invariable form of the other terms
verse of the matrix with the eleme&,Ag). SinceiQi,,  in the Langevin equation. Appendix A provides the details.
Mi(t), andR,(t) are functionals ofA, they have different The expressions closely agree with those in the generalized

forms if one of{Ay.;({Xi})} is replaced by other functions. | angevin equation derived by Mori and Fujisak8].
This shows that a variety of equations is possible because of

the choice of Ay ;({Xi})}-
Furthermore, in the Markovian approximation, nonlinear
Langevin equations also depend on the projection. If motions

exceptA are slow enough, the Markovian approximation  Onpe needs another viewpoint because the streaming ve-
leads to locity terms derived in Sec. Il do not introduce the TDDFM.
The viewpoint is that the linearized form of the streaming
Xi= > iQA,— > LiA+Ri(t), (2  Velocity term agrees with the frequency term in the linear
@ @ Langevin equation. The linear Langevin equation is derived
from the Liouville equation in only one manner, unlike the
where nonlinear generalized Langevin equation. Thus the viewpoint
gives a definite form of the second streaming velocity term.
L= fwMia(t)dt (2b) The yiewpoint is formulated using the linear generalized
Langevin equatiofi20] for 8X;=X;—({X;):

Ill. STREAMING VELOCITY TERMS
INTRODUCING THE TDDFM
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. t .
5xi=; iwi,jaxj—; Joyi'j(t—s)5xj(s)ds+ri. 7 iwi,jzg (X XN (XX )i (13

Here iw;;, v ;(t), andr; are the frequency term, the where (5X5X)x)gjl is element, j of the inverse matrix of
memory function and the random force in the linear gener-< 8X;6X:), . In Eq. (13), the matrix,(éX-&X-)A, is rewritten
alized Langevin equation. as Y

From the viewpoint, the second streaming velocity term is

given by ) 9 .
(OX X=X - (14
_ J j
toi, ;= Fil{xiD = x) - €) - _ o
i In addition, since the matrix,6X;6X;), , is given by
Equation (8) shows that the integration ofw;; yields HX)y X
f({X;}). Such a linearization principle never holds for the <5xi5xj>)\:_'”_ - (15)

memory function or random force. The linearization of the 2N 298

terms does not agree with those in the linear Langevin equa:- . :
tion. This is because both the linear and nonlinear generaf'€ NVerse is
ized Langevin equations are exactly derived from the Liou- N
ville equation. The memory function or random force ((SXSX)\)p t= Tk (16)
includes the nonlinear terms in the linear generalized Lange- b X
vin equation[13]. o _ _

To derive the second streaming velocity term, the ex-1he substitution of Eqg14) and(16) into Eq. (13) yields
tended Gibbs ensemble is introdud@d]. The integration of
i w; ; in Eq.(8) needs changes in a value of the averde). i o _:i<>'(_> 17)
To change the value, fictional external fields are employed as M ax M A

follows:
The integration provides

f xiexp[—ﬂm; MXJ}dF Fi({x 1) =(Xi)y - (18)

C)
f eXF{_ﬁH'i‘E )\IX]
J

(Xin= .
dar Equation(18) shows the streaming velocity term from the
second principle.
4 ) . The TDDFM is established by the second streaming ve-
Here g=(kgT) ~, whereT is the temperature ankl IS |ocity term. To establish the TDDFM, the velocity density
Boltzmann’s constantd is the Hamiltonian, andil" is the J(r)=3,v;8(r;—r) and the number density(r)==3,;5(r;
volume_element in. the phase.space. In addition, the param-r) are considered, where andr; are the velocity and
eter,\; is the function of{x;} given by position of particlei. If {X;}={J(r),p(r)}, as shown in Ap-
endix B, one has
Xi=(Xi)y - 1o P

Equation(9) describes the extended Gibbs ensemble devel- ' _ / , SpF
oped in Ref[21]. The distribution corresponds to the maxi- (I kBTJ' A (3. 3" ea SJ(r')

mal information entropy for average values given by Eq.

(10). In the ensemble, the parameigrhas often been called , , oBF

the “thermodynamic force,” because it is associated with +kBTf dr'{{3(r),p(r )}PB>>\5 oy (19
the gradient of free energy in P

Here{ }pgis the Poisson bracket and the free energy func-

M=M. (11) fional F is defined in the same manner as Eip). Since
IX; I, p(r")pe=m "V, p(r)8(r—r’), where m is the
mass of the particle, one derives the hydrodynamic Langevin
where equationg 1]
F({xi}):—kBT<|nf exp[—ﬁmz xixi}dr) Jry=- Py o
' m  p(r)
t
TKaT 2 i (12) —J dr'J G(r,r',t—s)J(r,s)ds+f(r 1),

0

is the free energy. (208

The extended Gibbs ensemble leads to the streaming ve- .
locity term. Attaching\ to the definition ofi w; ;, one has p(r)=—=V-J(r). (20b)
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Here, the first term representing the advection in Bd)
was neglected. By the Markovian approximation and diffu-
sive limit, Egs. (20) reduce to the TDDFM including the
random currenfl]

: SF
p(r)=DV[p(r)V —mf(r,t)]. (21

op(r)

IV. DISCUSSION

The analysis by the invariable form has revealed the
physical meaning of the streaming velocity term obtained in
previous study{13—-15. The physical meaning is that the
streaming velocity term is obtained by the projection onto
the subspace consisting of arbitrary functions{¥f}. One
can find it by the result that the streaming velocity term does

The second streaming velocity term derived in the preserft©t change though the phase space functiéng in Eq. (1a)
section agrees asymptotically with that in Sec. Il at the therinclude arbitrary functionsh({X;}). This physical meaning

modynamic limit. The Fourier transformation for tid€unc-
tion in Eq. (6) yields

<X|5(X_X)>=fOC H|dk|<x|eXF{|2 kj(xj_xj) > (223

- ]
:fx Hidki<xi>ikeXF{_iz k]XJ_,BJ:(”()},

—o ]
(22b
where
deexr{—ﬁH%—iz k]-XJ}
exf — BF(ik)]= . (229
fdl“ exqd — BH]

The integral in Eq.(22b) is estimated by the saddle point
method as follow$22]:

. (23

(X; 5(X—x)>EA(Xi)}\ex;{ —; NjXj— BF(N)

Here the integral in Eq(22b) was translated to an integral
over the linek;=N\;/i+«;, wherek; is real, through the
standard contour integral methodology. The constaris
calculated from,BaZ.F/aKio"Kj. The pure imaginary saddle
point \/i is given by

IF(N)
(?)\i = _Xi . (24)

Equation(220 shows that Eq(24) is the same as Eq10).
In the same manner as E@3), one has

<5(x—x)>erxp[—; NXj—BFN)|. (25

From Egs.(23) and(25), one can obtain

\ (X;8(X—=x))
<Xi>)\_ <5(X_X)> . (26)
One can employ the saddle point method only wifén)
andx; have sufficiently large values. X; is proportional to
the particle numbeN, thenA(\) andx; have large values at
the large-number limit of particlesN— «), becauseF(\)
«N in EQ. (220. This limit is given by the thermodynamic
limit.

is not surprising. Mori and Fujisaka obtained the term by the
projection ontod functions[13]. The projection onto thé
function is equivalent to that onto the arbitrary functions
[29].

The physical meaning of the streaming velocity term
shows that the invariable form is important for the Markov-
ian approximation. In particular, the invariable streaming ve-
locity term is superior to the frequency term in the linear
Langevin equation. This is becausg&,} in Eq. (18 include
the arbitrary functiorh({X;}), while only {X;} themselves
are selected in the linear Langevin equation. The Markovian
approximation works well only when slow variables are se-
lected as{A,}. Usually, if values of{X;} vary slowly, a
value of an arbitrary functiom({X;}) also varies slowly.
Then the Markovian approximation is applicable only to the
invariable streaming velocity term.

The second streaming velocity terms in Sec. Il are linked
with some phenomenological theories without the advantage
in the Markovian approximation. In some phenomenological
theories, the linearization of a nonlinear reversible term
yields the frequency term in the linear Langevin equation. A
good example is given by the hydrodynamic equations, such
as the Navier-Stokes equation. The linearization of the hy-
drodynamic equations yields the linear Langevin equations
[12]. This shows that the reversible terms in the hydrody-
namic equations are obtained in the same manner as that in
Sec. Il

The TDDFM does not have the advantage of the
arbitrary-function projection in the same manner as other
phenomenological theories. The free energy functional term
in the TDDFM does not agree exactly with the invariable
form of the streaming velocity term. However, E®6)
shows that the term approximates to the invariable form
when density fluctuates on a large scale. This is because one
can apply the saddle point method to the large-scale fluctua-
tion including many particles. The term in the TDDFM for
short-scale fluctuations, however, is different from the in-
variable form because they include only a few particles. Nev-
ertheless, the TDDFM has been available for many dynami-
cal properties of liquids even in small-scale fluctuations
[2—9]. The reason for this has never been clear.

The second streaming velocity term can be formulated by
a transport equation, though the present study treated it in the
Langevin equation. Using the Kawasaki-Gunton projection
operator, Zubarev, Morozov, and B developed the same
streaming velocity term as that from the second principle in
the present study21]. In addition, they also derived the
irreversible term in the transport equation. In the Langevin
equation with the second streaming velocity term, the
memory function and random force will be discussed else-
where[23].
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(A1) show that the irreversible term and random force are

APPENDIX A: INVARIABLE FORMS OF THE independent of an arbitrary functioh({X;}).

IRREVERSIBLE TERM AND RANDOM FORCE Equations(Al) lead to the ir_reversible terms. Using Egs.
(10) and(2b), Eq. (Ala) is rewritten as

In this appendix, the invariable forms are established for
the second and third terms on the right-hand side in(Ea). J“ . (X
First, equations similar to E@3) are written for the transport dRI(DR(0))=(Gi({XiH)As)-
coefficient and random force. These equations lead to the
invariable form of the irreversible term. In addition, it is When A,=h({X;}), the functional differentiation with re-

(A2)

shown that the random force has an invariable form. spect toh({x;}) yields
|
gi({xi){8(X=x))= fo dt{ <mRh(0)> + < Ri(t) mth({Xi})> ] : (A3)

Here (Ri(t)QA)=(R;(t)A) was employed, wherd is an arbitrary operator. Then, using Eé1lb), one can obtain the
irreversible term from Eq(A3) by

1 o0
gi({xi}H) = mfo dt(R;(t)iL 8(X—x)) (Ada)
__ ! fdtZ<Rt LX; 5x— > Adb
=50X—x) () ) (X=X) (Adb)

1 » p) _
|
For the random force, EqA1b) is satisfied, iff;({x;}) is d ORi(t) S _

given by Eq.(6) andM,(t) = 8(t) 8, Since Eq.(6) satis- dt h() — Bh(aD) (QILQRi(t)).  (A7b)

fies Eq.(3), one has

_ If M (t)=06(t) 4, then
Ri(0) =X~ fi({Xi}). (A5) QILQR()=ILR(D+8)gi({x}).  (A8)
Thus Thus
OREO) _ A6 i iL t) =il ——— ORi(1) (A9)
Shxn (A9) an(pxh RO S
Next the time evolution of$R;(t)/Sh({x;}) is considered. The subsitution of EG(A9) into Eq.(A7b) yields
e 4 RW RO
SRi(1) 5 dt sh(x})) ~ oh(lx))
A €R(0),  (A7a) ,
oh({xi})  sh({xi}) From Eqgs.(A10) and(A6), one can obtain EqA1b).

The summation of these terms yields a nonlinear Lange-
one has vin equation
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Xi= (X))~ gi({XiH +Ri(1). (A1D)
Heref;({X;}) andg;({X;}) are given by Eqs(6) and(A4c).
APPENDIX B: DERIVATION OF TDDFM

This appendix gives the calculation of E49). Using the
Poisson bracket,

(3N ={{3(r),H}pe)y

(43

(Bla)

) -

_B_lf dr{‘](r)rpe}PBeXF{E i X

AKIRA YOSHIMORI

PRE 59

:_,3_1J dF{J(r),Pe}PBeXF{Z )\ixi}

o)

Here p. is the distribution function in the canonical en-
semble. The integration by parts yields

(B1b)

kBT<{J(r),ex;{2i xixi“PB><exp[Z xixiDl (B2a
kBT<[J(r),Z xixi}PBexp[Zi NiX ><exr1[2I }\iXiD_l
(B2b)

=kaT 2 M({I(r) X} pey (B29)

Substituting{X;} ={J(r),p(r)}, one can obtain Eq19).
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