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Critical behavior of a random diode network
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We study the percolation properties of a random diode netéREKN) which contains two kinds of directed
bonds on a square lattice. This network is a special case of the random insulation-resistor-diode network. Both
Monte Carlo simulations and series expansion for the percolation probability show that an estimated critical
exponent,3=0.1794+0.008, is different from known values for a conventional insulation-resistor-diode net-
work. RDN belongs to neither the isotropic percolation universality class nor to the directed percolation
universality, which we attribute to a difference of symmetry breakdown around the critical point.
[S1063-651%99)09406-4
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[. INTRODUCTION that the sites are connected. I®§(q) be the probability that
the origin (0,0) is connected to at least one site on the border
A random insulation-resistor-diode netwo(kRD) is a  of Vg,Bn, defined by
kind of a generalized percolation modé4]. In IRD, each
bond is occupied by one of the following components: a Ba={(x,y) e Z%|x|=n}U{(x,y) e Z%|y|=n}. (2
positive diode(conducting either upward or to the right
negative diodeconducting in the opposite directipra re- ~ Then, the percolation probabili§..(q) is defined as a limit,
sistor (conducting in both directionsand an isolatior(dis- ~ P(d) =lim,_.Py(q).
connecting with probabilitiesp, g, r ands=1-p—qg-—r,
respectively. By setting=s=0 andp=1—q, a random di- Il. MONTE CARLO SIMULATIONS
ode network on a square lattice is obtained as a special case
of IRD. The isotropic bond percolatioiP) [5,6] and the
directed bond percolatioDP) [7-9] are also obtained as
special cases of IRD by setting=q=0 andp=r=0, re-
spectively. By using the position-space renormalization
gFr)oup[3 X] ang plangr Iatncepduallty rglatlon [10,11], the greater than zero. It implies that the critical point for RDN is
phase diagram for IRD and geometrical properties such a4~ 1/2. Although this value is the same with the critical
correlation length exponents were studied by Redne. It point of the isotropic percolation, the critical behavior is
is known that the critical point for IP is exactlyand that the ~ 9uite different. The most significant difference is that for
percolation probability critical exponent must [Bg.= 5/36. RDN the infinite cluster is directed ip#qg. Consider the
On the other hand, no exact values are known for DP. HowSonnection probability between the origin and a site
ever, a long series expansion for the percolation probabiligé:€): P(&.a). If q<3, then ast approaches minus |nf|n|ty,
obtained by Jensen and Guttmann gives the critical exponefit(é:d) converges to zero. Since..(q)=P.(1- Q)
Bop=0.276 43(10)[12—-15. larization” of the infinite cluster reverses aj=5. To ob—
The critical point for RDN corresponds to an intersection

of the four boundaries in Fig. 1. One of the natural questions
is whether the critical exponent for RDN is unique or it is the =0
same afBp or Bpp. In this paper, we report that the perco-
lation probability for RDN is characterized by @ value

In the case ofj=1/2, one finds that the percolation prob-
ability for RDN is equal to that for the isotropic bond perco-
lation, thus the percolation probability is exactly zero. Fur-
thermore, if q#3, the percolation probability is strictly

Non-
percolating

which is different from bothB,r and Bpp. DP
Consider a finite square region on a square lattice, defined p q
as RM
VO={(x,y) e Z%,—n<x=<n,—n<y=n}. (1)
Non-

We assume that each bond is occupied by a positive diode or
a negative diode with probabilities-1g andq, respectively.
If there is at least one current path between two sites, we say s

percolating

FIG. 1. Projections of the phase diagram of IRD(@ps=0, (b)
*Present address: Institute of Technology and Engineering, Prie=0, and(c) g=0. RM denotes the critical point. For< 1/2, there
vate Bag 11 222, Palmerston North, New Zealand. is a macroscopic current in the direction of (1,1).
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FIG. 3. InP,(g) for RDN against In(1/2q) (Monte Carlo
simulation. Slopes give the critical exponeg values. Slopes of
the wupper (lower) dashed line are 8p=5/36 and Bpp
=0.27643(10), respectively.

duce new particles to their right-handeft-hand vacant
neighbors with probability +q (q) at the next step. In a
similar way, particles are created upwadbwnward with
probability 1—q (q). If there are no new patrticles at a finite
step, the origin belongs to a finite cluster.

-480 Side lengths of square regidnand the number of inde-

480 -320 -160 0 160 320 480 pendent runsN, were varied fromL=10420N,=5000

X close toq., to L=1280N,=10* away fromq_.

Figure 3 shows IP,(q) (for N,=5000) against In(1/2
—q). Although it is well known that the percolation prob-
ability for both IP and DP exhibits power-law behavior near
the critical point, this is not obvious in the case of RDN.
However, we observe that simulation points fall nicely on a
straight line. Thus, we conclude that the power law near the
critical point holds for RDN as well. Assuming a power
law, the percolation probability is expressed Bs/(q)
~|g.—q|?, whereq is the critical point angB is the critical
exponent.

By comparing the straight line in the middle, which has a
_480 slope 3=0.187 and the remaining straight lines with slopes
-180 -320 -160 0 160 320 480 Bip="5/36 andB,,=0.276 43(10) in Fig. 3, one can clearly

see that the3 value for RDN is different from those for IP
and DP, and the difference cannot be accounted for by simu-

FIG. 2. Contour plots of pair correlation function between the|ation errors.
origin and a site X,y). Regions with higher values are shown in
darker gray,q=0.5, 0.49, and 0.47 from top to bottom.
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Ill. SERIES EXPANSION

. . OF THE PERCOLATION PROBABILITY
serve the reversion and to help our intuition, contour plots of

the pair correlation function between the origin and a site To estimate the critical exponent more precisely, we de-
located at X,y) are shown in Fig. 2. The corresponding datarive a series expansion of the percolation probability for
were obtained by Monte Carlo simulations on aRDN, which is represented as a polynomid..(q)

2048x 2048 square lattice, averaged ovek 50* realiza- =3 _,c,q" for smallg. We used a program based primarily
tions. The “polarization” quickly becomes rather sharp ason the algorithm of Martirf16,17 for enumerating isolated
paramete separates from the critical point. connected clusters.

We estimated the critical exponent by a Monte Carlo Clusters including the origin are generated in the same
simulation. Clusters including the origin are generated by thevay as that introduced in the Monte Carlo simulation, how-
following branching process, which is a kind of Markov pro- ever all possible clusters are generated in finite steps. It is
cess in (2-1) dimensions. Here we call a site connected touseful to introduce, (l,) defined as a projection length of a
the origin a particle. A particle is set on the origin at thecluster to thex (y) axis, respectively. Since the number of
initial stepn=0. Particles created at the{ 1)th step pro- nearest-neighbor sites for a cluster withandl, is greater
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Carlo simulation. The solid line is drawn with slopg,s=5/36.

FIG. 4. Pole residues for Dlog Padpproximants to percolation

4 By combining series expansion and Monte Carlo values
probability.

for B, we estimate the percolation probability critical expo-
nent for RDN as8=0.1794+ 0.008.
thank=1,+1,; the degree iy for the cluster probability is To consider a relation between the symmetry breakdown
also greater thah. in RDN and the critical exponent, we introduce a modified
If the numberk corresponding to a cluster is greater thanrandom diode network. We denote the original model as a
or equal to the predetermined degree of the series, the clustitpe (2:2) and the modified model as a typE3). In the type
stops growing and a new configuration which never appeare(l:3), a site is connected to a lower site with probability
in the former process is generated from the cluster createldnstead of 1-q for the type(2:2)]. We performed Monte
one step before. We note that the coefficient®o{q) are  Carlo simulation in the same way as for RDN except for
determined as increasing the numberkofBy calculating changing the maximum system size frars 10 240 to 2560.
probabilities for all clusters with<13, we get the following A plot of In P.(q) against In(1/2q) is shown in Fig. 5. The
series expansion: slope obtained by the least-squares method is closggo
=5/36. Here we note that while the infinite cluster is direc-
tional, the critical exponent is n@pp but B)p.
As mentioned in the beginning of this paper, for {2e2)
type model changing the parametgacross the critical point
switches the “polarization” of the cluster. This property is

This series was obtained by enumerating about eight hurReculiar to the type2:2) and the new model does not have
dred millions isolated clusters and it takes about two week$he P-.(d)=P.(1—q) symmetry.
on our personal computéPentiumll 450 MHz. In order to
evaluate the critical exponey®, we suppose that the perco-
lation probability is governed by a simple power law and
used Padeapproximants to the series fod/dq)In P..(q).
The critical pointg. and the critical exponer are given by

the first pole on the positivg axis and the residue of the " ° i . - -
Padeapproximant at this pole. The results are summarized if2:2 an.d the type1:3) are given by setting=0 ar)de.—. 1,
respectively. In the case of<Qe<1, the most significant

Fig. 4. The estimated critical point values agree with the - ) o : :
exact valueg.= 1/2. The series obtained is rather short, so gdifference is that the second critical poigi(e) exists be-
noticeable deviation in8 remains, however since the exact Weend=1/2 andq=1. The critical exponeng is extremely
critical point is known, we can obtain a better estimationSENSitive to errors for the critical point, thus we estimated the
of B*(q) by forming’ Padeapproximants to the series critical point by time-dependent simulations, which is an ef-

- . o .. ficient method for determining critical poin{d9]. At the
d/dqg)IinP,, 18]. Th tical t n : . S

S)%Ctair?éél byq)sztting)zlg d E/Ve] sunfm:rlilzcea tﬁ; p&gﬁﬂs |isn critical point, we assume that the percolation probability is

Table I. ¢ governed by a power law for largewhich is introduced in

the branching process as follows:

P.(q)=1-9*-q*-29°~2q"-2¢°~129°
+2q10_54q11+38qu_ 19&13_’_0((414)' (3)

IV. EXTENSION OF RDN

It is interesting to study the transition from the ty(#&?2)
to the type(1:3). We extend RDN by setting the connection
probability to a lower site ag(1—q)+(1—¢€)q. The type

TABLE I. Estimations of the critical exponerg for RDN by

—5(e)
evaluating the Padapproximants to the (1/2g)(d/dq)In P..(q). '

P(n,e)xn

4

We performed 18 independent runs up to 5000 steps for

N [N— 1] [N/N] [N+1M] different values of= 0.5 ande=0.8. Nice straight lines are
4 0.182663 0.179487 0.179713 observed in plots for IP(n,e) against Inf) at g.(0.5)
5 0.179627 0.179481 0.179001 =0.5680(5) andj.(0.8)=0.822(5), respectively. The in-
6 0.181671 0.181569 set in Fig. 6 shows local slopes of in,0.8), §(n) against

1/n, which give the good estimation af for largen at the
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€=0.5 near theg,=1/2. As shown in Fig. 6, the estimated
value 8=0.14(1) is close t@Bp=0.138 ... . Weconjec-

0 ture that if 0<e<1, the critical exponenB(e) is indepen-
-0.2 + dent of the values, however the proof of it is an open ques-
B=0.1425 tion.
-04 |
S 06 | V. SUMMARY AND DISCUSSION
NS
5"5 -0.8 L P— | ‘ We found new critical behavior for the percolation prob-
- B “ ability in a special case of random diode networks. Here, we
-1 //’. discuss a relation between RDN and another special case of
12 | IRD, which is defined by settingj=0, s=r, and p=1
’ 0 0015 003 —2r. Changing the parameterfrom r=0 to r=1/2 corre-
-1.4 ' ' : . . sponds to a movement in the phase diagram in Rig).fiom
-6 -5 -4 -3 -2 - 0 the pointA to the pointB. Consider the connection probabil-
In|gq -q| ity between a site and its immediate neighbor to the right.

The sites are connected when the bond between them is oc-

FIG. 6. Results given by Monte Carlo simulations for the ex- cupied by a resistor or a positive diode. Therefore, the con-
tended RDN withe=0.5 and 0.8. The slope of fitted lines in plots nection probability is given by £r. On the other hand, a
of In P(q) for e=0.5 against In@.—q) gives the critical exponent site is connected to its immediate neighbor to the left only if
B. The slope of the upper line shovgnear the critical pointlc  the bond between them is occupied by a resistor, and so the
=1/2 and the lower line showg near the critical pointde  connection probability is given by. Consequently, the per-
=0.5680. Each of them is close 1p=5/36 andBpp=0.27643,  colation probability P..(r) is the same withP..(q). The
respectively. The inset showin) for e=0.8 against X given by yna5e transition is characterized By. Therefore, percola-
the local slope method with, from top to bottom=0.8225,  {ion probability near the multicritical poir is characterized
0.8220, and 0.8215. by two different critical exponents. Thus, we are dealing
with two models having the same critical point and different
critical exponents for percolation probability. Contrasting
them might provide a better understanding of RDN.

critical point. Critical exponents which are obtained #e
=0.27(1) (=0.5), 6=0.157(5) =0.5), and §
=0.161(5) €=0.8), which agree with the DP exponent
Bpp=0.276 43 and5=0.159(1) (we cannot accurately esti-
mate B in the case ofe=0.8 due to the slow convergence
against the system size near the critical poitMe also mea- The authors would like to thank Makoto Katori for valu-
sured the critical exponent for the percolation probability forable comments.
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