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Persistent random walk model for transport through thin slabs
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We present a model for transport in multiply scattering media based on a three-dimensional generalization
of the persistent random walk. The model assumes that photons move along directions that are parallel to the
axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering
propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission
time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for
approximation schemes to multiple light scatteriff§1063-651X%99)10006-Q

PACS numbegs): 05.40—a, 05.60-k, 66.904+r

[. INTRODUCTION explaining results at long times but does not properly ac-
count for observed events at short times.

Photon migration in multiply scattering media has been Neither of these approaches can fully fit the experimental
modeled in several different ways which are basically phetesults of light propagation through thin slabs. The transmis-
nomenologica[1-4]. Among them, we can cite linear trans- sion probability measured in transmission-wave spectros-
port theory, diffusion theory, and random walk modelscopy[12] is reasonably well characterized for slabs that are
[1-8]. However, the most complete and satisfactory accounthick enough for ballistic photons not being transmitted.
of transport is only provided by the solution of an appropri-With the same size limitation on the slab, the shape of the
ate transport equation especially when strongly anisotropitransmitted pulse obtained in time-resolved experiments us-
scattering is present. Unfortunately, there are no general anaig ultrashort light pulsegl3,14] can be fitted to the profiles
lytical solutions other than numerical ones for such equadeduced from the diffusion approximatidd]. Using the
tions. This fact makes fitting experimental data to theorytransmitted pulse, the mean time for a photon to cross the
very difficult. Therefore, many investigators have developedslab, the transmission time, can be computed. The break-
a number of approximation schemes to derive tractable moddown of diffusion theory in predicting this time appears for
els from a mathematical point of view. The common featureslabs of sizes less than 10 times the transport mean free path
of these approximations is to assume that the most importaff.3]. Below this limit, the behavior of these quantities cannot
aspects of transport in a multiply scattering media can bée derived using the diffusion approximation. In this paper,
captured by variants of either diffusion theory or randomwe propose a model for which we calculate exactly both the
walk theory[4]. Nevertheless, the simplest versions of diffu- transmission probability and the average transmission time
sion and random walks cannot account for crucial aspects dbr all slab sizes, in addition to other relevant magnitudes.
transport in disordered media, such as anisotropic scattering, Our model is the continuum limit of a generalization of
which are critical when considering light propagation atthe persistent random wallPRW) to three dimensions. In a
short times or through narrow slabs. Diffusionlike theoriesrecent papell5] we have developed this extension, based on
become more accurate when the number of scattering evergscubic lattice, of the PRW to dimensions greater than 1. The
is large enough to work with an isotropic Gaussian photorpersistent random walk is perhaps the simplest generalization
concentration. of the ordinary random walk16] that incorporates some

Basically, two kind of approaches have been developed tform of momentum, that is, persistence into the purely ran-
overcome the difficulty of strongly anisotropic angular scat-dom motion. Moreover, as was first shown by Goldstein
tering. The first one was proposed by Ishim@bliand con- [17,18, the continuum limit of the one-dimensional PRW
sists in using a telegrapher’s equati@ik) as an approxima- obeys the telegrapher's equation, which in one dimension
tion to the complete transport equation. The telegrapher'surns out to be the exact transport equati8h The model
equation can be considered either as a diffusion equatioabtained coincides with the common model of transport
with inertia or a wave equation with damping, and it incor- theory[1] for a particular phase function, that is, for a spe-
porates some form of momentum which can be used to acific relation between the scattering angles. The great advan-
count for forward scattering effects. We have recently showriage of this hypothesis is that it makes the model completely
[8] that while the TE is theexact transport equatiom one  solvable.
dimension, it does not provide better results than the simplest The paper is organized as follows. In Sec. I, the general
diffusion equation in higher dimensions. However, in strongequations of our PRW model are derived. In Sec. Il we
absorbing media, it has been suggested that a phenomen®saluate the survival probability of particles inside the slab
logical TE can improve predictions of the diffusion approxi- and obtain the exact expressions for the mean escape time
mation[9]. The second approach, proposed by Gandjbakchand the mean transmission time. Section IV is devoted to
et al.[10,11], exploits a random walk image of multiple light stationary properties such as the stationary particle concen-
scattering, with properly scaled parameters so as to take atration and the transmission and reflection coefficients. The
isotropy into account. This method has been quite fruitful inresults given by the diffusion approximation when applied to
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Let us denote by*Y(r,t) (k=1,2,3) the probability den-
sity function for a photon to be at=(x,y,z) at timet mov-
ing in the directiontk. Thusk=+1(—1) means that the
- particle is moving along th& axis in the positivgnegative
* X direction. Analogouslyk==*2 or k=*3 means that the

A
N
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T

g=— B [see Eq.(2.1)]. Therefore, the transport mean free
7 7 path or isotropization length is
I ol lisos=1s/(1=g)=15/(1+ ). 2.2

Yo x= photon is moving on thg axis or thez axis. Under the above
assumptions we have shown elsewhere that, in the con-
/ tinuum limit, the function®™¥(r,t) obey the following set
Y of coupled equationfl5]:
aptR(r,t) ap (b
- A )+ A 8pR
p L M UDARY i (A
FIG. 1. Sample of the trajectory of a photon inside the slab. 1 ) )
Note the situation of the axes. +Z)\(1—B);k [pC D (r,t)+pCi(r,1)],
i
our model are addressed in Sec. V. Conclusions are drawn in (2.3
Sec. VI.
ap(rt)  apo(rY
- Ap=k (+k)
Il. THREE-DIMENSIONAL PERSISTENT RANDOM ot v IXk AP (nH+ABp (rt)
WALK IN THE SLAB 1
We consider the infinite slab of thicknessThe physical +Z7\(1—B);k [P (r,t)+pCD(r,0)]
picture behind the random walk theory for multiple scatter- '
ing transport is that photons move between collisions in a (2.4

straight line at a constant velocity that is characteristic of _ o

the medium. The scattering events change the direction ikk=1,2,3). Let us now specify the initial and boundary con-
which photons are traveling but not the magnitude of theditions that are necessary to solve this set of equalt|ons. We
velocity v. The number of collisions follow a Poisson law of assume that the axis is orthogonal to the slab sides as
rate\. In this way, the mean time between two consecutiveShOWn in Fig. 1. Thus boundary conditions are

scattering events i1, or equivalently, the scattering mean (+1)( v (= 1) e

free path ids=v\ ~1. We show below that absorption can be prH(x=0y.z)=p (x=Ly.z1)=0, (29
easily introduced in this formulation but we do not conS|derWhiCh take into account that any particle cannot enter the

It f(%rhg]leasrzorrnnaen;itude required to characterize the model islab from outside. Internal reflection due to optical index
g q Thismatch at the slab surfaces is not considered although it

thte pf)hast_e func;tlgm(y)l, \t'.Vh'Ch prlovl;de:s the E[’;Obaﬁ'llty dg_n- might be incorporated by changing the boundary conditions.
3'03:] (;anr(rzul)(t)ir(])r?befgr:ae;nng?grgaecoﬁi:i/sgnln gurr) rr?o(()jgl 'trheig'\Ne must have some care in handling the initial conditions
' ' since photons are injected at=0 into the slab and this

function reads initial condition is in contradiction with boundary condition
(2.5 whent=0. To avoid such a problem we assume that
photons are injected inside the slab at a de@thnd take the
limit x,—0* at the end of the calculations. Consequently,
the initial conditions are

f(y)=(1-B)é(y—wl2)+Bé(y—m), (2.1

with the additional limitation that among the orthogonal di-
rections only the four parallel to the axe§ Y, or Z are
possible. In other words, after a collision photons will either
reverse their previous direction with probabilisyor turn to
one of the four possible orthogonal directions with probabil- 1 Ay (+2 A (+3 L

ity (1— B)/4 each. Figure 1 shows a realization of a photon P (%, 2,0)=p2(xy,2,0)=p' )(x,y,z,O)—(()é 7

path between the two faces of the slab at the plause8 and '

x=L according to our model. Forward scattering is incorpo-  |n what follows we will work with dimensionless vari-
rated automatically in the model by the definitionofbe-  aples defined by

cause a forward collision is completely equivalent to straight

motion. In the Appendix, we explain how to rescaleand t/ =\t r'=xrlv, (2.9

the scattering probabilities in order to work with a phase

function with no forward scattering as E(R.1). The local and for notational convenience we drop primes hereafter.
anisotropy of the scattering is quantified by the average valuBlote that this scaling is equivalent to setting=1 and\

of the cosine of the scattering angtes {cosy). In our case, =1 in the above equations; in other words, we measure time

P I(x,y,2;,0)= 8(x—X0) (y) &(2), (2.9
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in units of the mean time between collisions* and length
in units of the scattering mean free patkv\ 1.
The solution to the problem posed by E¢.3—(2.7) is

easily obtained by using the following joint two-dimensional

Fourier and Laplace transform:

B(x,w;s)=f dye"‘”ny dze"‘”3zf dte S'p(r;t),
— — 0
(2.9

wherew=(w,,w3). From the joint transformation of system
(2.9 -(2.9) for k=2,3, we get the algebraic relation

> [P I(X,w;5) + (X, w;8)]
71

=2F(w;9)[p YV (x,0;8)+ p V(x,w;9)],

(2.10
where
. fwai9)+f(w3;5)+f(wy;5)f(ws;9)
Flawis)= 4—f(wy;9)f(ws;S)
(2.12)
and
Hw:5)= (1-pB)[st(1+p)] (2.12

[s+(1-B)[s+(1+ )]+ w?

The variablew? is the modulus of vectoi. The substitution
of Eq. (2.10 into Egs.(2.3) and(2.4) (with k=1) results in
the following set of equations fqu{™1(x)=p* (X, w;s):

i+
W—hﬁ““(x)—cﬁ“”(xh5(x—x0>,
(2.13
n(—1)
W+hb<—l>(x)+cb<“)(x)=o, (2.14
whereh=h(w;s) andc=c(w;s) are defined by
1
h=31-pF(ws)—(s+1),
(2.19
1
CEE(l—ﬁ)F(w;S)+B.

We have thus turned the original probléth3)—(2.7) into
the simpler problem given by Eq$2.13 and (2.14) and
boundary conditiong2.5). Note that we have actually re-
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PP =(u—h)Ae #~(u+h)Be”,  (2.16

PUD(x)=c[Ae™ ¥+ Be#X], (2.1

whereh andc where defined in Eq2.195 andu = u(w;s) is
given by

(2.18

The quantitiesA; and B; (j=1,2) can be found from the
boundary conditions at=0 andx=L and from the discon-
tinuity, due to the initial condition, of the densitips *(x) at

the photon injection poink,. After some algebra we obtain

u=+he—c-.

[ (et x(L=x0)/ (w=h), X<Xo,

e (12u)e Po—x(L—Xo)], X>Xo,
(2.19

x(L=Xo), <X,
:[X(L—xo)—(l/Z,u)e“XO, X>Xg, (2.20
where
—h)sinh

X(X) (n=h)sinhyex (2.21)

= 2u[pcoshul—hsinhul]’

Equations(2.16—(2.21) furnish the complete solution to
our problem. In those cases where particles are injected on
the surface of the slab, the exact solution can be simplified
after taking the limitx,—0" in the expressions above. In
this case we have

P (%)= %—x(L)}[w—h>e2ﬂ<L-X>+<u+h>e“X],
(2.22
~(—1)()():(: i_ (L) [ #*+eX] (2.23

In most situations, one is interested in photon concentra-
tion regardless of photon velocity. The total probability den-
sity p(r,t) for the position independent of the velocity reads

3
p(r;t)=k21[p<+k><r;t>+p<—k><r;t>]. (2.24

It was mentioned above that absorption can be readily intro-
duced in our formulation. Indeed, if photons can be absorbed
at any point of the medium at a constant rateindependent

of the position and direction of photon motion, then it is
enough to multiply all densities by the factor exp(;t) [4]

to incorporate absorption. Thus, for instance, the total den-
sity (2.24) will be

duced the transport problem through a three-dimensional
slab to a one-dimensional problem which is very similar to
the problem of solving the one-dimensional telegrapher’s

pa(r;t)=e ap(r;t). (2.25

equation in the presence of traps, a problem we successfully the Laplace domain, the relation between quantities when

addressed some time aft8,19.

The exact solution to Eq42.13 and (2.14) along with
Eq. (2.5 is straightforwardly obtained and the solution can
be written as

in this case we have

Pa(r;S)=p(r;\a+9), (2.26

there is or not absorption becomes particularly simple, since
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whereﬁ)a(r;s) is the Laplace transform of the total probabil- wheref)(r;s+ \g) is the Laplace transform of the nonabsorb-
ity density function. ing total probability density. In terms of the joint Fourier-
Laplace transform defined in E¢R.9 we have
lll. SURVIVAL PROBABILITY: CHARACTERISTIC
TIMES

We now use the exact solution, Eq2.22 and (2.23),
obtained in the previous section to calculate several charac-
S : . Where
teristic times of photon motion that are relevant for time-
resolved experiments. To this end we will first evaluate the A~ ]
survival probabilityS(t), which is the probability the particle 4(%;8)=p(X, @:8)|w=(00)- (3.4
is still inside the slab at time In terms of the total probabil-
ity density function in the presence of tragsr;t), which
we have just obtained above, the survival probability can be

evaluated by4] Si(s)=[1+2F(s)] JOL[awx,s)+a<-l><x,s>]dx,

S(t)= fOdef:dyf:p(r;t)dz. (3.2) 3.5

whereq(*1)(x,s) is defined as in Eq(3.4) with p(x,;s)
In what follows we assume that we deal with an absorbingeplaced by the densi@(ﬂ)(x,w;s). FunctionF(s) is sim-
medium of rateh,. We denote byS,(t) the survival prob-  ply F(w;s), Eq. (2.11), at w=(0,0),
ability in the presence of absorption; its Laplace transform is
given by[cf. Eqs(2.25 and(2.26)] F(S)=F(®;9)|wu-(0,0)- (3.9

~ LI\
S.(s)= fo g(x;s+A,)dx, (3.3

Moreover, we see from Eq§2.10 and (2.24) that

éa(s)=dexfm dyfw E,(r;SH\a)dZ, 3.2 ;r(;?dssubstitution of Egs(2.16 and (2.17) into Eq. (3.5
0 — 0 —®

5 2[hycoshu (L +Xg)/2— g Sinhp (L + Xg)/2]sinhp 4 (L —Xg)/2+ €4 Sinh (L — Xg)
a(S) (s+ A )[h,sinhu,L — . coshu L]

: (3.7)

where[cf. Egs.(2.19, (2.18 and Eq.(3.6)] wherehg, cg, and wg, are given by Eq(3.8) after settings
=0, that is,

1
hazi(l_B)F()\a+s)_()\a+s+1)1 1
(3.8) hO_E(l_IB)F()\a)_()\a"_l)a
1 1
Ca=s (1= BIF(\a+5)+ B, pa= = C2 1 e
Cozz(l_ﬂ)F()\a)'f'B, /.LOZ \/hO_CO.

Knowledge ofS,(s) allows us to obtain the mean resi- _ _ _
dence time(T,) of photons inside the slab. Note that the ~The behavior of the mean residence time depends on
residence timeTa coincides in the absence of absorption whether the slab thicknessis less or greater than a critical
with the escape time out of the slab. The residence tim¥alue defined by
moments will be given, in terms of the Laplace transform

o 1
S.(s), by LCZM_o' (3.12
d"~18,(s) . . . .
(L Ag)=(— 1)”‘1n—al (3.9 InFig. 2, the mean residence time, K8.10, is plotted as a
ds"” <0 function of the slab thicknesk. As in many experimental

settingg 14], we will assume in what follows that the isotro-
The mean residence time is thus givenhy=(T,)=S5,(0).  pization lengthlis, is much shorter than the absorption
From now on we will assume that photons are initially length, i.e.|l,=v\; '>liio=vA~Y(1+ B). In this casdsee
injected on the surface of the slab and therefege-0". Eq. (3.11)], the factoruy can be approximated as follows:
From Egs.(2.22), (2.23), and(3.5 we get

[ 3
,lL0+ CO S|nhMOL :| Mo~ T"_O(Iiso“a)a (313)

— a'iso
Mo Coshugl —hgsinhugl

1

Tl(L,)\a) - )\_ 1
a

(3.10 and the critical thickness is given by
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lim rl(L,)\a)=<T>=3E. (3.17
10 Ag—0 %
The mean escape time in this limit is 3 times as much as the
ballistic time to cross the slab. This is somewhat surprising
since one would expect that, Bs- 0, the escape time should
approach the ballistic timeg;~L/v. Nevertheless, one can
show that this longer time is due to those particles which,
after the first collision, remain moving parallel to the slab
faces. Indeed, we first note that the average time that takes a
particle moving in a plane parallel to the slab faces to leave
such a plane is

AT,

10

. 2

ALy
FIG. 2. Mean escape time,(L.\,) in A~ units as a function This result is readily obtained by taking into account that

of slab sizel in | =v/\ units. The values of the absorption ratg after a. ﬁOII:jS|0n therel IS a prr]Obatl)lllw+\$\:/|'_ﬁ)éz tEat suc_h
are \,=0.1\ (solid ling, \,=0.05 (dotted ling, A,=0.033, & Particle does not leave the plane. Whe#-0, the main

(short dashed line and\ ,=0.025\ (long dashed line In this fig- contribution to the escape time comes from those particles

ure, =0.5 andx,=0". that do not suffer any collision and therefore take a tinte
to cross the slab. The probability that a particle is not scat-
tered is exp{-A\t) which is approximately +AL/v whenL
Lo~ 13- (3.14 PEA) bp y

—0. However, those particles that are scattered in a direc-
tion parallel to the slab faces add to the escape time twice as
much as the first ones. The probability that a particle suffers
a collision that brings it to move in such a direction is the

if \g=o0, thenl,=L.=0. Therefore, for thin slabs where gqattering probability + exp(—At)~\L/v times the probabil-
L<L. absorption is negligible, but for thick slabs where v "1 _ g o be scattered in the right direction. Therefore,
>L., the medium is strongly absorbing. We also note that iny, escape time wheln— 0 reads

our simplified model for transport the condition for neglect-

ing absorption does not simply consist in comparing slab L L L

thicknessL with the absorption length,, but to compard. Tesc™ ;( 1—)\; +)\;(1—,8)TYZ+ O(L2)=3;,
(3.19

Note that we have reintroduced units, Eg.8), in this dis-
cussion. If no absorption exists,=0 andl ;=L =, while

with L, that is, with the square root &f . Hence, the sizé

for which one does not have to take into account absorption
is less than one might think priori. Whether this observa- \yhere we have used E(B.18.

tion is a particular feature of our model, due to the fact that | fact, the transmission timgl3] is the average time

particles can move parallel to slab faces without any boungsyally measured in time-resolved experiments instead of the
(see beloy, or it is a general property will be investigated gscape time given above. The transmission time is the mean
further. _ _ . of the time that takes a photon to leave the slab through the

The absorbing and nonabsorbing regimes can be clearlypposite face to that it was injected. We will evaluate the
seen from the asymptotic behavior of the mean residencgansmission time when absorption is negligible, although by
time as a function of slab thicknekgsee Fig. 2 Thus, from 5 straightforward but lengthy calculation one can also deal
Eq. (3.10 it follows that in the limit of high absorption and \yith the absorbing case. In what follows we use again the
L>L., the escape time approaches a constant value indgimensionless variables given by E8.8). Let us denote by
pendent of slab thickness: J,(t) the flux of particles leaving the slab through the oppo-
site face of the entering one. The probability density function
of the transmission time,(t) is then given by

Ju(t)
The values of,, hy, and uo are those given in Eq3.11) Pe(t)=— : (3.20
but with units. For instance, coefficient, readsc,= (1 fo Jy()dt
—B)F(\a/\)/(2v)+\Blv and has dimensions pE ~1]. In
the low-absorption limit, assuming that<L., we can see |n our case, the flux reads
from Eq. (3.10 that

Co

_ 1 —L/L
mi(L )= | 1+ +0(e o], (3.19
a

ho—uo

2\, +3(1- BN L Jn(t)=vJldyﬁcdzrf“’(ﬁL,y,z;t). (3.2
Tl(La)\a)”m;. (3.16

wherev=1 since we are using dimensionless units. The
In the limit A\,— 0 when no absorption is present, we have Laplace transform op,(t) is



6522 BOGUT\IA, PORRA AND MASOLIVER PRE 59

ﬁ (S)_ a(+l)(L,S) (3 22 10.0 T T T T
T athLe” |
where
9 V(x;9)=p " (X, @;8)] 0= (0,0)- (3.23 &
In terms ofp,(s), the mean transmission time §
dpy(s) 3
PulS
(L)==—43 7 (3.24
s=0
can be calculated from E@2.22 and is
L
m(L)=L| 2+ ) (3.29
2|iso

- - . . FIG. 3. Stationary concentration of particlpg(x|xo) (in 11
In ,the,“m't, L <liso, the transmlss_,lorl t_'me isy(L)~2L, =MNv unitg) inside the slab for3=0.5, ng=A\, L=f0¢;/)\, Xo
which is twice as much as the ballistic time to cross the slab._ ,, andx,=0.1\ (dotted ling, \,=0.04 (short dashed line
As in the case of the escape time, this is again due to thosg o 925, (long dashed ling and ,=0 (solid line). Positionx is
particles moving parallel to the slab sides. We mention thapjotted inl =/ units

this anomalous effect of a lack of convergence of character-

istic times to the ballistic time whelh— 0 has been reported whereF (s) is given by Eq(3.6), anda(i)(xls) is defined by

for other transport models although for higher-order mo-g 3.4). Now the substitution of Eqs2.16 and(2.17) into
ments only{20]. For a thick slatl/l;,;>1 and the transmis- Eg:((4..2§.yields q$2.16 (219

sion time becomes in dimensionless units, E48),

L2 pa(X[Xo) =T 1[ (ho— Co)sinhpuoX — wo cOShux]
L)~5— 3.2
T (329 (x<xo) 43
or, after reintroducing units, and
L? x|X0) =I5 (hg— Co)sinho(L — X
2vliso

—pocCoshuo(L=X)]  (X>Xo), (4.9
This result agrees with that obtained from the diffusion ap- h
proximation although we postpone the discussion about th@/nere

diffusion approximation to Sec. VI. The transition between Col 20 o+ 3(1— B)Isinhmo(L — Xo)]

the ballistic and diffusive regimes occurs whier- 5lg,. I';=ng : ,
mol 2N a+ (1= B)][ho sinhuol — uo coshuol ]
IV. STATIONARY PROPERTIES 4.9
In this section we study the stationary properties of the . _ [2Na+3(1— B) ][ mo COShuoXo—No SinhuoXo]
model that are relevant in cw experiments. Specifically we =2~ © o[ 2\ ,+(1— B8) ][ hg Sinhuel — mo coshugl ]’
will first obtain the stationary particle concentration inside (4.6)

the slab. We assume that photons are continuously injected _

at a raten,, all of them moving to the right, at the initial @ndho, Co, andu, are given by Eq(3.11). We note that the
pointx, [21]. Absorption is also considered at a constant rateescape timer;(L,\,), Eq. (3.10, can also be obtained in
Na. Let pa(X|Xo) be the stationary particle concentration in- terms 0fpa(x|Xo) using the flux over population method as
side the slab. In terms of the total probability density func-[22,2

tion p(x,y,z;t) of a point source ak, [cf. Eq. (2.24] we

1 (L
have 7L\ = n—ofo pa(X|Xg)dx. 4.7

pa(x|x0):nof7xdyjlmdzfo dte *a'p(x,y,z;t). In Fig. 3, we plotp,(x|x,) for several values of the absorb-
(4.1 ingratek,. For finite values ok, the concentration profile
decays exponentially while in the absence of absorption we
Using Eq.(2.10, we get have the linear behavior:

a(X|X0) =No[ 1+ 2F (A ) LA V(%A 2) + 3 V(XN Q)1, _ o 3L %) (o X)
perirol e 4.2 pOx0) =0y o]+ 1)

(X<Xgp), (4.8
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and 1.0

(X|X ): n 3(2| iso+X0)(| isot L_X)
P 0 0 liso(2|i50+ I—)

(X>Xg).
4.9

The discontinuity ofp(x|xy) at x=X, is simply a conse-
guence of the injection of particles with positive velocity.
This discontinuous behavior is a general feature of any
model where particles have finite velocity, and it has also
been observed in models using the telegrapher’s equation as 0.0
a transport equatiof25].

We evaluate now a relevant quantity in transmission-
wave spectroscopy: the transmission and reflection coeffi- 10
cientsT(L,\,;) andR(L,\,). As is well known, the trans-
mission (reflection coefficient is related to the flux of
particles that, being injected in one side, leave the slab from
the oppositg'same side. The transmission coefficient is the
integral over all times of the transmitted flulx(t) and its a
expression is

05|

©

T(L,)\a)=fo Jy(t)dt f

0.0

0 5 10
ALt

— Aaty (1) (y — .

_Ufo dtledyfiwdze A Px=Ly.z), FIG. 4. Transmissio and reflectiorR coefficients as a func-

(4.1 tion of slab sizel in I=v/\ units for 3=0.5, X,2=0" and\,=\
(solid line), A,=0.I\ (dotted ling, A,=0.0I\ (short dashed line

wherev=1 because of dimensionless units. When absorpand\,=0.001\ (long dashed ling

tion is not considered, the definition df(t) used in this

expression is equivalent to E¢3.21). The reflection coeffi- V. DIFFUSION APPROXIMATION

cient is defined analogously but taking the fluxxat0. In

del. wh f di ¢ h the simol For the model proposed, we have been able to obtain all
our moadel, where fluxes are discrete, we have the SIMpl€ly a,/ant guantities exactly. This is a rather exceptional case
expressions in terms of the Laplace-Fourier transform o

(=1) e ue to the peculiar form of the model phase function, Eqg.
P (X ws): (2.2). In general, most magnitudes have to be calculated
within an approximation scheme. Among them, diffusion
theory is the most often used in analyzing experimental re-
sults. By comparing our results with those given by the dif-
fusion approximation, we can test how well this approach
works with our model. This comparison will provide addi-
tional evidence about the limits of the diffusion approxima-
tion. In what follows, absorption is neglected because diffu-

wherev=1 because of dimensionless variables. Assumin%- . . .
. on theor es better results when there is no absorption
thatx,=0", we obtain from Eqs(2.22 and(2.23 that [£4] y v uits w ! Pl

The diffusion constanD that appears in the diffusive

T(LA)=vP UL, 0\ w-(00) (4.1
and

R(L A2 =0 (0,0 3)| = (0.0 (4.12

Mo ;
= theory can be written as
T(LAa) o Coshuol —hg sinhuol (4.13 v
I
and D=2, (5.1)
3
Co sinhpuol _ . . .
R(L,Ay)= (4.149 wherev is the photon velocity inside the medium ahg is

0 COShol.—ho sinhyl. the isotropization length defined in Sec. II. In additionCxp

In Fig. 4, we plot these functions for different absorption diffusion theory introduces two more parameters, the ex-

rates. Note that, due to absorptidR(L,\,)+T(L,\,)#1. trapolation IengtHe_a_md the penetration length, to treat
In the absence of absorption, these coefficients reduce to € boundary conditions and the source of photons, respec-
tively. In terms of these parameters, the transmission coeffi-

2liso cient predicted by diffusion theory [25]

T(L,O):m,

R(L,O):m, (4.19
o+

Ta= P 5.2
and obviouslyR(L,0)+ T(L,0)=1. T (5.2
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When L is large enough to disregard the ballistic photons Using this result, we obtain the average transmission time
(those that cross the slab without being scatterEg agrees T, given by the diffusion approximation, that is,

with the transmission probability calculated for our model,

Eqg. (4.19, providedl, and |, are both equal tdis,. The

penetration length obtained corresponds to the most used *

value. However, the extrapolation length differs from the fo (1) dt L2+ 4Ll 312,

standard value that follows from diffusion theory, To=—F3 = 5ol (5.7
=2lis/3. The reason for this apparent disagreement is the f Jgir(H)dt IS0

limited number of velocity directions allowed by our model. 0

Indeed, from theexact stationary probability density, Eqs.

(4.8) and (4.9), the extrapolation length calculated by the

requirement To derive this expression, we took into account that for our
model l,=1s,. In this case, the diffusion approximation is
also very accurate because the exact result,(E5, and

T, differ only by a constant factor 3l;s4/2.

Therefore, the diffusion approximation works for our
gives precisely.=|s,. A similar calculation yields the same model well below the accepted limit of failure of such ap-
value for the extrapolation length at the other slab face, whefroach for more realistic model$3]. As we have explained,

L is large enough to neglect the ballistic photons. Moreoverthis is a consequence of the limited number of photon direc-
as the diffusive part of the stationary density becomes lineations of motion allowed by the model.

close to the slab sides, the extrapolation length can also be

obtained in this case from the solution @f—I4|x) =0.

Once the lengthk, andl, are known, it is possible to use
the diffusion approximation to calculate other quantities of VI. CONCLUSIONS
interest. For instance, the escape ti{f@ can be obtained
from the mean first-passage time of a free system driven by In this paper we have proposed a model for light propa-

=0 (5.3
x=0

d
(1_|e& p(X|Xo)

white noise and the result is gation through a thin slab. The main property of the model is
that photons can only take a restricted set of velocity direc-

(T>=3E (5.4) tions. This limitation has the advantage that has allowed us

v’ to compute most relevant properties in experimental studies

. o ) ] ) without any approximation. Among the interesting quantities
which coincides with the exact calculation given by EQ.in multiple light scattering experiments, we have concen-

(3.17). The transmission time can also be computed in thgrated on the properties of the transmitted flux. In most cal-
diffusion approximatior{1]. In order to obtain it, we begin cylations, absorption has been taken into account. In particu-
with the expression for the photon concentration in a slalizr, we have shown its influence in the mean survival time of

mmXg . maX

p(x,t)=

with faces atx=I, andx=L+l. when a unit pulse is in- photon inside the slab.
jected atxo=le+1p,=2l,, Our exact calculations have been compared with those
obtained from the diffusion approximation, the most widely
S sin sin used approach in the analysis of multiple light scattering
L+2le m=1 L+2l, L+2l, data. We were able to obtain the exact expression for the
extrapolated length. Using this parameter, the results of the
Dtm?7? diffusion approximation agree very well with the exact ones
ex _m : (59 even below the region where it is known from experiments
€ that the diffusion approximation does not work. The reason
Note that the latter expression vanishesxat0 andx=L for this agreement lies on the limited number of directions
+ 21, which correspond to the extrapolated boundaries of th&long which photons can move. However, the model is really
slab of widthL located betweex=1, andx=L+1,. The three dimensional as reflected by the diffusion constant as-
transmitted flux]y; reads sociated with it. The diffusion approximation cannot give,
however, the discontinuity in the stationary density at the
position of photon injection. This feature could be used to
Jair(t) = —D&p(x,t)lx:LHe test other approximation schemes, like the use of a phenom-
enological telegrapher’s equation.
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APPENDIX: FORWARD SCATTERING scattering event. The expression fi¢s), the Laplace trans-

The model explained in Sec. Il confines the directions ofform of U(t), bgcomes simpler because the sum dvean
photon motion to those parallel to the a%ésY, andZ. Due b€ worked out:
to this restriction, forward scattering cannot be distinguished

from straight motion. This property allows us to rewrite the - (9)= 7’ N % T 7’
phase function in such a way that only takes into account s+l & Pf(T,s+ 1)k+1 s+ 1-p;
those collisions that produce a change in motion direction (A4)

(including a reversiop that is, with no forward scattering
included. Indeed, let us assume a general phase function fe#,, Laplace inversion dfi(s) yields
our model:

f1(y)=psd(y) +pPpd(y— ) +pod(y—wl2), (A1)

wherepy is the forward scattering probabilitp,, is the back- ~ With a new parameter:
scattering probability angd, gives the probability that after a

U(t)=exp(—t/7), (A5)

collision a photon turns to any of the four orthogonal direc- e 7 (AB)

tions that are parallel to the axe§ Y, and Z. The time 1-ps’

between two successive collisions is distributed according to

the following exponential probability density function: Therefore, times between scattering events that produce a

change in motion direction are also exponentially distributed
, with an average time between collisions equat-té\fter one

p(t)= Zexp(—tlr ), (A2) of these events, a photon can only move in an orthogonal
direction (y=/2) or reverse its direction of motiony(

where7’ is the average time between consecutive scattering® 7). Thus, the phase function can be written
events. The scattering mean free path is simply. Let
U(t) be the probability that the photon keeps moving in the f(y)= Po S(y—ml2)+ Pb
same direction for a time greater tharJsing Eqs(Al) and LE Ps yom 1-p¢
(A2) and taking into account that the result of a forward
collision does not differ from straight motion, we see thatwhich agrees with Eq2.1) if B=p,/(1—p;).
U(t) is given by It follows from this analysis that the forward scattering
. probability is incorporated in the model by rescaling the av-
. W [t , N g erage time between scattering eventsrasr’/(1—p;) and
U= P(t)+k21 pffOP(t—t )p(t)dt’, (A3) changing the phase function from Eé\1) to Eq.(2.1). Note
that the anisotropy factag is always negative because for-
whereP(t) =exp(—t/7’) is the survival probability ang,(t) ward scattering is included in the rescaled (1—p;)A’ and
is the probability density function for the time of theh  not in the phase function.

o(y—m), (A7)
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