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Persistent random walk model for transport through thin slabs

Marián Boguñá, Josep M. Porra`, and Jaume Masoliver
Departament de Fı´sica Fondamental, Universitat de Barcelona Diagonal 647, Barcelona 08028, Spain

~Received 10 February 1999!

We present a model for transport in multiply scattering media based on a three-dimensional generalization
of the persistent random walk. The model assumes that photons move along directions that are parallel to the
axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering
propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission
time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for
approximation schemes to multiple light scattering.@S1063-651X~99!10006-0#

PACS number~s!: 05.40.2a, 05.60.2k, 66.90.1r
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I. INTRODUCTION

Photon migration in multiply scattering media has be
modeled in several different ways which are basically p
nomenological@1–4#. Among them, we can cite linear tran
port theory, diffusion theory, and random walk mode
@1–8#. However, the most complete and satisfactory acco
of transport is only provided by the solution of an approp
ate transport equation especially when strongly anisotro
scattering is present. Unfortunately, there are no general
lytical solutions other than numerical ones for such eq
tions. This fact makes fitting experimental data to theo
very difficult. Therefore, many investigators have develop
a number of approximation schemes to derive tractable m
els from a mathematical point of view. The common featu
of these approximations is to assume that the most impor
aspects of transport in a multiply scattering media can
captured by variants of either diffusion theory or rando
walk theory@4#. Nevertheless, the simplest versions of diff
sion and random walks cannot account for crucial aspect
transport in disordered media, such as anisotropic scatte
which are critical when considering light propagation
short times or through narrow slabs. Diffusionlike theor
become more accurate when the number of scattering ev
is large enough to work with an isotropic Gaussian pho
concentration.

Basically, two kind of approaches have been develope
overcome the difficulty of strongly anisotropic angular sc
tering. The first one was proposed by Ishimaru@5# and con-
sists in using a telegrapher’s equation~TE! as an approxima-
tion to the complete transport equation. The telegraph
equation can be considered either as a diffusion equa
with inertia or a wave equation with damping, and it inco
porates some form of momentum which can be used to
count for forward scattering effects. We have recently sho
@8# that while the TE is theexact transport equationin one
dimension, it does not provide better results than the simp
diffusion equation in higher dimensions. However, in stro
absorbing media, it has been suggested that a phenom
logical TE can improve predictions of the diffusion approx
mation@9#. The second approach, proposed by Gandjbak
et al. @10,11#, exploits a random walk image of multiple ligh
scattering, with properly scaled parameters so as to take
isotropy into account. This method has been quite fruitfu
PRE 591063-651X/99/59~6!/6517~10!/$15.00
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explaining results at long times but does not properly
count for observed events at short times.

Neither of these approaches can fully fit the experimen
results of light propagation through thin slabs. The transm
sion probability measured in transmission-wave spectr
copy @12# is reasonably well characterized for slabs that
thick enough for ballistic photons not being transmitte
With the same size limitation on the slab, the shape of
transmitted pulse obtained in time-resolved experiments
ing ultrashort light pulses@13,14# can be fitted to the profiles
deduced from the diffusion approximation@1#. Using the
transmitted pulse, the mean time for a photon to cross
slab, the transmission time, can be computed. The bre
down of diffusion theory in predicting this time appears f
slabs of sizes less than 10 times the transport mean free
@13#. Below this limit, the behavior of these quantities cann
be derived using the diffusion approximation. In this pap
we propose a model for which we calculate exactly both
transmission probability and the average transmission t
for all slab sizes, in addition to other relevant magnitude

Our model is the continuum limit of a generalization
the persistent random walk~PRW! to three dimensions. In a
recent paper@15# we have developed this extension, based
a cubic lattice, of the PRW to dimensions greater than 1. T
persistent random walk is perhaps the simplest generaliza
of the ordinary random walk@16# that incorporates some
form of momentum, that is, persistence into the purely r
dom motion. Moreover, as was first shown by Goldste
@17,18#, the continuum limit of the one-dimensional PRW
obeys the telegrapher’s equation, which in one dimens
turns out to be the exact transport equation@8#. The model
obtained coincides with the common model of transp
theory @1# for a particular phase function, that is, for a sp
cific relation between the scattering angles. The great adv
tage of this hypothesis is that it makes the model comple
solvable.

The paper is organized as follows. In Sec. II, the gene
equations of our PRW model are derived. In Sec. III w
evaluate the survival probability of particles inside the s
and obtain the exact expressions for the mean escape
and the mean transmission time. Section IV is devoted
stationary properties such as the stationary particle con
tration and the transmission and reflection coefficients. T
results given by the diffusion approximation when applied
6517 ©1999 The American Physical Society
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our model are addressed in Sec. V. Conclusions are draw
Sec. VI.

II. THREE-DIMENSIONAL PERSISTENT RANDOM
WALK IN THE SLAB

We consider the infinite slab of thicknessL. The physical
picture behind the random walk theory for multiple scatt
ing transport is that photons move between collisions i
straight line at a constant velocityv that is characteristic o
the medium. The scattering events change the directio
which photons are traveling but not the magnitude of
velocity v. The number of collisions follow a Poisson law o
ratel. In this way, the mean time between two consecut
scattering events isl21, or equivalently, the scattering mea
free path isl s5vl21. We show below that absorption can b
easily introduced in this formulation but we do not consid
it for the moment.

The last magnitude required to characterize the mode
the phase functionf (g), which provides the probability den
sity function of the relative angle between the photon dir
tion of motion before and after a collision. In our model, th
function reads

f ~g!5~12b!d~g2p/2!1bd~g2p!, ~2.1!

with the additional limitation that among the orthogonal d
rections only the four parallel to the axesX, Y, or Z are
possible. In other words, after a collision photons will eith
reverse their previous direction with probabilityb or turn to
one of the four possible orthogonal directions with probab
ity (12b)/4 each. Figure 1 shows a realization of a phot
path between the two faces of the slab at the planesx50 and
x5L according to our model. Forward scattering is incorp
rated automatically in the model by the definition ofl be-
cause a forward collision is completely equivalent to strai
motion. In the Appendix, we explain how to rescalel and
the scattering probabilities in order to work with a pha
function with no forward scattering as Eq.~2.1!. The local
anisotropy of the scattering is quantified by the average va
of the cosine of the scattering angle,g5^cosg&. In our case,

FIG. 1. Sample of the trajectory of a photon inside the sl
Note the situation of the axes.
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g52b @see Eq.~2.1!#. Therefore, the transport mean fre
path or isotropization length is

l iso5 l s /~12g!5 l s /~11b!. ~2.2!

Let us denote byp(6k)(r,t) (k51,2,3) the probability den-
sity function for a photon to be atr5(x,y,z) at time t mov-
ing in the direction6k. Thus k511(21) means that the
particle is moving along thex axis in the positive~negative!
direction. Analogouslyk562 or k563 means that the
photon is moving on they axis or thez axis. Under the above
assumptions we have shown elsewhere that, in the c
tinuum limit, the functionsp(6k)(r,t) obey the following set
of coupled equations@15#:

]p(1k)~r,t !

]t
52v

]p(1k)~r,t !

]xk
2lp(1k)~r,t !1lbp(2k)~r,t !

1
1

4
l~12b!(

j Þk
@p(1 j )~r,t !1p(2 j )~r,t !#,

~2.3!

]p(2k)~r,t !

]t
5v

]p(2k)~r,t !

]xk
2lp(2k)~r,t !1lbp(1k)~r,t !

1
1

4
l~12b!(

j Þk
@p(1 j )~r,t !1p(2 j )~r,t !#

~2.4!

(k51,2,3). Let us now specify the initial and boundary co
ditions that are necessary to solve this set of equations.
assume that thex axis is orthogonal to the slab sides
shown in Fig. 1. Thus boundary conditions are

p(11)~x50,y,z;t !5p(21)~x5L,y,z;t !50, ~2.5!

which take into account that any particle cannot enter
slab from outside. Internal reflection due to optical ind
mismatch at the slab surfaces is not considered althoug
might be incorporated by changing the boundary conditio
We must have some care in handling the initial conditio
since photons are injected atx50 into the slab and this
initial condition is in contradiction with boundary conditio
~2.5! when t50. To avoid such a problem we assume th
photons are injected inside the slab at a depthx0 and take the
limit x0→01 at the end of the calculations. Consequent
the initial conditions are

p(11)~x,y,z;0!5d~x2x0!d~y!d~z!, ~2.6!

p(21)~x,y,z;0!5p(62)~x,y,z;0!5p(63)~x,y,z;0!50.
~2.7!

In what follows we will work with dimensionless vari
ables defined by

t85lt, r85lr/v, ~2.8!

and for notational convenience we drop primes hereaf
Note that this scaling is equivalent to settingv51 and l
51 in the above equations; in other words, we measure t

.
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in units of the mean time between collisionsl21 and length
in units of the scattering mean free pathl s5vl21.

The solution to the problem posed by Eqs.~2.3!–~2.7! is
easily obtained by using the following joint two-dimension
Fourier and Laplace transform:

p̃~x,v;s!5E
2`

`

dye2 iv2yE
2`

`

dze2 iv3zE
0

`

dte2stp~r;t !,

~2.9!

wherev5(v2 ,v3). From the joint transformation of system
~2.3!–~2.4! for k52,3, we get the algebraic relation

(
j Þ1

@ p̃(1 j )~x,v;s!1 p̃(2 j )~x,v;s!#

52F~v;s!@ p̃(11)~x,v;s!1 p̃(21)~x,v;s!#,

~2.10!

where

F~v;s![
f ~v2 ;s!1 f ~v3 ;s!1 f ~v2 ;s! f ~v3 ;s!

42 f ~v2 ;s! f ~v3 ;s!
~2.11!

and

f ~v;s![
~12b!@s1~11b!#

@s1~12b!#@s1~11b!#1v2
. ~2.12!

The variablev2 is the modulus of vectorv. The substitution
of Eq. ~2.10! into Eqs.~2.3! and~2.4! ~with k51) results in
the following set of equations forp̃(61)(x)[ p̃(61)(x,v;s):

dp̃(11)~x!

dx
2hp̃(11)~x!2cp̃(21)~x!5d~x2x0!,

~2.13!

dp̃(21)~x!

dx
1hp̃(21)~x!1cp̃(11)~x!50, ~2.14!

whereh5h(v;s) andc5c(v;s) are defined by

h[
1

2
~12b!F~v;s!2~s11!,

~2.15!

c[
1

2
~12b!F~v;s!1b.

We have thus turned the original problem~2.3!–~2.7! into
the simpler problem given by Eqs.~2.13! and ~2.14! and
boundary conditions~2.5!. Note that we have actually re
duced the transport problem through a three-dimensio
slab to a one-dimensional problem which is very similar
the problem of solving the one-dimensional telegraphe
equation in the presence of traps, a problem we success
addressed some time ago@18,19#.

The exact solution to Eqs.~2.13! and ~2.14! along with
Eq. ~2.5! is straightforwardly obtained and the solution c
be written as
l

al

s
lly

p̃(11)~x!5~m2h!Ae2mx2~m1h!Bemx, ~2.16!

p̃(21)~x!5c@Ae2mx1Bemx#, ~2.17!

whereh andc where defined in Eq.~2.15! andm5m(v;s) is
given by

m5Ah22c2. ~2.18!

The quantitiesAj and Bj ( j 51,2) can be found from the
boundary conditions atx50 andx5L and from the discon-
tinuity, due to the initial condition, of the densitiesp̃61(x) at
the photon injection pointx0. After some algebra we obtain

A5H ~m1h!x~L2x0!/~m2h!, x,x0 ,

e2mL@~1/2m!e2mx02x~L2x0!#, x.x0 ,
~2.19!

B5H x~L2x0!, x,x0 ,

x~L2x0!2~1/2m!e2mx0, x.x0 ,
~2.20!

where

x~x![
~m2h!sinhmx

2m@m coshmL2h sinhmL#
. ~2.21!

Equations~2.16!–~2.21! furnish the complete solution to
our problem. In those cases where particles are injected
the surface of the slab, the exact solution can be simpli
after taking the limitx0→01 in the expressions above. I
this case we have

p̃(11)~x!5F 1

2m
2x~L !G@~m2h!e2m(L2x)1~m1h!emx#,

~2.22!

p̃(21)~x!5cF 1

2m
2x~L !G@e2mx1emx#. ~2.23!

In most situations, one is interested in photon concen
tion regardless of photon velocity. The total probability de
sity p(r,t) for the position independent of the velocity rea

p~r;t !5 (
k51

3

@p(1k)~r;t !1p(2k)~r;t !#. ~2.24!

It was mentioned above that absorption can be readily in
duced in our formulation. Indeed, if photons can be absor
at any point of the medium at a constant ratela independent
of the position and direction of photon motion, then it
enough to multiply all densities by the factor exp(2lat) @4#
to incorporate absorption. Thus, for instance, the total d
sity ~2.24! will be

pa~r;t !5e2latp~r;t !. ~2.25!

In the Laplace domain, the relation between quantities w
there is or not absorption becomes particularly simple, si
in this case we have

p̂a~r;s!5 p̂~r;la1s!, ~2.26!
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wherep̂a(r;s) is the Laplace transform of the total probab
ity density function.

III. SURVIVAL PROBABILITY: CHARACTERISTIC
TIMES

We now use the exact solution, Eqs.~2.22! and ~2.23!,
obtained in the previous section to calculate several cha
teristic times of photon motion that are relevant for tim
resolved experiments. To this end we will first evaluate
survival probabilityS(t), which is the probability the particle
is still inside the slab at timet. In terms of the total probabil-
ity density function in the presence of traps,p(r;t), which
we have just obtained above, the survival probability can
evaluated by@4#

S~ t !5E
0

L

dxE
2`

`

dyE
2`

`

p~r;t !dz. ~3.1!

In what follows we assume that we deal with an absorb
medium of ratela . We denote bySa(t) the survival prob-
ability in the presence of absorption; its Laplace transform
given by @cf. Eqs~2.25! and ~2.26!#

Ŝa~s!5E
0

L

dxE
2`

`

dyE
2`

`

p̂~r;s1la!dz, ~3.2!
i-
e

on
im
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wherep̂(r;s1la) is the Laplace transform of the nonabsor
ing total probability density. In terms of the joint Fourie
Laplace transform defined in Eq.~2.9! we have

Ŝa~s!5E
0

L

q̂~x;s1la!dx, ~3.3!

where

q̂~x;s![ p̃~x,v;s!uv5(0,0) . ~3.4!

Moreover, we see from Eqs.~2.10! and ~2.24! that

Ŝa~s!5@112F~s!#E
0

L

@ q̂(11)~x,s!1q̂(21)~x,s!#dx,

~3.5!

where q̂(61)(x,s) is defined as in Eq.~3.4! with p̃(x,v;s)
replaced by the densityp̃(61)(x,v;s). FunctionF(s) is sim-
ply F(v;s), Eq. ~2.11!, at v5(0,0),

F~s![F~v;s!uv5(0,0) . ~3.6!

The substitution of Eqs.~2.16! and ~2.17! into Eq. ~3.5!
yields
Ŝa~s!5
2@ha coshma~L1x0!/22ma sinhma~L1x0!/2#sinhma~L2x0!/21ca sinhma~L2x0!

~s1la!@ha sinhmaL2ma coshmaL#
, ~3.7!
on
l

l
-
n

where@cf. Eqs.~2.15!, ~2.18! and Eq.~3.6!#

ha5
1

2
~12b!F~la1s!2~la1s11!,

~3.8!

ca5
1

2
~12b!F~la1s!1b, ma5Aha

22ca
2.

Knowledge ofŜa(s) allows us to obtain the mean res
dence time^Ta& of photons inside the slab. Note that th
residence timeTa coincides in the absence of absorpti
with the escape time out of the slab. The residence t
moments will be given, in terms of the Laplace transfo
Ŝa(s), by

tn~L,la!5~21!n21n
dn21Ŝa~s!

dsn21 U
s50

. ~3.9!

The mean residence time is thus given byt15^Ta&5Ŝa(0).
From now on we will assume that photons are initia

injected on the surface of the slab and thereforex0501.
From Eqs.~2.22!, ~2.23!, and~3.5! we get

t1~L,la!5
1

la
F12

m01c0 sinhm0L

m0 coshm0L2h0 sinhm0LG ,
~3.10!
e

whereh0 , c0, andm0, are given by Eq.~3.8! after settings
50, that is,

h05
1

2
~12b!F~la!2~la11!,

~3.11!

c05
1

2
~12b!F~la!1b, m05Ah0

22c0
2.

The behavior of the mean residence time depends
whether the slab thicknessL is less or greater than a critica
value defined by

Lc5
1

m0
. ~3.12!

In Fig. 2, the mean residence time, Eq.~3.10!, is plotted as a
function of the slab thicknessL. As in many experimenta
settings@14#, we will assume in what follows that the isotro
pization length l iso is much shorter than the absorptio
length, i.e.,l a5vla

21@ l iso5vl21/(11b). In this case@see
Eq. ~3.11!#, the factorm0 can be approximated as follows:

m0;A 3

l al iso
1O~ l iso/ l a!, ~3.13!

and the critical thickness is given by
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Lc'Al al iso/3. ~3.14!

Note that we have reintroduced units, Eq.~2.8!, in this dis-
cussion. If no absorption exists,la50 andl a5Lc5`, while
if la5`, then l a5Lc50. Therefore, for thin slabs wher
L!Lc absorption is negligible, but for thick slabs whereL
@Lc , the medium is strongly absorbing. We also note tha
our simplified model for transport the condition for negle
ing absorption does not simply consist in comparing s
thicknessL with the absorption lengthl a , but to compareL
with Lc , that is, with the square root ofl a . Hence, the sizeL
for which one does not have to take into account absorp
is less than one might thinka priori. Whether this observa
tion is a particular feature of our model, due to the fact t
particles can move parallel to slab faces without any bo
~see below!, or it is a general property will be investigate
further.

The absorbing and nonabsorbing regimes can be cle
seen from the asymptotic behavior of the mean reside
time as a function of slab thicknessL ~see Fig. 2!. Thus, from
Eq. ~3.10! it follows that in the limit of high absorption and
L@Lc , the escape time approaches a constant value i
pendent of slab thickness:

t1~L,la!5
1

la
F11

c0

h02m0
1O~e2L/Lc!G . ~3.15!

The values ofc0 , h0, andm0 are those given in Eq.~3.11!
but with units. For instance, coefficientc0 readsc05l(1
2b)F(la /l)/(2v)1lb/v and has dimensions of@L21#. In
the low-absorption limit, assuming thatL!Lc , we can see
from Eq. ~3.10! that

t1~L,la!;
2la13~12b!l

2la1~12b!l

L

v
. ~3.16!

In the limit la→0 when no absorption is present, we hav

FIG. 2. Mean escape timet1(L,la) in l21 units as a function
of slab sizeL in l 5v/l units. The values of the absorption ratela

are la50.1l ~solid line!, la50.05l ~dotted line!, la50.033l
~short dashed line!, andla50.025l ~long dashed line!. In this fig-
ure,b50.5 andx0501.
n

b

n

t
d

rly
ce

e-

lim
la→0

t1~L,la!5^T&53
L

v
. ~3.17!

The mean escape time in this limit is 3 times as much as
ballistic time to cross the slab. This is somewhat surpris
since one would expect that, asL→0, the escape time shoul
approach the ballistic time,t1;L/v. Nevertheless, one ca
show that this longer time is due to those particles whi
after the first collision, remain moving parallel to the sla
faces. Indeed, we first note that the average time that tak
particle moving in a plane parallel to the slab faces to lea
such a plane is

TYZ5
2

l~12b!
. ~3.18!

This result is readily obtained by taking into account th
after a collision there is a probabilityb1(12b)/2 that such
a particle does not leave the plane. WhenL→0, the main
contribution to the escape time comes from those partic
that do not suffer any collision and therefore take a timeL/v
to cross the slab. The probability that a particle is not sc
tered is exp(2lt) which is approximately 12lL/v whenL
→0. However, those particles that are scattered in a di
tion parallel to the slab faces add to the escape time twic
much as the first ones. The probability that a particle suff
a collision that brings it to move in such a direction is t
scattering probability 12exp(2lt);lL/v times the probabil-
ity, 12b, to be scattered in the right direction. Therefor
the escape time whenL→0 reads

Tesc;
L

v S 12l
L

v D1l
L

v
~12b!TYZ1O~L2!53

L

v
,

~3.19!

where we have used Eq.~3.18!.
In fact, the transmission time@13# is the average time

usually measured in time-resolved experiments instead of
escape time given above. The transmission time is the m
of the time that takes a photon to leave the slab through
opposite face to that it was injected. We will evaluate t
transmission time when absorption is negligible, although
a straightforward but lengthy calculation one can also d
with the absorbing case. In what follows we use again
dimensionless variables given by Eq.~2.8!. Let us denote by
Jtr(t) the flux of particles leaving the slab through the opp
site face of the entering one. The probability density funct
of the transmission timeptr(t) is then given by

ptr~ t !5
Jtr~ t !

E
0

`

Jtr~ t !dt

. ~3.20!

In our case, the flux reads

Jtr~ t !5vE
2`

`

dyE
2`

`

dzp(11)~x5L,y,z;t !, ~3.21!

where v51 since we are using dimensionless units. T
Laplace transform ofptr(t) is
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p̂tr~s!5
q̂(11)~L,s!

q̂(11)~L,0!
, ~3.22!

where

q̂(11)~x;s![ p̃(11)~x,v;s!uv5(0,0) . ~3.23!

In terms ofp̂tr(s), the mean transmission time

t tr~L !52
dp̂tr~s!

ds
U

s50

~3.24!

can be calculated from Eq.~2.22! and is

t tr~L !5LS 21
L

2l iso
D . ~3.25!

In the limit L! l iso, the transmission time ist tr(L);2L,
which is twice as much as the ballistic time to cross the s
As in the case of the escape time, this is again due to th
particles moving parallel to the slab sides. We mention t
this anomalous effect of a lack of convergence of charac
istic times to the ballistic time whenL→0 has been reporte
for other transport models although for higher-order m
ments only@20#. For a thick slabL/ l iso@1 and the transmis
sion time becomes in dimensionless units, Eq.~2.8!,

t tr~L !;
L2

2l iso
~3.26!

or, after reintroducing units,

t tr~L !;
L2

2v l iso
. ~3.27!

This result agrees with that obtained from the diffusion a
proximation although we postpone the discussion about
diffusion approximation to Sec. VI. The transition betwe
the ballistic and diffusive regimes occurs whenL;5l iso.

IV. STATIONARY PROPERTIES

In this section we study the stationary properties of
model that are relevant in cw experiments. Specifically
will first obtain the stationary particle concentration insi
the slab. We assume that photons are continuously inje
at a raten0, all of them moving to the right, at the initia
point x0 @21#. Absorption is also considered at a constant r
la . Let ra(xux0) be the stationary particle concentration i
side the slab. In terms of the total probability density fun
tion p(x,y,z;t) of a point source atx0 @cf. Eq. ~2.24!# we
have

ra~xux0!5n0E
2`

`

dyE
2`

`

dzE
0

`

dte2latp~x,y,z;t !.

~4.1!

Using Eq.~2.10!, we get

ra~xux0!5n0@112F~la!#@ q̂(11)~x,la!1q̂(21)~x,la!#,
~4.2!
b.
se
t
r-

-

-
e

e
e

ed

e

-

whereF(s) is given by Eq.~3.6!, andq̂(6)(x,s) is defined by
Eq. ~3.4!. Now the substitution of Eqs.~2.16! and~2.17! into
Eq. ~4.2! yields

ra~xux0!5G1@~h02c0!sinhm0x2m0 coshm0x#

~x,x0! ~4.3!

and

ra~xux0!5G2@~h02c0!sinhm0~L2x!

2m0 coshm0~L2x!# ~x.x0!, ~4.4!

where

G15n0

c0@2la13~12b!#sinhm0~L2x0!]

m0@2la1~12b!#@h0 sinhm0L2m0 coshm0L#
,

~4.5!

G25n0

@2la13~12b!#@m0 coshm0x02h0 sinhm0x0#

m0@2la1~12b!#@h0 sinhm0L2m0 coshm0L#
,

~4.6!

andh0 , c0, andm0 are given by Eq.~3.11!. We note that the
escape timet1(L,la), Eq. ~3.10!, can also be obtained in
terms ofra(xux0) using the flux over population method a
@22,23#

t1~L,la!5
1

n0
E

0

L

ra~xux0!dx. ~4.7!

In Fig. 3, we plotra(xux0) for several values of the absorb
ing ratela . For finite values ofla the concentration profile
decays exponentially while in the absence of absorption
have the linear behavior:

r~xux0!5n0

3~L2x0!~ l iso1x!

l iso~2l iso1L !
~x,x0!, ~4.8!

FIG. 3. Stationary concentration of particlesra(xux0) ~in l 21

5l/v units! inside the slab forb50.5, n05l, L510v/l, x0

5v/l, andla50.1l ~dotted line!, la50.04l ~short dashed line!,
la50.025l ~long dashed line!, andla50 ~solid line!. Positionx is
plotted in l 5v/l units
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and

r~xux0!5n0

3~2l iso1x0!~ l iso1L2x!

l iso~2l iso1L !
~x.x0!.

~4.9!

The discontinuity ofr(xux0) at x5x0 is simply a conse-
quence of the injection of particles with positive velocit
This discontinuous behavior is a general feature of a
model where particles have finite velocity, and it has a
been observed in models using the telegrapher’s equatio
a transport equation@25#.

We evaluate now a relevant quantity in transmissio
wave spectroscopy: the transmission and reflection co
cientsT(L,la) and R(L,la). As is well known, the trans-
mission ~reflection! coefficient is related to the flux o
particles that, being injected in one side, leave the slab f
the opposite~same! side. The transmission coefficient is th
integral over all times of the transmitted fluxJtr(t) and its
expression is

T~L,la!5E
0

`

Jtr~ t !dt

5vE
0

`

dtE
2`

`

dyE
2`

`

dze2latp(11)~x5L,y,z;t !,

~4.10!

wherev51 because of dimensionless units. When abso
tion is not considered, the definition ofJtr(t) used in this
expression is equivalent to Eq.~3.21!. The reflection coeffi-
cient is defined analogously but taking the flux atx50. In
our model, where fluxes are discrete, we have the sim
expressions in terms of the Laplace-Fourier transform
p(61)(x,v;s):

T~L,la!5v p̃(11)~L,v;la!uv5(0,0) ~4.11!

and

R~L,la!5v p̃(21)~0,v;la!uv5(0,0) , ~4.12!

wherev51 because of dimensionless variables. Assum
that x0501, we obtain from Eqs.~2.22! and ~2.23! that

T~L,la!5
m0

m0 coshm0L2h0 sinhm0L
~4.13!

and

R~L,la!5
c0 sinhm0L

m0 coshm0L2h0 sinhm0L
, ~4.14!

In Fig. 4, we plot these functions for different absorpti
rates. Note that, due to absorption,R(L,la)1T(L,la)Þ1.
In the absence of absorption, these coefficients reduce t

T~L,0!5
2l iso

2l iso1L
, R~L,0!5

L

2l iso1L
, ~4.15!

and obviouslyR(L,0)1T(L,0)51.
y
o
as

-
fi-

m

-
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V. DIFFUSION APPROXIMATION

For the model proposed, we have been able to obtain
relevant quantities exactly. This is a rather exceptional c
due to the peculiar form of the model phase function, E
~2.1!. In general, most magnitudes have to be calcula
within an approximation scheme. Among them, diffusi
theory is the most often used in analyzing experimental
sults. By comparing our results with those given by the d
fusion approximation, we can test how well this approa
works with our model. This comparison will provide add
tional evidence about the limits of the diffusion approxim
tion. In what follows, absorption is neglected because dif
sion theory gives better results when there is no absorp
@24#.

The diffusion constantD that appears in the diffusive
theory can be written as

D5
v l iso

3
, ~5.1!

wherev is the photon velocity inside the medium andl iso is
the isotropization length defined in Sec. II. In addition toD,
diffusion theory introduces two more parameters, the
trapolation lengthl e and the penetration lengthl p , to treat
the boundary conditions and the source of photons, res
tively. In terms of these parameters, the transmission co
cient predicted by diffusion theory is@25#

Tdif5
l p1 l e

L12l e
. ~5.2!

FIG. 4. TransmissionT and reflectionR coefficients as a func-
tion of slab sizeL in l 5v/l units for b50.5, x0501 andla5l
~solid line!, la50.1l ~dotted line!, la50.01l ~short dashed line!,
andla50.001l ~long dashed line!.
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When L is large enough to disregard the ballistic photo
~those that cross the slab without being scattered!, Tdif agrees
with the transmission probability calculated for our mod
Eq. ~4.15!, provided l p and l e are both equal tol iso. The
penetration length obtained corresponds to the most u
value. However, the extrapolation length differs from t
standard value that follows from diffusion theory,l e
52l iso/3. The reason for this apparent disagreement is
limited number of velocity directions allowed by our mode
Indeed, from theexact stationary probability density, Eqs
~4.8! and ~4.9!, the extrapolation length calculated by th
requirement

S 12 l e

d

dxD r~xux0!U
x50

50 ~5.3!

gives preciselyl e5 l iso. A similar calculation yields the sam
value for the extrapolation length at the other slab face, w
L is large enough to neglect the ballistic photons. Moreov
as the diffusive part of the stationary density becomes lin
close to the slab sides, the extrapolation length can als
obtained in this case from the solution ofr(2 l eux0)50.

Once the lengthsl e andl p are known, it is possible to us
the diffusion approximation to calculate other quantities
interest. For instance, the escape time^T& can be obtained
from the mean first-passage time of a free system driven
white noise and the result is

^T&53
L

v
, ~5.4!

which coincides with the exact calculation given by E
~3.17!. The transmission time can also be computed in
diffusion approximation@1#. In order to obtain it, we begin
with the expression for the photon concentration in a s
with faces atx5 l e and x5L1 l e when a unit pulse is in-
jected atx05 l e1 l p52l e ,

p~x,t !5
2

L12l e
(

m51

`

sin
mpx0

L12l e
sin

mpx

L12l e

3expF2
Dtm2p2

~L12l e!
2G . ~5.5!

Note that the latter expression vanishes atx50 and x5L
12l e which correspond to the extrapolated boundaries of
slab of widthL located betweenx5 l e and x5L1 l e . The
transmitted fluxJdif reads

Jdif~ t !52D
d

dx
p~x,t !ux5L1 l e

5
Dp

~L12l e!
2

3 (
m51

`

mFsin
mp~L2 l e!

L12l e
2sin

mp~L13l e!

L12l e
G

3expF2
Dtm2p2

~L12l e!
2G . ~5.6!
s
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Using this result, we obtain the average transmission t
Ttr given by the diffusion approximation, that is,

Ttr5

E
0

`

tJdif~ t !dt

E
0

`

Jdif~ t !dt

5
L214Ll iso23l iso

2

2v l iso
. ~5.7!

To derive this expression, we took into account that for o
model l e5 l iso. In this case, the diffusion approximation
also very accurate because the exact result, Eq.~3.25!, and
Ttr differ only by a constant factor23l iso/2.

Therefore, the diffusion approximation works for ou
model well below the accepted limit of failure of such a
proach for more realistic models@13#. As we have explained
this is a consequence of the limited number of photon dir
tions of motion allowed by the model.

VI. CONCLUSIONS

In this paper we have proposed a model for light prop
gation through a thin slab. The main property of the mode
that photons can only take a restricted set of velocity dir
tions. This limitation has the advantage that has allowed
to compute most relevant properties in experimental stud
without any approximation. Among the interesting quantit
in multiple light scattering experiments, we have conce
trated on the properties of the transmitted flux. In most c
culations, absorption has been taken into account. In part
lar, we have shown its influence in the mean survival time
photon inside the slab.

Our exact calculations have been compared with th
obtained from the diffusion approximation, the most wide
used approach in the analysis of multiple light scatter
data. We were able to obtain the exact expression for
extrapolated length. Using this parameter, the results of
diffusion approximation agree very well with the exact on
even below the region where it is known from experime
that the diffusion approximation does not work. The reas
for this agreement lies on the limited number of directio
along which photons can move. However, the model is re
three dimensional as reflected by the diffusion constant
sociated with it. The diffusion approximation cannot giv
however, the discontinuity in the stationary density at t
position of photon injection. This feature could be used
test other approximation schemes, like the use of a phen
enological telegrapher’s equation.

ACKNOWLEDGMENTS

This work has been supported in part by Direccio´n Gen-
eral de Investigacio´n Cientı́fica y Técnica under Contract No
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APPENDIX: FORWARD SCATTERING

The model explained in Sec. II confines the directions
photon motion to those parallel to the axesX, Y, andZ. Due
to this restriction, forward scattering cannot be distinguish
from straight motion. This property allows us to rewrite t
phase function in such a way that only takes into acco
those collisions that produce a change in motion direct
~including a reversion!, that is, with no forward scattering
included. Indeed, let us assume a general phase functio
our model:

f 1~g!5pfd~g!1pbd~g2p!1pod~g2p/2!, ~A1!

wherepf is the forward scattering probability,pb is the back-
scattering probability andpo gives the probability that after a
collision a photon turns to any of the four orthogonal dire
tions that are parallel to the axesX, Y, and Z. The time
between two successive collisions is distributed accordin
the following exponential probability density function:

p~ t !5
1

t8
exp~2t/t8!, ~A2!

wheret8 is the average time between consecutive scatte
events. The scattering mean free path is simplyvt8. Let
U(t) be the probability that the photon keeps moving in t
same direction for a time greater thant. Using Eqs.~A1! and
~A2! and taking into account that the result of a forwa
collision does not differ from straight motion, we see th
U(t) is given by

U~ t !5P~ t !1 (
k51

`

pf
kE

0

t

P~ t2t8!pk~ t8!dt8, ~A3!

whereP(t)5exp(2t/t8) is the survival probability andpk(t)
is the probability density function for the time of thekth
o

l-

d

alk

m

p

f

d

t
n

for

-

to

g

t

scattering event. The expression forÛ(s), the Laplace trans-
form of U(t), becomes simpler because the sum overk can
be worked out:

Û~s!5
t8

t8s11
1 (

k51

`

pf
k t8k

~t8s11!k11
5

t8

t8s112pf

.

~A4!

The Laplace inversion ofÛ(s) yields

U~ t !5exp~2t/t!, ~A5!

with a new parametert:

t5
t8

12pf
. ~A6!

Therefore, times between scattering events that produc
change in motion direction are also exponentially distribu
with an average time between collisions equal tot. After one
of these events, a photon can only move in an orthogo
direction (g5p/2) or reverse its direction of motion (g
5p). Thus, the phase function can be written

f ~g!5
po

12pf
d~g2p/2!1

pb

12pf
d~g2p!, ~A7!

which agrees with Eq.~2.1! if b5pb /(12pf).
It follows from this analysis that the forward scatterin

probability is incorporated in the model by rescaling the a
erage time between scattering events ast5t8/(12pf) and
changing the phase function from Eq.~A1! to Eq.~2.1!. Note
that the anisotropy factorg is always negative because fo
ward scattering is included in the rescaledl5(12pf)l8 and
not in the phase function.
hys.
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@8# J.M. Porrà, J. Masoliver, and G.H. Weiss, Phys. Rev. E55,
7771 ~1997!.

@9# D.J. Durian and J. Rudnick, J. Opt. Soc. Am. A14, 235
~1997!.

@10# A.H. Gandjbakhche, R.F. Bonner, and R. Nossal, J. Stat. P
69, 35 ~1992!.

@11# A.H. Gandjbakhche, R. Nossal, and R.F. Bonner, Appl. O
32, 504 ~1993!.

@12# D.J. Durian, Phys. Rev. E50, 857 ~1994!.
@13# K.M. Yoo, Feng Liu, and R.R. Alfano, Phys. Rev. Lett.64,

2647 ~1990!.
@14# R.H.J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, Phy

Rev. Lett.79, 4369~1997!.
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